
CHRYSLER I UMTRI

WIND-STEER VEHICLE
SIMULATION

Reference Manual
Version 1.0
(Volume I1 of 11)

Report No. UMTRI-89-8 / 2

M. W. Sayers
C. C. MacAdam

Ye Guy

February 1989

UMTRI The University of Michigan
Transportation Research Institute

Technical Report Documentation Page

5 Rocipient'. Catalog No.

r port DIOI

February 1989
6. Porforming Organization Code

8. Porforming Organization Report No.

UMTRI-89-8 / 2
to. Work Unit No. (TRAIS)

11. Conmet or Grant No.

2000533
13. ~ y p 01 Report and period Covered

6/86 - 12/89
14. S p o ~ o r i n g Agency cde

1. Report No. 2 O o w m n m t Acceaelon No.

4. nth and subullr

Chrysler / UMTU Wind-S teer Vehicle Simulation -
Reference Manual, Version 1.0 (Volume IT)

7. Authofte)

M. W. Sayers, C.C. MacAdam, Y. Guy
9. Performing Orgmizatlon Nanw and A d d n u

The University of Michigan
Transportation Research Institute
2901 Baxter Road, Ann Arbor, Michigan 48 109

1 2 Spoluoring Agmcy Nanw end A d d n u

Chry sler Motors Corporation
Highland Park, Michigan

15. Supplementary Notea

Chrysler Challenge Fund Project 2000533, "Vehicle Crosswind Stability."
Chrysler Corp Personnel: James H. Frye, Mark Gleason, John Pointer.

la h a a u

The Wind-Steer model is a time-based simulation of the handling performance of a passenger
car in response to steer inputs from a driver and external wind conditions. The simulation
includes the aerodynamic properties of the vehicle, a closed-loop driver model, and vehicle
chassis characteristics.

17. K.y Word.

computer model, simulation, vehicle
dynamics, vehicle model, aerodynamics,
pasenger car, steering system, driver model,
crosswind, aerodynamic disturbance, wind

t8. M8trlkrtl01! Statement

No restrictions.

19. S8curity Claraif. (of thla report)

Unclassified
21. No. of Pagee

114
20. Security Cleeeif. (of ?hie p g a)

Unclassified
2 2 Price

Acknowledgement

This document and associated work are part of a research project supported at The

University of Michigan Transportation Research Institute (UMTRI) by The Chrysler Motors

Corporation under the Chrysler Challenge Fund Project 2000533 entitled, "Vehicle

Crosswind Stability." The Challenge Fund Program is administered at Chrysler by Mr.

James H. rye. Technical support has been generously provided by Chrysler engineering

staff, in particular Messrs. Mark Gleason and John Pointer of the aerodynamics group.

Additional engineering assistance has been provided by Messrs. Don VanDis and Fred

Winsor on various topics related to vehicle chassis and steering dynamics.

Notice .

The computer software documented herein is copyrighted by:

The Regents of the University of Michigan, 1987-1989,

Ann Arbor, Michigan. All Rights Reserved.

REFERENCE MANUAL

This document constitutes the primary technical reference for the Chrysler l UMTRI
Wind-S teer vehicle simulation model. A separate User's Manual (Volume I) accompanies
this document and is used as the primary guide for using and interacting with the Wind-
Steer model.

The Reference Manual is intended to provide detailed background material for the
model showing the equations, computer source code, and nomenclature. The material is
presented in the form of five appendices (A through E). Appendix A describes and defines
the nomenclature used in the model. Appendix B describes the basic equations used by the
model. Appendic C discusses the programming details necessary for understanding and
modifying the computer code. Appendix D contains the FORTRAN 77 source code used
in implementing the model on both Apple Macintosh and IBM PC / compatibles personal
computers. Lastly, Appendix E provides two technical papers [references 2 and 31 used to
document the driver steering control model contained in the program.

Reference Manual (Version 1.0)

APPENDIX A-NOMENCLATURE

Subscripts
1 = Front Axle 2 = Rear Axle L = Left R = Right

Variables and Parameters

Symbols refer to parameters unless they are identified as being variable

Ay = [Variable] Lateral acceleration of vehicle center-of-mass, perpendicular to
longitudinal vehicle axis and parallel to ground

a = Distance from front axle to total vehicle center of mass

as = Distance from front axle to center of mass of the sprung mass

b = Distance from total vehicle center of mass to rear axle

Cp = Steering boost coefficient

C, = Steering damping coefficient

C, = [Variable] Cornering stiffness for slip, defmed as aFy/aa

= [Variable] Cornering stiffness for camber, defmed as ~FY/@

CMU = [Variable] Aligning stiffness, defined as aMdaa
Djl, Dj2 = Damping coeficient for jounce for front and rear shock absorbers

Drl, Dr2 = Damping coeficient for rebound for front and rear shock absorbers

FD = [Variable] Suspension jounce / rebound damping force (additional subscripts
indicate which wheel)

Fy = [Variable] Tire-generated side force (additional subscripts indicate which
wheel)

FyA = [Variable] Aerodynamic side force

F a = [Variable] Aerodynamic vertical force

hi, h2 = Height of nominal front and rear roll centers

hs, = Nominal height of sprung-mass center of mass

h, = [Variable] Vertical distance between the sprung-mass center of mass and the
instant roll axis

hrcl, hrc2 = [Variable] Vertical distance between center-of-mass of the sprung mass and
the instant front and rear roll centers

IXS = [Variable] Instant moment of inertia of sprung mass about roll axis

I = Moment of inertia of sprung mass about longitudinal (x) axis

I, = Cross product of inertia of sprung mass for x, z directions

Appendix A - Nomenclature

I, = Yaw moment of inertia for entire vehicle

K A ~ ~ ~ , = Auxiliary roll rate (beyond rate due to vertical springs), for front and rear

K A ~ ~ ~ axles, including the effects of tire compliance
K,1, K r ~ = Auxiliary roll rate (beyond rate due to vertical springs), for front and rear

axles (without effects of tire compliance)

K s ~ , Ks2 = Vertical spring stiffness, for front and rear suspensions (one wheel)

K T ~ , K n = Vertical tire stiffness, for front and rear tires (one tire)

& = Total roll stiffness of suspensions and tires acting on sprung mass

L = Wheelbase (a + b)

Mcf, cb = [Variable] Total steering system coulomb-friction on "forward" or
"backward" path, resolved as a motion-resisting moment about the front-
wheel kingpins

Mv = [Variable] Steering system viscous damping, resolved as a motion-resisting
moment about the front-wheel kingpins

Mp = [Variable] Steering moment servo-boost component, resolved as a motion-
assisting or motion-resisting moment about the front-wheel kingpins

Q = [Variable] Front-wheel steering moment component, less viscous damping
and boost

M, = [Variable] Upper steering shaft "manual" moment (also controlling servo
valve)

MxA = [Variable] Aerodynamic roll moment acting on vehicle

MyA = [Variable] Aerodynamic pitch moment acting on vehicle

Mz = [Variable] Tire aligning moment (additional subscripts indicate which wheel is
referenced)

MzA = [Variable] Aerodynamic yaw moment acting on vehicle

ms = Sprung mass

m = Total mass

p = yVananable] Roll rate

Q = Aerodynamic pressure, p vA2 1 2

q = [vananable] Pitch rate

r = [Variable] Yaw rate

tl, t;! = Half-track distances for front and rear of vehicle (centerline of vehicle to
centerline of tire)

V = Vehicle speed (constant)

VA = [Variable] Air speed, relative to vehicle

Appendix A - Nomenclature

Vwind = [Variable] Absolute wind speed

w = [Variable] Vertical velocity of sprung mass

X = [Van'able] absolute (inertialj X coordinate of vehicle center-of-mass

Y = [Variable] absolute (inertial) Y coordinate of vehicle center-of-mass

yn = [Variable] Lateral distance between instant roll axis and sprung-mass center of
mass

Yrcl, yrc2 = [Variable] Lateral distance between center-of-mass of the sprung mass and the
instant front and rear roll centers

a = [Variable] Tire slip angle (subscripts indicate referenced tire)

a lo, a b = Static tire slip angles for front and rear axles

p = [Variable] Vehicle slip angle

Pa = variable] Aerodynamic slip angle
= [Variable] Front-wheel steering angle displacement, before adjusting for lash

