18120 /(- -

CHRYSLER / UMTRI

WIND-STEER VEHICLE
SIMULATION

Reference Manual

Version 1.0
(Volume II of II)

Report No. UMTRI-89-8 / 2

M. W. Sayers
C. C. MacAdam
Y. Guy

February 1989

The University of Michigan
UMTRI Transportation Research Institute






Technical Report Documentation Page

1. Report No. 2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

Chrysler / UMTRI Wind-Steer Vehicle Simulation —
Reference Manual, Version 1.0 (Volume IT)

5. Report Date

February 1989

6. Performing Organization Code

7. Author(s)

M. W. Sayers, C.C. MacAdam, Y. Guy

8. Performing Organization Report No.

UMTRI-89-8 /2

9. Performing Organization Name and Address

The University of Michigan

Transportation Research Institute

2901 Baxter Road, Ann Arbor, Michigan 48109

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

000533

12. Sponsoring Agency Name and Address

Chrysler Motors Corporation
Highland Park, Michigan

6/86 -

13. Type of Report and Period Covered

12/89

14. Sponsoring Agency Code

15, Supplementary Notes

Chrysler Challenge Fund Project 2000533, "Vehicle Crosswind Stability."
Chrysler Corp Personnel: James H. Frye, Mark Gleason, John Pointer.

16. Abstract

The Wind-Steer model is a time-based simulation of the handling performance of a passenger
car in response to steer inputs from a driver and external wind conditions. The simulation
includes the aerodynamic properties of the vehicle, a closed-loop driver model, and vehicle

dynamics, vehicle model, aerodynamics,
pasenger car, steering system, driver model,
crosswind, aerodynamic disturbance, wind

chassis characteristics.
17. Key Words 18. Distribution Statement
computer model, simulation, vehicle No restrictions.

19. Security Classif. (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified

21. No. of Pages

114

22. Price




Acknowledgement

This document and associated work are part of a research project supported at The
University of Michigan Transportation Research Institute (UMTRI) by The Chrysler Motors
Corporation under the Chrysler Challenge Fund Project 2000533 entitled, "Vehicle
Crosswind Stability." The Challenge Fund Program is administered at Chrysler by Mr.
James H. Frye. Technical support has been generously provided by Chrysler engineering
staff, in particular Messrs. Mark Gleason and John Pointer of the aerodynamics group.
Additional engineering assistance has been provided by Messrs. Don VanDis and Fred
Winsor on various topics related to vehicle chassis and steering dynamics.

Notice

The computer software documented herein is copyrighted by:
The Regents of the University of Michigan, 1987-1989,
Ann Arbor, Michigan. All Rights Reserved.



REFERENCE MANUAL

This document constitutes the primary technical reference for the Chrysler / UMTRI
Wind-Steer vehicle simulation model. A separate User's Manual (Volume I) accompanies
this document and is used as the primary guide for using and interacting with the Wind-
Steer model.

The Reference Manual is intended to provide detailed background material for the
model showing the equations, computer source code, and nomenclature. The material is
presented in the form of five appendices (A through E). Appendix A describes and defines
the nomenclature used in the model. Appendix B describes the basic equations used by the
model. Appendic C discusses the programming details necessary for understanding and
modifying the computer code. Appendix D contains the FORTRAN 77 source code used
in implementing the model on both Apple Macintosh and IBM PC / compatibles personal
computers. Lastly, Appendix E provides two technical papers [references 2 and 3] used to
document the driver steering control model contained in the program.
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APPENDIX A—NOMENCLATURE

Subscripts
1 =Front Axle 2 =Rear Axle L =Left R = Right

Variables and Parameters

Symbols refer to parameters unless they are identified as being variable

Ay = [Variable] Lateral acceleration of vehicle center-of-mass, perpendicular to
longitudinal vehicle axis and parallel to ground

a = Distance from front axle to total vehicle center of mass
ag = Distance from front axle to center of mass of the §prung mass
= Distance from total vehicle center of mass to rear axle

Cp = Steering boost coefficient

Cy = Steering damping coefficient

Cq= [Variable] Cornering stiffness for slip, defined as 0Fy/gq

Cy= [Variable] Comering stiffness for camber, defined as oFy/gy

CmMmq = [Variable] Aligning stiffness, defined as dMz/gq,

D1, Dj; = Damping coeficient for jounce for front and rear shock absorbers
D,;, D, = Damping coeficient for rebound for front and rear shock absorbers

Fp = [Variable] Suspension jounce / rebound damping force (additional subscripts
indicate which wheel)

Fy = [Variable] Tire-generated side force (additional subscripts indicate which
wheel)

Fya = [Variable] Aerodynamic side force
Fza = [Variable] Aerodynamic vertical force

hy, hp = Height of nominal front and rear roll centers
hsm = Nominal height of sprung-mass center of mass

ha = [Variable] Vertical distance between the sprung-mass center of mass and the
instant roll axis

hre1, hee2 = [Variable] Vertical distance between center-of-mass of the sprung mass and
the instant front and rear roll centers

Ixs = [Variable] Instant moment of inertia of sprung mass about roll axis
Ixx = Moment of inertia of sprung mass about longitudinal (x) axis
Ixz = Cross product of inertia of sprung mass for x, z directions
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Iz= Yaw moment of inertia for entire vehicle

Kaux1, = Auxiliary roll rate (beyond rate due to vertical springs), for front and rear
Kaux2  axles, including the effects of tire compliance
Kir1, K2 = Auxiliary roll rate (beyond rate due to vertical springs), for front and rear
axles (without effects of tire compliance)

Ks1, Kg2 = Vertical spring stiffness, for front and rear suspensions (one wheel)
KT1, KT2 = Vertical tire stiffness, for front and rear tires (one tire)
= Total roll stiffness of suspensions and tires acting on sprung mass
= Wheelbase (a + b)

Mct, b= [Variable] Total steering system coulomb-friction on "forward" or
"backward" path, resolved as a motion-resisting moment about the front-
wheel kingpins

My = [Variable] Steering system viscous damping, resolved as a motion-resisting
moment about the front-wheel kingpins

Mp = [Variable] Steering moment servo-boost component, resolved as a motion-
assisting or motion-resisting moment about the front-wheel kingpins

= [Variable] Front-wheel steering moment component, less viscous damping
and boost

Mp = [Variable] Upper steering shaft "manual" moment (also controlling servo
valve)

Mxa = [Variable] Aerodynamic roll moment acting on vehicle
Mya = [Variable] Aerodynamic pitch moment acting on vehicle
Mz = [Variable] Tire aligning moment (additional subscripts indicate which wheel is
referenced)
Mgz = [Variable] Aerodynamic yaw moment acting on vehicle
mg = Sprung mass
m = Total mass
p = [Variable] Roll rate
Q= Aerodynamic pressure, p Va2/2
q = [Variable] Pitch rate
r= [Variable] Yaw rate

t1, t = Half-track distances for front and rear of vehicle (centerline of vehicle to
centerline of tire)

V = Vehicle speed (constant)
Va = [Variable] Air speed, relative to vehicle
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Viwind =
W=
X =
Y=

Yra =
Yrcl> Yre2 =

o=

®10, X2 =
B=

ﬁa =

dg =

Opw =
OLash =
&=

WYwind =
z=

ZiL =
ZIR =
L=
LR =
Igs =
Ksc =
KsL =

[Variable] Absolute wind speed

[Variable] Vertical velocity of sprung mass

[Variable] absolute (inertial) X coordinate of vehicle center-of-mass
[Variable] absolute (inertial) Y coordinate of vehicle center-of-mass

[Variable] Lateral distance between instant roll axis and sprung-mass center of
mass

[Variable] Lateral distance between center-of-mass of the sprung mass and the
instant front and rear roll centers

[Variable] Tire slip angle (subscripts indicate referenced tire)

Static tire slip angles for front and rear axles

[Variable] Vehicle slip angle

[Variable] Aerodynamic slip angle

[Variable] Front-wheel steering angle displacement, before adjusting for lash
[Variable] Average front-wheel steering angle displacément

Total steering system lash resolved to an angle about front-wheel kingpins
Roll steer coeficient for beam-type rear suspension

[Variable] Roll of sprung mass relative to baseline trim condition
[Variable] Tire camber angle (subscripts indicate referenced tire)

Static tire camber angles for front and rear axles

Nondimensional parameters that reduce the effective suspension stiffness to
account for tire vertical compliance

[Variable] Pitch of sprung mass relative to baseline trim condition
Density of air OR

[Variable] Instantaneous path curvature of vehicle, at the center of mass
[Variable] Vehicle yaw (heading) angle relative to inertial frame
[Variable] Absolute wind direction (180° from meteorology convention)
[Variable] Vertical displacement of vehicle sprung mass

[Variable] Vertical displacement at left front suspension point
[Variable] Vertical displacement at right front suspension point
[Variable] Vertical displacement at left rear suspension point

[Variable] Vertical displacement at right rear suspension point

Steering wheel / upper column rotational inertia

Steering column stiffness

Steering linkage stiffness (one side)
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.

Kss = Effective (lumped) steering system stiffness based on Ksc and KsL
GR = Overall gear ratio of steering system
dsw = [Variable] Steering wheel rotational displé.cement
O¢w' = [Variable] &gy / GR '
CL = Aerodynamic lift coefficient
Cp = Aerodynamic drag coefficient
CM = Aerodynamic pitch moment coefficient
Kr = Aerodynamic coefficient for lift force variation due to B2
Kp=Aerodynamic coefficient for drag force variation due to 42
Ky = Aerodynamic side force coefficient
KN = Aerodynamic yaw moment coefficient
KR = Aerodynamic roll coefficient
KM= Aerodynamic coefficient for pitch moment variation due to ﬁaz

= Aerodynamic cross sectional area
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APPENDIX B—EQUATIONS OF MOTION

The constant-speed vehicle model includes a total of six dynamic degrees of freedom
that are important for simulating the handling response of a passenger car to steer and wind
inputs for non-limit maneuvers (lateral acceleration levels less than 0.3 g’s). Twelve state
variables are used to define the kinematics of the vehicle and follow the SAE recommended
practice sign convention [7]:

X X inertial forward coordinate of vehicle center of mass

Y

Y inertial lateral coordinateof vehicle center of mass

Z inertial vertical coordinate of vehicle sprung mass

Euler roll angle of sprung mass

Euler pitch angle of sprung mass

Euler yaw angle of total vehicle

Roll angle rate of sprung mass (in body axis coordinate system)

Pitch angle rate of sprung mass (in body axis coordinate system)
Yaw angle rate of sprung mass (in body axis coordinate system)
Side slip angle of vehicle c. g.

€ ™ 14 o0 9”9 € D e ~N

Vertical displacement rate of sprung mass (in body axis coordinate system)
Average steer angle of front wheels

g

Independent steer, camber, and vertical motions are included for each wheel. These
motions are treated as being in static equilibrium, thereby eliminating the numerical
integration of the differential equations representing the high-frequency (10 to 15 Hz)
mechanical resonances of the unsprung masses.

B.1 Body Equations
B.1.1 Kinematical Relationships

The derivatives of the inertial X and Y coordinates of the vehicle center of mass are
related to the constant forward speed and vehicle rotation:

X =V cos(y + B) (B.1.1-1)
Y = Vsin(y + B) (B.1.1-2)

The following four state variables are speeds defined as derivatives of other state
variables:

w=z (B.1.1-3)
p=0 (B.1.1-4)
q=96 (B.1.1-5)
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r=y (B.1.1-6)

Two useful variables that are derived from the yaw rotation rates are the lateral
acceleration and the path curvature of the vehicle center of mass:

Ay= V(—’g”.ﬁl (B.1.1-7)
o =“{,B (B.1.1-8)

B.1.2 Force | Moment Equilibrium Equations

The following sums combine the external forces and moments applied the tires and the
aerodynamic effect:

2 Fy =Fy, +Fy, +Fy, + Fyx+Fya (B.1.2-1)
> Fz=Fz, +Fz,+Fzy +Fz—Fza (B.1.2-2)

z IwZ:MZu."'MZm"'IVIZzl.."'MZm"'NIZA
+a (FYu. + FYm) -b (FYL + FYm) + (a —%—) FYA (B 12-3)

Five equilibrium equations can be written for this vehicle model by balancing the
applied forces and moments with D’Alembert’s forces and torques. The summation of
lateral force and yaw moment are applied about the entire vehicle, whereas the pitch and roll
moments and the vertical force are applied only for the sprung mass. As implied by the
form of the following equations, these relations are used to evaluate the accelerations.

xsp=-bezt-mhaV G+ +mgyn-Ke 0 +tlfou-Fow) (5,4
+ tFp, — Fpy) + Mxa — hem Fya h

LA (B.1.2-5)
mV
Igp+ Y M
poK2P LM (B.1.2-6)
Iz
- m_g__'_Z_FZ_ (B.1.2-7)
mg
a[2 u1 Ks1(z-20)+Fp, +Fp,l
~b[2 2 Ksz (z+b8)+Fp, +Fp,] +MYA+(——aS) 74
q= (B.1.2-8)

Iys

As written above, the first three of these equations are coupled in such a way that they
cannot be evaluated sequentially in a computer program. That is, the terms p, {3, and r
appear on both sides of egs. B.1.2-4 through B.1.2-6. By substituting egs. B.1.2-5 and
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B.1.2-6 into B.1.2-4, an alternative expression for p is obtained which is not dependent on
Borr:

msgym—%z My ~ Ky ¢+ Mxa — hem Fya

- DM 3 By by (Fy ~ Fpy) + t2 (Fpa — Fg)

242 2
-t

p:

(B.1.2-9)

This expression is used (rather than eq. B.1.2-4) to evaluate p. The known value of p is
then used in egs. B.1.2-5 and B.1.2-6 to evaluate f} and r.

B.2 Aerodynamic Forces and Moments

The equations for computing aerodynamic forces and moments were presented in
Section 2.2. The aerodynamic slip angle (B,) and speed (V ), required for those equations
are:

Vax = Vwind €08 (Ywind — ¥) — V cos (B) (B.2-1)
Vay = Vwind Sin (Wwind — W) — Vsin () (B.2-2)
V=V 2
Pa= ml(% " Va0 (B.2-4)

B.= tan'(—:-;fi + 7 Va< 0
ay (B.2-5)

The areodynamic forces and moments are, again, as in Section 2.2:
_PVa

2 (B.2-6)
Fxa=QA (Cp+KpB2?) (B.2-7)
Fya=-QAKyBa, (B.2-8)
Fza=-QA (CL+KLB?) (B.2-9)
Mxa=-QALKRB, (B.2-10)
Mya=-QAL (Cym +KmBad) (B.2-11)
Mza=-QALKNPa | (B.2-12)
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B.3 Suspension / Wheel Terms

B.3.1 Vertical Displacements

The tire slip and camber angles are influenced by the following suspension deflections

ziL=z-2a0 - 110 (B.3.1-1)
ZIR= z-a0 + 10 (B.3.1-2)
zyp = z2+b06 - o (B.3.1-3)
ZrR=2+b8 + 120 (B.3.1-4)

The above expressions neglect vertical tire deflection. The effects of tire compliance are
included by reducing the forces caused by the above deflections.

B.3.2 Effective Stiffness and Damping Values

All suspension springs in the vehicle model are linear. These include the vertical spring
rates at each wheel, the auxiliary roll stiffness for the front and rear axles, and the tire
vertical spring rates. The vertical motions of the wheels (acting against the tire vertical
stiffness) is not computed in this model. Instead, the tire compliance values are used to
lower the spring and damping rates of the suspension so that the vertical force, roll
moment, and pitch moment acting on the sprung mass take into account the tire vertical
deflections.

Effects of vertical spring and damper coefficients are reduced by the proportion of the
overall vertical wheel movement that is due to the tire compliance

-_Km B.3.2-1
K1 Kr; + Ks; ( )

-_Kp -
Ha Koy + Kss (B.3.2-2)

The effective auxiliary roll stiffnesses for the front and rear axles are also reduced due
to tire compliance

- =21%KT1 (Z%KSI +K“1) —2|.11t% Ks1 (B.3.2-3)
2 t% (KTI + K51) +Km
=2  Krz(2 § Ksa + Kn) -2 8Ksy (B.3.2-4)

2 t%(KTg + ng) + KnQ
A single stiffness applies to the roll motions of the sprung mass.

Ky =21 Kg &8 + 21, K5 6 + Ky + Kpumo (B.3.2-5)

B.3.3 Vertical Damping Forces

A bi-directional shock absorber model is used. A linear damping coefficient is used
with different values for jounce and rebound, as indicated by the subscripts j/r. The
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nondimensional coefficients 1 and 7 are used to reduce the suspension motion by the
amount of the tire deflection.

Fp, = m1Dgm1lw - ad - t1pl (B.3.3-1)
Fp, = m1Dgm1lw - ad + t1pl (B.3.3-2)
Fp, = WDy [w + b8 - tp] (B.3.3-3)
Fp, = W2Dgm [w + b0 +t2p] (B.3.3-4)

B.3.4 Vertical Ground Loads

The tire forces and moments are influenced by vertical load. The vertical loads for each
tire are defined as follows:

Fz, = Ji[b me Kau 0= hrz:(FYw Pl R,z Ke (B34

Fz,, = %[b flil g ., Kaux1 ¢ — hn;i(FYu_ + Fy,)] + Fp, + H121RKs1 (B.3.4-2)

Fz, = %[a mg _ Ramd- h“Z(FYm Bl By b Ke (B343)

: — 1

Fz, = %[a ? g 4 Kawa 0 h‘?(FYl + gl Fpg +MozorKs2  (B.3.4-4)
2 J

B.4 Roll Axis

The suspension kinematics are simplified by assuming that the sprung mass rotates
about a roll axis. To extend this representation, the axis is permitted to move as a function
of roll angle. The roll axis is located by two points, each in the vertical plane containing
each axle. These points are defined by static heights located on the longitudinal centerline
of the vehicle, h; and hy. Movements of these two points are introduced as vertical and
lateral components, hye and yrc, which are defined as quadratic functions of roll angle (see
section 2.1) in coordinates fixed in the (rolling) sprung mass. The (rolled) vertical and
lateral distances between the center of the sprung mass and the roll axis are defined as

h' = hyey +a_1j'(hrc2 - hy1) (B.4-1)
' = Yre1 3 (Y2 = Yeet) (B.4-2)
These dimensions are projected into a non-rolling frame to yield the offsets
hp=h'-y'0 (B.4-3)
ya=Y +h'¢ (B.4-4)

An instant roll moment of inertia is defined for the sprung mass to include the effect of
the offset of the center of mass relative to the roll axis.

Ixs = Ixx + (Yraz + hraz) Mg (B.4'5)
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B.5 Tire Slip / Camber / Steer Equations

The tire side force and aligning moment are modeled as being linear with slip and
camber. However, the coefficients are functions of vertical load (see Section 2.3).

B.5.1 Independent Suspensions

The slip angles and camber angles (o and 7y) are defined as follows for the front
suspension:

oL = 0o +l3+v ?,8 2L ais Fyu - SzllMZ“"S (B.5.1-1)
a1R=—alo+l3*,r—Va 38 IZIR a?:a Fyw - SZLMZ‘R_SFW (B.5.1-2)
Y=o+ - il aiy l Pt (B.5.1-3)
YIR= Yo+ ¢ - gy ZIR ~ a?:y 1 Fyin (B.5.1-4)

(If the dynamic steering system is being used, SFW is equal to 3SW / GR and the aligning
torque compliances are accounted for in the steering system model. Otherwise, it is the
actual left / right front wheel angle and the aligning torque compliances are included as
shown.)

The equations used for an independent rear suspension are:

L o
OR = 00 + B - er %8 ,Z2R - a?:a Fm - 8Mz‘ Mza (B.5.1-7)
VL=t + %Zm ‘%LFY" (B.5.1-8)
Y=o+ - 3z, 2R~ azl}:y ‘ P (B.5.1-9)

Because the slip and camber angles are influenced by tire side force and aligning
moment, which are in turn developed by slip and camber, the above equations are not
suitable for sequential evaluation. To obtain a closed-form solution for slip and camber,
the explicit expressions for aligning moment and camber are substituted for each wheel.
These expressions have the form

Fy=aCq+7vCy (B.5.1-10)
Mz =a Cypq (B.5.1-11)
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where the coefficients Cg, Cy, and Cmq are functions of vertical force that typically differ
for each wheel at any instant. When the appropriate forms of egs. B.5.1-10 and B.5.1-11
are substituted into egs. B.5.1-1 through B.5.1-9, the slip and camber equations for each
wheel are coupled with each other. Because they are linear equations with respect to slip
and camber, they can be solved to yield expressions for the slip and camber of each wheel.

These equations can be written using matrix algebra notation as:

(boldface denoting matrices) |
Ao=By +c (B.5.1-10)
Dy=Ea +f (B.5.1-11)

The solutions to these simultaneous equations are given by:

y*=(D-EA!'B (EAlc+ D (B.5.1-12)

a*=AlBYy* +0¢ (B.5.1-13)

The A, B, ¢, D, E, and f matrices are:

33000 b1 000
A=|0a00 B=|0b0200
00a0 00bs 0
000 a 00 0by

ai= 1+ (aai/ aFyi) Cai"‘ (aai/ aMm) CMai

b; = - (39;/ aFyi) Cﬂ

oo +P+ra/V-(30/0z; )z, - &
-ap +B+ra/V+(33/0z3)z;- &
oy +B-rb/V-(95/0z3)z3
-0 +B-rb/V +(30/024 )z4

¢ =

)

I
coco &
co S o
o oo
coo°
cog o
of oo

coco

0
0
0
dg

o
A
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di= 1+ (0v/dFy) Cy
ei= - (0%/ dFy;) Cyi

- Y10 + 0 - (O11/921)z7

£ =| Yio+0+(0rdzn)z
- Y20 + 0 - (0/923)z3

Y20 + ¢ + (0Ya/024 )z4

B.5.2 Beam Rear Axle

For a beam rear axle, linkage compliance can permit the axle to steer in response to
applied side force and aligning moment. The attachment of the wheels to the axle is
assumed to be rigid, and the axle is assumed to have negligible roll compliance. These
assumptions lead to the following expressions for the slip and camber angles.

gL = 0o + P —rvb -€r0- 3%8;2(1:& + FYZR)—'%Z(MZ?L +Mzy) (B.5.2-1)
R = 0 + B L2 —gx ¢_i§_ (FYz."'FYzR)_ﬁ Mz, +Mzg)

\ oFyl, oMzl (B.5.2-2)

Y2L = - Y20 (B.5.2-3)

- TR = Y20 (B.5.2-4)

These equations cause the above matrices to become altered to the following:

a1 0 0 0 b1 0 0 0
A=|0 2 0 0 B=| 0 b 0 0
0 0 a3 a4 0 0 b3 b34
0 0 ag3 a 0 0 bs3 by

aj , bj as above, and:
a34 =(384/ OFy4 ) Cou + (384 / OMaa) Cuqy
a43 =(d83/ dFy3 ) Cq3 + (983 / OMg3) Cumy;
b34 = -(984/ 9Fys) C
bsz = -(83/ dFy3) Cp
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i as above

as above
0 +B-1b/V-er¢-083/0Fy3 Cp ¥3 - 984/0Fy4 Cya Y4
| -0 +B-1b/V - &g ¢ - 083/0Fy3 Cp Y3 - 984/0Fys Cya ¥4 |

d1000 61000
D = 0d 00 E = 0e; 00
0010 0000
0001 0000

as above

f=asabove

- Y20

Y20

B.6 Power-Assisted Steering System

The following equations for the dynamic steering system model are based on the
diagram of Figure B-1. The dynamics for the upper portion of the steering system are
given by:

Issd2 (Bsw) /dt2 = M + Kes( 8w - Sew)/GR
- Css d (Osw) / dt - CF sign[d (Ssw) / dt] (B.6-1)
where,
tw' = 85 / GR (B.6-2)
and Csg , CF are parameters representing viscous and coulomb friction.

The "no-lash" front wheel angle, 8¢, is determined from the quasi-static relationship
accross the lumped compliance K and current value of J¢y' as:

afw = wa' + H (1 - CB)/KSS (B.6"3)

The lumped compliance, Kg;s, is given by the serial combination of the upper column
compliance K¢ and the two lower linkage compliances K|, as:

2 Ksc KsL GR2 / ( GR2 KSC+ 2 KSL )

CB is the power boost (percent / 100) contribution from the pump and, H, the tire aligning
torques of both front tires, is given by:

H=2 Cq (xp+xm)[(v+ar)/U - d¢w] / Kss (B.6-4)

xp and Xm are the pneumatic and mechanical trails, respectively, of the front tires/wheels.
Ca is the front tire cornering stiffness.
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Substituting B.6-4 into B.6-3 and solving for &y 'yields:

dw = [3fw' + 2 Co (xp+xm) (1 - CB) (v+ar) / (UKss) ] /
[1+2Co, (xp+xm) (1- CB)/ Kss] (B.6-5)

Substituting B.6-5 into the differential equation B.6-1 results in:

Tes 42(8gw ) /dt2 = M+ K[ A 8gw - B (v+ar) ] / GR2
-Cssd (asw) /dt - CF sign[d (st) / dt] (B.6-6)

where,
A=1-1/[1+2Cq (xptxm) (1-CB)/Ks]
and,
B=2 Cq (xp+xm) (1 - CB)GR /
{ [ 1+2 Cq (xp+xm) (1 - CB) / Kss] U Kys }

The left and right front wheel angles, 3fwl and OfwR, are obtained from equation (B.6-5)
using left/right parameter values of tire cornering stiffness and inclusion of the wheel lash.

(inertia)
| d
Driver ss coulomb Gear wa H
1 frictio Ratio
Steering reeon ?_s_w Kss Lash | &/ L
Torque GR =
)"‘ v T GR _‘/(11/
J
M - Lash E
d viscCous  power 8, H
SW friction Boost R R
steering
wheel

Figure B-1. Steering System Model.
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APPENDIX C — PROGRAMMING DETAILS

This section describes how the Wind-Steer program operates. It is intended for
programmers who wish to modify the program, or port it to a new computer.

C.1 Machine Dependencies

The Wind-Steer program is written completely in Fortran 77. The standard does not
recognize any hardware-specific aspects of a computer, such as the screen, keyboard, or
clock. To make the program a more productive tool, it does make use of a few machine-
specific features for the versions that run on the IBM PC, the Apple Macintosh, and MTS
(The University of Michigan mainframe computer). These are:

«  The output file contains the time and date for the simulation, which is provided by
a subroutine called TIMDAT. The subroutine TIMDAT should be modified to
work on the computer for which the program will be used. If time and date
information is not available, the subroutine can be made inoperative.

The Macintosh version uses external subroutines provided with the compiler,
TIME and DATE. These must be linked with the rest of the program if it is re-
compiled for the Macintosh.

«  The Fortran i/o unit number for the “terminal” (i.e., the keyboard and screen)
should be set to the proper value expected by the compiler. Most compilers,
including all three that have been used to date, permit an asterisk * to be used to
specify the screen and keyboard.

«  Simulation progress is shown on the screen in the PC and Mac versions. This
involves interacting with the screen. This is done in the subroutine OUTERD and
should be modified to work on the new computer, or deleted.

The IBM version uses the subroutine SETCUR from an UMTRI library of Fortran
extensions. This library must be linked with the rest of the program for use on the
IBM PC.