6FN = [Variable] Average front-wheel steering angle displacement

6Lash = Total steering system lash resolved to an angle about front-wheel kingpins

e2 = Roll steer coeficient for beam-type rear suspension

$ = [Variable] Roll of sprung mass relative to baseline trim condition

y = [Variable] Tire camber angle (subscripts indicate referenced tire)

Yio, Y20 = Static tire camber angles for front and rear axles

pi, p2 = Nondimensional parameters that reduce the effective suspension stiffness to
account for tire vertical compliance

8 = [Variable] Pitch of sprung mass relative to baseline trim condition

p = Density of air OR

p = [Van'able] Instantaneous path curvature of vehicle, at the center of mass

w = [Variable] Vehicle yaw (heading) angle relative to inertial frame

vwind = [Vm'able] Absolute wind direction (1 80" from meteorology convention)
z = [Variable] Vertical displacement of vehicle sprung mass

z l ~ = [Variable] Vertical displacement at left front suspension point

Z ~ R = [Variable] Vertical displacement at right front suspension point

z 2 ~ = [Variable] Vertical displacement at left rear suspension point

Z2R = [Variable] Vertical displacement at right rear suspension point

Iss = Steering wheel / upper column rotational inertia

Ksc = Steering column stiffness

K s ~ = Steering linkage stiffness (one side)

Appendix A - Nomenclature

Kss = Effective (lumped) steering system stiffness based on Ksc and K s ~

GR = Overall gear ratio of steering system

ijs, = [Variable] Steering wheel rotational displacement

ijf,' = [Variable] 6 , / GR
CL = Aerodynamic lift coefficient

CD = Aerodynamic drag coefficient

CM = Aerodynamic pitch moment coefficient

K r = Aerodynamic coefficient for lift force variation due to J3,2

KD = Aerodynamic coefficient for drag force variation due to pa'
Ky = Aerodynamic side force coefficient

KN = Aerodynamic yaw moment coefficient

KR = Aerodynamic roll coefficient

KM = Aerodynamic coefficient for pitch moment variation due to pa2
A = Aerodynamic cross sectional area

Appendix A - Nomenclature

APPENDIX B-EQUATIONS OF MOTION
The constant-speed vehicle model includes a total of six dynamic degrees of freedom

that are important for simulating the handling response of a passenger car to steer and wind
inputs for non-limit maneuvers (lateral acceleration levels less than 0.3 g's). Twelve state
variables are used to define the kinematics of the vehicle and follow the SAE recommended
practice sign convention [7]:

X X inertial forward coordinate of vehicle center of mass

Y Y inertial lateral coordinateof vehicle center of mass

z Z inertial vertical coordinate of vehicle sprung mass

$ Euler roll angle of sprung mass

8 Euler pitch angle of sprung mass

w Euler yaw angle of total vehicle

p Roll angle rate of sprung mass (in body axis coordinate system)

q Pitch angle rate of sprung mass (in body axis coordinate system)
r Yaw angle rate of sprung mass (in body axis coordinate system) .

p Side slip angle of vehicle c. g.
w Vertical displacement rate of sprung mass (in body axis coordinate system)

6FW Average steer angle of fiont wheels

Independent steer, camber, and vertical motions are included for each wheel. These
motions are treated as being in static equilibrium, thereby eliminating the numerical
integration of the differential equations representing the high-frequency (10 to 15 Hz)
mechanical resonances of the unsprung masses.

B . l Body Equations

B .l. 1 Kinematical Relationships

The derivatives of the inertial X and Y coordinates of the vehicle center of mass are
related to the constant forward speed and vehicle rotation:

The following four state variables are speeds defined as derivatives of other state
variables:

Appendix B - Equations of Motion

Two useful variables that are derived from the yaw rotation rates are the lateral
acceleration and the path curvature of the vehicle center of mass:

B .1.2 Force / Moment Equilibrium Equutions

The following sums combine the external forces and moments applied the tires and the
aerodynamic effect:

(B. 1.2-1)

c FZ = Fz,, + FzlR + Fz, + Fz, - F u (B. 1.2-2)

~ = M Z , t M ~ l R + M ~ Z c M ~ ~ + M ~

(B. 1.2-3)

Five equilibrium equations can be written for this vehicle model by balancing the
applied forces and moments with D'Alembert's forces and torques. The summation of
lateral force and yaw moment are applied about the entire vehicle, whereas the pitch and roll
moments and the vertical force are applied only for the sprung mass. As implied by the
form of the following equations, these relations are used to evaluate the accelerations.

(B. 1.2-5)

(B. 1.2-6)

(B. 1.2-7)

a[2 PI KSI (z - a 0) + FD,, + FD,J
- b [2 p 2 ~ ~ ~ (~ + b 0) + ~ ~ a + ~ h a] + ~ y A + (k - a ,) ~ Z A

4 = 2 (B. 1.2-8)
IYS

As written above, the first three of these equations are coupled in such a way that they
cannot be evaluated sequentially in a computer program. That is, the terms p, b, and r
appear on both sides of eqs. B.1.2-4 through B.1.2-6. By substituting eqs. B.1.2-5 and

Appendix B - Equations of Motion B - 2

B.1.2-6 into B.1.2-4, an alternative expression for p is obtained which is not dependent on
p or i:

(B. 1.2-9)

This expression is used (rather than eq. B.1.2-4) to evaluate p. The known value of p is
then used in eqs. B. 1.2-5 and B. 1.2-6 to evaluate p and i.

B . 2 Aerodynamic Forces and Moments

The equations for computing aerodynamic forces and moments were presented in
Section 2.2. The aerodynamic slip angle (Pa) and speed (VA), required for those equations
are:

The areodynamic forces and moments are, again, as in Section 2.2:

Appendix B - Equations of Motion

B.3 Suspension / Wheel Terms

B -3.1 Vem'cal displace men^

The tire slip and camber angles are influenced by the following suspension deflections

Z ~ L = Z - a 0 - t l $ (B.3.1-1)

Z ~ R = z - a 0 + t l + (B.3.1-2)

The above expressions neglect vertical tire deflection. The effects of tire compliance are
included by reducing the forces caused by the above deflections.

B -3.2 EfSective Stzrness and Damping Values

All suspension springs in the vehicle model are linear. These include the vertical spring
rates at each wheel, the auxiliary roll stiffness for the front and rear axles, and the tire
vertical spring rates. The vertical motions of the wheels (acting against the tire vertical
stiffness) is not computed in this model. Instead, the tire compliance values are used to
lower the spring and damping rates of the suspension so that the vertical force, roll
moment, and pitch moment acting on the sprung mass take into account the tire vertical
deflections.

Effects of vertical spring and damper coefficients are reduced by the proportion of the
overall vertical wheel movement that is due to the tire compliance

The effective auxiliary roll stiffnesses for the front and rear axles are also reduced due
to tire compliance

A single stiffness applies to the roll motions of the sprung mass.

Km = 2 C L I K S ~ < + 2 k K s 2 $ + K A ~ ~ I + K ~ u d

B .3.3 Vertical Damping Forces

A bi-directional shock absorber model is used. A linear damping coefficient is used
with different values for jounce and rebound, as indicated by the subscripts j/r. The

Appendix B - Equations of Motion B - 4

nondimensional coefficients p i and p2 are used to reduce the suspension motion by the
amount of the tire deflection.

FD, =)rlD(j/r)l [w - a 9 - ~ I P I (B.3.3-1)

FD,, = PI D ~ r) l [w - a 0 + tl PI (B.3.3-2)

FD, = ~2Dci/r)2[w + b e - ~ Z P I (B.3.3-3)

F D ~ = P Z D W ,) ~ [W + b e + ~ z P I (B.3.3-4)

B .3.4 Vern'cal Ground Loads

The tire forces and moments are influenced by vertical load The vertical loads for each
tire are defined as follows:

B.4 Roll Axis

The suspension kinematics are simplified by assuming that the sprung mass rotates
about a roll axis. To extend this representation, the axis is permitted to move as a function
of roll angle. The roll axis is located by two points, each in the vertical plane containing
each axle. These points are defined by static heights located on the longitudinal centerline
of the vehicle, hi and h2. Movements of these two points are introduced as vertical and
lateral components, h, and yrc, which are defined as quadratic functions of roll angle (see
section 2.1) in coordinates fixed in the (rolling) sprung mass. The (rolled) vertical and
lateral distances between the center of the sprung mass and the roll axis are defined as

These dimensions are projected into a non-rolling frame to yield the offsets

An instant roll moment of inertia is defined for the sprung mass to include the effect of
the offset of the center of mass relative to the roll axis.