¢ Writing of binary data has been done differently for every system so far. The
MTS version uses an MTS subroutine, WRITE, to put binary data into an ordinary
file. The PC version opens a separate file with access type set to a nonstandard
type BINARY. The Mac version uses a separate file with access set to
UNFORMATTED. Both the Mac and the PC versions of the program produce
binary files with no structure—just a stream of binary data.

»  The source code is contained in a large file with the main program and all of the
subroutine modules, and in nine small “include files” which are merged with the
main file during compilation. The INCLUDE command is not standard Fortran,
and is handled differently by each compiler.
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C.2 Structure of Program

The operation of this program follows that of many programs that use numerical
integration to simulate a dynamic system, and can be summarized by the following steps:

1.
2.

4.

Read input data. This function is performed by the subroutine INDATA.

Initialize variables and constants derived from input data. This function is
performed by the subroutine INIT.

Establish name(s) of output file(s) and write header data (number of channels,
names, etc.) This function is performed by the subroutine OPNOUT.

Perform the numerical integration using a “loop,” in which the differential
equations are solved numerically for time T, and T is increased in small increments
DT. The differential equations are written in the form:

Y; =dYydt = (Y1, Y2, ... Yo, t) (5.2-1)
where Y] is a state variable, i = 1, 2, ... n, and n = number of equations.

The function indicated above as f is named FUNCTN in the Fortran Wind-Steer
program.

The integration from time T to T+DT is performed using a modified Euler method,
sometimes called a second-order Runge-Kutta. Specifically, the integration of each
state variable is accomplished as follows:

Yi=Y{(T)+DT/2+f (Y1 Y2, .. Yo, T) (5.2-2)
Yi(T+DT) = Yi(T) + DT « f (Y'1, Y'2, ... Yy, T+DT/2) (5.2-3)

Note that f (FUNCTN) is evaluated twice for each integration step: once as the
start, and a second time as the midpoint of the time interval. All of the equations
that represent the vehicle are contained in FUNCTN and in several auxiliary
subprograms that are used by FUNCTN. (These additional routines are named
AIRACT, FDAMP, ROLLAX, STEER, TIRES2, SUM, etc.)

At some multiple of DT, values of interest are written into the output file by the
subroutine OUTPUT.

Print the success or failure of the simulation and close any open files.

C.3 Program Modules

This section describes the modules that make up the Wind-Steer program. The
subprograms are shown below in alphabetical order with a listing of their arguments and
common block references.

AIRACT(YAW, BETA, VYAW)

Update air velocity, sideslip, and magnitudes of forces and moments in common block
/AERO/.
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- YAW real*4  Yaw angle of vehicle.
— BETA real*4  Sideslip angle of vehicle.
- VYAW real*4  Yaw rate of vehicle.

Common Blocks: GLBL PARS AERO

DRIVGO

Initialize driver model parameters for steering angle version of driver model.

Common Blocks: GLBL  PARS VARS TIRE DRVST1 DRIV
TRSSTR

Subprograms called: TRANS

DRIVGT

Initialize driver model parameters for torque version of driver model.

Common Blocks: GLBL  PARS VARS TIRE DRVST1 DRIV
TRSTOR

Subprograms called: TRANST

DRIVE1 (DFW)
Read driver model parameters.
« DFW real initial average front wheel angle =0

Common Blocks: GLBL PARS VARS TIRE DRVST1 DRIV TRSSTR

DRIVER (X, Y, DFW, DFWNOW)
Calculates closed-loop driver steering control angle.

- X real current time

->Y real  driver model state vector

« DFW real calculated average front wheel angle.
— DFWNOW real current average front wheel angle.

Common Blocks: AERO GLBL PARS  DRVST! DRIV
TRSSTR
Subprograms called: TRAJ GMPRD

DRIVET (X, Y, DRTORQ, DRTNOW)

Calculates closed-loop driver steering wheel control torque.
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- X real current time

=Y real driver model state vector

« DRTORQ real calculated steering wheel torque.
— DRTNOW real current steering wheel torque.

Common Blocks: AERO GLBL PARS DRVST1 DRIV
TRSTOR
Subprograms called: TRAJ GMPRD

FDAMP (VZ, VROLL, VPITCH, FD)
Compute the damping force for all four wheels.

- VZ real*4  vertical velocity of vehicle sprung mass c.g.
— VROLL real*4  roll velocity of vehicle sprung mass.

— VPITCH real*4 pitch velocity of vehicle sprung mass.

« FD real*4 2 x 2 matrix of damping forces at each wheel.

Common Blocks: SUSP

This subroutine uses different rates for jounce and rebound. The sign convention is
that jounce — positive damping force.

FUNCTN (T, Y, YP)

Compute six derivatives of state variables in the vehicle/steering model.

- T real*4  Time (independent variable of integration)
=Y real*4  1-D array of 6 state variables
« YP real*4  1-D array of 6 derivatives: yp(i) = dy(i) / dt

Common Blocks: GLBL PARS SUSP AERO VARS

Subprograms Called: FDAMP WHEELZ ALPHAS ROLLAX AIRACT STEER
TIRES GAMMAS

Subroutine FUNCTN contains the equations of motion for the 5-d.o.f vehicle model
and a 1-d.o.f steering system model. The derivatives it computes are used by the
subroutine DE to simulate the system. It also halts the simulation upon exceeding preset
handling limits.

GMADD (A, B, C, N, M)

Calculates the sum of two matrices.

- A real N x M input matrix

- B real N x M input matrix

« C real N x L output matrix equal to sum of A and B
- N integer row dimension of A and B
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- M integer column dimension of A and B

GMSUB (A,B,C, N, M)

Calculates the sum of two matrices.

- A real N x M input matrix

- B real N x M input matrix

« C real N x L output matrix equal to difference of A less B
- N integer row dimension of A and B

- M integer column dimension of A and B

GMPRD (A, B,R,N, M, L)
Calculates the product of two matrices.

- A real N x M input matrix

- B real M x L input matrix

« R real N x L output matrix equal to product of A and B
- N integer row dimension of A

- M integer column dimension of A and row dimension of B
> L integer - column dimension of B

INDATA (IREAD, IPR, IERD, ITERM, FNREAD, FNPR, FNERD)
Set up file connections and read input data.

— IREAD integer Fortran i/o unit for parameter input file (e.g., 5).

— IPR integer Fortran i/o unit for echoing data (e.g., 7).

— IREAD integer Fortran i/o unit for output ERD file (e.g., 8).

— ITERM integer Fortran i/o unit for keyboard and screen (e.g., 9).

« FNREAD char*32 Fortran i/o unit for parameter input file (e.g., SIM.IN).
« FNPR char*32 Fortran i/o unit for echoing data (e.g., SIM.ECH).

« FNERD char*32 Fortran i/o unit for output ERD file (e.g., SIM.ERD).

Common Blocks: GLBL  PARS MNVR SUSP  TIRE AERO
PRNT

This subroutine prompts the user for a “root name” from which three other file names
are defined. (In the above examples, the root name is “SIM.” The input file (e.g.,
SIM.INP) must already exist. The other two are created. If files with those two names
(e.g., SIM.ECH, SIM.ERD) already exist, they are destroyed.
MAIN—WIND

Main program module that controls the wind & handling simulation.

Common Blocks: GLBL PARS SUSP VARS AERO PRNT
Subprograms Called: INDATA SETERD OUTPRT OUTERD ALERT DE
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MINV (A,N,D,L, M)

Calculates the inverse of a matrix.

- A real N x N input matrix to be inverted. Replaced with inverse.
- N integer dimension of A
« D real resultant determinant
- L integer work vector of length N
- M integer work vector of length N
OPNOUT

Write header portion of the output ERD file, and compute constants used later.
Common Blocks: GLBL  PARS
Subprograms Called: MACTIM (not used for mainframe)

OUTPUT (IERD, ITERM, NBYTES, T, Y)
Write predicted response variables into output file and show progress on screen.

— IERD integer Fortran i/o unit for the output file.

— ITERM integer Fortran i/o unit for communicating with the user.
— NBYTES int*2  Number of bytes written at each time step.

- T real Time.

=Y real 1-D array with state variables of system.
Common Blocks: GLBL  PARS VARS  AERO

Subprograms used: WRITE! GTIME? GDATE? SETCUR?
| TOOLBX3

1 Used only on MTS.
2 Used only on IBM PC.
3 Used only on Apple Macintosh.

ROLLAX (ROLL, YROLAX, HROLAX, IXSRA)

Compute instantaneous lateral and vertical distances of the sprung mass c.g. from the
roll axis.

— ROLL real*4  Roll angle of sprung mass.

< YROLAX real*4 Lateral distance (in a non-rolling frame) between c.g. of
sprung mass and roll axis.

< HROLAX real*4 Horizontal distance (in a non-rolling frame) between c.g. of
sprung mass and roll axis.

« IXSRA real*4 Moment of inertia of the sprung-mass about the
instantaneous roll axis.
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Common Blocks: PARS SUSP

Function STEER(T)
Return steering wheel angle or steering wheel torque as function of time.

« STEER real*4  Steering wheel angle.
- T rea*4  Time.

Common Blocks: MNVR

The angle (or torque) is determined by one of three methods, dependent upon the
variable NSTEER in the common block MNVR: (1) if NSTEER < 0, the UMTRI driver
model is used; (2) if NSTEER = 0, a sinusoidal function is used; and (3) if NSTEER >0, a
table look-up is used.

Function SUM(MATRIX)
Sum values in a 4-element matrix.
« SUM real*4  Sum of values in matrix.

— MATRIX real*4 matrix with 4 elements (2 x2), (4 x 1), or (1 x 4).

TABLE M, N, X,Y,Z, Q)

Table look-up routine.

- M integer index of X-Y table (arrays) at which to start search

- N integer index of X-Y table (arrays) at which to end search

- X real N-array of abscissa table values

=Y real N-array of ordinate table values

- Z real scalar abscissa value

« Q real scalar ordinate value of X-Y table corresponding to Z
TIMEDAT (TIMEDT)

Obtain the current time and date.
— TIMEDT char*24 String containing time and date.

TIRSUB (BETA, V, VYAW, ROLL)

Compute cornering force, aligning moment, steer, slip, and camber angle for all four
tires.

— BETA real*4  Slip angle.
-V real*4  Vehicle speed.
- VYAW real*4  Yaw rate.

— ROLL real*4  Roll angle.

Common Blocks: TIRE SUSP VARS
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TRANS

Calculates transition matrix for driver model internal vehicle model. (without steering
system)

Common Blocks: DRVST1 DRIV TRSSTR

TRANST

Calculates transition matrix for driver model internal vehicle model. (with steering
system)

Common Blocks: DRVSTI DRIV TRSTOR

TRAJ (X, XT, YT, YPATH)
Obtains the previewed lateral path position (relative to the vehicle heading).

- X real forward preview distance
- XT real - x-coordinates of path in vehicle axis system at X ahead
- YT real y-coordinates of path in vehicle axis system at X ahead

- YPATH  rea lateral offset of path from vehicle at X ahead

Common Blocks: INOUT

WHEELZ (Z, ROLL, PITCH)

Update matrices in the common block /VARS/ based on the new position of the sprung
mass.

- Z real*4  Vertical position of sprung mass c.g. (in).
— ROLL real*4  Roll angle of sprung mass (rad)
— PITCH real*4  Pitch angle of sprung mass (rad)

Common Blocks: SUSP VARS

The matrices ZW, FZ, KNMSTR, KNMCBR in common /VARS/ are updated. The
quantities computed for each wheel are: vertical displacement, normal ground load, bump-
steer angle and bump-camber angle for each wheel, relative to static trim. roll-center heights
are assumed fixed relative to the road for the calculation of lateral load transfer.

WINSUB (T, WIND)

Optional user-defined subroutine used to specify a wind profile — in lieu of entering a
time history table in the input data set. Called only if the WINDKY parameter is < 0.

- T real current time
« WIND real wind velocity magnitude

Common Blocks: GLBL
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C.4 Modifying the Format of the Output File

There are at least two reasons why one might wish to modify the existing format of the
output file created by the Wind-Steer program: (1) to add or delete variables of interest, or
(2) to set the format to match established post-processing software other than the software
used within ERD at UMTRI.

C4.1 Method Used to Write Time Histories

The code for writing the output file is contained in two program modules: (1) OPNOUT
opens the output file and writes the header information, and (2) OUTPUT writes the values
of output variables at discrete time intervals. Only these two subroutines need to be
modified. (In reading the following descriptions, it may be helpful to also view the source
code listings for those subroutines, contained in Appendix D.)

Most of the the code in subroutine OPNOUT assigns names to character variables.
Then, at the bottom of the subroutine, those variables are written into the output file in the
format required for an ERD header. Similarly, most of the code in OUTPUT assigns
values to elements in a REAL array. Then, at the bottom of the subroutine, those variables
are written into the output file in the format required for an ERD header. It is essential that
the one-to-one correspondence is maintained between labels for variables and values for the
variables. As long as the two forms of data are properly paired, the number of variables
and their order really doesn’t matter.

Both subroutines use a variable called NCHAN to identify the channel number being
considered. For each value of NCHAN, the following assignments are made in OPNOUT:

* a 32-character name for the variable of interest is assigned to the character*32
Fortran array element LONGNM (NCHAN), e.g., “Input Steer Angle”

+ an 8-character name for the variable of interest is assigned to the character*8
Fortran array element SHORTN (NCHAN), e.g., “Steer In”

* a 32-character generic name for the variable of interest is assigned to the
character*32 Fortran array element GENNM (NCHAN), e.g., “Steer Angle”

* an 8-character name for the units of the variable of interest is assigned to the
character*8 Fortran array element UNITNM (NCHAN), e.g., “deg”

* a 32-character generic name for the rigid body associated with the variable of
interest is assigned to the character*32 Fortran array element RIGBOD (NCHAN),
e.g., “Input” ‘

In subroutine OUTPUT, for each value of NCHAN, an appropriate value is assigned to
the array element BUFFER (NCHAN).

At the bottom of each subroutine, the value of NCHAN is equal to the total number of
channels that are written into the output file.

The channel definitions are grouped such that variables that apply to the input or the
entire vehicle are handled first. Variables that apply to each wheel (suspension and tire
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.

variables) are handled in two nested DO loops. The outer loop goes from the front axle to
the rear, and the inner loop goes from the left side to the right. Thus, each block of code
within the loops gets executed four times.

C4.1 Deleting Variables

To delete a variable, a block of code is removed from the OPNOUT subroutine and a
corresponding block is removed from OUTPUT. The block of code in OPNOUT begins
with comments describing the variable, then the statement “NCHAN = NCHAN + 1,” and
then five assignment statements for element NCHAN of arrays LONGNM, SHORTN,
UNITNM, GENNM, and RIGBOD. Delete all of these lines or comment them out (insert
a Cin column 1 of each line so that the line is ignored by the Fortran compiler). Identify
the corresponding assignment statement in OUTPUT and delete also (or comment it out).
It is usually necessary to modify some of the lines following the deleted line in OUTPUT
so that the following values are put into lower indexed elements of the array BUFFER.

For example, suppose we want to delete the Z deflection of the vehicle body. The
block of code in subroutine OPNOUT that provides the labels is the following:

UNITNM (NCHAN)

= UDIST
RIGBOD (NCHAN) = THISRB
c
C_Z Position
o}

C Roll Angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Roll Angle’

The underlined lines would be deleted. The code in subroutine OUTPUT that includes

this variable is the following:
c
C Body position variables
C
BUFFER (NCHAN + 1)
BUFFER (NCHAN + 2)

K

(1) / ININFT
(2) / ININFT

|

I
+

From viewing the definitions of the Y array, it turns out the Y(3) is the Z variable. The
underlined code would be modified as follows:
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C
C Body position variables

o
BUFFER (NCHAN + 1) = Y(1) / ININFT
BUFFER (NCHAN + 2) = Y(2) / ININFT
BUFFER (NCHAN + 3) = Y(4) * TODEG
BUFFER (NCHAN + 4) = Y(5) * TODEG
BUFFER (NCHAN + 5) = Y(6) * TODEG

NCHAN = NCHAN + 5

The line that set the value in the buffer was deleted, and the following lines were
modified so that at the end of the block NCHAN was incremented by 5, rather than 6 as
before.

C4.2  Adding Variables

To add a variable, a new block of code is added to subroutine OPNOUT and a
corresponding block is added to OUTPUT. The code added to OPNOUT should (1)
provide labels for element NCHAN of the arrays LONGNM, SHORTN, UNITNM,
GENNM, and RIGBOD, and (2) the variable NCHAN should be properly incremented.
The code added to OUTPUT should (1) provide the value of the new variable and put it
into the element NCHAN of the array BUFFER, and (2) the variable NCHAN should be
properly incremented. The location of the added code defines where the new variable is
situated relative to the existing output variables. The only restriction is the the order of
channels in BUFFER must match the order of the labels in each of the character arrays.

C4.3 Changing the Format of the Output File

As the Wind-Steer program exists at UMTRI, the output file follows the ERD format.
The numerical values of the output variables can be written in binary form, or in text form
using a Fortran FORMAT that was specified in line 5 of the input file. The existing
flexibility should be sufficient to accommodate any desired formats for the output. For
example, if a plotting program expects to find columns of numbers separated by commas,
the following FORMAT could be put into line 5 of the input file:

(100(F10.2,1X))

If the existing flexibility is not sufficient, the code that writes can be replaced as
needed. (It lies at the bottom of the OUTPUT subroutine.)

The header portion of the file is more likely to cause problems with post-processing
software. The code that writes the header is contained in the bottom of the OPNOUT
subroutine, and is shown (partially) below:

o
C Write standard ERD file heading.
o
WRITE (IOUT, ' (A)') 'ERDFILEV2.00Q'
WRITE (IOUT, 410) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, DT*IPRINT
410 FORMAT(5(16,','),E13.6)
411 FORMAT (A8, 255A8)
412 FORMAT (A8, 31A32 : 2(/'&1000 ', 31A32))
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WRITE (IOUT, ' (A,A)') 'TITLE ', TITLE
WRITE (IOUT, 411) 'SHORTNAM', (SHORTN(J), J=1, NCHAN)

WRITE (IOUT, '(A,A)') 'HISTORY Input file was ', FNREAD
WRITE (IOUT, '(A)') 'END'

This is the only code that is modified to change the form of the file header. Most of the
code above this section consists of statements that assign labels to arrays of character
variables. Some of those labels can be printed in a different format if desired. For
example, suppose that a plotter expects to find labels enclosed in double quotes on the first
line, followed by numbers separated by commas. Also suppose that the short labels (8
characters or less) are the appropriate length for the plotter. Then the existing code could

be replaced with the following:

o

C Write l-line heading with labels enclosed in double-quotes and
C separated by commas. e.g., "Time", "Steer In", ...
c

WRITE (IOUT, 411) 'SHORTNAM', (SHORTN(J), J=1, NCHAN)
411 FORMAT (100('"',A8,'"',1X)
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APPENDIX D — SOURCE CODE

This appendix lists the Fortran source code written specifically for the Wind-Steer
model. Variables in common blocks are defined in separate “include” files, which are listed
separately from the program subroutines at the end of the appendix.
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CHRYSLER/UMIRI VEHICLE CROSSWIND STABILITY PROJECT
5-D.0O.F. VEHICLE + 1-D.O.F. STEERING SYSTEM + CLOSED-LOOP DRIVER MODEL
VERSION 1.0 - FEBRUARY 1989

Copyright (c) The Regents of The University of Michigan
1987-1989, Ann Arbor, Michigan. All Rights Reserved.

Written by Yoram Guy, 6-30-87 (Phase 1; v 0.70)
Modified by M. Sayers, 4-26-88 (mainframe to PC versions; v 0.80)
Modified by C. MacAdam, 5-19-88 (driver model indtalled; v 0.83)

Modified by M. Sayers, 8-28-88 (changed eqs. of motion,
_ new integrator; v 0.85)
Modified by C. MacAdam, 9-7-88 (driver model and wind profile
additions; v 0.90)
Modified by M. Sayers,12-14-88 (cosmetics, changed input; v 0.91)

Modified by C. MacAdam,1-30-89 (steering system, revised tire eqns
and params for SAE conventions, torque-option driver model; v 1.0)

MACHINE DEPENDENCIES:

Most of the following code is standard Fortran 77 and is independent
of the implementation, EXCEPT:

(1) "include” files are not standard and must be referenced
as needed for a specific compiler.
(2) The terminal is referenced as unit * in READ and WRITE
statements involving the user. (Although not "standard,"
this works with most compilers and probably is OK.)

Otherwise, all machine-specific sections of code are identified by
comments that begin with "C++". This file includes the code
needed for

(1) the Microsoft Fortran compiler for the IBM PC
(2) the Absoft Fortran compiler for the Apple Macintosh
(3) the FortranvS compiler for the UM mainframe (MTS) system

PROGRAM SECTIONS:

MAIN -- Controls "flow" of program and performs num. integration

BLOCK DATA -- initializes variables in COMMON blocks

AIRACT (T, YAW, BETA, VYAW) -- handle aerodynamic forces and moments
DRIVEL (DFW) -- Read driver model parameters

DRIVER(X, Y, DFW, DFWNOW) -- compute closed-loop steer input
DRIVGO -- initialize driver model

ECHO -- create output file with echo of input parameters

FDAMP (VZ, VROLL, VPITCH, FD) -- compute damping force for 4 wheels
FUNCTN (T, Y,YP) -- computes YP derivatives given T and Y

Function FWIND(T) -- provide cross-wind as function of time

QOO0 0000000000Q000O00000000000000000000n

Appendix D — Source Code D-2



GMPRD(A, B, R, N, M, L) -- multiply two matrices

INDATA -- read input data and converts units

INIT -- computes constants used in simulation

Function LENSTR(STRING) -- no. of characters in string

OPNOUT -- create output file and write header

OUTPUT (T, Y, YP) -- write simulation variables into file at time T
Function POLY4 (COEF, FZ) —-- evaluate 4th-order polynomial of Fz
ROLLAX (ROLL, YROLAX, HROLAX, IXSRA) -- roll axis kinematics
Function STEER(T) -- provides steering wheel angle as function of T
Function SUM(MATRIX) -- sums 4 elements of matrix

TABLE(M, N, X, Y, Z, Q) -- table look-up routine.

TIMEDAT (TIMEDT) -- produce string with time and date

TIRES (BETA, V, VYAW, ROLL) -- compute tire forces and moments

TRAJ (X, XT, YT, YPATH) -- compute lat. disp. of previewed path
TRANS -~ Compute transition matrix for driver model

WHEELZ (Z, ROLL, PITCH) -- handle wheel kinematics

OO0 00000000000000000000000000000000000000000000000

LIST OF SYMBOLS:

I/0 SYMBOLS
IREAD - unit number for input data
IECHO - unit number for output file with echo of input data
IOUT - unit number for simulation output file

SIMULATION PARAMETERS

DT - time step for numerical integration
TEND end time of simulation

IPRINT - print interval (every i-th point is save in output file)
KSYWND - wind heading angle (of velocity vector)

AIRHO air density

\ - vehicle speed

VWIND - wind speed

WINDKY - wind key: >= 0 => time history wind profile input:

windky is num of (T,VW) table pairs.

< 0 => call user function "FWIND" for
profile input.

GLOBAL TIME-VARIABLES

T - time

Y (13) array of 13 state variables

AY vehicle lateral acceleration (ignoring roll-accel.)
RHO - path curvature

BETAIR aerodynamic sideslip angle

VAX,VAY X,y components of air velocity (axles reference)

Position Speed Accel.

XG, VXG - X of total cg (inertial reference)
YG, VYG - Y of total cg (inertial reference)
BETA, VBETA - ground sideslip (BETA = VY / V)
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C zZ, vz, AZ - sprung mass cg vertical

C ROLL, VROLL, AROLL - roll

C PITCH, VPITCH, APITCH - pitch

C YAW, VYAW, AYAW - yaw

C SW, VSW, ASW - steering wheel angle

c FW - front wheel steer angle

C

C GLOBAL INTEGERS - INDICES AND FLAGS

c

C UNITS - (CHAR*1l) 'E' = English (ft, lbm, deg), otherwise metric
C NUMKEY - 1 = binary MAC, 2 = BINARY PC, 5 = text output

o NAXLE - 1 = front, 2 = rear

C NSIDE - 1 = left, 2 = right

C NSTEER - >0 ---> steer table (no. of T,SW pairs)

C - =0 =-=-> sine function (harmonic SW)

C - <0 =--> driver model (-no. of XPNT,YPNT pairs)

C

C VEHICLE AERODYNAMIC, STEERING-SYSTEM, AND GENERAL PARAMETERS

C .

C AREA - VEHICLE CROSS-SECTION AREA (IN Y-Z PLANE)

C QZERO - DENSITY * AREA / 2

C KY - AERODYNAMIC SIDE FORCE COEFFICIENT

C CLO,KL - AERODYNAMIC DOWN FORCE (-LIFT) COEFFICIENTS

C KR - - AERODYNAMIC ROLL MOMENT COEFFICIENT

C CMO,KM - AERODYNAMIC PITCH MCOMENT COEFFICIENTS

c KN - AERODYNAMIC YAW MOMENT COEFFICIENT

C CDO,KD - AERODYNAMIC DRAG FORCE COEFFICIENTS

C

C CBOOST - STEERING POWER-BOOST COEFFICIENT

Cc CFSS - STEERING SYSTEM COULOMB FRICTION MOMENT

C GR - STEERING-SYSTEM OVERALL KINEMATIC RATIO

C GRTODG - GR (ABOVE) * TODEG

C ISS - STEERING-SYSTEM MOMENT OF INERTIA - LUMPED AT STEER-WHL
C KSC - STEERING-COLUMN STIFFNESS

o KSL - STEERING LINKAGE STIFFNESS

C SSKEY - STEERING-SYSTEM KEY TRIGGERING USE OF DYN ST SYS MODEL
C XTRAIL - FRONT WHEEL MECHANICAL TRAIL

Cc

C HCGTTL - TOTAL STATIC CG HEIGHT ABOVE GROUND

C HCGSP - STATIC SPRUNG-MASS CG HEIGHT ABOVE GROUND

c XCGSP - STATIC SPRUNG-MASS CG DISTANCE FROM FRONT AXLE

C XWBCGS - SPRUNG-MASS CG DISTANCE AHEAD OF HALF-WHEELBASE POINT
C XWBCGT - TOTAL CG DISTANCE AHEAD OF HALF-WHEELBASE POINT

Cc WHLRAD - TIRE ROLLING RADIUS = ASSUMED UNSPRUNG-MASS CG HEIGHT
C IXSCG - SPRUNG-MASS X-X MOMENT OF INERTIA (X-X THRU SPRUNG CG)
C IXSRA - SPRUNG-MASS MOMENT OF INERTIA ABOUT ROLL AXIS

C IXZ - SPRUNG-MASS XZ PRODUCT OF INERTIA

C IYS - SPRUNG-MASS PITCH MOMENT OF INERTIA

C 122 - TOTAL YAW MOMENT OF INERTIA

C KROLL - TOTAL ROLL STIFFNESS

C MASS - TOTAL MASS

C SPMASS - SPRUNG MASS

C SPWGHT - SPRUNG WEIGHT

o WEIGHT - TOTAL WEIGHT

Cc USWGHT - UNSPRUNG WEIGHT

o WRATIO - FRONT-AXLE NORMAL (GROUND) LOAD FRACTION OF TOTAL WEIGHT
C WB - WHEELBASE

C CSROLL - REAR BEAM-AXIE ROLL-STEER COEFFICIENT
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C

C PER-AXLE PARAMETERS - INDEXED (AXLE)

C

C XAXLE - DISTANCE FROM' TOTAL CG TO AXLE (NEGATIVE FOR REAR)
C TRACK - NOMINAL TRACK WIDTH (ASSUMED CONSTANT)

C HOROLC - STATIC ROLL CENTER HEIGHT ABOVE GROUND

C HCGSRC - STATIC ROLL CENTER HEIGHT BELOW SPRUNG CG (<0 IF ABOVE)
C FZOWHL - TIRE/ROAD STATIC NORMAL LOAD AT EACH WHEEL

C KZ - SUSPENSION VERTICAL (RIDE) STIFFNESS AT EACH WHEEL
C KZAXLE - SUSPENSION VERTICAL (RIDE) STIFFNESS (2 X KZ)

C KAUX - SUSPENSION AUXILIARY ROLL STIFFNESS

C KTIRE - TIRE VERTICAL STIFFNESS

C CZJNCE - DAMPING COEFFICIENT IN JOUNCE AT EACH WHEEL

C CZRBND - DAMPING COEFFICIENT IN REBOUND AT EACH WHEEL

C CSFY - FY (CORNERING-FORCE) COMPLIANCE-STEER COEFFICIENT
C CSMzZ - ALIGNING-MOMENT COMPLIANCE-STEER COEFFICIENT

C CCrY - FY COMPLIANCE-CAMBER COEFFICIENT (0 FOR BEAM AXLE)
C

C KINEMATIC Z-POLYNOMIAL COEFFICIENTS (2 X 2) - INDEXED (AXLE,POWER)
c

C Csz - BUMP-STEER COEFFICIENTS

C ccz - BUMP-CAMBER COEFFICIENTS

C YROLCF - R.C. LATERAL DISP. VS ROLL IN SPRUNG MASS COEFFICIENTS
C HROLCF - R.C. VERTICAL DISP. VS ROLL IN SPRUNG MASS COEFFICIENTS
c

C PER-WHEEL (2 X 2 ARRAY) VARIABLES - INDEXED (AXLE,SIDE)

C

C ALFA - TIRE SLIP ANGLE

C GAMMA - TIRE CAMBER ANGLE

C ALFAQ - STATIC TIRE SLIP ANGLE

C GAMMAQ - STATIC TIRE CAMBER ANGLE

C FY - TIRE CORNERING FORCE DUE TO SLIP AND CAMBER

C Mz - TIRE ALIGNING MOMENT

C FD - SUSPENSION VERTICAL DAMPING FORCE

C FZ - TIRE/ROAD NORMAL LOAD

C ZW - SUSPENSICON DYNAMIC VERTICAL DISPLACEMENT

Cc KNMCBR - KINEMATIC (BUMP/ROLL) STEER ANGLE

C KNMCBR - KINEMATIC (BUMP/ROLL) CAMBER ANGLE

C

C TIRE FZ-POLYNCMIAL COEFFICIENTS (4 X 2) - indexed (AXLE,POWER)
C

c CALFA - cornering-stiffness Fz-polynomial coefficients

c CGAMMA - camber-stiffness Fz-polynomial coefficients

c CALIGN - aligning-stiffness Fz-polynomial coefficients

c

c

C SINUSOIDAL STEER PARAMETERS (for equation see function STEER)

c

C TSWBGN - global time at steer start (prior to which: SW = 0)
C TSWEND - global time at steer end (after which: SW is frozen)
C TSWPRD - 1length of period (sec)

C SWPHSE - time phase lead (deg, e.g. +90 ---> cosine)

C SWAMPL - amplitude (steering wheel deg)

g SWSHFT - amplitude zero shift (steering wheel deg)

c

C

C
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C MAIN PROGRAM

IMPLICIT REAL (X,M)

EXTERNAL FUNCIN

REAL Y(13), YP(13), YM(13)
CHARACTER AGAIN

INTEGER*2 HOUR, MIN, SEC, I100

include DRVMOD.inc
include GLBL.inc
include PARS.inc
include SUSP.inc
include AERO.inc
include VARS.inc
include PRNT.inc
include mnvr.inc

DATA T/0.0/, ¥/13*0.0/
PI = 4.0 * ATAN(1.0)

Read input data (includes opening all i/o files)

[eNeN®!

CALL INDATA
CALL INIT

Initialize Driver Model Vehicle Parameters:

[eEeN®!

IF (NSTEER .LT. 0) THEN
IF (ABS(SSKEY) .LE. 0.001) THEN
CALL DRIVGO
ELSE
IF (NSTEER .GT. -100) CALL DRIVGT
ENDIF
ENDIF

Set up output file with simulated time histories

a0

CALL OPNOUT
C
C Start by evaluating derivatives and printing variables at t=0
CMD--Use function TIME for Mac (1 line)

CALL TIME (ISEC1)
CMD--Use function GETTIM for IBM PC (2 lines)
* CALL GETTIM (HOUR, MIN, SEC, I100)
* ISEC1 = 3600*HOUR + 60*MIN + SEC + I100*.01

CALL FUNCTN (T, Y, YP)

CALL OUTPUT (T, Y, YP)
C
C Integration loop. Continue until printout time reaches final time.
C Begin each step by allowing subroutines to update internal variables.
C Then use two evaluations of the derivatives to integrate over the
C step.
C

NLOOP = TEND/DT/IPRINT+1

DT2 = DT / 2.

DO 40 ILOOP=1,NLOOP
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DO 30 INNER=1,IPRINT
DO 10 I=1,NEQN
YM(I) = Y(I) + DT2 * YP(I)
10 CONTINUE
CALL FUNCTIN (T+DT2, ¥YM, YP)
DO 20 I=1,NEQN
Y(I) = ¥Y(I) + DT * YP(I)
20 CONTINUE

T=T+ DT
CALL FUNCTN (T, Y, YP)
30 CONTINUE
CALL OUTPUT (T, Y, YP)
IF (T .GE. TEND) go to 50
40 CONTINUE
50 CONTINUE
CMD--Use function TIME for Mac (1 line)
CALL TIME (ISEC2)
CMD--Use function GETTIM for IBM PC (2 lines)
* CALL GETTIM (HOUR, MIN, SEC, I100)
* ISEC2 = 3600*HOUR + 60*MIN + SEC + I100*.01

* End of integration loop. Print final status of run

WRITE (*, *) ' Termination at time =', T, ' sec.’

WRITE (*,*) ' Computation efficiency: ', (ISEC2 - ISECl) / T,
& ' sec/sim. sec'

WRITE (*,*) | I |

CLOSE (I0UT)
PAUSE 'Done'
END

% Je 5 % % % % K K o Fe Fe 7 K K K K e v v K K K vk sk Tk e % K Kk kT T T Kk kT sk Kk Kk k Tk sk sk ke ke ke ok ok ok ok ke ke Kk ok ok ke ke ke ok

SUBROUTINE AIRACT (T, YAW, BETA, VYAW)
N R L L2222 R Rt e e e R e R R L L

C Subroutine AIRACT updates air velocity and sideslip, and the
C magnitudes of all corresponding aerodynamic forces and moments
C in the common block /AERO/
C

IMPLICIT REAL (K,M)

(@]

include GLBL.inc
include PARS.inc
include AERO.inc

Look up wind magnitude from TABLE, or, get from user-defined "FWIND"
function. TABLE and FWIND return VWIND in units of kmh or mph.

QOO0

VWIND = 0.0
IF (WINDKY .GT. 0) THEN
CALL TABLE (1, WINDKY, TWIND, WINMAG, T, VWIND)
ELSE
VWIND = 0.0
IF (WINDKY .LT. 0) VWIND = FWIND(T)
ENDIF

C CONVERT VWIND TO INTERNAL UNITS OF M/SEC OR IN/SEC:
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VWIND = VWIND / KMHMPH

C
C CALCULATE AIR SLIP AND VELOCITY:
C
RELKSY = KSYWND - YAW
VAX = ( VWIND * COS(RELKSY) - V * COS(BETA)) / ININFT
VAY = ( VWIND * SIN(RELKSY) - V * SIN(BETA)) / ININFT
VAY = VAY - XWBCGS * VYAW / ININFT
VA2 = VAX * VAX + VAY * VAY
VA = SQRT (VA2)
BETAIR = 0.0
IF(VAY .GT. 0.0) BETAIR = (ATAN2(VAY, VAX) - PI) * TODEG
IF(VAY .LT. 0.0) BETAIR = (ATANZ2(VAY, VAX) + PI) * TODEG
BETA2 = BETAIR * BETAIR
C
C CALCULATE AERODYNAMIC FORCES AND MOMENTS ACTING
C AT GROUND LEVEL, AT HALF WHEELBASE POINT:
C
CY = -KY * BETAIR
FYA = QZERO * CY * VA2
C
CL = CLO + KL * BETA2
FZA = -QZERO * CL * VA2
C
CR = -KR * BETAIR
MXA = QZERO * WB * CR * VA2
C
CM=CM0O + KM * BETA2
MYA = QZERO * WB * CM * VA2
C
CN = -KN * BETAIR
MZA = QZERO * WB * CN * VA2
C
CD = CD0 + KD * BETA2
FDRAG = QZERO * CD * VA2
C
C RESOLVE MOMENTS ABOUT SPRUNG OR TOTAL CG, AS APPROPRIATE:
C
MXA = MXA - HCGSP * FYA
MYA = MYA + XWBCGS * FZA
MZA = MZA - XWBCGT * FYA
C
RETURN
END
KA A A A A A A A A A A KA A A A A A A AR A A A AR AR A AR A A A AA A A A A A A A A Ak Ak Ak A Ak Ak Ak kK kK khkk
BLOCK DATA
EE R 222 TS EELLLLILILEILILILEILILLILELLELTLL LIS LS LS L LS L LT L LT L LT LT L LT R
* Initialize variables in common blocks.
C
IMPLICIT REAL (K,M)
C

include GLBL.inc
include PARS.inc
include MNVR.inc
include SUSP.inc
include TIRE.inc
include AERO.inc
include VARS.inc
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c

include PRNT.inc

DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA’
DATA

DATA
DATA
DATA
DATA
DATA

END

NEQN/13/, NSTEER/1/, TODEG/1.0/, SW/0.0/, FW/2*0.0/, AY/0.0/
RHO/0.0/, KROLL/0.0/, CSROLL/0.0/, CSz/4*0.0/, CCZ/4*0.0/
ALFA/4*0.0/, GAMMA/4*0.0/, FY/4*0.0/, Mz/4*0.0/, FD/4*0.0/
ZW/4*0.0/, YROLCF/4*0.0/, HROLCF/4*0.0/

KNMSTR/4*0.0/, CPLSTR/4*0.0/, TTLSTR/4*0.0/, KNMCBR/4*0.0/
YOUTDR/13*0.0/, STORQ/0.0/, MMCOL/0.0/

TSWBGN/0.0/, TSWEND/0.0/, SWAMPL/0.0/, TSWPRD/0.0/
SWPHSE/0.0/, SWSHFT/0.0/, DRLAG/0.0/, DRPREV/0.0/
VA/0.0/, BETAIR/0.0/, FYA/0.0/, FzA/0.0/, Fz/4*0.0/
MXa/0.0/, MYA/0.0/, M2A/0.0/, FDRAG/0.0/
XPNT/999*0.0/, YPNT/999*0.0/, SLOPE/999*0.0/

G/9.81/, ININFT/1/, KMHMPH/3.6/, UOMEGA/'rad/sec'/
UDISP/'m'/, UDIST/'m'/, UANGL/'rad'/, UVELFT/'m/s'/
UFORC/'N'/, UTORQ/'m-N'/, KINEM/.TRUE./, BEAM/.TRUE./
LINE/-1/, NPAGE/1/, INDX/0/, BLNK12/' v/
FNREAD /' '/

C***********************************************************************
C***********************************************************************

DRIVEl: Reads Driver Model (Path, Preview, Lag) Parameters->unit IREAD

Author:

Author and Modification Section

C. C. Macadam

Date written: 05/19/88
Written on:

Modifications:

Algorithm Description

Purpose and use:
Error conditions:
Machine dependencies: none

Called By: INDATA

QOO0 0QOO0O000000000000000

SUBROUTINE DRIVE1] (DFW)

SAVE

QOQOQQO0

Variable Descriptions

~-——Arquments passed:
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C DFW...steer angle of front tires [or average] (rad)

c
c

C---COMMON blocks

C

a0

QOO0 |

OOO0O00000000O00O000000000000

include drvmod.inc
include pars.inc
include glbl.inc

—-—-DRIV.BLK common block variables

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)

WF....static load on front suspension (lb)
WR....static load on rear suspension (1lb)
U....o initial velocity (ft/sec)

TICYCL...

--=-Local variables

-—-DRVST1.BLK common block variables

gravitational constant

driver model sample time (sec)

minimum preview time (sec)

upper bound on front wheel angle steer (rad)

..x-y path coords(SAE) wrt inertial coords [input] (ft)
..driver transport time dealy [input parameter] (sec)

driver model preview time [input parameter] (sec)
vehicle mass (slug)

distance from c.g. to front suspension center-line (ft)
distance from c.g. to rear suspension center-line (ft)
total vehicle yaw inertia (slug-ft)

current yaw angle reference value (rad)

number of points in the preview time interval

number of points in the x-y trajectory table

..last time driver model calulated a steer value (sec)
..last value of steer calculated by driver model (rad)
..last sample time driver model calulated a steer value (sec)

2-dim array (time & steer history) used in delay calculat'n

..transformation of XP,YP in vehicle body axes (ft)

C WGHT..total static weight on front and rear suspsensions (1lb)
C DFW...steer angle of front tires [or average] (rad)

C

QOOQOQOQ0O000

C---Functions and subroutines
None
Process Block:
GRAV = 32.2
TICYCL = 0.0099
TSS = 0.0
DMAX = 0.2
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DO 40 J =1, NP
READ (IREAD, 30) XPDR(J), YPDR(J)
30 FORMAT (2F12.4)
40 CONTINUE
READ (IREAD, 60) TAUMEM, TFF
60 FORMAT (F12.4)
PSIO = 0.0
NTF = 10
DO 80 J
XT(J)
YT (J)
80 CONTINUE
TLAST = 0.
DFWLST = 0.
TILAST = 0.
DFW = 0.
DO 90 I =1, 100
DMEM(I,1) = O.
90 DMEM(I,2) = -1.
RETURN
END

C***********************************************************************

1, NP
XéDR(J) * COS(PSIO) + YPDR(J) * SIN(PSIO)
-XPDR(J) * SIN(PSIO) + YPDR(J) * COS(PSIO)

Closed-Loop Steer Calculation

DRIVER: Computes closed-loop steering control during the simulation

Author and Modification Section
Author: C. C. MacAdam

Date written: 05/19/88

Written on:

Modifications:

Algorithm Description

Purpose and use:
Error conditions:
References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis,™ Interim
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE(Q7-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMIRI-86-41, July 1986.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,”

QOO0 00n
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IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems, " Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: STEER (function)

QOOQOOQOOQO00000000

SUBROUTINE DRIVER(X, Y, DFW, DFWNOW)
SAVE

Variable Descriptions
---Arguments passed:

....... time in the simulation (sec)

Yeuurnn. current state vector obtained from WIND/STEER
DFW..... closed-loop steering control returned to WIND/STEER
DEFWNOW. .current steering angle [average] of front wheels,
after effects of roll-steer, compliance, etc.

QOOOOO0O0O000000
=

DIMENSION Y (5), YC(5)
DIMENSION DUMV11 (4)
DIMENSION DUMV1 (4), VECM(4)
DIMENSION DUMM1 (4,4), DUMM2(4,4)
DIMENSION FFV (4)
o
C---COMMON blocks
C

include drvmod.inc
include pars.inc
include aero.inc
include glbl.inc

o

C---DRIV.BLK common block variables

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (1lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)
WF....static load on front suspension (lb)

WR....static load on rear suspension (1lb)

Uiounn initial velocity (ft/sec)

---DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)
XP,YP....x-y path coords(SAE) wrt inertial coords [input] (ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)

QOOOO0OO00O0000000000
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TFF...... driver model preview time [input parameter] (sec)

RM....... vehicle mass (slug)

- distance from c.g. to front suspension center-line (ft)
B.vvvvenn distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval

NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

---TRSSTR.BLK common block variables
A transition matrix at 10 discrete points in preview interval

Tl...... integral of trans matrix wrt preview time
GV....ovv vector of control gain coefficients

---Local variables

YC...v... local (body-axis based) copy of state vector Y

VECM..... observer vector - lateral displacement from state vector
DUMV1....work vector

"

DUMMI....work matrix

DUMM2.,... "

. time in the simulation (sec)

EPSI..... yaw angle between body axis and current index value, PSIO
PSIO..... current nominal value of yaw angle used for linearization
NP....... number of points in x-y path table

XP,YP....x-y inertial path table [input] (ft)

XT,YT....X-y path table transformed to body axis [PSIO] system (ft)
EPSY2....cumulative preview path error squared

EPSY..... mean squared value of cumulative preview path error
TSUM..... scalar work quantity

SSUM..... scalar work quantity

DFWLST...steering control from last calculation (rad)

TJI...... preview time ahead from present time value (sec)
I,J,K....integer counters

XCAR..... preview distance ahead in feet (ft)

b {0 I present forward postion of vehicle c.g. (ft)

TTAB..... current time less the driver delay, TAUMEM. Used to access
the delayed driver response stored in DMEM array. (sec)
Sl....... scalar work quantity

Tl..o.o.n scalar work quantity

EP....... previewed path error (ft)

FFV...... aerodynamic lateral accel and yaw accel "sensory" vector

---Functions and subroutines

QOO0 0000000000000000000a0
%
[

EXTERNAL TRAJ, GMPRD

Process Block

QOO0 0
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Q

DATA VECM /1.0, 3*0.0/

C
C Update Aerodynamic accel (force/moment) vector for driver model:
C

FFV(1) = 0.0

FFV(2) = FYA / RM * WEIGHT / SPWGHT

FFV(3) = MZA / ININFT/ RI

FEV(4) = 0.0
C

1 T=X

EPSI = ABS(Y(4) - PSIO)
DO10I=1,5
10 YC(I) = Y(I)

C IF (EPSI .LE. .0002) GO TO 30
C
C Update Coordinate Transformation
C
PSI0 = Y (4)
DO 20 J =1, NP
XT(J) = XPDR(J) * COS(PSIQ) + YPDR(J) * SIN(PSIO)
20 YT (J) = -XPDR(J) * SIN(PSIO) + YPDR(J) * COS(PSIO)
C

30 YO = -Y(5) * SIN(PSIO) + Y(1) * COS(PSIO)
X0 = Y(5) * COS(PSIO) + Y(1) * SIN(PSIO)

YC(1) = Y0

YC(4) = Y(4) - PSIO
EPSY2 = 0.

TSUM = 0.

SSuM = 0.

DFW = DFWLST

Loop to calculate optimal preview control per References 2 & 3:
(NTF points within the preview interval)

C
C Return if time from last calculation less than sample interval
C
IF (T - TILAST .LE. TICYCL) RETURN
C
C
C Update tire cornering stiffnesses and vehicle velocity
C and recalculate transition matrix: Not Used Presently
C *** COMMENTED QUT ***
C
C CAFTEM = (CCAF1*FFZL1+CCAF2*FFZL2) / (FFZL1+FFZL2)
C CARTEM = (CCAR1*FFZL3+CCAR2*FFZL4) / (FFZL3+FFZL4)
o CAF = CAFTEM
C CAR = CARTEM
C UTEMP = DMVELC
C U = UTEMP
C CALL TRANS
Cc
Cc
C
C

DO 50 I = 1, NTF
TJI = (TFF - TSS) / NTF * I + TSS
DO 40 J0=1, 4
DO 40K=1, 4
DUMML (J,K) = TTT1(J,K,I)
40 DUMM2(J,K) = TTT(J,K,I)
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CALL GMPRD (VECM, DUMML, DUMV1l, 1, 4, 4)
CALL GMPRD (VECM, DUMM2, DUMV1, 1, 4, 4)
CALL GMPRD (DUMV1, YC, T1, 1, 4, 1)

Get observed path input, YPATH, within preview interval at XCAR ft:

QOO0

XCAR = X0 + U * TJI
CALL TRAJ(XCAR, XT, YT, YPATH)

CALL GMPRD (DUMV1l1l, GV, S1, 1, 4, 1)
CALL GMPRD (DUMV1l, FFV, DYAERO, 1, 4, 1)

EP is the previewed path error at this preview point.

[eNeNe®!

EP = T1 + S1 * DFWNOW + DYAERO - YPATH
TSUM = TSUM + EP * Sl
SSUM = SSUM + S1 * S1

Cumulative preview error calculation (unrelated to control)

QOO

EPSY2 = EPSY2 + EP * EP * (TFF - TSS) / NIF
50 CONTINUE

Cumulative preview error calculation (unrelated to control)

QOO0 Q

EPSY = SQRT (EPSY2) / (TFF - TSS)
Optimal value - no delay yet.

DFW = -TSUM / SSUM + DFWNOW
Maximum steer bound set at DMAX (arbitrary)

IF (ABS(DFW) .GT. DMAX) DFW = DMAX * SIGN(l.,DFW)
Store steer history and corresponding times in DMEM.

Retrieve steer delayed by TAUMEM sec and return as
delayed driver steer control, DFW.

OO0 [eNeK®! Q00

DO 60 3 =1, 2
DO 60 I =1, 99
DMEM(101 - I,J) = DMEM(100 - I,J)
60 CONTINUE
DMEM(1,1)
DMEM(1, 2)
TTAB = T - TAUMEM
DO70 I =1, 99
IDK=1I
IF (DMEM(I + 1,2) .LE. TTAB .AND. DMEM(I,2) .GE. TTAB)
1 GO TO 90
70 CONTINUE
WRITE (*,80)TAUMEM,DFW,X
80 FORMAT ('Q', '****x TAUMEM PROBABLY TOO LARGE *****!,
& /,3(1X,G12.6))
STOP
90 DFW = 0.0
IF(T .GE. TAUMEM) DFW = DMEM(IJK,1)

DFW
T
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c
c
c

Save steer and time values for next calulation.

DFWLST = DFW
TLAST = X
TILAST = X
RETURN

END

c***********************************************************************

Closed-Loop Steer Calculation

DRIVET: Computes closed-loop steering TORQUE control during the simul

Author and Modification Section:

Author: C. C. MacAdam
Date written: 01/30/89
Written on:

Modifications:

Algorithm Description
Purpose and use:

Error conditions:

References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis,” Final
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAEQ7-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-88-53, December 1988.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving, "
IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems, " Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: STEER (function)

QOO0 0000Q00O00000000000000000Q0

SUBROUTINE DRIVET (X, Y, DRTORQ, DRINOW)
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SAVE

OO0 0

C

C---COMMON blocks

c

QOO0 00000000000000000000000

---DRIV.BLK common block variables

Variable Descriptions

--—-Arguments passed:

....... time in the simulation (sec)
....... current state vector obtained from WIND/STEER

DRTORQ..... closed-loop TORQUE control returned to WIND/STEER
DRTNCOW. .... current steering TORQUE

DIMENSION Y (7), YC(7)

DIMENSION DUMV11 (6)

DIMENSION DUMV1 (6), VECM(6)
DIMENSION DUMML (6,6), DUMM2 (6, 6)
DIMENSION FFV(6)

include drvtor.inc
include pars.inc
include aero.inc
include glbl.inc
include vars.inc

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)

WF....static load on front suspension (lb)
WR....static load on rear suspension (1lb)
U..... initial velocity (ft/sec)

—---DRVST1.BLK common block variables

GRAV.....gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX.....upper bound on front wheel angle steer (rad)

XP,YP....x~y path coords(SAE) wrt inertial coords [input] (ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)

TFF...... driver model preview time [input parameter] (sec)
RM....... vehicle mass (slug)

Ao distance from c.g. to front suspension center-line (ft)
= F distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval
NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
STLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

——-TRSSTR.BLK common block variables

Appendix D — Source Code : D-17



C---Local variables

QOO0 0000000000000

---Functions and subroutines

TTT..ovvnn transition matrix at 10 discrete points in preview interval
TTT1...... integral of trans matrix wrt preview time
GGV.ivevewnns vector of control gain coefficients

YC.....w. local (body-axis based) copy of state vector Y

VECM..... observer vector - lateral displacement from state vector
DUMV1....work vector

DUMV11... "

DUMML....work matrix

DUMMZ2. ... "

Teveennns time in the simulation (sec)

EPSI..... yaw angle between body axis and current index value, PSIO
PSIO..... current nominal value of yaw angle used for linearization
NP....... number of points in x-y path table

XP,YP....x-y inertial path table [input] (ft)
XT,YT....x-y path table transformed to body axis [PSIO] system (ft)

EPSY2....cumulative preview path error squared

EPSY..... mean squared value of cumulative preview path error

TSUM..... scalar work quantity

SSUM..... scalar work quantity

DFWLST...steering control from last calculation (rad)

TJI...... preview time ahead from present time value (sec)

I,J,K....integer counters

XCAR..... preview distance ahead in feet (ft)

X0.eunnn present forward postion of vehicle c.g. (ft)

TTAB..... current time less the driver delay, TAUMEM. Used to access
the delayed driver response stored in DMEM array. (sec)

Sl....... scalar work quantity

1 scalar work quantity

EP....... previewed path error (ft)

FFV...... aerodynamic lateral accel and yaw accel "sensory" vector

& power boost influence

EXTERNAL TRAJ, GMPRD

QOQOQOQ0

QOO

Process Block:

DATA VECM /1.0, 5*0.0/
DATA STLST /0.0/

Update Aerodynamic accel (force/moment) vector for driver model:

FEV(1) = 0.0
FFV(2) = FYA / RM * WEIGHT / SPWGHT
FFV(3) = MZA / ININFT/ RI
FFV(4) = 0.0
FEV(5) = 0.0
FFV(6) = 0.0
1 T=X

EPSI = ABS(Y(4) - PSIO)
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DO10I=1, 7
10 YC(I) = Y(I)
IF (EPSI .LE. .0002) GO TO 30

Update Coordinate Transformation

QOO0

PSIO0 = Y (4)
DO 20 J =1, NP
XT (J) = XPDR(J) * COS(PSIO) + YPDR(J) * SIN(PSIO)
20 YT(J) = -XPDR(J) * SIN(PSIO) + YPDR(J) * COS(PSIO)

30 YO = -Y(7) * SIN(PSIO) + Y(1) * COS(PSIO)
X0 = Y(7) * COS(PSIO) + Y(1) * SIN(PSIO)
YC(1) = YO0
YC(4) = Y(4) - PSIO
EPSY2 = 0.

TSUM = 0.
SSuM = 0.
DRTORQ =

STLST

Return if time from last calculation less than sample interval

[eNeN®!

IF (T - TILAST .LT. TICYCL) RETURN

Update tire cornering stiffnesses and vehicle velocity
and recalculate transition matrix: Not Used Presently
*%%  COMMENTED OUT *%*

CAFTEM (CCAF1*FFZL1+CCAF2*FF2L2) / (FFZL1+FFZL2)
CARTEM (CCAR1*FFZL3+CCAR2*FFZL4) / (FFZL3+FFZL4)
CAF = CAFTEM

CAR = CARTEM

UTEMP = DMVELC

U = UTEMP

CALL TRANST

Loop to calculate optimal preview control per References 2 & 3:
(NTF points within the preview interval)

QOO0 00O000000000000

DO 50 I = 1, NTF |
TJL = (TFF - TSS) / NTF * I + TSS
DO 40 T =1, 6
DO40K=1, 6
DUMM1 (J,K) = TTTT1(J,K,I)
40 DUMM2 (J,K) = TTTT(J,K,I)
CALL GMPRD (VECM, DUMM1, DUMV1l, 1, 6, 6)
CALL GMPRD (VECM, DUMM2, DUMV1, 1, 6, 6)
CALL GMPRD(DUMV1, YC, T1, 1, 6, 1)

Get observed path input, YPATH, within preview interval at XCAR ft:

[eNeK®!