Ixs = Ixx + (yra2 + hra2) ms (B.4-5)

Appendix B - Equations of Motion B-5

B.5 Tire Slip I Camber I Steer Equations

The tire side force and aligning moment are modeled as being linear with slip and
camber. However, the coefficients are functions of vertical load (see Section 2.3).

B S.1 Independent Suspensions

The slip angles and camber angles (a and y) are defined as follows for the front
suspension:

(If the dynamic steering system is being used, 6 ~ w is equal to 6 s ~ / GR and the aligning
torque compliances are accounted for in the steering system model. Otherwise, it is the
actual left / right front wheel angle and the aligning torque compliances are included as
shown.)

The equations used for an independent rear suspension are:

Because the slip and camber angles are influenced by tire side force and aligning
moment, which are in turn developed by slip and camber, the above equations are not
suitable for sequential evaluation. To obtain a closed-form solution for slip and camber,
the explicit expressions for aligning moment and camber are substituted for each wheel.
These expressions have the form

Appendix B - Equations of Motion

where the coefficients Ca, Cy and CMa are functions of vertical force that typically differ
for each wheel at any instant. When the appropriate forms of eqs. B.5.1-10 and B.5.1-11
are substituted into eqs. B.5.1-1 through B.5.1-9, the slip and camber equations for each
wheel are coupled with each other. Because they are linear equations with respect to slip
and camber, they can be solved to yield expressions for the slip and camber of each wheel.

These equations can be written using matrix algebra notation as:

(boldface denoting matrices)
A a = B y + c

The solutions to these simultaneous equations are given by:

The A, B, c, D, E, and f matrices are:

Appendix B - Equations of Motion

B S . 2 Beam Rear Axle

For a beam rear axle, linkage compliance can permit the axle to steer in response to
applied side force and aligning moment. The attachment of the wheels to the axle is
assumed to be rigid, and the axle is assumed to have negligible roll compliance. These
assumptions lead to the following expressions for the slip and camber angles.

These equations cause the above matrices to become altered to the following:

ai , bi as above, and:

a34 =(as4 / aFy4) Ca4 + (a& / aMa4) CMa4

a43 =(a% 1 aFy3 1 6 3 + (3% 1 aMa3) CM,

bj4 = -(as4 a ~ , 1 c,
b43 = -(a% / aFy3) c,g

Appendix B - Equations of Motion

r as above 1

L o o o 1 1 l o o o 01

C =

as above

f =

as above

a20 + p - r b I v - ER $ - aWaFy3 Cq ~3 - a64/aFy4 C g ~4

B. 6 Power-Assisted Steering System
The following equations for the dynamic steering system model are based on the

diagram of Figure B-1. The dynamics for the upper portion of the steering system are
given by:

- CSS d (8 , ~) 1 dt - CF sign[d (6sw) / dt] (B.6- 1)

where,

6fw' = 6,, I GR

and Css , are parameters representing viscous and coulomb friction.

The "no-lash" front wheel angle, 6fw, is determined from the quasi-static relationship
accross the lumped compliance Kss and current value of 6fw' as:

6fw = 6fw' + H (1 - CB) / KSS (B.6-3)

The lumped compliance, Kss, is given by the serial combination of the upper column
compliance Ksc and the two lower linkage compliances K s ~ as:

CB is the power boost (percent / 100) contribution from the pump and, H, the tire aligning
torques of both front tires, is given by:

xp and xm are the pneumatic and mechanical trails, respectively, of the front tireslwheels.
C a is the front tire cornering stiffness.

Appendix B - Equations of Motion B-9

Substituting B.64 into B.6-3 and solving for 6fw yields:

6fw = [6fw' + 2 C a (xp+xm) (1 - CB) (v+ar) I (U KSS) I 1

[1 + 2 C a (xp+xm) (1 - CB) / Kssl

Substituting B.6-5 into the differential equation B.6-1 results in:

Iss d2(ssW I dt2 = M + Kss[A 6s, - B (v+x)] 1 G R ~

- CSS d (6,) / dt - CF sign[d (6,,) / dt]

where,

A = 1 - 1 I [I+2Ca(xp+xm)(I-C~)/Kss]

and,

B = 2 Ca (xp+xm) (1 - CB) GR 1

([1 +2Ca(xp+xm)(1 -Cg) lKss lUKss 1

The left and right front wheel angles, 6 f w ~ and 6fwR, are obtained from equation (B.6-5)
using leftbight parameter values of tire cornering stiffness and inclusion of the wheel lash.

(inertia)

IUlllU ---'

ion Ratio 6e,N Kee Lash I 0 L ' ..L
i
SS c0ulnmh

Driver fricti
Steering
Torque

M -9 Lash - . - <
V~SCOUS Power

SW friction ~~~~t
steering
wheel

Figure B- 1. Steering System Model.

Appendix B - Equations of Motion

APPENDIX C - PROGRAMMING DETAILS

This section describes how the Wind-Steer program operates. It is intended for
programmers who wish to modify the program, or port it to a new computer.

C. 1 Machine Dependencies

The Wind-Steer program is written completely in Fortran 77. The standard does not
recognize any hardware-specific aspects of a computer, such as the screen, keyboard, or
clock. To make the program a more productive tool, it does make use of a few machine-
specific features for the versions that run on the IBM PC, the Apple Macintosh, and MTS
(The University of Michigan mainframe computer). These are:

The output file contains the time and date for the simulation, which is provided by
a subroutine called TIMDAT. The subroutine TIMDAT should be modified to
work on the computer for which the program will be used. If time and date
information is not available, the subroutine can be made inoperative.

The Macintosh version uses external subroutines provided with the compiler,
TIME and DATE. These must be linked with the rest of the program if it is re-
compiled for the Macintosh.

The Fortran i/o unit number for the "terminal" (i.e., the keyboard and screen)
should be set to the proper value expected by the compiler. Most compilers,
including all three that have been used to date, permit an asterisk * to be used to
specify the screen and keyboard.

Simulation progress is shown on the screen in the PC and Mac versions. This
involves interacting with the screen. This is done in the subroutine OUTERD and
should be modified to work on the new computer, or deleted.

The IBM version uses the subroutine SETCUR from an UMTRI library of Fortran
extensions. This library must be linked with the rest of the program for use on the
IBM PC.

Writing of binary data has been done differently for every system so far. The
MTS version uses an MTS subroutine, WRITE, to put binary data into an ordinary
file. The PC version opens a separate file with access type set to a nonstandard
type BINARY. The Mac version uses a separate file with access set to
UNFORMATTED. Both the Mac and the PC versions of the program produce
binary files with no structure-just a stream of binary data.

The source code is contained in a large file with the main program and all of the
subroutine modules, and in nine small "include files" which are merged with the
main file during compilation. The INCLUDE command is not standard Fortran,
and is handled differently by each compiler.

Appendix C - Programming Details C - 1

C.2 Structure of Program

The operation of this program follows that of many programs that use numerical
integration to simulate a dynamic system, and can be summarized by the following steps:

1. Read input data. This function is performed by the subroutine INDATA.

2. Initialize variables and constants derived from input data. This function is
performed by the subroutine INIT.

2. Establish name(s) of output file(s) and write header data (number of channels,
names, etc.) This function is performed by the subroutine OPNOUT.

3. Perform the numerical integration using a "loop," in which the differential
equations are solved numerically for time T, and T is increased in small increments
DT. The differential equations are written in the fom:

where Yi is a state variable, i = 1,2, ... n, and n = number of equations.

The function indicated above as f is named FUNCTN in the Fortran Wind-Steer
program.

The integration from time T to T+DT is performed using a modified Euler method,
sometimes called a second-order Runge-Kutta. Specifically, the integration of each
state variable is accomplished as follows:

Note that f (FUNCTN) is evaluated twice for each integration step: once as the
start, and a second time as the midpoint of the time interval. All of the equations
that represent the vehicle are contained in FUNCTN and in several auxiliary
subprograms that are used by FUNCTN. (These additional routines are named
AIRACT, FDAMP, ROLLAX, STEER, TIRES2, SUM, etc.)

At some multiple of DT, values of interest are written into the output file by the
subroutine OUTPUT.

4. Print the success or failure of the simulation and close any open files,

C.3 Program Modules

This section describes the modules that make up the Wind-Steer program. The
subprograms are shown below in alphabetical order with a listing of their arguments and
common block references.

AIRACT(YAW, BETA, VYAW)

Update air velocity, sideslip, and magnitudes of forces and moments in common block
/AERO/.

Appendix C - Programming Details C - 2

+ YAW real*4 Yaw angle of vehicle.
+ BETA real*4 Sideslip angle of vehicle.
+ VYAW real*4 Yaw rate of vehicle.

Common Blocks: GLBL PARS AERO

Initialize driver model parameters for steering angle version of driver model.

CornrnonBlocks: GLBL PARS VARS TlRE DRVSTl DRIV
TRSSTR

Subprograms called: TRANS

DRIVGT

Initialize driver model parameters for torque version of driver model.

CommonBlocks: GLBL PARS VARS TIRE DRVSTl DRIV
TRSTOR

Subprograms called: TRANST

Read driver mod& parameters.

c DFW real initial average front wheel angle = 0

Common Blocks: GLBL PARS VARS TIRE DRVSTl DRIV TRSSTR

DRIVER (X, Y, DFW, DFWNOW)

Calculates closed-loop driver steering control angle.

+ X real current time
+ Y real driver model state vector
t DFW real calculated average front wheel angle.
+ DFWNOW real current average front wheel angle.

CommonBlocks: AERO GLBL PARS DRVSTl DRIV

TRSSTR

Subprograms called: TRAJ GMPRD

DRIVET (X, Y, DRTORQ, DRTNOW)

Calculates closed-loop driver steering wheel control torque.

Appendix C - Programming Details

+ X real current time
+ Y real driver model state vector
c DRTORQ real calculated steering wheel torque.
+ DRTNOW real current steering wheel torque.

CommonBlocks: AERO GLBL PARS DRVSTl DRIV

TRSTOR

Subprograms called: TRAJ GMPRD

FDAMP (VZ, VROLL, VPITCH, FD)

Compute the damping force for all four wheels.

+ V Z real" vertical velocity of vehicle sprung mass c.g.
+ VROLL real*4 roll velocity of vehicle sprung mass.
+ VPITCH real*4 pitch velocity of vehicle sprung mass.
t F D real*4 2 x 2 matrix of damping forces at each wheel.

CommonBlocks: SUSP

This subroutine uses different rates for jounce and rebound. The sign convention is
that jounce + positive damping force.

FUNCTN (T, Y, YP)

Compute six derivatives of state variables in the vehicle/steering model.

+ T real*4 Time (independent variable of integration)
+ Y real*4 1-D m y of 6 state variables
t YP real*4 1-D array of 6 derivatives: yp(i) = dy(i) / dt

CommonBlocks: GLBL PARS SUSP AERO VARS

Subprograms Called: F'D AMP WHEELZ ALPHAS ROLLAX AIRACT STEER
TIRES GAMMAS

Subroutine FUNCTN contains the equations of motion for the 5-d.0.f vehicle model
and a 1-d.0.f steering system model. The derivatives it computes are used by the
subroutine DE to simulate the system. It also halts the simulation upon exceeding preset
handling limits.

GMADD (A, B, C, N, M)

Calculates the sum of two matrices.

+ A real NxMinputmatrix
+ B real N x Minput matrix
t C real N x L output matrix equal to sum of A and B
+ N integer row dimension of A and B

Appendix C - Programming Details

+ M integer column dimension of A and B

GMSUB (A, B, C, N, M)

Calculates the sum of two matrices.

+ A real N x M input matrix
+ B real N x Minput matrix
c C real N x L output matrix equal to difference of A less B
+ N integer row dimension of A and B
+ M integer column dimension of A and B

GMPRD (A, B, R, N, M, L)

Calculates the product of two matrices.

+ A real N x M input matrix
+ B real M x L input matrix
t R real N x L output matrix equal to product of A and B
+ N integer row dimension of A
+ M integer column dimension of A and row dimension of B
-> L integer column dimension of B

INDATA (IREAD, IPR, IERD, ITERM, FNREAD, FNPR, FNERD)

Set up file connections and read input data.

+IREAD integer Fortrani/ounitforparameterinputfile(e.g.,5).
-+ IPR integer Fortran i/o unit for echoing data (e.g., 7).
-+ IREAD integer Fortran i/o unit for output ERD file (e.g., 8).
-+ IERM integer Fortran i/o unit for keyboard and screen (e.g., 9).
c FNREAD chaP32 Fortran i/o unit for parameter input file (e.g., SIM.IN).
c FNPR chaP32 Fortran i,o unit for echoing data (e.g., SIM.ECH).
c FNERD char*32 Fortran i/o unit for output ERD file (e.g., SIM.ERD).

CommonBlocks: GLBL PARS MNVR SUSP TIRE AERO
PRNT

This subroutine prompts the user for a "root name" from which three other file names
are defined. (In the above examples, the root name is "SIM." The input file (e.g.,
SIM.INP) must already exist. The other two are created. If files with those two names
(e.g., SIM.ECH, SIM.ERD) already exist, they are destroyed.

MAIN-WIND

Main program module that controls the wind & handling simulation.

CommonBlocks: GLBL PARS SUSP VARS AERO PRNT

Subprograms Called: INDATA SETERD OUTPRT OUTERD ALERT DE

Appendix C - Programming Details C - 5

Calculates the inverse of a matrix.

+ A real N x N input matrix to be inverted. Replaced with inverse.
+ N integer dimension of A
t D real resultant determinant
+ L integer work vector of length N
+ M integer work vector of length N

OPNOUT

Write header portion of the output ERD file, and compute constants used later.

Common Blocks: GLBL PARS

Subprograms Called: MACTIM (not used for mainframe)

OUTPUT (IERD, ITERM, NBYTES, T, Y)

Write predicted response variables into output file and show progress on screen.

+ IERD integer Fortran i/o unit for the output file.
+ ITERM integer Foman i,o unit for communicating with the user.
+ NBYTES int*2 Number of bytes written at each time step.
+ T real Time.
+ Y real 1-D array with state variables of system.

CommonBlocks: GLBL PARS VARS AERO

Subprograms used: WRITE1 GTIME~ GDATJ? SETCUR~
TOOLBX~

1 Used only on MTS.

2 Used only on IBM PC.

3 Used only on Apple Macintosh.

ROLLAX (ROLL, YROLAX, HROLAX, IXSRA)

Compute instantaneous lateral and vertical distances of the sprung mass c.g. from the
roll axis.

+ ROLL real*4 Roll angle of sprung mass.
t YROLAX real*4 Lateral distance (in a non-rolling frame) between c.g. of

sprung mass and roll axis.
c HROLAX real*4 Horizontal distance (in a non-rolling frame) between c.g. of

sprung mass and roll axis.
c IXSRA real*4 Moment of inertia of the sprung-mass about the

instantaneous roll axis.

Appendix C - Programming Details

Common Blocks: PARS SUSP

Function S T E E R 0

Return steering wheel angle or steering wheel torque as function of time.

t STEER real*4 Steering wheel angle.
+ T real*4 Time.

Common Blocks: MNMi

The angle (or torque) is determined by one of three methods, dependent upon the
variable NSTEER in the common block MNVR: (1) if NSTEER < 0, the UMTRI driver
model is used; (2) if NSTEER = 0, a sinusoidal function is used; and (3) if NSTEER > 0, a
table look-up is used.

Function SUM(MATRIX)

Sum values in a 4-element matrix.

t SUM real*4 S urn of values in matrix.
+ MATRIX real*4 matrix with 4 elements (2 x 2), (4 x I), or (1 x 4).

TABLE (My N, X, Y, Z, Q)

Table look-up routine.