XCAR = X0 + U * TJI
CALL TRAJ(XCAR, XT, YT, YPATH)

CALL GMPRD (DUMV1l1, GGV, S1, 1, 6, 1)
CALL GMPRD (DUMV1l, FFV, DYAERO, 1, 6, 1)
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[eNeKe! Q [eNeX®!

N N®]

QOO0 QOO

oNoNe!

Chhxkkkkhkhkhkhhkhhkhkhhkhkhkhkhhhhkhkhkhhhkkhkhhkhhhkhhkrkhkhkhkhhkhhkhkhhhrkhdhxkxkhxkhx
Cx % e de % 3k de J ke Kk e Kk e g Kok e Kk Tk K ok ke sk ek ok ok ok ok ek ok ke ko ok ek ok ok e ok ok ok ke ek ke ek ok ek ok ok ke k

(
C

EP is the previewed path error at this preview point.
EP = T1 + S1 * DRTNOW + DYAERO - YPATH
TSUM = TSUM + EP * S1
SSUM = SSUM + S1 * S1
Cumulative preview error calculation (unrelated to control)
EPSY2 = EPSY2 + EP * EP * (TFF - TSS) / NTF
50 CONTINUE
Cumulative preview error calculation (unrelated ﬁo control)
EPSY = SQRT (EPSY2) / (TFF - TSS)
Optimal value - no delay yet.

DRTORQ = -TSUM / SSUM + DRTNOW
Maximum steer bound set at STMAX (arbitrary)

IF (ABS(DRTORQ) .GT. STMAX) DRTORQ = STMAX * SIGN(1l.,DRTORQ)
Store torque history and corresponding times in DMEM.
Retrieve steer delayed by TAUMEM sec and return as
delayed driver torque control, DRTORQ.

DO 60 J=1, 2

DO 60 I =1, 99 :
DMEM(101 - I,J) = DMEM(100 - I,J)

60 CONTINUE
DMEM(1,1) = DRTORQ
DMEM(1,2) =T

TTAB = T - TAUMEM
DO 70 I =1, 99
IDK=1I
IF (DMEM(I + 1,2) .LT. TTAB .AND. DMEM(I,2) .GE. TTAB)
1 GO TO 90
70 CONTINUE
WRITE (*,80)TAUMEM,DRTORQ, X
80 FORMAT ('0Q', '"***** TAUMEM PROBABLY TOO LARGE *****x!,
& /,3(1X,G12.6))
STOP
90 DRTORQ = 0.0
IF(T .GE. TAUMEM) DRTORQ = DMEM(IJK,1)

Save steer and time values for next calculation.

STLST = DRTORQ
TLAST = X
TILAST = X
RETURN

END

*** CHRYSLER Initialization Entry for the Driver Model ***
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DRIVGO: Intializes driver model vehicle-based parameters from COMMONs

Author and Modification Section
Author: C. C. MacAdam

Date written: 05/19/88

Written on: Mac IT

Modifications:

Algorithm Description
Purpose and use:

Error conditions:

References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis,” Interim
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE(Q7-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-86-41, July 1986.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving, "
IEEE Transactions on Systems, Man, and Cybernetics,
Vvol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems," Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: INDATA

QOO0 OO00O0O00OOOOO0OOO0O00000000Q00O0000000000a000

SUBROUTINE DRIVGO
SAVE

QOO0

Variable Descriptions

C---Arguments passed: None

C
c

C---COMMON blocks J—

C

include drvmod.inc
include pars.inc
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C

C---DRIViBLK common block variables

QOOOQOOOO0O0O000000000000000000000000

C---Local variables

C---Functions and subroutines

include glbl.inc
include tire.inc
include vars.inc

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)

WF....static load on front suspension (lb)
WR....static load on rear suspension (lb)
U..... initial velocity (ft/sec)

~---DRVST1.BLK common block variables

gravitational constant

..driver model sample time (sec)

minimum preview time (sec) A
upper bound on front wheel angle steer (rad)

. .X-y path coords(SAE) wrt inertial coords [input] (ft)
..driver transport time dealy [input parameter] (sec)

driver model preview time [input parameter] (sec)
vehicle mass (slug)

distance from c.g. to front suspension center-line (ft)
distance from c.g. to rear suspension center-line (ft)
total vehicle yaw inertia (slug-ft)

current yaw angle reference value (rad)

number of points in the preview time interval

number of points in the x-y trajectory table

..last time driver model calulated a steer value (sec)
..last value of steer calculated by driver model (rad)
..last sample time driver model calulated a steer value (sec)

2-dim array (time & steer history) used in delay calculat'n

...transformation of XP,YP in vehicle body axes (ft)

A..... distance from c.g. to front suspension center-line (ft)
B..... distance from c.g. to rear suspension center-line (ft)
WGHT. .total static weight on front and rear suspsensions (lb)
RM....total static mass (slug)

DFW...steer angle of front tires [or average] (rad)

EXTERNAL TRANS

QOOQQQ0 Q

WGHT =
B

A (1.

Process Block

WEIGHT

= WRATIO * WB / 12.

- WRATIO) * WB / 12.

RM = WGHT / GRAV
WHBS = A + B
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WGHT * B / WHBS
WGHT * A / WHBS
A *B * RM

Izz / 12.

AEEA
o un

Initial Tire Cornering Stiffnesses for Driver Model (lb/rad):
(flip sign from SAE convention to positive values here)

QOO0

CALF CALF
1 + CALFA (NPOWER, NAXLE) * FZ (NAXLE,NSIDE) ** (NPOWER-1)
10 CONTINUE
IF (NAXLE .EQ. 1) CAF
IF (NAXLE .EQ. 2) CAR
20  CONTINUE
30 CONTINUE

- 0.5 * CALF
CAR - 0.5 * CALF

Speed in ft/sec:
U=V * KMHMPH * 88. / 60.

Call TRANS to Calculate Transition Matrix

CALL TRANS

(@] QOO0 [eNeNe]

RETURN

END
ChhkhkhkkkhkhkhkhhhkhhkhkhkkhkAkkAkkkkhkAk kA k kA hkkrkrkkkhkkkrhkkrhkkrkkhkkhkrkhdkhkkkkkkhkkkkkk
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***% CHRYSLER Initialization Entry for the Driver Model **x*

DRIVGT: Intializes driver model vehicle-based parameters from COMMONS

Author and Modification Section

Author: C. C. MacAdam
Date written: 01/30/89
Written on: Mac II

Modifications:

Algorithm Description

Purpose and use:

Error conditions:

QOO0 Q0O00000
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References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis, "™ Final
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAEQ7-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-88-53, December 1988.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,"
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems, " Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: INDATA

QOQOOOQOOO0O0OQ0O00000000000000000

SUBROUTINE DRIVGT
SAVE

QOOQOOO0O00Q0

NN o Ne]

OO0 0000

---COMMON blocks

---DRIV.BLK common block variables

Variable Descriptions

—--Arguments passed: None

include drvtor.inc
include pars.inc
include glbl.inc
include tire.inc
include vars.inc

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (1lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)

WF....static load on front suspension (1lb)
WR....static load on rear suspension (1lb)
U.....initial velocity (ft/sec)

--=DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)

XP,YP....x~y path coords(SAE) wrt inertial coords [input] (ft)
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TAUMEM. . .driver transport time dealy [input parameter] (sec)

TFF...... driver model preview time [input parameter] (sec)
RM....... vehicle mass (slug)

Al distance from c.g. to front suspension center-line (ft)
Bivevenen distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval
NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

--=Local variables

A..... distance from c.g. to front suspension center-line (ft)
B..... distance from c.g. to rear suspension center-line (ft)
WGHT. .total static weight on front and rear suspsensions (lb)
RM....total static mass (slug)

DFW...steer angle of front tires [or average] (rad)

——-Functions and subroutines

EXTERNAL TRANS

Process Block:

aOOQO00 QOO0 00000000Q0

WGHT = WEIGHT

B = WRATIO * WB / 12.

A = (1. - WRATIO) * WB / 12.
RM = WGHT / GRAV

WHBS = A + B

WF = WGHT * B / WHBS

WR = WGHT * A / WHBS
c RI=A*B*RM

RI = 12Z / 12.

STMAX = 1000.

Initial Tire Cornering Stiffnesses for Driver Model (lb/rad):
(flip sign from SAE convention to positive values here)

eNoNe XS]

= 0.0
CAR = 0.0
DO 30 NAXIE =
DO 20 NSIDE
CALF = 0.0
DO 10 NPOWER = 1, 4
CALF = CALF
1 + CALFA (NPOWER,NAXLE) * FZ (NAXLE,NSIDE) ** (NPOWER-1)
10 CONTINUE
IF (NAXLE .EQ. 1) CAF
IF (NAXLE .EQ. 2) CAR
20  CONTINUE

1, 2
=1, 2

CAF - 0.5 * CALF
CAR - 0.5 * CALF
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30 CONTINUE

C
C Speed in ft/sec:
C
U=V * KMHMPH * 88. / 60.
C
C
C Call TRANS to Calculate Transition Matrix
C
CALL TRANST
C
RETURN
END

khkkkhkkkkkhkkhkkkhkkkhkkhkhkkhkkhkkhkkkhkkkkhkhkkhkkhkkhkkhkhkkhkkhkhkkkhkhkkhkhkkhkkkhkkkkkhkkkhk

SUBROUTINE ECHO
% % % % Fe F kg K Fe Fe gk gk Kk g Tk T gk ke Kk e K e T Tk gk ok Ik ke ke e Tk e e Tk kb ke ke ek ke ke e ke ke ke gk ke ke ke ke ok ke ke ke ke ke
* Echo parameter values to file to verify that the input was
* interpreted correctly

include drvmod.inc
include GLBL.inc
include PARS.inc
include MNVR.inc
include SUSP.inc
include TIRE.inc
include AERO.inc
include PRNT.inc
CHARACTER*32 FNECHO
CHARACTER*24 TIMEDT
LOGICAL ISIT
C
C Get name of echo file from user. Delete old file if it exists.
C
FNECHO = ' !
WRITE(*, '(A\)') ' Name of (optional) parameter echo file: '
READ(*, '(A)') FNECHO
IF (FNECHO .EQ. ' ') THEN
RETURN
ELSE
INQUIRE (FILE=FNECHO, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IECHO, FILE=FNECHO)
CLOSE (IECHO, STATUS='DELETE')
END IF
OPEN (IECHO, FILE=FNECHO, STATUS='NEW')
END IF

WRITE (IECHO, ' (A/)")
&' ECHO FROM WIND/HANDLING SIMULATION, V0.91'
WRITE (IECHO, '(A, A/)') ' Input file: ', FNREAD

CALL TIMDAT (TIMEDT)
WRITE (IECHO, '(A,A/)') ' Run made at ', TIMEDT

WRITE (IECHO, ' (A,A/)') ' TITLE: ', TITLE
WRITE (IECHO, ' (A/)"')

& ' GENERAL SIMULATION INFORMATION:'

IF (UNITS .EQ. 'E' .OR. UNITS .EQ. 'e') THEN
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WRITE (IECHO, ' (TS5, A)') 'English Units®
ELSE
WRITE (IECHO, ' (TS, A)') 'Metric Units’
END IF
WRITE (IECHO, '(T5,A,A)') 'Output format: ', FRMT

WRITE (IECHO, ' (T5,''V, TEND, DT:'',T30, 3Gl14.5)') Vv, TEND, DT
IF (IPRINT .EQ. 1) THEN
WRITE (IECHO, '(T5,A)') 'Write to file every time step’
ELSE
WRITE (IECHO, '(T5,A,I2,A)') 'Write to file every ', IPRINT,
& ' steps'
END IF
WRITE (IECHO, ' (T5, ''KSYWND, AIRHO:'', T30, 2G14.5)'")
1 KSYWND, AIRHO
IF (WINDKY .GE. 0) THEN
WRITE (IECHO, ' (/A/)') ' WIND MAGNITUDE TIME HISTORY INPUT:'
DO 32, J=1, WINDKY
WRITE (IECHO, ' (3X, 2G14.5)') TWIND(J), WINMAG(J)
32 CONTINUE

ELSE
WRITE (IECHO, ' (/A/)"')
& ' Wind input defined by user function FWIND'
ENDIF
C
IF (NSTEER .EQ. 0) THEN
WRITE (IECHO, ' (/A/)') ' SINUSOIDAL STEER:'
WRITE (IECHO, ' (T8, ''TSWBGN, TSWEND:'',T30,2G14.5)') TSWBGN,
& TSWEND
WRITE (IECHO, ' (T8, ' 'SWSHFT, SWAMPL:'',T30,2Gl4.5)') SWSHFT,
& SWAMPL
WRITE (IECHO, ' (T8, ' 'TSWPRD, SWPHSE:'',T30,2Gl4.5)') TSWPRD,
& SWPHSE
ELSE IF (NSTEER .LT. 0 .AND. NSTEER .GT. -100) THEN
WRITE (IECHO, ' (/A/)"') ' DRIVER MODEL INPUT:'
WRITE (IECHO, ' (TS, ' 'DRLAG, DRPREV:'',T30,2G14.5)') TAUMEM, TFF
WRITE (IECHO, ' (/T5,A/)"') 'X-Y path coordinates:'
DO 35, J=1, ABS(NSTEER)
WRITE (IECHO, '(3X, 2G14.5)') XPDR(J), YPDR(J)
35 CONTINUE
ELSE
IF (NEQN .EQ. 11) THEN
WRITE (IECHO, ' (/A/)"') ' STEER TABLE - time(sec), sw(deg):'
DO 40, J=1, ABS(NSTEER)
WRITE (IECHO, '(3X, 2Gl14.5)') XPNT(J), YPNT(J)
40 CONTINUE
ELSE
IF (NSTEER .GT.-100) THEN
WRITE (IECHO, ' (/A/)') ' STEER TORQUE TABLE - time(sec), storg
& (in-1lbs):’ :
DO 42, J=1, ABS(NSTEER)
WRITE (IECHO, '(3X, 2Gl4.5)') XPNT(J), YPNT(J)
42 CONTINUE
ENDIF
ENDIF
END - IF
C

C Total vehicle and sprung mass parameters:
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WRITE (IECHO, ' (/A/)') ' TOTAL VEHICLE AND SPRUNG MASS PARAMETERS:'
WRITE (IECHO, ' (T5, ''WEIGHT, SPWGHI, WRATIO:'', T30, 3Gl4.5)')

1 WEIGHT, SPWGHT, WRATIO

WRITE (IECHO, ' (TS5, ''IXSCG, IYS, IZZ, IXZ:'', T30, 4Gl4.5)')

1 IXSCG, IYS, IZZ, IXZ

WRITE (IECHO, ' (TS5, ''WB, WHLRAD, HCGTTL:'®’, T30, 3Gl4.5)')

1 WB, WHLRAD, HCGTTL

Aerodynamic parameters:

[eNPXe]

WRITE (IECHO, ' (/A/)') ' AERODYNAMIC PARAMETERS:'

WRITE (IECHO, ' (TS5, ''AREA:'', T30, Gl4.5)') AREA

WRITE (IECHO, ' (TS5, ''KY, KR, KN:'', T30, 3G14.5)') KY, KR, KN
WRITE (IECHO, ' (T5, ''CLO, KL:'', T30, 2G14.5)') CLO, KL

WRITE (IECHO, ' (TS, ''CMO, KM:'', T30, 2G14.5)') CMO, KM

WRITE (IECHO, ' (TS, ''CDO, KD:'', T30, 2G14.5)') CDO, KD

Steering system:

[eNeKe!

WRITE (IECHO, ' (/A/)') ' STEERING SYSTEM:'

WRITE (IECHO, ' (TS5, ''ISS, KSC, DLASH, KSL:'', T30, 4Gl14.5)') 1ISs,
& KSC, DLASH, KSL

WRITE (IECHO, ' (T5, ''GR, XTRAIL, CSS:'', T30, 3Gl4.5)') GR,

& XTRAIL, CSS

WRITE (IECHO, ' (T5, ''CBOOST, SSKEY, CFSS:'', T30, 3G14.5)')

1 CBOOST, SSKEY, CFSS

IF (KINEM) THEN

WRITE (IECHO, '(/A)'")
& ' NKINEM <> 0 -- Use full kinematics model’
ELSE

WRITE (IECHO, '(/A)'")
& ' NKINEM = 0 -- Use simple kinematics model’
END IF

IF (BEAM) THEN

WRITE (IECHO, '(/A)') ' BEAM <> 0 -- Beam rear suspension'’
ELSE :
WRITE (IECHO, '(/A)') ' BEAM = 0 -- Independent rear suspension'’
END TIF

DO 80, NAXLE=1l, 2

Suspension and tire data:

[eReNe! Q

WRITE (IECHO, ' (/'' AXLE NUMBER'', I2,
1 //T5,"''Suspension and tire data'')') NAXLE
WRITE (IECHO, ' (T7, ''TRACK, HOROLC:'', T30, 2Gl14.5)'")
1 TRACK (NAXLE), HOROLC (NAXLE)
WRITE (IECHO, ' (T7, ''KZ, KAUX:'', T30, 2Gl14.5)'")
1 KZ (NAXLE), KAUX (NAXLE)
WRITE (IECHO, ' (T7, ''CZJNCE, CZRBND:'', T30, 2G14.5)'")
1 CZJINCE (NAXLE) , CZRBND (NAXLE)
WRITE (IECHO, ' (T7, ''ALFAQO, GAMMAOQ:'', T30, 2Gl14.5)')
1 ALFAO (NAXTE) , GAMMAOQ (NAXLE)

C Kinematic coefficients:
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[N XK®]

QOO

1

IF (KINEM) THEN
WRITE (IECHO, ' (/TS,A)') 'Kinematic coefficients:'
WRITE (IECHO, ' (T7, A, T30, 2Gl14.5)")
'"YROLCF:', YROLCF(NAXLE,1l), YROLCF (NAXLE, 2)
WRITE (IECHO, ' (T7, A, T30, 2Gl14.5)')
'"HROLCF:', HROLCF (NAXLE,1l), HROLCF (NAXLE,2)
IF (BEAM .AND. NAXLE .EQ. 2) THEN
WRITE (IECHO, ' (T7, A, T30, Gl4.5)")
'Rear axle roll steer: ', CSROLL
ELSE
WRITE (IECHO, ' (T7, A, T30, 2Gl14.5)')
'CSz: ', CSZ(NAXLE, 1), 'CSZ(NAXLE,2)
END IF
WRITE (IECHO, ' (T7, A, T30, 2Gl14.5)')
'CCz: ', CCZ(NAXLE,1l), CCZ(NAXLE,2)
END IF

Compliance coefficients:

WRITE (IECHO, ' (/T5,A)') 'Compliance coefficients:'
WRITE (IECHO, ' (T7, ''CSFY, CSMZ, CCFY:'', T30, 3Gl4.5)')
CSFY (NAXLE), CSMZ (NAXLE), CCFY (NAXLE)

Tire coefficients (positive stiffness input values assumed):

WRITE (IECHO, ' (/T5,A) ') 'Tire stiffness coefficients:'
WRITE (IECHO, ' (T7, ''CALFA:'', Tl6, 4Gl4.5)')
(CALFA (J,NAXLE) ,J=1,4)
WRITE (IECHO, ' (T7, ''CGAMMA:'', Tle6, 4Gl4.5)'")
(CGAMMA (J,NAXLE), J=1, 4)
WRITE (IECHO, ' (T7, ''CALIGN:'', T1l6, 4Gl14.5)'")

1 (CALIGN (J,NAXLE), J=1,4)
WRITE (IECHO, ' (T7, ''KTIRE:'', T16, G14.5)') KTIRE (NAXLE)
80 CONTINUE
CLOSE (IECHO)
RETURN
END

Khkkkkkkkhkhkhkhkhkhkhkkkkkkhkhkkkkkkdhkhkkkkhkhkkkhkkdkhkhkhkhkkkhkkhkhkkkrhkhkkhkkhkkkkkkkkkx

SUBROUTINE FDAMP (VZ, VROLL, VPITCH, FD)

2 T T R P R R B e 2 B R T S LE S SR
C  SUBROUTINE FDAMP RETURNS FD, THE DAMPING FORCE ACTING AT EACH WHEEL

C —- ACCOUNTING FOR SEPARATE JOUNCE AND REBOUND COEFFICIENTS.
o POLARITY: NET JOUNCE VELOCITY ==> POSITIVE FD
C ———————— NET REBOUND VELOCITY ==> NEGATIVE FD
C
IMPLICIT REAL (K,M)
REAL FD(2,2)
C
include SUSP.inc

DO 20, NAXLE =1, 2

DO 10, NSIDE =1, 2
VDAMP = VZ - XAXLE (NAXLE) * VPITCH
+ .5 * TRACK(NAXLE) * VROLL * (-1)**NSIDE
IF (VDAMP .GT. 0.0) THEN
FD (NAXLE,NSIDE) = CZJNCE (NAXLE) * VDAMP
ELSE
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FD (NAXLE,NSIDE) = CZRBND (NAXLE) * VDAMP
END IF
10 CONTINUE
20 CONTINUE

RETURN
END

khkkkhkkhkkhkhkkkkkhkhkkhkkhkkkhkkhkkkhkkhkkhkkhkhkkhkkhkkhkkkhkkhkkhkkkhkkhkhkkhkkhkhkkhkhkkhkkkhkkikkx

SUBROUTINE FUNCTN(T, Y, YP)
e 3 o o e 30 3 e ok ok e e 3 e ok ok e e e 3 ok ok ok A T e ok ok ok e Tk ok ok ok ok ok ek ok ok ok ok ek ok ok ok ok ok ek ke ok ok kK
SUBROUTINE FUNCTN DEFINES THE EQUATIONS OF MOTION FOR THE 5 D.O.F
VEHICLE + THE 2 D.O.F STEERING SYSTEM (A SECOND ORDER SYSTEM FOR
THE STEERING WHEEL INERTIA/COLUMN AND FIRST-ORDER SYSTEM FOR THE
LOWER WHEEL ROTATIONAL MOTION (NO WHEEL INERTIA):
YP(I) = F(Y, T), WHERE Y, YP ARE VECTORS, AND YP(I) = DY(I)/DT.
STATE-VECTOR Y AND T ARE PASSED TO FUNCTN, AND VECTOR YP RETURNED.

QOQOOQOO000

SAVE VSW1, VSW2
IMPLICIT REAL (K,M)
REAL IXSRA, Y(13), YP(13)

include GLBL.inc

include PARS.inc

include SUSP.inc

include AERO.inc

include VARS.inc

include TIRE.inc

DATA VSW1, VSW2 /2*0.0/

DATA ALF1l, ALF2, ALF1PR, ALF2PR /4 * 0.0/

CONVERT VECTOR Y INTO NAMES

QOO

XG
YG

Z
ROLL
PITCH
YAW
VROLL
VPITCH
VYAW
BETA
vz

Y(1)
Y (2)
Y(3)
Y (4)
Y(5)
Y (6)
Y(7)
Y(8)
Y (9)
Y (10)
Y (11)

Steering System STATE Variables:

eNeXKe]

IF (NEQN .EQ. 13) THEN
VSW = Y(12)

SW = Y(13)

ENDIF

GET CURRENT STEERING WHEEL ANGLE OR STEERING WHEEL TORQUE
CONTROL INPUTS: (depending upon inclusion, or not, of steering sys)

Qa0

CONTRL = STEER(T)
IF (NEQN .EQ. 11) THEN
SW = CONTRL
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ENDIF

C

IF (NEQN .EQ. 13) THEN

STORQ = CONTRL

ENDIF
C
C CALCULATE CURRENT GEOMETRY AND FORCES =
C

CALL ROLLAX (ROLL, YROLAX, HROLAX, IXSRA)

CALL FDAMP (VZ, VROLL, VPITCH, FD)

CALL WHEELZ (2, ROLL, PITCH)

CALL TIRSUB(BETA, V, VYAW, ROLL)

CALL AIRACT(T, YAW, BETA, VYAW)
C
C EQUATIONS OF MOTION
C
C (I) ROLL MOMENT:
c

MSHR = SPMASS * HROLAX

SUMFY = SUM(FY) + FYA

SUMMZ = SUM(MZ) + MZA + XAXLE(1l)*(FY(1,1) + FY(1,2))

& + XAXLE(2)*(FY(2,1) + FY(2,2))

AROLL = (SPWGHT * YROLAX - IXZ / IZ2Z * SUMMZ + MXA

& - KROLL * ROLL - MSHR / MASS * SUM(FY)

& + .5 * TRACK(1)*(FD(1,1) - FD(1,2))

& + .5 * TRACK(2)*(FD(2,1) - FD(2,2)))

& / (IXSRA - MSHR * MSHR / MASS - IXZ*IXZ/IZZ)
C
C (II) LATERAL FORCE:
c

VBETA = (SUMFY - MSHR * AROLL) / (MASS * V) - VYAW
c
C (III) YAW MOMENT:
C

AYAW = (SUMMZ - IXZ * AROLL) / IzZ
c
C (IV) VERTICAL FORCE:
C

AZ = (WEIGHT + FZA - SUM(FZ)) / SPMASS
C
C (V) PITCH MOMENT:
c

APITCH = (XAXLE (1) * (K2AXLE(l) * (Z - XAXLE(l) * PITCH)

& + FD(1,1) + FD(1,2))

& + XAXLE (2) * (KZAXLE(2) * (2 - XAXLE(2) * PITCH)

& + FD(2,1) + FD(2,2)) + Mya) / IYS
c
c
c
C (VI) POWER-STEERING SYSTEM (Lash & Coulomb Friction included):
c

IF (NEQN .EQ. 13) THEN
c
C Calculate equivalent single steering system stiffness based on input
C values for the steering column, steering linkage, and gear ratio:
c

KSS = 2.*GR*GR*KSC*KSL / (2.*KSL + GR*GR*KSC)
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XP1 = - POLY4(CALIGN(1,1), FzZ(1,1)) / POLY4(CALFA(1l,1), FZ2(1,1))
XP2 = - POLY4 (CALIGN(1,1), Fz(1,2)) / POLY4(CALFA(1,1), FZ(1,2))
XP = (XP1 + XP2) * 0.5
CAl = - POLY4(CALFA(1,1), FZ(1,1))
2 = - POLY4(CALFA(1,1) (1,2))
= (CAl + CA2) * 0.5
= XP + XTRAIL
C
C Power Boost (cboost is percentage/100 contribution by pump):
C cboost = 0 -> no power steering boost
C
CB = 1. - CBOOST
EXPR = 1. + 2. * XPM * CB * (CA / TODEG) / KSS
ASW = (STORQ - KSS / (GR**2) * ((1. - 1. / EXPR) * SW - 2. * XPM
& * CA * GR* CB * (BETA + XAXLE(l) * VYAW / V) / (EXPR * KSS)) )
& / ISS - CSS * VSW / ISS
C
ASW = ASW * TODEG
C
C Update column "wrap-up” torque, mmcol = m - iss * asw:
C (measured in tests)
C
MMCOL = STORQ - ISS * ASW / TODEG
C
C
C Add coulomb friction and check for polarity change:
C
IF (ABS(VSW) .GT. 0.01 .AND. VSW2 .NE. 0.0) THEN
ASW = ASW - SIGN( (CFSS / ISS * TODEG), VSW)
IF(SIGN(1l.,VSW) .NE. SIGN(l.,VSWl1l) .AND.
& SIGN(1l.,VSW) .EQ. SIGN(l.,VSW2) ) THEN
VSW = 0.0
ASW = 0.0
VSW1 = 0.0
VSW2 = 0.0
Y(14) = 0.0
ENDIF
ELSE
IF (ABS (ASW) .GT. (CFSS / ISS * TODEG)) THEN
ASW = ASW - SIGN( (CFSS / ISS * TODEG), ASW)
ELSE
ASW = 0.0
ENDIF
ENDIF
C
VSW2 = VSW1
VSW1 = VSW
C
C Front Wheel Angles:
C