+ M integer index of X-Y table (arrays) at which to start search
+ N integer index of X-Y table (arrays) at which to end search
+ X real N-array of abscissa table values
+ Y real N-array of ordinate table values
+ Z real scalar abscissa value
+ Q real scalar ordinate value of X-Y table corresponding to Z

TIMEDAT (TIMEDTj

Obtain the current time and date.

c TIMEDT char*24 String containing time and date.

TlRSUB (BETA, V, VY AW, ROLL)

Compute cornering force, aligning moment, steer, slip, and camber angle for all four
tires .

BETA real*4 Slip angle.
+ V real*4 Vehicle speed.
+ VYAW real" Yaw rate.
+ ROLL real*4 Roll angle.

Common Blocks: TIRE SUSP VARS

Appendix C - Programming Details

TRANS

Calculates transition matrix for driver model internal vehicle model. (without steering
system)

Common Blocks: DRVSTl DRIV TR!3STR

TRANST

Calculates transition matrix for driver model internal vehicle model. (with steering
system)

Common Blocks: DRVSTl DRIV TRSTOR

TRAJ (X, XT, YT, YPATH)

Obtains the previewed lateral path position (relative to the vehicle heading).

- + X real forward preview distance
+ X T real x-coordinates of path in vehicle axis system at X ahead
- + Y T real y-coordinates of path in vehicle axis system at X ahead
-+ YPATH real lateral offset of path from vehicle at X ahead

Common Blocks: INOUT

WHEELZ (Z, ROLL, PITCH)

Update matrices in the common block /VARS/ based on the new position of the sprung
mass.

+ Z real*4 Vertical position of sprung mass c.g. (in).
-+ ROLL real*4 Roll angle of sprung mass (rad)
+ PITCH real*4 Pitch angle of sprung mass (rad)

Common Blocks: SUSP VARS

The matrices ZW, FZ, KNMSTR, KNMCBR in common /VARS/ are updated. The
quantities computed for each wheel are: vertical displacement, normal ground load, bump-
steer angle and bump-camber angle for each wheel, relative to static trim. roll-center heights
are assumed fixed relative to the road for the calculation of lateral load transfer.

WINSUB (T, WIND)

Optional user-defined subroutine used to specify a wind profile - in lieu of entering a
time history table in the input data set. Called only if the WINDKY parameter is < 0.

-+ T real current time
t WIND real wind velocity magnitude

Common Blocks: GLBL

Appendix C - Programming Details

C.4 Modifying the Format of the Output File

There are at least two reasons why one might wish to modify the existing format of the
output file created by the Wind-Steer program: (1) to add or delete variables of interest, or
(2) to set the format to match established post-processing software other than the software
used within ERD at UMTRI.

C.4.1 Method Used to Write Time Histories

The code for writing the output file is contained in two program modules: (1) OPNOUT
opens the output file and writes the header information, and (2) OUTPUT writes the values
of output variables at discrete time intervals. Only these two subroutines need to be
maed. (In reading the following descriptions, it may be helpful to also view the source
code listings for those subroutines, contained in Appendix D.)

Most of the the code in subroutine OPNOUT assigns names to character variables.
Then, at the bottom of the subroutine, those variables are written into the output file in the
format required for an ERD header. Similarly, most of the code in OUTPUT assigns
values to elements in a REAL m y . Then, at the bottom of the subroutine, those variables
are written into the output file in the format required for an ERD header. It is essential that
the one-to-one correspondence is maintained between labels for variables and values for the
variables. As long as the two forms of data are properly paired, the number of variables
and their order really doesn't matter.

Both subroutines use a variable called NCHAN to identify the channel number being
considered. For each value of NCHAN, the following assignments are made in OPNOUT:

a 32-character name for the variable of interest is assigned to the character*32
Fortran m y element LONGNM (N o , e.g., "Input Steer Angle"

an 8-character name for the variable of interest is assigned to the character"8
Fortran array element SHORTN (NCHAN), e.g., "Steer In"

a 32-character generic name for the variable of interest is assigned to the
character*32 Fortran array element GENNM (N O , e.g., "Steer Angle"

an 8-character name for the units of the variable of interest is assigned to the
character"8 Fortran array element UNITNM (NCHAN), e.g., "deg"

a 32-character generic name for the rigid body associated with the variable of
interest is assigned to the character"32 Fortran array element RIGBOD (NCHAN),
e.g., "Input"

In subroutine OUTPUT, for each value of NCHAN, an appropriate value is assigned to
the array element BUFFER (NCHAN).

At the bottom of each subroutine, the value of NCHAN is equal to the total number of
channels that are written into the output file.

The channel definitions are grouped such that variables that apply to the input or the
entire vehicle are handled first. Variables that apply to each wheel (suspension and tire

Appendix C - Programming Details C-9

variables) are handled in two nested DO loops. The outer loop goes from the front axle to
the rear, and the inner loop goes from the left side to the right. Thus, each block of code
within the loops gets executed four times.

C. 4.1 Deleting Variables

To delete a variable, a block of code is removed from the OPNOUT subroutine and a
corresponding block is removed from OUTPUT. The block of code in OPNOUT begins
with comments describing the variable, then the statement "NCHAN = NCHAN + 1," and
then five assignment statements for element NCHAN of arrays LONGNM, SHORTN,
UNITNM, GENNM, and RIGBOD. Delete all of these lines or comment them out (insert
a C in column 1 of each line so that the line is ignored by the Fortran compiler). Identify
the corresponding assignment statement in OUTPUT and delete also (or comment it out).
It is usually necessary to modify some of the lines following the deleted line in OUTPUT
so that the following values are put into lower indexed elements of the array BUFFER.

For example, suppose we want to delete the Z deflection of the vehicle body. The
block of code in subroutine OPNOUT that provides the labels is the following: ...

UNITNM (NCHAN) = UDIST
RIGBOD (NCHAN) = THISRB

I:
c-uQ&bn
C - -

LON- - - l 7 Pas S D ~ car
S-1 - - - 7 c L

C
C Roll Angle
C

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Roll Angle
. a .

The underlined lines would be deleted. The code in subroutine OUTPUT that includes
this variable is the following:
C
C Body position variables
C

BUFFER (NCHAN + 1) = Y (1) / ININF'T
BUFFER (NCHAN + 2) = Y (2) / ININF'T
R1- IN= + 31 - - 3 1

BUFFF.n (N m + 41 - - 4) * TODFG
0 - - * * - - *

From viewing the definitions of the Y array, it turns out the Y(3) is the Z variable. The
underlined code would be m&ed as follows:

Appendix C - Programming Details C-10

C
C Body position variables
C

BUFFER (NCHAN + 1) = Y (1) / ININFT
BUFFER (NCHAN + 2) = Y (2) / ININFT

BUFFER (NCHAN + 5)
NWJ - - +

The line that set the value in the buffer was deleted, and the following lines were
modified so that at the end of the block NCHAN was incremented by 5, rather than 6 as
before.

C.4.2 Adding Variables

To add a variable, a new block of code is added to subroutine OPNOUT and a
corresponding block is added to OUTPUT. The code added to OPNOUT should (1)
provide labels for element NCHAN of the arrays LONGNM, SHORTN, UNITNM,
GENNM, and RIGBOD, and (2) the variable NCHAN should be properly incremented.
The code added to OUTPUT should (1) provide the value of the new variable and put it
into the element NCHAN of the array BUFFER, and (2) the variable NCHAN should be
properly incremented. The location of the added code defines where the new variable is
situated relative to the existing output variables. The only restriction is the the order of
channels in BUFFER must match the order of the labels in each of the character arrays.

C.4.3 Changing the F o m r of the Owut File

As the Wind-Steer program exists at UMTRI, the output file follows the ERD format.
The numerical values of the output variables can be written in binary form, or in text form
using a Fortran FORMAT that was specified in line 5 of the input file. The existing
flexibility should be sufficient to accommodate any desired formats for the output. For
example, if a plotting program expects to find columns of numbers separated by commas,
the following FORMAT could be put into line 5 of the input file:

If the existing flexibility is not sufficient, the code that writes can be replaced as
needed. (It lies at the bottom of the OUTPUT subroutine.)