FW(1) = SW / GR / (1. + (XP1 + XTRAIL) * CB * CAl / TODEG / (KSS
& / 2.)) + (XP1 + XTRAIL) * CA1 * CB / (KSS / 2.) * (BETA +
& XAXIE(1) * VYAW / V) / (1. + (XP1 + XTRAIL) * CB * CAl / TODEG
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&/ (Kss / 2.) )

FW(2)

=SW /GR/ (1. + (XP2 + XTRAIL) * CB * CA2 / TODEG / (XSS

& / 2.)) + (XP2 + XTRAIL) * CA2 * CB / (KSS / 2.) * (BETA +
& XAXIE(1) * VYAW / V) / (1. + (XP2 + XTRAIL) * CB * CA2 / TODEG

&/ (KSS / 2.) )
c .
C 1Include the lash (deg):
C
IF (ABS (DLASH) .GT. 0.001) THEN
ALF1PR = (BETA + XAXLE(l) * VYAW / V) * TODEG - FW(1)
IF (ABS (ALF1PR) .GT. DLASH) THEN
ALF1 = ALF1PR - SIGN(DLASH, ALF1PR)
FW(l) = BETA + XAXLE(l) * VYAW / V - ALF1l / TODEG
ELSE
FW(1l) = BETA + XAXLE(l) * VYAW / V
ENDIF
C
ATF2PR = (BETA + XAXLE(l) * VYAW / V) * TODEG - FW(2)
IF (ABS (ALF2PR) .GT. DLASH) THEN
ALF2 = ALF2PR - SIGN(DLASH, ALFZ2PR)
FW(2) = BETA + XAXLE(l) * VYAW / V - ALF2 / TODEG
ELSE
FW(2) = BETA + XAXLE(l) * VYAW / V
ENDIF
C
ELSE
C
C no lash: (to radians)
C
FW(1) = FW(1) / TODEG
FW(2) = FW(2) / TODEG
C
ENDIF
C
C
C End of steering system calculations.
C
ENDIF
C
C
C INERTIAL DISPLACEMENTS OF TOTAL CG:
C
VDIR = YAW + BETA
VXG = V * COS (VDIR)
VYG =V * SIN(VDIR)
C
C LATERAL ACCELERATION OF TOTAL CG (W/O CONTRIBUTION OF ROLL-ACCEL.):
C
AY = (VYAW + VBETA) * V / G
C
C Path curvature:
C
RHO = (VBETA + VYAW) / V
c
C Convert names into array YP
c
YP(1l) = VXG
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YP(2) = VYG
YP(3) = VZ
YP(4) = VRCLL
YP(5) = VPITCH
YP(6) = VYAW
YP(7) = AROLL
YP(8) = APITCH
YP(9) = AYAW
YP (10) = VBETA
YP(11l) = AZ
C
C Steering System STATE Variables:
C
IF (NEQN .EQ. 13) THEN
YP(12) = ASW
YP(13) = VSW
ENDIF
C

C Copy array Y into common block for use by driver model
C

po 150, J =1, 13

YOUTDR(J) = Y (J)
150 CONTINUE

C

RETURN

END

FEIIA KKK A LA A KA A AR A AL A KK AKAKRAKAAKRKAKAAAAKR Ak kkkkhkhkk kA KAk kkkkhkhkhkkhkhkkkhhkkkx

FUNCTION FWIND (T)
Tk hkhkKkkhkAr kAR KAE AR AR AR AR ARk kA kA AAhk kA khk kA hkhkhkkhkxkhkkhkhkhkkhkrkhkkhkkkkkkkk
This function is an optional user-defined subroutine used to
calculate or define a wind profile in lieu of entering time history
wind profiles. It is called when the WINDKY parameter is entered as
a negative integer; a positive entry for WINDKY forces a table
look-up instead.

Time, T, is passed to the subroutine; the wind magnitude, FWIND, is
returned.

QOO0

include GLBL.inc

(user-defined code)

[oNeNe®]

FWIND = 20.0 + 2.0 * (SIN(1.0*T)+SIN(2.5*T)+SIN(3.5*T)
+SIN(4.5*T)+SIN(5.5*T)+SIN(6.5*T)+SIN(8.5*T)+SIN(10.5*T)
+SIN(12.7*T)+SIN(1.9*T)+SIN(5.0*T)+SIN(7.5*T)+SIN(9.4*T)
+SIN(0.63*T)+SIN(3.1*T)+SIN(6.8*T)+SIN(10.0*T)+SIN(1.5*T)
+SIN(14.1*T)+SIN(15.7*T)+SIN(16.9*T)+SIN(18.2*T)+SIN(19.5*T)
+SIN(22.0*T)+SIN(25.1*T)+SIN(0.85*T) )

v W

RETURN
END

khkkhkhkhkhkkhkhkkhkhkhkkkhkkkhkkkkhkhkkhkkkkkkkkd

C

Fedk kK kR kR ok kAR K ok kK ok ok ok ok ok ok Kk
SUBRCUTINE GMADD (A,B,R,N,M)
DIMENSION A (N*M),B (N*M),R(N*M)
NM=N*M
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DO 10 I=1,\M
10 R(I)=A(I)+B(I)

RETURN

END

dkkkhkkhkhkkkhkhkkhkhkkkkhkhkkkhkkkhkkkkkdkkkhhkk

S**********************************
SUBROUTINE GMSUB (A, B,R,N,M)
DIMENSION A(N*M),B(N*M), R (N*M)
NM=N*M
DO 10 I=1,NM

10 R(I)=A(I)-B(I)
RETURN
END

o % k% 3 e % sk sk e ke e K e ok ek ke Kok e v ok K ok ok ok ke ke vk ok ke ok e ke ok ke ok ok ke ok ok ke kK ok ok ke ke K ok gk ok ok kK k ke
Chhxhkhkhkkkkkhhkhkhkhhkhhhkhkhkhkkhkhkhkkkhkhkkkkhkhkhkhkkkkkkkkkkhkkkhkkkkkkkdkhkhxhkkdxkkkxkkkkx

*** Matrix Product Subroutine ***

GMPRD: Computes matrix product

Author and Modification Section
Author: IBM Scientific Subroutine
Date written:

Written on:

Modifications: C. MacAdam

Algorithm Description
Purpose and use: R =AB .
Error conditions:

Machine dependencies: none

Called By: DRIVER

QOO0 00000

SUBROUTINE GMPRD(A, B, R, N, M, L)

Variable Descriptions

---Arguments passed:

A..... N x M matrix

B..... M x L matrix

R.....N x L resultant matrix = A B product

N.....integer row dimension of A

M.....integer column dimension of A (or row dimension of B)
L.....integer column dimension of B

C
C
C
C
C
C
C
c
C
C
C
c
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DIMENSION A (N*M), B(M*L), R(N*L)

C
C---COMMON blocks
o
C None
C
C---COMMON Variables
C
C None
C
C---Local variables
C
C IR, IK, M, K, L, IR, JI, J, N, IB, IK, etc ...... integer counters
C
C---Functions and subroutines
C
C None
C
C
C
C Process Block
C
IR=20
IK = -M
DOI0K=1, L
IK=IK+M
DO1I0J =1, N
IR=IR+1
JIl =J-N
IB = IK
R(IR) = 0.
DO1I0I=1,M
JIL =JIl + N
IB=1IB + 1
10 R(IR) = R(IR) + A(JI) * B(IBR)
RETURN
END

khkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkhkhkkhkkkkhkhkkkkhkhkkhkkkkkkhkkhkkhkkhkhkkkhkhkhkkkkkhkkk

SUBROUTINE INDATA
hhkhkhkhkhkhkhkhkkhkkhkhkKkkhkkkhkAkAkhkkkhkhkkkhkhkkhkhkhkhkhkhkkhkkhkhkkhkkkkkkhkkhkkxhkkhkkhkkkkhkkkkkkx
(1) Get file names from the user,

(2) connect the files to their Fortran i/o units,

(3) read the dataset from unit IREAD,

(4) echo the parameter values to unit IECHO,

(5) and, perform the necessary conversions of physical units.

QOO0

IMPLICIT REAL (K,M)
LOGICAL ISIT

include drvmod.inc
include GLBL.inc
include PARS.inc
include MNVR.inc
include SUSP.inc
include TIRE.inc
include AERO.inc
include PRNT.inc
C
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C Get input file name from user
o
WRITE (*,'(///A/A/A/A/A/A)")
' CHRYSLER-UMTRI CROSSWIND STABILITY PROJECT',
' WIND / STEER SIMULATION - Version 1.0, Feb 89',' !,

&

&

& ' Copyright (c) The Regents of The University of Michigan’',
& ' 1987-1989, Ann Arbor, Michigan. All Rights Reserved.',' '

C
100 WRITE(*, '(A\)') ' Name of input file: '
READ(*, '(A)') FNREAD
INQUIRE (FILE=FNREAD, EXIST=ISIT)

IF (.NOT. ISIT) THEN
WRITE (*, '"(A, A, A)') ' File "', FNREAD,
& '" does not exist. Try again.'
GO TO 100
END IF
OPEN (IREAD, ERR=100, STATUS='OLD', FILE=FNREAD)
C
C Read general simulation and maneuver parameters:
C
READ (IREAD, ' (//A)') TITLE
READ (IREAD, ' (A)') UNITS
READ (IREAD, ' (A) ') FRMT
DO 3 I=1,10
IF (FRMT(I:I) .NE. ' ') THEN
FRMT = FRMT(I:)
GO TO 4
END IF
3 CONTINUE
4 CONTINUE
C
CMD--Use NUMKEY=1 for Mac, 2 for IBM PC
IF (FRMT(:1) .NE. '(') THEN
NUMKEY = 1
FRMT = 'Binary’
ELSE
NUMKEY = 5
END IF
C)
READ (IREAD, 530) Vv, TEND, DT
READ (TREAD, 520) IPRINT
READ (IREAD, 530) KSYWND, AIRHO
READ (IREAD, 520) WINDKY
VWIND = 0.0
IF (WINDKY .GE. 0) THEN
DO 5 J = 1, WINDKY
READ (IREAD, 530) TWIND (J), WINMAG(J)
5  CONTINUE
ELSE
VWIND = FWIND (T)
ENDIF

READ (IREAD, 520) NSTEER

IF (NSTEER .EQ. 0) THEN
READ (IREAD, 530) TSWBGN, TSWEND
READ (IREAD, 530) SWSHFT, SWAMPL
READ (IREAD, 530) TSWPRD, SWPHSE
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ENDIF

IF (NSTEER .LT. O .AND. NSTEER .GT. -100) THEN
NP = -NSTEER
CALL DRIVE1 (SW)

ENDIF

IF (NSTEER .GT. 0) THEN
DO 10, J=1, ABS(NSTEER)
READ (IREAD, 530) XPNT(J), YPNT(J)

10 CONTINUE
ENDIF

Total vehicle and sprung mass parameters:

[eNeNe]

READ (IREAD, 530) WEIGHT, SPWGHT, WRATIO
READ (IREAD, 540) IXSCG, IYS, I12Z, IXZ
READ (IREAD, 530) WB, WHLRAD, HCGTTL

Aerodynamic parameters:

[eNeXe!

READ (IREAD, 530) AREA

READ (IREAD, 530) KY, KR, KN
READ (IREAD, 530) CLO, KL
READ (IREAD, 530) CMO, KM
READ (IREAD, 530) CDO, KD

C Steering system:
READ (IREAD, 540) ISS, KSC, DLASH, KSL
READ (IREAD, 530) GR, XTRAIL, CSS
READ (IREAD, 530) CBOOST, SSKEY, CFSS

Calculate equivalent single steering system stiffness based on input
values for the steering column, steering linkage, and gear ratio:

KSS = GR*GR*KSC*KSL / (KSL + GR*GR*KSC)

Suspension and tire data:

QOO eNeEoXKe]

READ (IREAD, 520) NKINEM

IF (NKINEM .EQ. 0) KINEM = .FALSE.
READ (IREAD, 520) NBEAM

IF (NBEAM .EQ. 0) BEAM = .FALSE.

DO 30, NAXLE=1, 2
READ (IREAD, 530) TRACK(NAXLE), HOROLC (NAXLE)
READ (IREAD, 530) KZ (NAXLE), KAUX(NAXLE)
READ (IREAD, 530) CZJNCE (NAXLE), CZRBND (NAXLE)
READ (IREAD, 530) ALFAQ (NAXLE), GAMMAO (NAXLE)

KINEMATIC COEFFICIENTS:

[eNeNe®]

IF (KINEM) THEN
READ (IREAD, 530) YROLCF (NAXLE, 1), YROLCF (NAXLE,2)
READ (IREAD, 530) HROLCF (NAXLE,1l), HROLCF (NAXLE,2)
IF (BEAM .AND. NAXLE .EQ. 2) THEN
READ (IREAD, 530) CSROLL
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ELSE '
READ (IREAD, 530) CSZ (NAXLE,1), CSZ(NAXLE,2)
END IF
READ (IREAD, 530) CCZ (NAXLE,1), CCZ(NAXLE, 2)
END IF

Compliance coefficients:

[eEeK®!

READ (IREAD, 530) CSFY (NAXLE), CSMZ (NAXLE), CCFY (NAXLE)

Tire stiffness coefficients:

QOO

READ (IREAD, 540) (CALFA (J,NAXLE),J=1,4)
READ (IREAD, 540) (CGAMMA (J,NAXLE),J=1,4)
READ (IREAD, 540) (CALIGN(J,NAXLE),J=1,4)
READ (IREAD, 530) KTIRE (NAXLE)

30 CONTINUE

Q

CLOSE (IREAD)

Change from metric to English units, if specified

[eNeK®!

IF (UNITS .EQ. 'E' .OR. UNITS .EQ. 'e') THEN
G = 386.1 :
ININFT
KMHMPH
TODEG
UDISP
UDIST
UANGL
UVELFT
UOMEGA
UFORC
UTORQ

END IF

12

0.056818

180.0 / PI
linl

lftl

'deq’
'ft/s'
'deg/sec’
llbl
'in-1b'

General simulation and maneuver parameters:
Include steering system dynamics only if non-zero damping:

IF (ABS(SSKEY) .LT. 0.001) NEQN = NEQN - 2

@] QOO0

WRITE(*,'('' '',A//)') TITLE
IF (IECHO .GT. 0) CALL ECHO

V =V / KMHMPH

VWIND = VWIND / KMHMPH
KSYWND = KSYWND / TODEG
GRTODG = GR * TODEG

o

DO 80, NAXLE=1l, 2
KAUX (NAXLE) = KAUX (NAXLE) * TODEG

(o With english units, SW, KSC, KSL stay in deg, while FW, VFW
C stay in rad (with metric units, all are in rad, and todeg = 1)
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ALFAQ (NAXLE) = ALFAOQ (NAXLE) / TODEG
GAMMAQ (NAXLE) = GAMMAQ (NAXLE) / TODEG
IF (NSTEER .EQ. 0) SWPHSE = SWPHSE / TODEG

QOO

IF (KINEM) THEN
DO 50, NPOWER = 1, 2
YROLCF (NPOWER, NAXLE)

HROLCF (NPOWER, NAXLE)

CSZ (NPOWER, NAXLE)
CCZ (NPOWER, NAXLE)

50 CONTINUE
END IF

[eNeKe!

CSFY (NAXLE)
CSMZ (NAXLE)
CCFY (NAXLE)

Qo0

Compliance coefficients:

Convert polynomial coefficients from deg to rad:

YROLCF (NPOWER, NAXLE) * TODEG **
NPOWER
HROLCF (NPOWER,NAXLE) * TODEG **
NPOWER

CSZ (NPOWER, NAXLE) / TODEG
CCZ (NPOWER, NAXLE) / TODEG

CSFY (NAXLE) / TODEG
CSMZ (NAXLE) / TODEG
CCFY (NAXLE) / TODEG

DO 70, NPOWER = 1, 4

CALFA (NPOWER, NAXLE)
CGAMMA (NPOWER, NAXLE)
CALIGN (NPOWER, NAXLE)

70  CONTINUE
80 CONTINUE

RETURN

520 FORMAT (BN, I4)

530 FORMAT (3F12.
540 FORMAT (4F12.
c
END

0)
0)

Change CALFA polarity to conform with SAE conventions
and convert polynomial coefficients from deg to rad

—-CALFA (NPOWER, NAXLE) * TODEG
CGAMMA (NPOWER, NAXLE) * TODEG
CALIGN (NPOWER, NAXLE) * TODEG

kkhkkkdkkkdkkkdkkhkdkkhkkhkdkkhkhkkhkhkkhkhkkhkkkhkhkhkhkkkhkhkkkhkkkhkkkhkkkhkkkhkkkkkhkkhkkxkhkkkkk

SUBROUTINE INIT
L R R T R

c

C Initialize input-based values and non-zero variables

c

IMPLICIT REAL (K,M)

include GLBL.
include PARS.
include SUSP.
include AERO.
include VARS.
include PRNT.

inc
inc
inc
inc
inc
inc

MASS = WEIGHT / G
SPMASS = SPWGHT / G

USWGHT

WEIGHT - SPWGHT
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XAXLE (2) - WB * WRATIO

XAXLE (1) = WB + XAXLE(2)
FZOWHL (1) = .5 * WEIGHT * WRATIO
FZOWHL(2) = .5 * WEIGHT * (1 - WRATIO)

XCGSP = WB * (2 * FZOWHL(2) - .5 * USWGHT) / SPWGHT
XWBCGS .5 * WB - XCGSP

XWBCGT .5 * WB - XAXLE(1)

HCGSP = (HCGTTL * WEIGHT - WHLRAD * USWGHT) / SPWGHT
ROLLVR = .5 * TRACK(1) / HCGTTL

QZERO = AIRHO * AREA / 2

KROLL = 0.

DO 20, NAXLE =1, 2

Approximate effects of tire stiffness + damping in suspension:

a0

TRKSQR = .5 * TRACK (NAXLE) **2
SUMKZ = KZ (NAXLE) + KTIRE (NAXLE)

Reduce overall dampiné coefficients for negligible tire damping:

[eEeK®!

CZJINCE (NAXLE)
CZRBND (NAXLE)

CZJNCE (NAXLE) * KTIRE (NAXLE) / SUMKZ
CZRBND (NAXLE) * KTIRE (NAXLE) / SUMKZ

Total vertical suspension rate at wheel (parallel springs):

[eNeKe!

KZSSP = KZ (NAXLE) + KAUX(NAXLE) / TRKSQR
Overall vertical rate (suspension and tire in series):
KZTTL = KZSSP * KTIRE (NAXLE) / (KZSSP + KTIRE (NAXLE))

KZ <--- overall vertical rate without auxiliary roll stiffness:

[eNeKe! [eNeN®!

KZ (NAXLE) = KZ (NAXLE) * KTIRE (NAXLE) / SUMKZ

Adjusted auxiliary roll rate (in parallel with kz):

[eNeNe!

KAUX (NAXLE) = (KZTTL - K2 (NAXLE)) * TRKSQR

Effective roll stiffness and axle vertical stiffness

eNeNe]

KROLL = KROLL + KZ (NAXLE) * TRKSQR + KAUX (NAXLE)

KZAXLE (NAXLE) = 2 * KZ(NAXLE)

HCGSRC (NAXLE) HCGSP - HOROLC (NAXLE)

DO 10, NSIDE =1, 2
ALFA (NAXLE,NSIDE) = -(-1)**NSIDE * ALFAQ (NAXLE)
GAMMA (NAXLE,NSIDE) = -(-1)**NSIDE * GAMMA(Q (NAXLE)
FZ (NAXLE,NSIDE) = FZ0WHL (NAXLE)

KNMSTR (NAXLE, NSIDE) = 0.0
KNMCBR (NAXLE, NSIDE) = 0.0
10 CONTINUE
20 CONTINUE
RETURN

END
% % Je % % Je F J J Fe e o K ok ko e ok ke ek ok sk Kk sk Tk ok ok ok ok T ok Tk ok gk ok ok e ok Tk ok ok ek ok ok ok ok ok ok k ko ke

FUNCTION LENSTR (STRING)
Fk kK k K kK kg ke kK ko R ok sk ok ok ok ok ok ok ok ok ok ok ok ok e ok ok ok sk ok ok ok ok ok
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* count characters in left-justified string. M. Sayers, 8-9-87

CHARACTER* (*) STRING
N = LEN (STRING)
DO10L =N, 1, -1
IF (STRING(L:L) .NE. ' ' ,AND. STRING(L:L) .NE. char(3)) THEN
LENSTR = L
RETURN
END IF
10 CONTINUE
LENSIR =1
RETURN
END

AAKAKAKK KKK KKK A AR KA AK A hkAkAhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkhhkkkkkhkkkhkkhkhkkkhkkhkkkhkkkhkkkhkix

C

% % % % K K % Kk Kk kK Kk kK &k Kk Kk ke ke kK gk ok K g ok ok % e ok ek ok ok ek ok ok ke gk e ke ok ke ki ke ok ok ke ke ke ko kk ok ok ke ok

NAASA 2.1.020 MINV FTN 06-24-75 THE UNIV OF MICH COMP CTR
SUBROUTINE MINV

PURPOSE
INVERT A MATRIX

USAGE
CALL MINV(A,N,D,L,M)

DESCRIPTION OF PARAMETERS
A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY
RESULTANT INVERSE.

N - ORDER OF MATRIX A

D - RESULTANT DETERMINANT

L - WORK VECTOR OF LENGTH N

M - WORK VECTOR OF LENGTH N
REMARKS

MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHCD
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
THE MATRIX IS SINGULAR.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

OO0 000000000000Q0

SUBROUTINE MINV(A,N,D,L,M)
DIMENSION A(*),L(*),M(*)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
STATEMENT WHICH FOLLOWS.

C
C
C
C
C
C
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DOUBLE PRECISION A,D,BIGA,HOLD

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO

CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

SEARCH FOR LARGEST ELEMENT

QOO0

D=1.0
NK=-N
DO 80 K=1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A (KK)
DO 20 J=K,N
IZ=N*(J-1)
DO 20 I=K,N
IJ=IZ+I

10 IF( ABS(BIGA)- ABS(A(IJ))) 15,20,20

15 BIGA=A(IJ)
L(K)=I
M(K)=J

20 CONTINUE

INTERCHANGE ROWS

QOO

J=L (K)
IF(J-K) 35,35,25
25 KI=K-N
DO 30 I=1,N
KI=KI+N
HOLD=-A (KI)
JI=KI-K+J
A (KI)=A(JI)
30 A(JI) =HOLD

INTERCHANGE COLUMNS

[eNeKe!

35 I=M(K)
IF (I-K) 45,45,38
38 JP=N*(I-1)
DO 40 J=1,N
JK=NK+J
JI=JP+J
HOLD=-A (JK)
A (JK)=A (JI)
40 A(JI) =HOLD

c DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
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[eEeN®!

[oNPNe]

QOO QOO

QOO

45
46

48
50

55

60
62

65

70

75

80

100
105

108

110

CONTAINED IN BIGA)

IF (BIGA) 48,46,48
D=0.0

RETURN

DO 55 I=1,N

IF (I-K) 50,55,50
IK=NK+I

A (IK)=A(IK)/ (-BIGA)
CONTINUE

REDUCE MATRIX

DO 65 I=1,N

IK=NK+I

HOLD=A (IK)

IJ=I-N

DO 65 J=1,N
IJ=IJ+N

IF (I-K) 60,65,60

IF (J-K) 62,65,62
KJ=IJ-I+K

A (IJ)=HOLD*A (KJ) +A(IJ)
CONTINUE '

DIVIDE ROW BY PIVOT

KJ=K-N

DO 75 J=1,N
KJ=KJ+N

IF(J-K) 70,75,70
A (KJ)=A(KJ) /BIGA
CONTINUE

PRODUCT OF PIVOTS
D=D*BIGA
REPLACE PIVOT BY RECIPROCAL

A(KK)=1.0/BIGA
CONTINUE

FINAL ROW AND COLUMN INTERCHANGE

K=N

K= (K-1)

IF (K) 150,150,105
I=L(K)

IF (I-K) 120,120,108
JO=N* (K-1)

JR=N* (I-1)

DO 110 J=1,N
JK=JQ+J

HOLD=A (JK)
JI=JR+J

A (JK)=-A(JI)
A(JI) =HOLD
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120 J=M(K)
IF (J-K) 100,100,125
125 KI=K-N
DO 130 I=1,N
KI=KI+N
HOLD=A (KI)
JI=KI-K+J
A (KI)=-A(JI)
130 A(JI) =HOLD
GO TO 100
150 RETURN
END

kdkkdkhkhkhkkhkhkhkkhkhkhkhkkkhkkdkhkhkhkdkhkhkkkkkkkhkhkhkhkhkkkhkkhkhkhkhkhkhkkhkhkkhkhkhkkhkkkhkkkkhkkhkkhkkhkkx

SUBROUTINE OPNOUT
kKK I I I I KKK KKK T FH K FeHeFe ek ok ok o o o e ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok
C  SUBROUTINE OPNOUT INITIALIZES THE OUTPUT ERD FILE.
C
IMPLICIT REAL (K,M)
CHARACTER*32 LONGNM (66), GENNM(66), RIGBOD(66), THISRB
CHARACTER*32 FNOUT
CHARACTER*24 TIMEDT
CHARACTER*8 SHORTN (66), UNITNM(66)
CHARACTER*4 LORR(2)
CHARACTER*1 AXLE(2), SIDE(2)
INTEGER NCHAN
LOGICAL ISIT

include GLBL.inc
include PARS.inc

DATA AXLE/'1','2'/, SIDE/'L','R'/, LORR/'Left', 'Rght'/
DATA TIMEDT/' '/
C
110 WRITE(*, '(A\)') ' Name of simulation output file: '
READ(*, '(A)') FNOUT
IF (FNOUT .NE. ' ') THEN
INQUIRE (FILE=FNOUT, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IOUT, FILE=FNOUT)
CLOSE (IOUT, STATUS='DELETE')
END IF
OPEN (IOUT, FILE=FNOUT, STATUS='NEW')
WRITE (*,*) ' '
ELSE
WRITE (*,*) 'Output file is required!'’
GO TO 110
END IF

Start with 0 output channels
NCHAN = 0

Time

QOO QOO

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Time’
SHORTN (NCHAN) = 'Time'
GENNM (NCHAN) = 'Time'

Appendix D — Source Code D-45



UNITNM (NCHAN) = 'sec'
RIGBOD (NCHAN) = 'Time'
c
C Input Steer Angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Input Steer Angle'
SHORTN (NCHAN) = 'Steer in'
GENNM (NCHAN) = 'Angle'’
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = 'Input'
C
C Input Steer Torque
¢ _
IF (SSKEY .NE. 0.0) THEN
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Input Steer Torque'
SHORTN (NCHAN) = 'SW Torq'
GENNM (NCHAN) = 'Torque’
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = 'Input'
END IF
C
THISRB = 'Body'
C
C X Position
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'X Position, Sprung Mass cg’
SHORTN (NCHAN) = 'X cg'
GENNM (NCHAN) = 'X Position’
UNITNM (NCHAN) = UDIST
RIGBOD (NCHAN) = THISRB
C
C Y Pposition
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Y Position, Sprung Mass cg!
SHORTN (NCHAN) = 'Y cg'
GENNM (NCHAN) = 'Y Position’
UNITNM (NCHAN) = UDIST
RIGBOD (NCHAN) = THISRB
C
C Z Position
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Z Position, Sprung Mass cg'
SHORTN (NCHAN) = 'Z cg'
GENNM (NCHAN) = 'Z Position'
UNITNM (NCHAN) = UDISP
RIGBOD (NCHAN) = THISRB
C
C Roll Angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Roll Angle'
SHORTN (NCHAN) = 'Roll’
GENNM (NCHAN) = 'Roll’
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UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

c

C Pitch Angle

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Pitch Angle'
SHORTN (NCHAN) = 'Pitch'
GENNM (NCHAN) = 'Pitch’
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

c

C Yaw Angle

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Yaw Angle'
SHORTN (NCHAN) = 'Yaw'
GENNM (NCHAN) = 'Yaw'
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

o

C Roll Rate

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Roll Rate'
SHORTN (NCHAN) = 'p'
GENNM (NCHAN) = 'Roll Rate’
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

c

C Pitch Rate

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Pitch Rate’
SHORTN (NCHAN) = 'q'
GENNM (NCHAN) = 'Pitch Rate’
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

C

C Yaw Rate

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Yaw Rate’
SHORTN (NCHAN) = 'r!'
GENNM (NCHAN) = 'Yaw Rate'
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

C

C Body Slip Angle

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Vehicle Slip Angle!
SHORTN (NCHAN) = 'slip'
GENNM (NCHAN) = 'Angle’
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

C

C X Velocity, Sprung Mass cg

Appendix D — Source Code




NCHAN = NCHAN + 1

LONGNM (NCHAN) 'X Velocity, Sprung Mass cg'
SHORTN (NCHAN) 'X dot’

GENNM (NCHAN) = 'X Velocity'

UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = THISRB
c
C Y Velocity, Sprung Mass cg
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Y Velocity, Sprung Mass cg'
SHORTN (NCHAN) = 'Y dot'
GENNM (NCHAN) = 'Y Velocity'
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = THISRB
c
C 2 Velocity, Sprung Mass cg
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Z Velocity, Sprung Mass cg'’
SHORTN (NCHAN) = 'w cg' :
GENNM (NCHAN) = 'Z Velocity'
UNITNM (NCHAN) = UDISP // '/s'
RIGBOD (NCHAN) = THISRB
C
C Lateral Acceleration
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Lateral Acceleration at cg'
SHORTN (NCHAN) = 'Ay cg'
GENNM (NCHAN) = 'Lateral Acceleration'
UNITNM (NCHAN) = 'g''s'
RIGBOD (NCHAN) = THISRB
C
C Vehicle Path Curvature
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Vehicle Path Curvature'
SHORTN (NCHAN) = 'Rho cg'
GENNM (NCHAN) = 'Vehicle Path Curvature'
UNITNM (NCHAN) = 'l/' // UDIST
RIGBOD (NCHAN) = THISRB
C
C Aerodynamic Drag Force
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Drag Force'
SHORTN (NCHAN) = 'Fx Aero'
GENNM (NCHAN) = 'Force'
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB
C
C Aerodynamic Side Force
C

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Side Force'
SHORTN (NCHAN) = 'Fy Aero'
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GENNM (NCHAN) = 'Force'

UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB

C

C Aerodynamic Down Force

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Down Force'
SHORTN (NCHAN) = 'Fz Aero'
GENNM (NCHAN) = 'Force'
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB

c

C Aerodynamic Roll Moment

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Roll Moment'
SHORTN (NCHAN) = 'Mx Aero'
GENNM (NCHAN) = 'Moment’
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

C

C Aerodynamic Pitch Moment

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Pitch Moment'
SHORTN (NCHAN) = 'My Aero'
GENNM (NCHAN) = 'Moment'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

C

C Aerodynamic Yaw Moment

C .
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Yaw Moment'’
SHORTN (NCHAN) = 'Mz Aero'
GENNM (NCHAN) = 'Moment'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

c

C Air Speed

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Air Speed'
SHORTN (NCHAN) = 'V Air'
GENNM (NCHAN) = 'Speed'’
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = 'Input'

c

C Aerodynamic Slip Angle

c
NCHAN = NCHAN + 1 .
LONGNM (NCHAN) = 'Aerodynamic Slip Angle’
SHORTN (NCHAN) = 'Slip Air'
GENNM (NCHAN) = 'Angle’
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

c
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C Tire/Wheel variables. There are 2 nested loops here: the outer
C indexed the axle, and the inner indexes the side.
C
DO 100, NAXLE = 1, 2
DO 80 NSIDE =1, 2
THISRB = SIDE(NSIDE) // ' side, Axle ' // AXLE (NAXLE)
C
C Steer of road wheel
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Total Steer, ' // THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Str ' // BAXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'
RIGBOD (NCHAN) = THISRB
c
C Tire slip angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Slip Angle, '// THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Alph ' // AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'’
RIGBOD (NCHAN) = THISRB
C
C Tire camber angle
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Camber Angle, '// THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Gamm ' // AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'
RIGBOD (NCHAN) = THISRB
C
C Tire side force
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Side Force, '// THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Fy ' // AXLE (NAXLE)
UNITNM (NCHAN) = UFORC
GENNM (NCHAN) = 'Force'
RIGBOD (NCHAN) = THISRB
C
C Tire Aligning Moment
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aligning Moment, ' // THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Mz ' // AXLE (NAXLE)
UNITNM (NCHAN) = UTORQ
GENNM (NCHAN) = 'Moment'
RIGBOD (NCHAN) = THISRB
C
C Tire vertical force
C

NCHAN = NCHAN + 1
LONGNM (NCHAN)
SHORTN (NCHAN)
UNITNM (NCHAN)

'Load, ' // THISRB
SIDE (NSIDE) // * Fz ' // AXLE (NAXLE)
UFORC
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QOO

QOO0

[eNeKe!

GENNM (NCHAN) = 'Force'
RIGBOD (NCHAN) = THISRB

Suspension Displacement
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Vert Disp, ' // THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Z ' // AXLE (NAXLE)
UNITNM (NCHAN) = UDISP
GENNM (NCHAN) = 'Displacement’
RIGBOD (NCHAN) = THISRB
Suspension Damping Force
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Damping Force, ' // THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Fdmp ' // AXLE (NAXLE)
UNITNM (NCHAN) = UFORC
GENNM (NCHAN) = 'Force'
RIGBOD (NCHAN) = THISRB
80 CONTINUE
100 CONTINUE
Write Header Info for ERD file
Set parameters needed to write header
NUMKEY = 1 for 32-bit floating-point binary, 5 for Text
NSAMP = TEND / DT / IPRINT + 1
NRECS = NSAMP
IF (NUMKEY .NE. 5) THEN
NBYTES = 4*NCHAN
ELSE
NBYTES = 1
END IF
Write standard ERD file heading.

410
411
412

WRITE (IOUT,'(A)') 'ERDFILEV2.00'

WRITE (IOUT, 410) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, DT*IPRINT
FORMAT (5(16,','),E13.6)

FORMAT (A8,255A8)

FORMAT (A8, 31A32 : 2(/'&1000 ', 31A32))

WRITE (IOUT, ' (A,A)') 'TITLE ', TITLE

WRITE (IOUT, 411) 'SHORTNAM', (SHORTN(J), J=1, NCHAN)
WRITE (IOUT, 412) 'LONGNAME', (LONGNM(J), J=1, NCHAN)
WRITE (IOUT,411) 'UNITSNAM', (UNITNM(J), J=1, NCHAN)
WRITE (IOUT, 412) 'GENNAME ', (GENNM(J), J=1, NCHAN)
WRITE (IOUT, 412) 'RIGIBODY', (RIGBOD(J), J=1, NCHAN)

WRITE (IOUT, '(A)') 'TRUCKSIMWind/Steer'
IMPH = NINT (V * KMHMPH)

IF (UNITS .NE. 'E' .AND. UNITS .NE. 'e')
& IMPH = NINT (V * KMHMPH / 1.61)

WRITE (IOUT, '(A,IS5)') 'SPEEDMPH', IMPH

IF (NUMKEY .EQ. 5) WRITE(IOUT, '(A,A)') 'FORMAT ',FRMT
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CALL TIMDAT (TIMEDT)

WRITE (IOUT, '(A,A)') :
& 'HISTORY Data generated with Wind/Steer model at ', TIMEDT

WRITE (IOUT, '(A,A)') 'HISTORY Input file was ', FNREAD
WRITE (IOUT, '(A)') 'END'
c
C If this is a Mac or PC, and data will be binary, then close header
C and create binary file. The following line is used to disable the
C creating of a second file for MTS.
C
C--Use this only for the MTS version.
C RETURN
501 CONTINUE

IF (NUMKEY .NE. 5) THEN
CLOSE (IOUT)
LNAME = LENSTR (FNOUT)
FNOUT = FNOUT (:LNAME) // '.BIN'
INQUIRE (FILE=FNOUT, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IOUT, FILE=FNOUT)
CLOSE (IOUT, STATUS='DELETE')
END IF
C--The following 2 lines are for the Mac version.
OPEN (IOUT, FILE=FNOUT, STATUS='NEW', ACCESS='SEQUENTIAL’,

& FORM='UNFORMATTED')
C--The following 2 lines are for the PC version.
* OPEN (IOUT, STATUS='NEW', ACCESS='SEQUENTIAL',
* & FORM='BINARY')

END IF

RETURN

END

% % % % % % &k K F kK T Kk K ok K gk K gk kK sk Kk gk ok ke ok ok ke gk ok Kk ke ok ok ke ok Tk ke ok gk K ok ok ok ok ok ek e ok ok e ok ek ok ek ok ke ok ok ke ke

SUBROUTINE OUTPUT(T, Y, YP)
LR L R T T R e P T T LR e PSR R T I P R

C Subroutine OUTPUT copies (at each output step) the simulation
C variables into a buffer array in a sequence as specified in the
C header, and outputs the buffer into the erd-file in binary or
C text form.
c

IMPLICIT REAL (K,M)

INTEGER*2 LEN2, IBMROW, IBMCOL

REAL BUFFER(66), Y(*), YP(*)
C

include GLBL.inc

include PARS.inc

include VARS.inc

include AERO.inc
c
C Fill the ERD buffer. The following code should create a one-to-one
C match between the label sets created in routine OPNOUT and output
C variables put into the array BUFFER.
C

NCHAN = 0
C
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C Time and inputs

c
BUFFER (NCHAN + 1) =T
BUFFER (NCHAN + 2) = SW
NCHAN = NCHAN + 2
IF (SSKEY .NE. 0.0) THEN
NCHAN = NCHAN + 1
BUFFER (NCHAN) = STORQ
END IF
c
C Body position variables
c
BUFFER (NCHAN + 1) = Y(1) / ININFT
BUFFER (NCHAN + 2) = Y(2) / ININFT
BUFFER (NCHAN + 3) = Y(3)
BUFFER (NCHAN + 4) = Y(4) * TODEG
BUEFFER (NCHAN + 5) = Y(5) * TODEG
BUFFER (NCHAN + 6) = Y(6) * TODEG
NCHAN = NCHAN + 6
c
C Body speed variables
C
BUFFER (NCHAN + 1) = Y(7) * TODEG
BUFFER (NCHAN + 2) = Y(8) * TODEG
BUFFER (NCHAN + 3) = Y(9) * TODEG
BUFFER (NCHAN + 4) = Y(10) * TODEG
BUFFER (NCHAN + 5) = YP(1l) / ININFT
BUFFER (NCHAN + 6) = YP(2) / ININFT
BUFFER (NCHAN + 7) = Y(11)
NCHAN = NCHAN + 7
C
C Lateral Acceleration, Path Curvature
c
BUFFER (NCHAN + 1) = AY
BUFFER (NCHAN + 2) = RHO * ININFT
NCHAN = NCHAN + 2
C
C Aerodynamic variables
c
BUFFER (NCHAN + 1) = FDRAG
BUFFER (NCHAN + 2) = FYA
BUFFER (NCHAN + 3) = FZA
BUFFER (NCHAN + 4) = MXA
BUFFER (NCHAN + 5) = MYA
BUFFER (NCHAN + 6) = MZA
BUFFER (NCHAN + 7) = VA
BUFFER (NCHAN + 8) = BETAIR
NCHAN = NCHAN + 8
c
C Tire/Wheel variables
c

DO 100, NAXLE = 1, 2
DO 80, NSIDE = 1, 2
BUFFER (NCHAN + 1)
BUFFER (NCHAN + 2)
BUFFER (NCHAN + 3)
BUFFER (NCHAN + 4)
BUFFER (NCHAN + 5)
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TTLSTR (NAXLE, NSIDE) * TODEG
ALFA (NAXLE,NSIDE) * TODEG
GAMMA (NAXLE,NSIDE) * TODEG
FY (NAXLE, NSIDE)

MZ (NAXLE, NSIDE)




BUFFER (NCHAN + 6) = FZ (NAXLE,NSIDE)
BUFFER (NCHAN + 7) = ZW(NAXLE,NSIDE)
BUFFER (NCHAN + 8) = FD (NAXLE,NSIDE)

NCHAN = NCHAN + 8
80  CONTINUE
100 CONTINUE

C
C Write data to the file.

C

C--The next 3 lines are for the Mac
IF (T .EQ. 0.) WRITE (*, '(A/7X,A)') 'Progress:', 'sec'
CALL TOOLBX (Z'89409000',0,-11)
WRITE (*, '(F6.2)'") T

C--The next 11 lines are for the IBM PC

* IF (T .EQ. 0.) THEN

* IBMROW = 18

* IBMCOL = 10

* WRITE (*, '(/////A\)') ' !

* CALL SETCUR (IBMROW, IBMCOL)
* WRITE (*, '(A,12X,A\)') ' Progress:', 'sec'
* END IF

* IBMROW = 18

* IBMCOL = 22

* CALL SETCUR (IBMROW, IBMCOL)

*

WRITE (*, "(F6.2\)") T
C--End IBM PC stuff

IF (NUMKEY .EQ. 5) THEN
WRITE (IOUT, FRMT) (BUFFER(J),J=1, NCHAN)

ELSE
C
C--This line is only for MTS
C LEN2 = NBYTES
C CALL WRITE (BUFFER, LEN2, 16384, LNUM, IOUT)
C

C--This line is for the Mac and the PC
WRITE (IOUT) (BUFFER (J), J=1, NCHAN)
END IF

RETURN
END
LR e T g T R A L e R ]

FUNCTION POLY4 (COEF,FZ)
e 3 e e e 3k e K e e 3k ok e ek ok e ke ek ok ek ok ke ok ok K ok ke ok ok ok ok ke ok ok ok ek ok ok ok ok 3k ok e ok ok ok ok ok e ok ok ok ok ok ok ok ok ok o

* evaluate 4-th order polynomial

REAL COEF (*)

POLY4 = COEF (1) + COEF(2)*FZ + COEF (3)*FZ*FZ + COEF (4) *FZ**3
RETURN

END

khkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkkhhkkhkhkhkhkkhkkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkkhkhkkhkkkhkkkhkkhkhkkkx

SUBROUTINE ROLLAX (ROLL, YROLAX, HROLAX, IXSRA)
AL E AR E ALK A AR AR AL A ALK IR AR AR KRR AR AR AR KA AR A kA KAk kA kA hkhkhkkhkkkkkxk
C Subroutine ROLLAX returns YROLAX and HROLAX, the dynamic lateral
C and vertical distances of the sprung mass cg from the roll axis in
C a non-rolling reference frame, and IXSRA, the sprung-mass moment of
C inertia about the instantaneous roll axis, as functions of roll.
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c (Effects of roll-axis inclination the from x-x axis are neglected.)

IMPLICIT REAL (K,M)

REAL IXSRA
C
include PARS.inc
include SUSP.inc
C
C For each axle, find dynamic r.c. displacements in sprung mass
C with sprung cg as origin
C
DO 40 NAXLE=1l, 2
YRC (NAXLE) = 0.0
HRC (NAXLE) = HCGSRC (NAXLE)
DO 20 NPOWER=1, 2
YRC (NAXLE) = YRC(NAXLE) + YROLCF (NPOWER,NAXLE) * ROLL**NPOWER
HRC (NAXLE) = HRC (NAXLE) + HROLCF (NPOWER,NAXLE) * ROLL**NPOWER
20 CONTINUE
40 CONTINUE
C
C Find y and z projections of roll-axis distance from sprung cg
C in sprung-mass (rolling) reference frame
c
YRACG = YRC(1) + (YRC(2) - YRC(1l)) * XCGSP / WB
HRACG = HRC(1) + (HRC(2) - HRC(1l)) * XCGSP / WB
C
C Transform y and z projections into non-rolling frame
C (Approximating: cos(roll) = 1, sin(roll) = roll )
c
YROLAX = YRACG + HRACG * ROLL
HROLAX = HRACG - YRACG * ROLL
C
C Calculate IXSRA based on ixscg and roll-axis arm (YRACG**2+HRACG**2)
c
IXSRA = IXSCG + (YRACG * YRACG + HRACG * HRACG) * SPMASS
C
RETURN
END

KA KT IA KT KA KA R AA KK AR KA A KA A KA KA AT AIAA A AA I AA I AR AR AR AR R AR R kAR kA K *kKx

FUNCTION STEER(T)
Fhkkk kR I hIREIIIIKIKEI KA I KA KRR KK kKK kK kkh AT K Kk kT TR K I Kk hdkdddkkrrr

C Function steer returns the steering wheel-angle (deg), SW,
C or steering wheel torque (in-lbs), STORQ,
C as a function of T in one of 3 control modes:
C (NSTEER > 0) -- use table look-up
c (NSTEER = 0) =-- sinusoid function
C (NSTEER < 0) =-- Driver model
c (NSTEER < -100) -- sinusoidal torque sweep
C

SAVE

IMPLICIT REAL (K,M)

include vars.inc

include mnvr.inc

include glbl.inc

include pars.inc

include drvmod.inc
C

DIMENSION YDR(7)
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DATA DFW,DFWNOW /2*0.0/
DATA DRTORQ,DRTNOW /2*0.0/

IF (NSTEER) 100, 200, 300

[oNeN®]

100 IF (ABS(SSKEY)

YDR(1)
YDR (2)
YDR(3)
YDR (4)
YDR(S)
DFWNOW

{1 T I

QOO0

Driver model:

.LE. 0.001) THEN

YOUTDR(2) / ININFT

YOUTDR (10) * V / ININFT

YOUTDR (9)

YOUTDR (6)

YOUTDR(1) / ININFT

(TTLSTR(1,1) + TTLSTR(1,2)) * 0.5
CALL DRIVER(T, YDR, DFW, DFWNOW)

Add kinematic and compliance steer effects (prior time step) and
convert to degrees at steering wheel: :

STEER = ( DFW - (KNMSTR(1,1) + KNMSTR(1,2)) * 0.5 -
1 (CPLSTR(1,1) + CPLSTR(1,2)) * 0.5 ) * GRTODG

Q QOO

RETURN

ELSE

No initial steering from driver during lag period:

IF(T .LE. TAUMEM) STEER = 0.0

IF (NSTEER .LT. -100) THEN

WO =
WMAX =

0.
4,

1 * 6.2832
0 * 6.2832

WW = (WMAX - WO) / 2.0 * (1. - COS(6.2832/25. * T) ) + WO
STEER = 20. * SIN (WW * T)

RETURN
ELSE
YDR(1)
YDR(2)
YDR(3)
YDR(4)
YDR(5)
YDR (6)
YDR(7)
DRTNOW

L T | | 1B T I

YOUTDR(2) / ININFT
YOUTDR(10) * V / ININFT
YOUTDR (9)

YOUTDR (6)

YOUTDR (13) / TODEG
YOUTDR(12) / TODEG
YOUTDR (1) / ININFT
STORQ / ININFT

CALL DRIVET(T, YDR, DRTORQ, DRTNOW)
STEER = DRTORQ * ININFT

aaan

No initial torque from driver during lag period:

IF(T .LE. TAUMEM) STEER = 0.0

RETURN

ENDIF

ENDIF
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Sinusoidal steer function:

QO

200 IF (T .LT. TSWBGN) THEN
STEER = 0.0
ELSE
IF (T .LE. TSWEND) STEER = SWSHFT +
1 SWAMPL * SIN(2*PI*(T-TSWBGN)/TSWPRD + SWPHSE)
END IF
c (FOR T > TSWEND, STEER IS NOT CHANGED)
RETURN

C
C Steer table:
C

300 IF (T .LT. XPNT(NSTEER)) GO TO 310

C
C Steering angle past the end of the table retains end value:
C
STEER = YPNT (NSTEER)
RETURN
C
310 IF (INDX .NE. 0) GO TO 330
C
C First call - pre-compute elements in SLOPE array
C
DO 320, J=1,NSTEER-1
SLOPE (J) = (YPNT(J+1) - YPNT(J)) / (XPNT(J+1l) - XPNT(J))
320 CONTINUE
C
C Increment interval J if t >= XPNT(J+1l), else pop to interpolate:
C
330 DO 340, J = 1, NSTEER-1
INDX = J
IF (T .GE. XPNT(J) .AND. T .LT. XPNT(J+1l)) GO TO 350
340 CONTINUE
C
350 STEER = YPNT (INDX) + (T - XPNT(INDX)) * SLOPE (INDX)
C

C INDX will hold the number (index) of the 'active' table interval

RETURN
END
e e e 2

FUNCTION SUM(MATRIX)
Rt 2 2 T T T e R e e
C FUNCTICN SUM PERFORMS A SUMMATION OF ALL COMPONENTS
C OF A 2 X 2 MATRIX ("WHEEL" ARRAY)

o
REAL MATRIX(2,2)
C
SUM = MATRIX(1,1) + MATRIX(1,2) + MATRIX(2,1) + MATRIX(2,2)
RETURN
END

% % % J kK kK F ke Kk kKK gk kK ke gk sk Kk ke ok Kk ke sk ok ke ke ok ok ke ke ke ke sk 9k ke ke ok ok ok ke ok ke ke ok ok ok ke ok ke ok ok Kk ok ok ko ko ok

SUBROUTINE TABLE(M, N, X, Y, 2, Q)
LR R L T L T P s

C Table look-up routine. Q = Y(X), FOR X = 2. Search over range
C X(M) -> X(N).
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DIMENSION X(*), Y (*)

INC =1
DO 20 I = M, N, INC
IF (Z .LE. X(I)) GO TO 30
20 CONTINUE
Q=Y(N)
RETURN
30 IF (I .NE. M .AND. Z .NE. X(I)) GO TO 40
Q = Y(I)
IF (I .EQ. M .AND. Z .LT. X(I)) Q = Y(M)
RETURN
40 Q = (Y(I)*(Z - X(I - INC)) - Y(I - INC)*(Z - X(I))) / (X(I) - X(I
1- INC))
RETURN
END

dkhkhkkkhkkhkhkkhkkkhkhkhkhkhkkkhkkkkkkkhkkkhkkkhkkhkkkkkkkhkkkhkkkkkkhkkkkkkkkhkhkhkhkkkkkkx

SUBROUTINE TIMDAT (TIMEDT)
AhkhkhkAkhkkhkkAkAkkAkAkAkkAkkhkkkhkhkhkkhkhkhkhkkkkhkkkkhkkkhkkhkkkhkkhkkhkkkhkkhkkkkkhkkkhkkkkkk
C Get date and time
c
C <-- TIMEDT char*24 string containing time & date.

C

CHARACTER*24 TIMEDT

CHARACTER*36 MONTHS A

INTEGER*2 YEAR, MONTH, DAY, HOUR, MIN, SEC, I100

MONTHS = 'JanFebMarAprMayJunJulAugSepOctNovDec'

C--The following 4 lines are for the IBM PC (using Microsoft
C--time and date functions)

* CALL GETDAT (YEAR, MONTH, DAY)

* CALL GETTIM (IHOUR, MIN, SEC, I100)

* WRITE (TIMEDT, 100) IHOUR, MIN, MONTHS (MONTH*3-2:MONTH*3),
* & DAY, YEAR

C--get time for MIS version
C CALL TIME (22, 0, TIMEDT)

C--The following 5 lines are for the Apple Mac
C--(using Absoft time & date functions)

call date (m, iday, iyear)

call time (isec)

write (timedt, 100)

& isec/3600, mod (isec, 3600) / 60, months (m*3-2:m*3),
& iday, 1900 + iyear
100 FORMAT (I2,':',I2.2,' on ',A3,I3,',',1I5)
RETURN
END

dhkkkhkKkhkhkhkhkhkhkkhkhkhkhkhkkhkkhkkhkkkkkkkkkkkkkkkkkkhkhkkhkkkkkkhkhkkkhkkkkhkhkkkkkkhkkhkhhk

SUBROUTINE TIRSUB (BETA, V, VYAW, ROLL)
AAAKKAKA ALK KA ALK AR AAKR I AA KA A I Ak Ak kkkkhkkhkhkkkkkhkkhkkkkdkhkkhkkkkhkkhkkhkhkkhkkhkkkikkkkk
* This subroutine solve simultaneous equations for slip and camber
angles. It assumes a tire model that is linear with alpha and gamma
but which has alpha and gamma coefficients that can be 3d-order
functions of Fz.

* A A
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IMPLICIT REAL (K,M)

DIMENSION A(4,4), B(4,4), C(4), D(4,4), E(4,4), F(4)
DIMENSION ALFAV(4), GAMMAV (4)

DIMENSION R(4,4), S(4,4), VW (4), WWW(4), LV(4), MV (4)
include TIRE.inc

include SUSP.inc

include VARS.inc

include PARS.inc

DATA ALFAV, GAMMAV /4*0.0, 4*0.0/

DATA LV, MV /4*0, 4*0/

Zero out work matrices:

[eNeNe!

DO20I =1, 4
DO 10 J=1
A(I,J)
B(I,J)
D(T,J)
E(I,J)
10 CONTINUE
C(I) = 0.0
F(I) = 0.0
20 CONTINUE

4
0
.0
0
0

nwonn
coooo-~

Load work matrices:

[eNeNe®!