The header portion of the file is more likely to cause problems with post-processing
software. The code that writes the header is contained in the bottom of the OPNOUT
subroutine, and is shown (partially) below:
L

C Write standard ERD f i l e heading.
C

WRITE (IOUT, (A)) 'ERDFILEV2.00' I
WRITE (IOUT, 410) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, DT*IPRINT

410 FORMAT(S(I6, ', ') ,E13.6)
411 FORMAT (A8,255A8)
412 FORMAT (A8, 31A32 : 2(/'&1000 I, 31A32))

Appendix C - Programming Details

WRITE(IOUT,'(A,A)') 'TITLE ', TITLE
WRITE(IOUT,411) 'SHORTNAM', (SHORTM(J), J=1, NCHAN)

. a .

WRITE (IOUT, ' (A,A) ') ' HISTORY Input file was I , FNREAD
WRITE (IOUT, ' (A) ') 'END '

This is the only code that is modified to change the form of the file header. Most of the
code above this section consists of statements-that assign labels to arrays of character
variables. Some of those labels can be printed in a different format if desired. For
example, suppose that a plotter expects to find labels enclosed in double quotes on the fmt
line, followed by numbers separated by commas. Also suppose that the shon labels (8
characters or less) are the appropriate length for the plotter. Then the existing code could
be replaced with the following:
C
C Write 1-line heading with labels enclosed in double-quotes and
C separated by commas. e.g., "Time", "Steer In", ... ,.
L

WRITE (IOUT, 411) ' SHORTNAM' , (SHORTN(J) , J=1, NCHAN)
411 FORMAT (100 ('"',A8, '"',lX)

- Appendix C - Programming Details

APPENDIX D - SOURCE CODE

This appendix lists the Fortran source code written specifically for the Wind-Steer
model. Variables in common blocks are defined in separate "include" files, which are listed
separately from the program subroutines at the end of the appendix.

Appendix D - Source Code

C
c CHRYSLER/UMTRI VEHICLE CROSSWIND STABILITY PROJECT
C
C 5-D.O.F. VEHICLE + 1-D.O.F. STEERING SYSTEM + CLOSED-LOOP DRIVER MODEL
C
C VERSION 1 . 0 - FEBRUARY 1989
C

Copyright (c) The Regents of The University of Michigan
1987-1989, Ann Arbor, Michigan. A l l Rights Reserved.

Written by Yoram Guy, 6-30-87 (Phase 1; v 0 . 7 0)
Modified by M. Sayers, 4-26-88 (mainframe t o PC versions; v 0.80)
Modified by C. MacAdam, 5-19-88 (driver model instal led; v 0.83)
Modified by M. Sayers, 8-28-88 (changed eqs. of motion,

new integrator; v 0.85)
Modified by C . MacAdam, 9-7-88 (driver model and wind prof i le

additions; v 0 . 9 0)
Modified by M. Sayers,12-14-88 (cosmetics, changed input; v 0 . 9 1)

L

C Modified by C . MacAdam,l-30-89 (steering system, revised t i r e eqns
C and params for SAE conventions, torque-option driver model; v 1 . 0)
C

MACHINE DEPENDENCIES:
Most of the following code i s standard Fortran 77 and i s independent
of the implementation, EXCEPT:

(1) llinclude" f i l e s are not standard and must be referenced
as needed for a specif ic compiler.

(2) The terminal is referenced as unit * i n READ and WRITE
statements involving the user. (Although not "standard,"
t h i s works wi th most compilers and probably i s OK.)

Otherwise, a l l machine-specific sections of code are ident i f ied by
comments tha t begin with "C++ll. This f i l e includes the code
needed for

(1) the Microsoft Fortran com~i le r for the IBM PC
(2) the Absoft Fortran compiler for the Apple Macintosh
(3) the FortranVS compiler for the UM mainframe (MTS) system

PROGRAM SECTIONS : -----------------
MAIN -- Controls llflowll of program and performs num, integration

BLOCK DATA -- i n i t i a l i z e s variables i n COMMON blocks
AIRACT(T, YAW, BETA, VYAW) -- handle aerodynamic forces and moments
DFUVEl(DFW) -- Read driver model parameters
DFUVER(X, Y, DFW, DFWNOW) -- compute closed-loop s teer input
DRIVGO -- i n i t i a l i z e driver model
ECHO -- create output f i l e w i t h echo of input parameters
FDAMP(VZ, VROLL, VPITCH, FD) -- compute damping force for 4 wheels
FUNCTN (T, Y, YP) -- computes YP derivatives given T and Y
Function FWIND(T) -- provide cross-wind as function of time

Appendix D - Source Code

GMPRD (A, B, R, N, M, L) -- multiply two matrices
INDATA -- read input data and converts units
INIT -- computes constants used in simulation
Function LENSTR(STFUNG) -- no, of characters in string
OPNOUT -- create output file and write header
OUTPUT(T, Y, YP) -- write simulation variables into file at time T
Function POLY4(COEF, FZ) -- evaluate 4th-order polynomial of Fz
ROLLAX (ROLL, YROLAX, HROLAX, IXSRA) -- roll axis kinematics
Function STEER(T) -- provides steering wheel angle as function of T
Function SUM(MATRIX) -- sums 4 elements of matrix
TABLE(M, N, X, Y, 2, Q) -- table look-up routine.
TIMEDAT(T1MEDT) -- produce string with time and date
TIRES(BETA, V, VYAW, ROLL) -- compute tire forces and moments
TRAJ(X, XT, YT, YPATH) -- compute lat. disp. of previewed path
TRANS -- Compute transition matrix for driver model
WHEELZ(Z, ROLL, PITCH) -- handle wheel kinematics

LIST OF SYMBOLS: ----------------

1/0 SYMBOLS

IREAI) - unit number for input data
IECHO - unit number for output file with echo of input data
IOUT - unit number for simulation output file

SIMULATION PARAMETERS

DT -
TEND -
IPRINT -
KSYWND -
AIRHO
v -
VWIND -
WINDECY -

time step for numerical integration
end time of simulation
print internal (every i-th point is save in output file)
wind heading angle (of velocity vector)
air density
vehicle speed
wind speed
wind key: * 0 => time history wind profile input:

windky is num of (T,VW) table pairs.

< 0 => call user function "FWIND" for
profile input.

GLOBAL TIME-VARIABLES

T - time
Y (13) - array of 13 state variables
AY - vehicle lateral acceleration (ignoring roll-accel.)
RHO - path curvature
BETAIR - aerodynamic sideslip angle
VAX,VAY - x,y components of air velocity (axles reference)

Position Speed Accel. -------- ----- ------
XG, VXG
YG, VYG
BETA, VBETA

- X of total cg (inertial reference)
- Y of total cg (inertial reference)
- ground sideslip (BETA = VY / V)

Appendix D - Source Code D-3

Z, VZ , AZ - sprung mass cg vertical
ROLL, VROLL, AROLL - roll
PITCH, VPITCH, APITCH - pitch
YAW, WAW, AYAW - yaw
SW, VSW, ASW - steering wheel angle
FW - front wheel steer angle

GLOBAL INTEGERS - INDICES AND FLAGS

UNITS - (CHA.R*l) 'El = English (ft, lbm, deg), otherwise metric
NUMKEY - 1 = binary MAC, 2 = BINARY PC, 5 = text output
NAXLE - 1 = front, 2 = rear
NSIDE - 1 = left, 2 = right
NSTEER - >O ---> steer table (no. of T, SW pairs)

- =O ---> sine function (harmonic SW)
- <O ---> driver model (-no. of XPNT,YPNT pairs)

VEHICLE AERODYNAMIC, STEERING-SYSTEM, AND GENERAL PARAMETERS

AREA -
QZERO -
KY -
CL0,KL -
K R - -
cM0,KM -
KN -
CD0,KD -
CBOOST -
CFSS -
GR -
GRTODG -
ISS -
KSC -
KSL -
SSKEY -
XTRAIL -
HCGTTL -
HCGSP -
XCGSP -
XWBCGS -
XWBCGT -
WHLRAD -
IXSCG -
IXSRA -
IXZ -
IYS -
IZZ -
KROLL -
MASS -
SPMASS -
SPWGHT -
WEIGHT -
USWGHT -
WRATIO -
WB -
CSROLL -

VEHICLE CROSS-SECTION AREA (IN Y-Z PLANE)
DENSITY * AREA / 2
AERODYNAMIC SIDE FORCE COEFFICIENT
AERODYNAMIC DOWN FORCE (-LIFT) COEFFICIENTS
AERODYNAMIC ROLL MOMENT COEFFICIENT
AERODYNAMIC PITCH MOMENT COEFFICIENTS
AERODYNAMIC YAW MOMENT COEFFICIENT
AERODYNAMIC DRAG FORCE COEFFICIENTS

STEERING POWER-BOOST COEFFICIENT
STEERING SYSTEM COULOMB FRICTION MOMENT
STEERING-SYSTEM OVERALL KINEMATIC RATIO
GR (ABOVE) * TODEG
STEERING-SYSTEM MOMENT OF INERTIA - LUMPED AT STEER-WHL
STEERING-COLUMN STIFFNESS
STEERING LINKAGE STIFFNESS
STEERING-SYSTEM KEY TRIGGERING USE OF DYN ST SYS MODEL
FRONT WHEEL MECHANICAL TRAIL

TOTAL STATIC CG HEIGHT ABOVE GROUND
STATIC SPRUNGMASS CG HEIGHT ABOVE GROUND
STATIC SPRUNG-MASS CG DISTANCE FROM FRONT AXLE
SPRUNG-MASS CG DISTANCE AHEAD OF HALF-WHEELBASE POINT
TOTAL CG DISTANCE AHEAD OF HALF-WHEELBASE POINT
TIRE ROLLING RADIUS = ASSUMED UNSPRUNG-MASS CG HEIGHT
SPRUNG-MASS X-X MOMENT OF INERTIA (X-X THRU SPRUNG CG)
SPRUNG-MASS MOMENT OF INERTIA ABOUT ROLL AXIS
SPRUNG-MASS XZ PRODUCT OF INERTIA
SPRUNG-MASS PITCH MOMENT OF INERTIA
TOTAL YAW MOMENT OF INERTIA
TOTAL ROLL STIFFNESS
TOTAL MASS
SPRUNG MASS
SPRUNG WEIGHT
TOTAL WEIGHT
UNSPRUNG WEIGHT
FRONT-AXLE NORMAL (GROUND) LOAD FRACTION OF TOTAL WEIGHT
WHEELBASE
REAR BEAM-AXLE ROLL-STEER COEFFICIENT

Appendix D - Source Code

C
C PER-AXLE PARAMETERS - INDEXED (AXLE)
C
C XAXLE - DISTANCE FROM TOTAL CG TO AXLE (NEGATIVE FOR REAR)
C TRACK - NOMINAL TRACK WIDTH (ASSUMED CONSTANT)
C HOROLC - STATIC ROLL CENTER HEIGHT ABOVE GROUND
C HCGSRC - STATIC ROLL CENTER HEIGHT BELOW SPRUNG CG (<O IF ABOVE)
C FZOWHL - TIRE/ROAD STATIC NORMAL LOAD AT EACH WHEEL
C KZ - SUSPENSION VERTICAL (RIDE) STIFFNESS AT EACH WHEEL
c KZAXLE - SUSPENSION VERTICAL (RIDE) STIFFNESS (2 X KZ)
C KAUX - SUSPENSION AUXILIARY ROLL STIFFNESS
C KTIRE - TIRE VERTICAL STIFFNESS
C CZJNCE - DAMPING COEFFICIENT IN JOUNCE AT EACH WHEEL
c CZRBND - DAMPING COEFFICIENT IN REBOUND AT EACH WHEEL
C CSFY - FY (CORNERING-FORCE) COMPLIANCE-STEER COEFFICIENT
C CSMZ - ALIGNING-MOMENT COMPLIANCE-STEER COEFFICIENT
C CCFY - FY COMPLIANCE-CAMBER COEFFICIENT (0 FOR BEAM AXLE)
C
C KINEMATIC Z-POLYNOMIAL COEFFICIENTS (2 X 2) - INDEXED (AXLE,POWER)
C
C CSZ - BUMP-STEER COEFFICIENTS
C CCZ - BUMP-CAMBER COEFFICIENTS
C YROLCF - R.C. LATERAL DISP. VS ROLL IN SPRUNG MASS COEFFICIENTS
C HROLCF - R.C. VERTICAL DISP. VS ROLL IN SPRUNG MASS COEFFICIENTS
C
C PER-WHEEL (2 X 2 ARRAY) VARIABLES - INDEXED (AXLE,SIDE)
C
C ALFA - TIRE SLIP ANGLE
C GAMMA - TIRE CAMBER ANGLE
c ALFAO - STATIC TIRE SLIP ANGLE
C GAMMA0 - STATIC TIRE CAMBER ANGLE
C FY - TIRE CORNERING FORCE DUE TO SLIP AND CAMBER
C MZ - TIRE ALIGNING MOMENT
C FD - SUSPENSION VERTICAL DAMPING FORCE
C FZ - TIRE/ROAD NORMAL LOAD
C ZW - SUSPENSION DYNAMIC VERTICAL DISPLACEMENT
C KNMCBR - KINEMATIC (BW/ROU) STEER ANGLE
C KNMCBR - KINEMATIC (BW/ROLL) CAMBER ANGLE
C
C TIRE FZ-POLYNOMIAL COEFFICIENTS (4 X 2) - indexed (AXLE,POWER)
C
C CALFA - cornering-stiffness Fz-polynomial coefficients
C CGAMMA - camber-stiffness Fz-polynomial coefficients
C CALIGN - aligning-stiffness Fz-polynomial coefficients
C
C
C SINUSOIDAL STEER PARAMETERS (for equation see function STEER)
C
C TSWBGN - global time at steer start (prior to which: SW = 0)
C TSWEND - global time at steer end (after which: SW is frozen)
C TSWPRD - length of period (set)
C SWPHSE - time phase lead (deg, e.g. t90 ---> cosine)
C SWAMPL - amplitude (steering wheel deg)
C SWSHFT - amplitude zero shift (steering wheel deg)
C

"

Appendix D - Source Code

C
C MAIN PROGRAM
c - - - - - - - - - - --
C

IMPLICIT REAL (K,M)
EXTERNAL FUNCTN
REAL Y (13), YP (1'3), YM(13)
CHARACTER AGAIN
INTEGER*2 HOUR, MIN, SEC, 1100

include DRVMOD.inc
include GLBL.inc
include PARS.inc
include SUSP.inc
include AERO.inc
include VARS.inc
include PRNT.inc
include mnvr.inc

DATA T/O.O/, Y/13*0.0/
PI = 4.0 * ATAN(l.O)

C
C Read input data (includes opening all i/o files)
C

CALL INDATA
CALL INIT

C
C Initialize Driver Model Vehicle Parameters:
C

IF (NSTEER . LT . 0) THEN
IF (ABS (SSKEY) .LE. 0.001) THEN
CALL DRIVGO

ELSE
IF (NSTEER .GT. -100) CALL DFUVGT

ENDIF
ENDIF

C
C Set up output file with simulated time histories
C

CALL OPNOUT
C
C Start by evaluating derivatives and printing variables at t=O
CMD--Use function TIME for Mac (1 line)

CALL TIME (ISEC1)
CMD--Use function GETTIM for IBM PC (2 lines)
* CALL GETTIM (HOUR, MIN, SEC, 1100)
* ISECl = 3600*HOUR + 60fMIN + SEC + I100*.01

CALL FUNCTN (T, Y, YP)
CALL OUTPUT (T, Y, YP)

C
C Integration loop. Continue until printout time reaches final time.
C Begin each step by allowing subroutines to update internal variables.
C Then use two evaluations of the derivatives to integrate over the
C step.
C

NLOOP = TEND/DT/IPRINT+l
DT2 = DT / 2.
DO 40 ILOOP=l, M;OOP

Appendix D - Source Code

DO 30 INNER=l,IPRINT
DO 10 I=l, NEQN
YM(1) = Y(1) + DT2 * YP(1)

CONTINUE
CALL FUNCTN (T+DT2, YM, YP)
DO 20 I=l,NEQN
Y (I) = Y (I) + DT * YP(1)

CONTINUE

T = T + D T
CALLFUNCTN (T, Y, YP)

30 CONTINUE
CALL OUTPUT (T, Y, YP)
IF (T .GE. TEND) go to 50

40 CONTINUE
50 CONTINUE

CMD--Use function TIME for Mac (1 line)
CALL TIME (ISEC2)

CMD--Use function GETTIM for IBM PC (2 lines)
* CALL GETTIM (HOUR, MINI SEC, 1100)
* ISEC2 = 3600*HOUR + 60*MIN + SEC + I100*.01

* End of integration loop. Print final status of run

WRITE (*, *) Termination at time = I , T, ' sec . '
WRITE (*,*) Computation efficiency: I , (ISEC2 - ISEC1) / T,

& sec/sim. sect
WRITE (*,*) ' '

CLOSE (IOUT)
PAUSE 'Done1
END

..
SUBROUTINE AIRACT(T, YAW, BETA, WAW) ..