DO 100 NAXIE =1, 2
YWPART = BETA + VYAW * XAXLE (NAXLE) / V

(@]

IF (NAXLE .EQ. 2 .AND. BEAM) THEN

or both wheels):

QOO0

DO 80 NSIDE = 1,2
IJ = (NAXLE-1)*2 + NSIDE
IK = - (-1)**NSIDE

A(IJ,IJ) = 1. + CSFY(NAXLE) * POLY4 (CALFA(1,NAXLE),

4]

FZ (NAXLE,NSIDE))

Case for beam rear axle (no camber compliance, same steer compliance
£

& + CSMZ (NAXLE) * POLY4 (CALIGN(1,NAXLE), FZ(NAXLE,NSIDE))

A(IJ, IJ + IK) = CSFY(NAXLE) *

4]

POLY4 (CALFA (1,NAXLE), F2(NAXLE,NSIDE+IK))

& + CSMZ (NAXLE) * POLY4 (CALIGN(1,NAXLE), FZ(NAXLE,NSIDE+IK))

B(IJ,1J) = -CSFY(NAXLE) * POLY4 (CGAMMA (1,NAXLE),
& FZ (NAXLE,NSIDE) )
B(IJ, IJ + IK) = -CSFY (NAXLE) *

& POLY4 (CGAMMA (1,NAXLE), FZ (NAXLE,NSIDE+IK))

C(IJ) = -(-1)**NSIDE * ALFAQ (NAXLE) + YWPART

* GAMMA (NAXLE,NSIDE)

R RRR

* GAMMA (NAXLE,NSIDE+IK) - KNMSTR (NAXLE,NSIDE)
D(IJ,1IJ) = 1.
E(IJ,1J) = 0.0
F(IJ) = (-1)**NSIDE*GAMMAQ (NAXLE)
80 CONTINUE '
C
ELSE

Appendix D — Source Code

- CSFY(NAXLE) * POLY4 (CGAMMA (1,NAXLE), FZ(NAXLE,NSIDE))

- CSFY (NAXLE) * POLY4 (CGAMMA (1,NAXLE), FZ(NAXLE,NSIDE+IK))



Independent wheels, with coupling between camber and steer:

[eEeN®!

DO 90 NSIDE = 1,2
IJ = (NAXLE-1)*2 + NSIDE

Check for dynamic steering system: (strcon is either fw(i)
: or sw / grtodg)

NN N®

IF (NAXLE .EQ. 1 .AND. ABS(SSKEY) .GT. 0.001) THEN
CSMZ (NAXLE) = 0.0
STRCON = FW(NSIDE)

ELSE
STRCON = SW / GRTODG

ENDIF

A(IJ,IJ) = 1. + CSFY(NAXLE) * POLY4 (CALFA(1,NAXLE),
FZ (NAXLE,NSIDE))
& + CSMZ (NAXLE) * POLY4 (CALIGN(1,NAXLE), FZ(NAXLE,NSIDE))
B(IJ,I1J) = -CSFY(NAXLE) * POLY4(CGAMMA (1,NAXLE),
& FZ (NAXLE,NSIDE))
C(IJ) = —(-1)**NSIDE * ALFAOQ(NAXLE) + YWPART
& - (2 - NAXLE) * STRCON - KNMSTR (NAXLE,NSIDE)
D(IJ,IJ) = 1. + CCFY(NAXLE) *
& POLY4 (CGAMMA (1,NAXLE), F2Z(NAXLE,NSIDE))
E(IJ,1IJ) = - CCFY(NAXLE) * POLY4 (CALFA(l,NAXLE),
& FZ (NAXLE,NSIDE))
F(IJ) = (-1)**NSIDE*GAMMAO (NAXLE) + ROLL
& + KNMCBR (NAXLE, NSIDE)
90 CONTINUE

(4]

@]

ENDIF
100 CONTINUE
Calculate tire gammas and slip angles:

gammas:

QOO0 Q

CALL MINV(A,4,DET,LV,MV)

CALL GMPRD (E,A,R,4,4,4)

CALL GMPRD (R,B,S,4,4,4)

CALL GMSUB(D,S,R,4,4)

CALL MINV(R,4,DET,LV,MV)

CALL GMPRD (E,A,S,4,4,4)

CALL GMPRD(S,C,VVV,4,4,1)
CALL GMADD (VVV,F,WWW,4,1)

CALL GMPRD (R, WWW,GAMMAV, 4,4,1)

slip angles:

QOO

CALL GMPRD (B,GAMMAV,VVV,4,4,1)
CALL GMADD (VVV,C,WWW,4,1)
CALL GMPRD (A,WWW,ALFAV,4,4,1)

Calculate Tire Moments and Forces from gammas and slip angles:

QOO0
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DO 200 NAXLE

=1,2
DO 190 NSIDE =

1,2

Update gammas and slip angles in common block variables:

eNeNe!

IJ = (NAXLE-1)*2 + NSIDE
GAMMA (NAXLE,NSIDE) = GAMMAV (IJ)
ALFA (NAXLE,NSIDE) = ALFAV(IJ)

Calculate tire aligning moments and lateral forces:

[oNeNP]

MZ (NAXLE,NSIDE) = ALFA (NAXLE,NSIDE) * POLY4 (CALIGN(1l,NAXLE),
& FZ (NAXLE,NSIDE) )

FY (NAXLE,NSIDE) = ALFA (NAXLE,NSIDE) * POLY4 (CALFA (1,NAXLE),
& FZ (NAXLE,NSIDE) )
& + GAMMA (NAXLE,NSIDE) * POLY4 (CGAMMA (1,NAXLE),
& FZ (NAXLE,NSIDE))

Calculate compliance steer and "total" steer (kinem + compl + strcon
input): ’

QOO0

CPLSTR (NAXLE,NSIDE) = CSMZ (NAXLE) * MZ (NAXLE,NSIDE)
& + CSFY (NAXLE) * FY(NAXLE,NSIDE)
TTLSTR (NAXLE, NSIDE) = KNMSTR (NAXLE,NSIDE)
& + CPLSTR (NAXLE,NSIDE)
& + (2 - NAXLE) * STRCON
190 CONTINUE
200 CONTINUE
C
RETURN
END

khkkkhkkhkkkhkkhkhkkhkkhkhkhkhkkhkkhkhkhkhkhkkkhkkhkkhkkhkkkkhkkkkhkhkkhkkhkkhkhkhkkkhkkhkkkhkkhkkhkkkkkxx

*** Trajectory Subroutine ***

TRAJ: Computes lateral displacent of previewed path as a table look-up

Author and Modification Section
Author: C. C. MacAdam

Date written: 01/01/88

Written on:

Modifications:

Algorithm Description
Purpose and use:
Error conditions:

Machine dependencies: none

OO0 0O00000000000000

Called By: DRIVER
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aQOQO

SUBROUTINE TRAJ (X, XT, YT, YPATH)
SAVE

QOO0 000Q0

c

C---Local variables

c

C
c

C---Functions and subroutines

Variable Descriptions

---Arguments passed:

o G forward displacement (ft)
=>XT..oon longitudinal path coordinates (ft)
->YT...... lateral path coordinated corresponding to XT values (ft)

<-YPATH...lateral displacement of path corresponding to X, (ft)

DIMENSION XT(*), YT(*)

Jiveenns integer counter
SLOPE. ..dYT/dXT of path at X

None

OO0OQOQO000

Process Block:

SEARCH FOR XI,XI+1:
DO 10 3 =1, 99
IF (X .GE. XT(J) .AND. X .LT. XT(J + 1)) GO TO 30
10 CONTINUE

WRITE (*,20)

20 FORMAT ('0', 'X-SEARCH IN SUB. TRAJ FAILED.')
STOP

30 SLOPE (YT(J + 1) - YT(J)) / (XT(J + 1) - XT(J))

nn

YPATH
RETURN
END

YT(J) + SLOPE * (X - XT(J))

Chxkkkhhkhkhkhhkhkhhhhkhhkhkkhhkkhkhhhkhkhkdhhkhkkhkkdhhhkkdkhhkhkhhkkdkhkdkhkkdkkrdkkkkkdkkkdkhkkkkkk

Transition Matrix Calculation.

TRANS: Computes transition matrix of the linearized system

QOO OO0OO0O00O000O000000

Author and Modification Section
Author: C. C. MacAdam

Date written: 05/19/88

Written on:

Modifications:
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Algorithm Description
Purpose and use: Used by the driver model in predicting future states
Error conditions: |

Machine dependencies: none

Called By: DRIVGO

QOQOOOQOO0O00000000

SUBROUTINE TRANS

SAVE
C
C Variable Descriptions
C
C---Arguments passed: None
C
DIMENSION SV (4), SD(4), SVI(4)
C
C---COMMON blocks
C

include drvmod.inc

--=DRIV.BLK common block variables

CAF...total cornering stiffness of tires on left front susp (1lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)
WF....static load on front suspension (1b)

WR....static load on rear suspension (1lb)

Uiuvwo initial velocity (ft/sec)

---DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

..... upper bound on front wheel angle steer (rad)

XP,YP....x-y path coords (SAE) wrt inertial coords [input] (ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)
TFF...... driver model preview time [input parameter] (sec)

RM....... vehicle mass (slug)

) distance from c.g. to front suspension center-line (ft)
Bivevuinnn distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval

NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

QOOQOOOOOQO0O0000000000000000000000000
E
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C
C---TRSSTR.BLK common block variables

C

C TTT....... transition matrix at 10 discrete points in preview interval
C TTTl...... integral of trans matrix wrt preview time

C GViiiivnennn vector of control gain coefficients

C

C---Local variables

DELT..... time step in local Euler integration (sec)
Al....... lat accel coefficient of sideslip veloc in linearizd system
Bl....... " yaw rate
A2....... yaw accel " sideslip vel "
B2....... " yaw rate "
Cl....... steer control gain coefficient for lateral accel
C2....... steer control gain coefficient for yaw moment
ULAST....last value of forward velocity (ft/sec)
NBEG..... integer startin counter value
NEND1....integer ending counter value
NENDV....integer ending counter value
Jeveeenns integer counter

....... state vector: y,v,r,yaw,x [SAE]
Svi...... integral of state vector
SD....... state vector derivative

---Functions and subroutines

None

Process Block:

e XeXe e ke ReReXeReRe e Re e R ReReReRe e Re e Re Re e Ne NS
v
2

= 0.01

DELT

Al = -2. * (CAF + CAR) / RM / U

Bl = 2. * (CAR*B - CAF*A) / RM / U -
A2 = 2. * (CAR*B - CAF*A) / RI / U
B2 = -2. * (CAR*B*B + CAF*A*A) / RI / U
Cl=2. *CAF / RM

C2=2. *CAF / RI * A

ULAST = U

Gv(1) = 0.

GV(2) =Cl

GV(3) = C2

GV(4) = 0.

DO 70 J =1, 4

NBEG = TSS / DELT + 1

NEND1 = (TFF + .001 - TSS) / NTF / DELT
NENDV = NEND1
DO10L =1, 4
sv(L) = 0.0
SVI(L) =
10 CONTINUE
TIME = 0.

C
C Initialize each state in turn to 1.0 and integrate (Euler).
C
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OOO000

SvV(J) = 1.0
DO 60 I =1, NTF
DO 40 K = NBEG, NENDV
SD(1) = SV(2) + U * SV(4)
SD(2) = Al * SV(2) + Bl * SV(3)
SD(3) = A2 * SV(2) + B2 * SV(3)
SD(4) = SV(3)
DO20L =1, 4
SV(L) = SV(L) + SD(L) * DELT
20 CONTINUE

TIME = TIME + DELT
DO30L=1, 4
SVI(L) = SVI(L) + SV(L) * DELT
30 CONTINUE
40 CONTINUE

Store "impulse" responses in TTT columns, integral in TTT1.
TTT is a NPT-point tabular transition matrix, TTT1 is its integral.
(See References 2 & 3.)

DOSOL=1, 4

.TTT(L,J,I) SV (L)
TTT1(L,J,I) = SVI(L)
50 CONTINUE

NBEG = NBEG + NEND1
NENDV = NENDV + NEND1
60  CONTINUE
70 CONTINUE
RETURN
END

Chhkhkhkhkkhkhkhkdkhkhkhkdkhkhkhkhkhkhkhkhkhkkhkhkhkkkhkkhkkhkkkkkhkhkhkhhkkkhkkhhkkhkkhkhkkkhkhkkkkkkkkkkkkk
Chhkkhkhkkdkhhkkhhkhhhkhkkhkhkhkhkhkhkkkdkkkkkkkkkkkkkkhkhkkhhkhkhkkhkhhkhkhkdkkhkkkkkkkhkkkxkkkkdkkk

Transition Matrix Calculation.

TRANST: Computes transition matrix of the linearized system (torque

version of the driver model)

Author and Modification Section

Author: C. C. MacAdam
Date written: 01/30/89
Written on:

Modifications:

QOO0 000QO0000000n

Algorithm Description:

Purpose and use: Used by the driver model in predicting future states

Error conditions:

Machine dependencies: none
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Called By: DRIVGT

QOO0

SUBROUTINE TRANST
SAVE
REAL KSSL, ISSL

g Variable Descriptions
g—-—Arguments passed: None

¢ DIMENSION SV(6), SD(6), SVI(6)
é—--COMMON blocks

include drvtor.inc
include pars.inc
include glbl.inc
include tire.inc
include vars.inc

--=-DRIV.BLK common block variables

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)
WF....static load on front suspension (1lb)

WR....static load on rear suspension (1b)

U.ovws initial velocity (ft/sec)

---DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...vn minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)

XP,YP....X-y path coords(SAE) wrt inertial coords [input] (ft)
..driver transport time dealy [input parameter] (sec)
TFF...... driver model preview time [input parameter] (sec)

RM....... vehicle mass (slug)

S distance from c.g. to front suspension center-line (ft)

)= T distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval

NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

---TRSSTR.BLK common block variables

QOO0 00000000000000000000000000 1 Q0O
(<)
g

TTTT....... transition matrix at 10 discrete points in preview interval
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C TTTT1...... integral of trans matrix wrt preview time
C GGV......... vector of control gain coefficients

C---Local variables

DELT..... time step in local Euler integration (sec)
Al....... lat accel coefficient of sideslip veloc in linearizd system
Bl....... " yaw rate "
A2....... yaw accel " sideslip vel "
B2....... " yaw rate "
Cl....... steer control gain coefficient for lateral accel
C2....... steer control gain coefficient for yaw moment
ULAST....last value of forward velocity (ft/sec)
NBEG..... integer startin counter value
NEND1....integer ending counter value
NENDV....integer ending counter value
Jeveeenns integer counter

....... state vector: y,v,r,yaw,x [SAE]
Svi...... integral of state vector
SD...un.. state vector derivative

-—-Functions and subroutines

None

Process Block

QOO0 0O00O0000000000000

CSDAML = CSS * TODEG / ININFT
KSSL = KSS * TODEG / ININFT

XP = - POLY4 (CALIGN(1,1), F2(1,1)) / POLY4(CALFA(1,1), Fz2(1,1)) /
& ININFT
XM = XTRAIL / ININFT
ISSL = ISS / ININFT
CSSL = CSS * TODEG / ININFT
DELT = 0.01
Al = -2, * (CAF +CAR) /RM/ U
Bl =2, * (CAR'B - CAF*A) / RM / U -TU
A2 = 2. * (CAR*B - CAF*A) / RI / U
B2 = - 2. * (CAR*B*B + CAF*A*A) / RI / U
Cl =2. * CAF / RM
C2=2. *CAF /RI *A
Dl =1. /GR/ (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL)
El =2, * (XP + XM) * CAF * (1. - CBOOST) / (U * KSSL
& * (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL) )
F1 =A * El
A3 =2. * (XP + XM) * CAF * (1. - CBOOST) / (GR * U * ISSL
& * (L. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL) )
B3 = A * A3
C3 =- KSSL / (GR**2) * (1. - 1. / (1. + 2. * (XP + XM)
& * CAF * (1. - CBOOST) / KSSL) ) / ISSL
D3 = - CSSL / ISSL
c
ULAST = U
GGV(1) = 0.
GGV (2) = 0.
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GGV (3)
GGV (4)
GGV (5)
GGV (6) / ISSL
DO70 =1, 6

NBEG = TSS / DELT + 1

0.
0.
0.
1.

NEND1 = (TFF + .001 - TSS) / NTF / DELT
NENDV = NEND1
DO10L =1, 6
sv(L) = 0.0
SVI(L) = 0.0
10 CONTINUE
TIME = 0.

C
C Initialize each state in turn to 1.0 and integrate (Euler).
C

SvV(Jg) = 1.0
DO 60 I =1, NIF
DO 40 K = NBEG, NENDV
SD(1l) = SV(2) + U * SV (4)
SD(2) = (A1 + C1 * E1) * SV(2) + (Bl + C1 * F1) * SV(3)
& + Cl * D1 * SV(5)
SD(3) = (A2 + C2 * E1) * SV(2) + (B2 + C2 * F1) * SV(3)
& + C2 * D1 * SV(5)
SD(4) = SV(3)
SD(5) = SV (6)
SD(6) = A3 * SV(2) + B3 * SV(3) + C3 * SV(5) + D3 * SV(6)
C
DO20L =1, 6
SvV(L) = SV(L) + SD(L) * DELT
20 CONTINUE
TIME = TIME + DELT
DO30L=1, 6
SVI(L) = SVI(L) + SV(L) * DELT
30 CONTINUE
40 CONTINUE
C
C Store "impulse" responses in TTTT columns, integral in TTT1.
C TTTT is a NPT-point tabular transition matrix, TTT1l is its integral.
C (See References 2 & 3.)
C

DOSOL=1, 6
TTTT(L,J,I) = SV(L)
TTTT1(L,J,I) = SVI(L)

50 CONTINUE
NBEG = NBEG + NEND1
NENDV = NENDV + NEND1
60 CONTINUE
70 CONTINUE
RETURN
END
B R L L L Ty R S S R S S R R R 3

SUBROUTINE WHEELZ (Z, ROLL, PITCH)
AhkEkEKKAKAKAKAAKKAKAKAAAKKAKAAKAAAKR AKX KAk krhkAkkkkkkkhkhkkhkkhkhkhkkkkhkhkhkkkkhkhkhkkkkkkhkhkkt
Subroutine wheelz updates the matrices ZW, FZ, KNMSTR, KNMCBR in
common /VARS/ - namely: vertical displacement, normal ground load,
bump-steer angle and bump-camber angle for each wheel, relative to
static trim.

[eNoNeKe!
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C polarity: jounce displacement ==> positive ZW, FZ

C - rebound displacement ==> negative ZW, F2
C
IMPLICIT REAL (K,M)
C
include SUSP.inc
include VARS.inc
C
DO 30, NAXIE =1, 2
MCOMENT = KAUX (NAXLE) * ROLL
& - HOROLC (NAXLE) * (FY(NAXLE,l) + FY(NAXLE,2))
DO 20, NSIDE = 1, 2
THISZW = Z - XAXLE (NAXLE) * PITCH
1 + .5 * TRACK(NAXLE) * ROLL * (-1)**NSIDE
ZW (NAXLE,NSIDE) = THISZW
FZ (NAXLE,NSIDE) = FZOWHL (NAXLE) + THISZW * KZ (NAXLE)
1 + (-1)**NSIDE * MOMENT / TRACK(NAXLE) + FD(NAXLE,NSIDE)
c
IF (KINEM) THEN
IF (NAXLE .EQ. 2 .AND. BEAM) THEN
KNMSTR (2,NSIDE) = CSROLL * ROLL
ELSE
KNMSTR (NAXLE,NSIDE) = -(-1)**NSIDE
& * (CSZ(1,NAXLE) * THISZW
& + CSZ(2,NAXLE) * THISZW * THISZW)
KNMCBR (NAXLE, NSIDE) = (-1)**NSIDE* (CCZ(1,NAXLE)
& * THISZW + CCZ(2,NAXLE) * THISZW * THISZW)
END IF
END IF
20  CONTINUE
30 CONTINUE
C
RETURN

END
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QOO0

[eNeNe!

> AERO:

REAL KY, KL, KR, KM, KN, KSYWND, MXA, MYA, MZA, KD
INTEGER WINDKY
COMMON /AERO/ AIRHO, AREA, QZERO, KY, CLO, KL, KR, CMO, KM, KN,

1 VWIND, KSYWND, VA, BETAIR, FYA, FZA, MXA, MYA, MZA,
2 CDO, KD, FDRAG, WINDKY, TWIND(1000), WINMAG (1000)
SAVE /AERO/
> DRVMOD:
COMMON /DRVST1/ GRAV,TICYCL,TSS,DMAX,XPDR(100), YPDR(100), TAUMEM,
1 TFF, RM, A, B, RI, PSIO, NTF, NP, TLAST, DFWLST, TILAST,
2 DMEM(100,2), XT(100), YT(100)
SAVE/DRVST1/
COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
SAVE/DRIV/
COMMON /TRSSTR/ TTT(4,4,10), TTT1(4,4,10), GV(4)
SAVE/TRSSTR/
> DRVTOR:
COMMON /DRVST1/ GRAV,TICYCL,TSS,DMAX,XPDR(100), YPDR(100), TAUMEM,
1 TFF, RM, A, B, RI, PSIO, NTF, NP, TLAST, DFWLST, TILAST,
2 DMEM(100,2), XT(100), YT(100)
SAVE/DRVST1/
COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
SAVE/DRIV/

COMMON /TRSTOR/ TTTT(6,6,10), TTTT1(6,6,10), GGV(6), STMAX
SAVE/TRSTOR/

> GLBL:

CHARACTER*80 TITLE

CHARACTER*32 FNREAD, FRMT

CHARACTER*8 UOMEGA, UTORQ, UANGL, UVELFT
CHARACTER*2 UDISP, UDIST, UFORC

CHARACTER*1 UNITS

REAL KMHMPH, ININFT

INTEGER NBYTES

PARAMETER (IREAD=5, IECHO=7, IOUT=8)

COMMON /GLBL/ NEQN, V, TEND, DT, NUMKEY, LNAME,

& IPRINT, PI, ININFT, KMHMPH, G, TODEG, TITLE,
& UOMEGA, UANGL, UVELFT, UTORQ, UDISP, UDIST, UFORC,
& FNREAD, FRMT, NBYTES, UNITS
SAVE /GLBL/
> MNVR:

REAL XPNT (999), YPNT(999), SLOPE (999)

COMMON /MNVR/ NSTEER, INDX, TSWBGN, TSWEND, SWAMPL, TSWPRD,

1 SWPHSE, SWSHFT, DRLAG, DRPREV, XPNT, YPNT, SLOPE
SAVE /MNVR/
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> PARS:

[eNeK®)

REAL IXSCG, IXZ, IYS, I2Z, ISS, KSS

REAL MASS, KSC, KSL, KROLL

COMMON /PARS/ MASS, SPMASS, IXSCG, IXZ, IYS, I1ZZ, HCGTTL, WHLRAD,
1 WEIGHT, SPWGHT, USWGHT, WRATIO, WB, GR, GRTCDG,

2 ISS, KSC, CBOOST, SSKEY, XTRAIL, KROLL, CFSS,

3 XWBCGS, XWBCGT, XCGSP, HCGSP, DLASH, CSS, KSL, KSS

SAVE /PARS/
o
C > PRNT:
o
CHARACTER*80 VNAMES, VUNITS
CHARACTER*12 BLNK12
REAL PRBUFF (0:50,5)
COMMON /PRNT/ LINE, NPAGE, VNAMES, VUNITS, BLNK12, PRBUFF
SAVE /PRNT/
o
C > SUSP:
C
LOGICAL KINEM, BEAM
REAL TRACK(2), XAXLE(2), KZ(2), KZAXLE(2), KAUX(2)
REAL KTIRE(2), CZJNCE(2), CZRBND(2), ALFAO(2), GAMMAOQ (2)
REAL FZOWHL (2), HOROLC(2), HCGSRC(2), CSFY(2), CSMZ(2), CCFY(2)
REAL CSZ(2,2), CCz(2,2), YROLCF(2,2), HROLCF(2,2), YRC(2), HRC(2)
COMMON /SUSP/ KINEM, BEAM, CSROLL, TRACK, XAXLE, KZ, KZAXLE,
1 KAUX, KTIRE, CZJNCE, CZRBND, ALFAQ, GAMMAQ, FZOWHL,
2 HOROLC, HCGSRC, YROLCF, HROLCF, CSFY, CSMZ, CCFY,
3 CSz, CCZ, YRC, HRC
SAVE /SUSP/
C
C > TIRE:
o
REAL CALFA(4,2), CGAMMA (4,2), CALIGN(4,2)
COMMON /TIRE/ CALFA, CGAMMA, CALIGN
SAVE '/TIRE/
o
C > VARS:
o

REAL ALFA(2,2), GAMMA(2,2), FY(2,2), Mz(2,2), FD(2,2), FZ(2,2)
REAL ZW(2,2), KNMSTR(2,2), CPLSTR(2,2), TTLSTR(2,2), KNMCBR(2,2)
REAL YPOUT(13), YOUTDR(13), FW(2), MMCOL

COMMON /VARS/ SW, FW, AY, RHO, ALFA, GAMMA, FY, MZ, FD, FZ, ZW,
1 KNMSTR, CPLSTR, TTLSTR, KNMCBR, YPOUT, YOUTDR,

2 STORQ, BOOST, MMCOL

SAVE /VARS/
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APPENDIX E — DRIVER MODEL

This appendix contains copies of two technical papers which fully document the
concepts implemented in the computer code used to represent the driver model closed-loop
steering control process. Additional documentation is provided by comments contained in
the computer code itself; see Appendices C and D (Subroutines DRIVGO, DRIVE],
TRANS, DRIVER, AND TRAJ).

The material is reproduced here by permission of the IEEE Transactions on
Systems, Man, and Cybernetics journal (Copyright IEEE), and the ASME Journal of
Dynamic Systems, Measurement, and Control (Copyright ASME).
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Application of an Optimal Preview Control
for Simulation of Closed-Loop
Automobile Driving

CHARLES C. MACADAM

Abstract— An optimal preview control method is applied to the automo-
bile path following problem. The technique is first used to examine the
straight-line regulatory driving task and results compared with similar ex-
perimental measurements. The method is further ‘demonstrated by closed-
loop simulation of an automobile driver/vehicle system during transient
lane-change maneuvers. The computer simulation results are compared
with equivalent vehicle test measurements.

I. INTRODUCTION

HIS PAPER presents example applications (to the

automobile path following problem) of a general
method of control synthesis presented in [1]. The method is
demonstrated here by simulation of a closed-loop automo-
bile/driver system and the results compared with
driver /vehicle test measurements. Results for the optimal
preview control are also discussed within the context of
manual control pursuit tracking task findings.

The control technique demonstrated herein is designed
for application to linear time-invariant systems utilizing
preview control strategies for regulation or tracking tasks.
A common example of this type of control strategy occurs
during normal automobile path following in which drivers
“look-ahead” to follow a desired path. Human operators,
as part of various man-machine systems, typically employ
preview control strategies to control and stabilize such
systems. It is widely recognized that human operators are
capable of controlling and adapting to a wide variety of
dynamical systems, many of which are vehicles with pre-
view-oriented control requirements such as automobiles,
bicycles, and complex aircraft [2}-[8]. Clearly human con-
trol of most vehicles would not be possitle without some
training by the operator to acquire an understanding of the
vehicle response to various control inputs. While a certain
portion of this training serves to identify and reinforce
learned opcn-loop responses for repeated and familiar con-
trol task scenarios, the remainder frequently serves to
identify and reinforce the operator’s understanding or
“feel” of the vehicle response to control inputs continually
in use for closed-loop regulation and /or pursuit needs. It is
in this latter control category for general linear system
representations capable of preview control strategies, that
the method presented in [1] can find particular application.
As will be dcmonstrated in this paper, application to the

ManusmptmcavedOctoberlO 1980'rmsedMudx2.l981
Themthorumththel-ﬁghway&fetykueamhlnsﬂmuofthe
Umvers:tyofMidn;an.AnnAxbor MI 48109. - -

automobile path following problem produces substantive
agreement when compared with driver/vehicle experimen-
tal measurements for both straight-line regulatory driving
and transient lane-change maneuvers.

II. THE OPTIMAL PREVIEW Comoi.

Before applying the optimal preview control of [1] to the
automobile path following problem, the main results and
symbol definitions contained therein are briefly reviewed
in this section for later rcfcrcnce As derived in [1], for the
linear system

(1)

 x=Fx+gu
y=mx @)

where

x n X | state vector,
y scalar output related to the state by the n X lm
constant observer vector transpose,
F constant n X n system matrix,
and
g constant n X 1 control coefficient vector,

the optimal control u%(¢) which minimizes a special form
of the local performance index, '

12 2T A) =ywa =) an ()

over the current preview interval (¢, ¢ + T) where

W arbitrary weighting function over the preview inter-
val
and

[ previewed input,
is given by

u°(r)=[ [‘*’{f(n) -

ook
/ { [“’{u—:m’[n 2

-W(n- t)dn]

I+ 2 "("_') ] (z)}

F'(n- t)"
(n+1)!
F(n=1)"

———————

"+ 1)1

}W(n t)dn]

f

@
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where / is the identity matrix. For the special case of
W(n — t) = &(T*), the Dirac delta function for 0 < T <
T, (4) simplifies to

f(t+ 1) - m I+ 2 F"(T‘) ]x(z)
u’(r) = )
r'mf[u- > ——-——( (;Pl))
=[f(t+ T*) = y(t + T)]/ (T*K), (6)

the single-point preview control version of (4), where
()"
2 ( +1)!

Equation (6) represents a proportional controller with
gain inversely related to the preview interval T* and oper-
ating on the error between the previewed input f(z + T*)
and y,(t + T*), that portion of the previewed output deriv-
ing from the state vector’s current initial condition. Like-
wise (4) can be interpreted as a proportional controller
operating on a similar error averaged and weighted over
the preview interval (1,1 + T) by the additional terms
appearing in (4).

It is also shown in [1] that the optimal solution 4°(?) can
be expressed in terms of any current nonoptimal u(¢) and
correspondingly nonzero preview output error ¢(¢) as

“Te(n)A(n)W(n—t)dn

fMA.’(n)W(n —t)dy

t

K= I+2 g

u®(r) =

u(t) + =

™

where

F*(n—1)"

n+ 1)l
e(n) =f(n) = m’(n, )x(t) — u(t)A(n)

F"(n-t)
n!

A(n)=(n—1t)m [I+ 2

o(n,t) 21+ 2

n=1

For the specxal case of W(n - t) 8(T™*), as before, (7)
reduces to

(1) =u(r) + LI, ®

The formulation expressed by (7) can be useful in describ-
ing systems which do not achieve, though closely ap-
proximate, the defined optimal system behavior. Such cases
may arise from limitations in achieving the precise optimal
control due to time lags or dynamic properties inherent in
the controller and not accounted for a priori in the optimi-
zation. The next two sections adopt this view for the
car /driver man-machine system in an attempt to describe
and explain actual closed-loop driving behavior.

. Finally, it was also shown in [1] that information con-
cerning stability of the closed-loop system utilizing the
optimal preview control of (4) or (7) is provided by the

characteristic roots of the constant matrix

[F-ge’] 9)
where
MI¢(n,0){nm I+ 2 T _(;’1)). }W(n)dn
f{nmr{” 2 T _E_nl)), }W(n)dn

For the special case of W(n) = 8(T™*), (9) becomes
= FY(T*)"
—{gmr{1+ ) (n! ) ]/(T*-K)}. (10)

"III.  APPLICATION TO MANUAL CONTROL PURSUIT
TRACKING TASKS AS REPRESENTED BY
STRAIGHT-LINE Am'ouogn.s DRIVING

The most well-known and characteristic property ex-
hibited by human operators in tracking tasks is the trans-
port delay deriving from perceptual and neuromuscular
mechanisms. By introducing this inherent delay property a
posteriori in the optimal preview control formulation, excel-
lent agreement can be demonstrated between typical man-
ual control pursuit tracking task results and the resulting
optimal preview controller modified to include the inherent
transport delay (heretofore referred to as the “modified”
optimal preview control).

For reasons of clarity and notational simplicity, the
discussion in this section will make use only of (8), the
single-point preview control version of (7). Equation (8)
can be represented by the block diagram of Fig. 1, where
G(s) = [Is — F]~'g represents the controlled element vec-
tor transfer function, and u(¢), the current control, is
related to the optimal control 4°(¢) by a transfer function
H(s) (previously assumed equal to one in the derivation of
the optimal control 1°(¢)). The introduction of the H(s)
transfer function is useful in describing systems which
function (or are presumed to do so) in an error minimiza-
tion fashion, but fail to achieve the precise optimal control
due to an inherent limitation within the controller or
control process itself, e.g., delays resulting from processor
calculations and sample hold operations in digital systems.
or perceptual /neuromuscular lags in the case of a human
controller. By letting H(s) = e ~*", those actual delay limi-
tations displayed by human operators during tracking tasks
can be approximated by the parameter 7, an effective
transport lag. By incorporating this approximation and
noting then that the transfer function relating u(¢) and
€(t+ T*)ise™*"/(1 — e™*")KT*, Fig. 1 reduces to Fig. 2,
a single-loop pursuit tracking formulation. The open-loop
transfer function Yy(s) relating y(z + T*) and ¢(t + T*) is
given by

m'o(t + T*,t)G(s)

h(s) = 7= (1)
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Fig. 1. Block diagram for the single-point preview control
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— Fig. 2 Equivalent block diagram for the single-point preview control, H(s) = ¢ ™.

The stability of this system is determined by the char-
acteristic roots of 1 + Yy(s), or equivalently,

1+ e~mM(t+ T*,t)G(s)/KT* =0.  (12)

To test the utility of this model by comparison with
experimental findings, open-loop gain /phase frequency re-
sponse results measured by Weir ez al. [9, Fig. 12-C] for an
automobile straight-line regulatory control task are pre-
sented in Figs. 3 and 4. These experimental results repre-
sent the open-loop frequency response relating the driver’s

output (presumably an estimate of future lateral position) '

to an assumed error, derived by the driver, between the
previewed input (straight road ahead) and the driver’s

~output. Since this may be categorized as a form of linear

pursuit tracking, the formulation of (11) is accommodated.
Also shown in Figs. 3 and 4 is the frequency response
calculation for (11) with parameters 7* = 3.0 (s) and 7 =
0.26 (s). The model output y(¢t + T*) is the estimated
vehicle lateral position at time ¢ + T*; the input f(r + T*)
= 0 is the lateral displacement of the previewed path. The
automobile (F, g) dynamics used in (11) appear in Ap-
pendix I-A and duplicate those identified in [9]. The values
of T* and 7 were selected to fit the experimental data as
closely as the single-point model would permit. As can be
seen, the model and experimental results display excellent
agreement. Not only does the preview model reproduce the
—6 db/octave slope of the familiar manual control “cross-
over” model (2], [8] gain characteristic, but also the peaking
phase characteristic usually displayed in manual control
task experimental data of this kind.

The model parameters T* and r appearing in (11) repre-
sent the average preview time used by the driver and
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Fig. 3. Frequency response gain comparison.

ur!

his /her effective transport lag associated with this particu-
lar control task. The values of T and 7 used here fall well
within the range identified by other investigators studying
straight-line automobile driving [10}-[12] and human oper-
ator tracking performance (2], [4], [9].

Interestingly, for the relatively simple control task of
typical straight-line automobile regulation as discussed here,
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the vehicle dynamics portion of the total transfer function
(11) does not play a dominant role except at very low
frequencies. As a result, the open-loop transfer function
gain characteristic (11) is closely approximated by the
human operator term, e ~*/(1 — e™*") ® e ™*"/7s. Such a
result would support the well-known fact that tracking task

test results for simple automobile regulation (8], [9] can

generally be approximated by the “cross-over” model form
Ce™"/s (C being the “cross-over” gain constant) in the
vicinity of the cross-over frequency. Moreover, in such
cases where the above approximation does hold, 1/7 be-
comes C in the “cross-over” model representation.

For the simple manual control pursuit tracking task, as
represented here by straight-line automobile regulation, the
modified optimal preview controller, even employed in
only a single-point form [W(n — ) = §(T*)], appears to
accurately mimic human control behavior. It might, there-
fore, seem reasonable to conjecture that human operator
strategy during simple pursuit tracking (or at least straight-
line automobile regulation) is closely akin to an optimal
preview error minimization process which ignores or is
unaware of transport delay mechanisms inherent in the
control processor. A more stringent test of this hypothesis
is offered in the following section wherein transient auto-
mobile path following is examined using the modified
optimal preview control model in its complete form.

APPLICATION OF THE OPTIMAL PREVIEW CONTROL
FOR SIMULATION OF CLOSED-LOOP TRANSIENT
AUTOMOBILE PATH FOLLOWING

The previous section addressed the applicability of the
optimal preview control to the problem of preview regula-
tion and the effects of an inherent transport delay within
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the controller. Using straight-line automobile regulation as
an example, the single-point preview model was compared
with experimental results within the frequency domain. In
this section application to the tracking problem is demon-
strated using the general preview control model (7), with an
inherent transport time delay to simulate a closed-loop
automobile/driver path following maneuver. Results from
the model are compared with time history measurements
from corresponding full-scale vehicle tests.

The specific closed-loop maneuver examined here re-
quired an automobile driver to perform a standard 3.66 m
(12-ft) lane-change within a distance of 30.5 m (100 ft) at a
vehicle speed of approximately 26.8 m/s (60 mi/h). The
initiation and completion of the lane change was con-
strained by 3.05-m wide (10 ft) cone-marked lanes (Fig. 5).
The test vehicle was a standard American compact with
measured parameter values shown in Appendix I-B. A
representative test result for this vehicle/driver combina-
tion appears in Fig. 6, showing recorded-time histories
of lateral acceleration, yaw rate, and front-wheel steer

angle[13].
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Also shown in Fig. 6 are computer simulation results
using the optimal preview control (7) with an assumed
human operator transport delay term e ~*" relating u’(t)
and u(¢). The transport lag term is included here, as in the
previous section, to approximate the principal human oper-
ator lag effects. The calculation of (7), steer angle, seen in
Fig. 6 is for values of 7 = 0.2 (s) and T = 1.3 (5) using ten
equally spaced points in the preview interval to approxi-
mate the integral. The values of T and  were selected to
closely fit the test measurements. The (F, g) automobile
dynamics model is the same two-degree-of-freedom model
appearing in Appendix I-A, evaluated for the parameter
values identified in Appendix I-B. The previewed input
f(n) appearing in (7) represents the desired lateral path -
deviation and was obtained during the simulation using the . : 0 3%
simple straight-line path segments shown in Fig. 5 as input. '

As seen from Fig, 6, excellent agreement can be obtained
between the experimental results and simulation predic-
tions using the two numerical parameters (7, T) and a
simple straight-line path input. Variations in the value of 7
primarily influenced the closed-loop system damping; larger A
values producing reduced damping. Variations in the value 000 100 200 300 400 S00  6.00
of T influenced control (steering) amplitude as well as i Lo e ) )
damping; larger values of T producing lower control am- Fig. 7. Closed-loop "“?“h“%‘c‘f‘; result comparison—modified
plitude and increased damping. '

Fxpa!ly, Fig. 7 shows a comparison of the pre\fiew model . X  DRSELINE VEWICLE
predictions and measured test results for a modified set of ®  MODIFIED VEWICLE 0.35 380%
vehicle dynamics (F, g). The same vehicle was employed o* Loty
but with modifications to its mass center and rear tires so
as to produce a new set of parameter values listed in
Appendix I-C. As shown in Fig. 7 the principal change in
the closed-loop response from Fig. 6 is an increased steer-
ing gain (lower steering amplitude for the same nominal
maneuver) and decreased damping. Larger values of 7 (0.3) o
and T (1.55) were required in the calculation of (7), shown &
as steer angle in Fig. 7, to better approximate the reduced 3
dampmg and smaller amplitude steering control. A com- S0 3000 6000 9000 12000
parison of computed vehicle path trajectories, correspond- _ * LONGITUDINAL POSITION (m
ing to the baseline and modified vehicle responses shown Fig. 8. Simulated path trajectories.
in Figs. 6 and 7, appears in Fig. 8. . ' '

Characteristic roots for each of the closed-loop systems, BASELINE VEHICLE
as calculated from the constant matrix (13), are shown in MODIFIED VEHICLE
Fig. 9. The matrix (13) (sec Appendix I-D) is similar to 1
that given by (9) but includes the influence of the transport
lag term e ~*" approximated by the first-order Padé poly- . %
nomial
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These results and those of the previous section demon- where

strate useful application of the optimal preview model in
simulation of closed-loop automobile driving. The prin-
cipal conclusion concerning these results is that driver
steering control strategy during path following can be
accurately represented as a time-lagged optimal preview
control. Similar applications and extensions to problems in
other fields are clearly suggested by the results shown here.

CONCLUSION

The optimal preview control model, applied here to the
closed-loop automobile path following problem, offers a
useful and direct method for representing closed-loop be-
havior of linear driver/vehicle systems. It is suggested that
driver automobile steering control strategy during path
following can be viewed as a time-lagged optimal preview
control process.

The general linear system formulation of the preview
control methodology, demonstrated here, permits appli-
cation to a broad range of problems relating to man-
machine systems.

APPENDIX ]

A. Vehicle Dynamics

The linear dynamical equations of an automobile for
lateral and yaw motions are
y=ov+ Uy (A1)

8=[-2(C,+ C,)/mU]o +[2(bC,,~ aC,,)/mU = U]

+(2C,,/m)8py (A2)

=[2(eC,, - aC,)/1U]0 +[-2(a%C,, + %€, ) /1U]

+ (2aC,, /1)85y (A3)
i=r | (A4)
where

y  inertial lateral displacement of the vehicle mass
center,

lateral velocity in the vehicle body axis system,
yaw rate about the vertical body axis,

vehicle heading angle, and '

Orw front tire steer angle, contrbl variable.

« >

The parameters appearing in (A1)-(A4) are

U forward vehicle velocity,
Ce,» C,, front and rear tire cornering coefficients,
a, b forward and rearward locations of tires from

the vehicle mass center, and

m, I vehicle mass and rotational inertia.

The above equations can be expressed in matrix notation

i=Fx+ gy, (A5)

b4

1
X = r

1]

01 0 U 0
F= , g=

0 A4, B, 0 G,

0

0 1.0 0
and '
A,==2(C,,+C,,)/mU
B,=2(5C,,~ aC,,)/mU~-U
=2G,,/m
A= z(bc,,- aC,,)/1U
,= —2(a%C,, + b°C, ) /IU
G,=2aC, /I |

The calculation of (11) appearing in Figs. 3 and 4 used
the following parameter values identified in [9] for ve-
hicle D

a =141 m(4.63ft)

b =141 m(4.63 ft)

m = 2016 kg (138 slug)

I =4013 m-N-s? (2960 ft-1b-s?)
U =223m/s (733 ft/s)

Ca, = 25 266 N /rad (5 680 Ib/rad)
Ca, = 70 933 N/rad (15 960 Ib/rad).

The constant observer vector m” = (1,0,0,0) provided the

vehicle lateral position y.

B. faseline Vehicle Parameter Values

The vehicle parameter values listed below and used in
the calculations appearing in Fig. 6 were derived from -
vehicle wheelbase /weight measurements and steady-state,
constant-steer vehicle test results [13]

a =137Tm@45ft)

b =122m 4.0 f)

m = 1563 kg (107 slug)

I =2712m-N-s? (2 000 ft-1b-s?)
U =259m/s (85 ft/s)

C,,= 19 438 N /rad (4 370 Ib/rad)
C,, = 33 628 N /rad (7 560 Ib/rad).

The weighting function W appearing in (7) was selected as-
constant 1.0 over the ten-point preview interval.

C. Modified Vehicle Parameter Values

The vehicle parameters of Appendix I-B were altered to
those values shown in this section by a rearward shift in
the vehicle mass center and a decrease in rear tire inflation
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pressures

a =143m@4.7ft)

b =116m (3.8 ft)

m = 1753 kg (120 slug)

I =2712m-N-s? (2000 ft-1b-s?)
U =259m/s (85 ft/s)

C,,= 20 906 N /rad (4700 1b/rad)
C,, = 29 536 N /rad (6640 Ib/rad).

The closed-loop calculation using these parameter values
appears in Fig. 7.

D. Siability of the Closed-Loop Optimal Preview-Controlled
System Including a Transport Time Lag

Given the system

i=Fr+gu (A6)
u=e"*"° (A7)
= -c'x (A8)

where F, g, u®, and ¢ are defined in (1), (4), and (9). If the
transport time lag e " is approximated by the first-order
Padé polynomial, -

1-Zs
. (A9)
I )
2
(A7) becomes
. 2 0 .0
u=;(—u+u)—u. (Al0)
- Substitution of
u’=—cx
and '

4= —cT[Fx + gu]

399

into (A10) produces the closed-loop state equation

{i}= ""'2'_""'3'2' {_x_.}(All)
u cT(F—-I)'ch—- u

T - T
equivalent of (A6)-(A8). For small r, stability of the
time-lagged optimal preview-controlled system is provided

by the characteristic roots of the system matrix appearing
in (All).
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An Optimal Preview Control for Linear Systems

C.C. MacAdam'

A technique for synthesizing closed-loop control of linear
time-invariant systems during tracking of previewed inputs is
presenied. The derived control is directly dependent upon the
properties of the controlled system and is obtained by
minimization of a defined previewed output error.

1 Introduction

This paper presents a general method of control synthesis
applicable 1o linear time-invariant systems utilizing preview
control strategies for regulation or tracking tasks. A common
example -of this type of dynamical behavior occurs during
normal automobile path following in which drivers *‘look-
ahead”’ to follow a desired path. A frequent source of preview
control strategies in various man-machine systems is, of
course, the human operator. It is widely recognized that
human operators are capable of controlling and adapting to a
wide variety of dynamical systems, many of which are
vehicles with preview-oriented control requirements such as
automobiles, bicvcles, and complex aircraft {I1-7]. Although
this paper does not offer evidence as to the utility of the
proposed control synthesis for man-machine systems in-
volving preview strategies, it is suggested that the method
presented here can be applied to such problems. Portions of
the work by Tomizuka (8], which treated a similar problem,
indicated useful application of optimal preview control
methods in representing man-machine dynamical behavior.

The particular method presented in this paper is directly
applicable to general linear system representations assumed to
incorporate preview control strategies that depend only upon
knowledge of the current values of the state and control. The
optimal control is derived by minimization of a performance
index that is defined as a mean squared preview output error.
1t will be shown that the derived control function is not ar-
bitrary or independent but depends directly upon the
dvnamical properties of the controlled system.

11 Statement of the Problem
Given the linear system
x=Fx+gu (1)
y=mTx 2)

I Research Associate, University of Michigan, Highway Safety Research
Institute, Ann Arbor, Mich. 48109
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where,

x isthe n x [ state vector :

y is the scalar output related to the state by the n x 1 m”
constant observer vector transpose

F isthe constant n X n system matrix

and
g isthe constant n x 1 control coefficient vector

find the control, u(t), which minimizes a local performance
index,

1 p1+7
18 = We-smwa-oren )

over the current preview interval (¢,1+ T), where,

W is an arbitrary weighting function over the preview
interval
and f is the previewed input.

The performance index given by (3) represents the weighted
mean squared error between the previewed input and the
previewed output as defined below.

The previewed output, y{n), is related to the present state,
x(1), by

L]
y(n=mTé(n,0)x(1) +51 m7 6 (n,£)gu(§)dE )

where,
¢ (n,1)=exp[F(n=1)]

is the transition matrix of the system F'[9].
If u(r) is assumed selected on the basis of a constant
previewed control, u(£) = u(t), equation (4) simplifies to

yi)=mTe(n0x(0) +u(n) | 'm7 s (n, gk ©

and the performance index, (3), can be written as

J= -17-.5:” {[f(n)—m%(ml)xm

-u(r) j:mré(mi)gdé]?:W(n-t' } dn (6)

The above assumption simply requires the resulting op-
timization to reflect a control strategy dependent only upon
current vaiues of the state and control. This assumption is, in
part, motivated by the potential application 10 those man-
machine systems, wherein, it is assumed the human operator
is limited in deriving or having knowledge a priori of more
complex or optimal control waveforms over the preview
interval.

The necessary condition for minimization of J, defined by
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equation (6), with respect to the control, u (), is provided by

dJidu =0, or -
dJ 2 AT
=) {[f(n)-mfo(n,x)x(r)

—u(n| 'mra(n.f)gds]]

(| m om0t} Win-n1an=0 o

(n=§)"

nt

Equating o (7, £) with exp[F(n=8)] =1 + 2 Fr

vhere 7 is the identity matrix, and performing the d¢ in-
.egrations, (7) becomes

207 w25

n=|

—(n—t)mr[H- i M]gu(l)}{(n—nm’

= (n+1)!
- F(n=1)"
[ L om0 @

solving (8) for u(z) yields

W (1) = H,M [f(n)-mr[“- i E'(-z,!:‘t')':]"(’)}

n=]

Limnmre £ 200 1wy

n=]

17 - £ 5] wore]

n=}

®

vhere u°(¢) represents the optimal solution. For the special
case of W(n — t) = 8(T"), the Dirac delta function for 0
< T =< T,(9)simplifies to

fu+ r-)-m’[n ) f—(’%‘l]x(r)

n=]

uO([): - P(r)n (10)
T
T'm [” ;, e 1) ]
=lf(t+T)=yo 1+ TN/(TK) (1

vhere

F"(T')"]
(n+1)! 8

.Kémr[l+i

= nel

Equation (11) represents a proportional controller with gain
inversely related to the preview interval, T~, and operating on
the error between the previewed input, f(/+7"), and
Yo(1+T7), that portion of the previewed output deriving
from the state vector’s current initial condition. Likewise,
equation (9) can be interpreted as a proportiona! controller
operating on a similar error averaged and weighted over the
preview interval (1, t + T) by the additional terms appearing
in equation (9).

The optimal solution, 4°(r), can also be expressed in terms
of any current non-optimal «(¢) and correspondingly nonzero
preview output error, e{?), by writing equation (9) as

W) = HT U-mTomnx) - Am)

t+T
sAln) W(n=t)dn+u(l) S, A¥(n) W(n-t)dn]

1+7
/U,Az(n)W(n—l)dn] (12)
or
preT
| emAmWn-ndn |
W (1) =u() + ——— (13)
AXm) W(n=1)dy
where
o F(n=10)"
-0m’ =0
Amglr=tm [”,;, (m+1)! ]

&n) 4 fin) —m7 ¢(n,1)x(e) = u()A(n)

o F(n=1)"
«n,r)énf,—"’;)—

For the special case of W(n—1t) = 6(T), as before, equation
(13) reduces to

e(t+T*)
T K

The formulation expressed by equation (13) can be useful in
describing systems which do not achieve, though closely
approximate, the optimal system behavior. Such cases may
arise from limitations in achieving the precise optimal control
due to time lags or dynamic properties inherent in the con-
troller and not accounted for a priori in the optimization.

While equations (9) and (13) are equivalent mathematigally,
the latter deomonstrates an explicit relationship between the
derived optimal control and the previewed output error
function appearing in the performance index of the original
problem formulation. Simply stated, the current control level
is modified only in response to a nonzero function of the
previewed output error, and, in this sense, analogous to an
integral controller.

Finally, dependence of the derived optimal control upon the
system (F, g) properties is clearly demonstrated by the explicit
presence of F and g in equations (9) and (13). Furthermore,
information concerning stability of the closed-loop system
utilizing the optimal preview control of equation (9) or (13) is
provided by the characteristic roots of the constant matrix

W) =u(t)+

(14)

o[ [ 5 29 e £ 2 o

n=l A= (H+})!
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P (n)”
(n+1)!

e B

n=]

]8}2 W(n)dn
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[F-geT] (15)

RN

where

Introduction

T}?c purpose of the present paper is twofold. The first is 1o
obtain an analytic expression for the critical speed of a

or (e 2 e £ 22 i

n=l n=1

c' =

-

[ £ 2w

a1 (n+1)!

resulting from the substitution of (9) into (1). For the special
case of W(n) = 6(T"), (15) becomes

F- {gm’[[—'r i -[-1(—”1:—2]/(7"%)}

(16)

nel

111 Summary

The optimal preview control model presented here offers a
useful and direct method for representing closed-loop
behavior of linear systems utilizing preview control strategies.
The derived control is directly related to the properties of the
linear system and the previewed input. Further, the method is
formulated in terms of general linear system representations,
thereby permitting applications to a wide variety of problems.
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Asvmptotic Theory of Freight Car Hunting

A. M. Whitman'

A simple formula is derived for the hunting speed of a freight
car from an 8 degree of freedom linear mode! using asymp-
totic techniques. A comparison is made between the ap-
proximation and exact (numerical) solutions. The two agree
within 10 percent for parameter values typical of present
designs.
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multidegree of freedom model of a freight car which is simple
enough to convey physical insight into the hunting probiem
while at the same time complex enough to have validity for
realistic vehicles. The second is to illustrate the simplification
which can be effected in problems of this type by employing
asymptotic methods. These methods are model independent
and rely on the fact that the creep forces dominate the motion.

Previous work has included analytical studies of simple
vehicles [1-2] and numerical solutions for realistic vehicles [3-
4]. The present work can be viewed as a generalization and
formal mathematical justification of the former, which
although cleverly done are ad hoc by nature and seem to be
restricted to systems with few degrees of freedom, and a
specialization of the latter, giving the same results in the
region of validity of the expansion but being restricted by
nature to specific regions in parameter space. The utility of
the present work is in the simple result which it yields. From
this one can obtain physical insight into the phenomenon as
well as easily calculable answers.

Maodel Description

We consider a model of the lateral dynamics of a freight car
composed of a rigid car body pinned at either end to a truck.
The pin connection transmits a linear damping moment
(constant ¢’ ;) between the car body and the truck. Each truck,
see Fig. 1, is composed of 2 wheelsets, two rigid sideframes
connected by ball joints to each wheelset, and a bolster, which
contains the car connection (centerplate) at its midpoint, is
constrained to move parallel to each wheelset by means of
frictionless slotted pins in each sideframe, and is restrained
from moving freely in that direction by 2 linear springs
(constant & each) and dampers (constant ¢ each) at each end.
In the real system this restraint is provided by the shear
stiffness of the bolster springs, whose primary function is to
support the car weight, and the sliding of the friction wedges
laterally. Further, because the springs and dampers are
separated by a distance d, there is a moment tending to square
the truck due to both the springs (¢onstant 4kd?) and the
dampers constant 4cd?). In addition, the bolster has mounted
symmetrically with respect to the centerplate, constant
contact sidebearings (constant k5 each) whose function is to
provide a torsional spring restraint for the bolster relative to
the car body (constant 2k, w?). Actually the sidebearings also
transmit a damping moment between the bolster and the car
body (constant 2c; w*); however, this has the same form as
the centerplate moment and can be combined with it. There
are eight degrees of freedom in this model and we will take as
our independent coordinates x*, v, 87, uf, x®, YR, BR, uR.
Here the superscripts represent the front and rear truck
coordinates, x is the axial displacement of the truck centroid
relative to the track center line, ¢ the yaw angle of each
wheelset of the truck as a result of the kinematic constraint, 8
the trail angle of the truck, and u the bolster displacement
relative to the truck centroid. The equations of motion, which
have been derived elsewhere [5] and which are quite similar to
others which have been discussed in the literature {4], are
written here in dimensionless form in terms of sum and
difference coordinates,
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