Subroutine AIRACT updates air velocity and sideslip, and the
magnitudes of all corresponding aerodynamic forces and moments
in the common block /AERO/

IMPLICIT REAL (KIM)

include GLBL.inc
include PARS.inc
include AERO.inc

Look up wind magnitude from TABLE, or, get from user-defined "FWIND"
function. TABLE and EWIND return WIND in units of kmh or mph.

WIND = 0.0
IF (WINDKY .GT. 0) THEN
CALL TABLE (1, WINDKY, TWIND, WINMAG, T, WIND)

ELSE
WIND = 0.0
IF (WINDKY . LT. 0) WIND = FWIND (T)

ENDIF

CONVERT WIND TO INTERNAL UNITS OF M/SEC OR IN/SEC:

Appendix D - Source Code

W I N D = W I N D / XMHMPH
C
C CALCULATE A I R S L I P AND VELOCITY:
C

RELKSY = KSYWND - YAW
VAX = (W I N D * COS (RELKSY) - V * COS (BETA)) / ININFT
VAY = (W I N D * SIN(RELKSY) - V * SIN(BETA)) / ININFT
VAY = VAY - XWBCGS * WAW / ININFT
VA2 = VAX * VAX + VAY * VAY
VA = SQRT (VA2)
BETAIR = 0 . 0
IF(VAY .GT. 0 . 0) BETAIR = (ATAN2(VAY, VAX) - P I) * TODEG
IF (VAY . LT . 0 . 0) BETAIR = (ATAN2 (VAY, VAX) + P I) * TODEG
BETA2 = BETAIR * BETAIR

C
C CALCULATE AERODYNAMIC FORCES AND MOMENTS ACTING
C AT GROUND LEVEL, AT HALF WHEELBASE POINT:
C

CY = -KY * BETAIR
FYA = QZERO * CY * VA2

C
CL = CLO + KL * BETA2
FZA = -QZERO * CL * VA2

C
CR = -KR * BETAIR
MXA = QZERO * WB * CR * VA2

C
CM = CMO + KM * BETA2
MYA = QZERO * WB * CM * VA2

C
CN = -KN * BETAIR
MZA = QZERO * WB * CN * VA2

C
CD = CDO + KD * BETA2
FDRAG = QZERO * CD * VA2

C
C RESOLVE MOMENTS ABOUT SPRUNG OR TOTAL CG, AS APPROPRIATE:
C

MXA = MXA - HCGSP * FYA
MYA = MYA + XWBCGS * FZA
MZA = MZA - XWBCGT * FYA

C
RETURN
END

..
BLOCK DATA

..
* I n i t i a l i z e variables i n common b l o c k s .
C

IMPLICIT REAL (K,M)
C

include GLBL. inc
include P A R S . i n c
include MNVR. i n c
include S U S P . i n c
include T I R E . i n c
include AERO. inc
include VARS . i n c

Appendix D - Source Code

include PRNT.inc

DATA NEQN/13/, NSTEER/~/, ToDEG/~. 0/, SW/O. 01, m/2*0.0/, ''1
DATA RHO/O. 0/, KROLL/O. 0/, CSROLL/O. O/, CSZ/4*O. O/t CCZ/4*O00/
DATA ~ ~ ~ / 4 * 0 . 0 / , GAMMA/4*O.O/, ~~/4*0.0/, MZ/~*O.O/, FD/4*0.0/
DATA ~~/4*0.0/, YROLCF/~*O. O/I HROLCF/~*O.O/
DATA KNMSTR/~*O. 0/, CPLSTR/~*~. 0/, TTLST'/~*O .O/, KNMCBR/4*O.O/
DATA YOUTDR/~~*O.O/, STORQ/O O/, MMCOL/O*O/

DATA G/9.81/, ININFT/l/, XMHMPH/3.6/, UOMEGA/'rad/sec1 /
DATA U"ISP/'rn1/, UDIST/'ml/, uANGL/'radl/, UVELFT/~~/S'/
DATA UFORC / ' N ' / , UTORQ/ ' m-N ' / , KINEM/ . TRUE . / , BEAM/ . TRUE . /
DATA LINE/-1/, NPAGE/l/, INDX/O/, BLNK12/' ' /
DATA FNREAD / ' ' /

C
END C***

C***
C
C DRIVE1: Reads Driver Model (Path, Preview, Lag) Parameters->unit IREAD
C
C Author and Modification Section
C
C Author: C. C. MacAdarn
C
C Date written: 05/19/88
C
C Written on:
C
C Modifications:
C
C
C
C Algorithm Description ---
C
C Purpose and use:
C
C Error conditions:
C
C Machine dependencies : none
C
C Called By: INDATA
C
C
C

SUBROUTINE DRIVE1 (DFW)
SAVE

C
C Variable Descriptions -
C
C---Arguments passed:
C

Appendix D - Source Code

C DFW...steer angle of front tires [or average] (rad)
C
C
C---COMMON blocks---
C

include drvmod. inc
include pars.inc
include glbl.inc

C
C--- DRIV.BLX common block variables--------------------------------------
-
C
C CAF.. .total cornering stiffness df tires on left front susp (lb/rad)
C CAR. ..total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WF.... static load on front suspension (lb)
C WR.... static load on rear suspension (lb)
C U.. . . .initial velocity (ft/sec)
C
C---DRVST1.BLK common block variables
C
C GRAVgr avitational constant
C TICYCL. ..driver model sample time (sec)
C TSS minimum preview time (sec)
C DMAX upper bound on front wheel angle steer (rad)
C XP,YP x-y path coords(SAE) wrt inertial coords [input] (ft)
C TAUMEM.. .driver transport time dealy [input parameter] (sec)
C TFF.... ..driver model preview time [input parameter] (s~c)
C R Mvehicle mass (slug)
C A.. distance from c.g. to front suspension center-line (ft)
C B........distance from c.g. to rear suspension center-line (ft)
C RI total vehicle yaw inertia (slug-ft)
C PSIO.....current yaw angle reference value (rad)
C NTF......number of points in the preview time interval
C NP. number of points in the x-y trajectory table
C TLAST....last time driver model calulated a steer value (sec)
C DFWLST.. .last value of steer calculated by driver model (rad)
C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM 2-dim array (time & steer history) used in delay calculatln
C XT,YT transformation of XP,YP in vehicle body axes (ft)
C
C--- Local vari&les---
C
C WGHT..total static weight on front and rear suspsensions (lb)
C DFW...steer angle of front tires [or average] (rad)
C
C---Functions and s&routines---
C
C None
C
C
C
C Process Block --
C

G W = 32.2
TICYCL = 0.0099
TSS = 0.0
DMAX = 0.2

Appendix D - Source Code

DO 40 J = 1, NP
READ(IREAD,30) WDR(J), YPDR(J)

30 FORMAT (2'2'12.4)
40 CONTINUE

READ(IREAD,60) TAUMEM, TFF
60 FORMAT (F12.4)

C
PSI0 = 0.0
NTF = 10
DO 80 J = 1, NP
XT(J) = XPDR(J) * COS(PSI0) + YPDR(J) * SIN(PSI0)
YT(J) = -XPDR(J) * SIN(PSI0) + YPDR(J) * COS(PSI0)

80 CONTINUE
TLAST = 0.
DFWLST = 0.
TILAST = 0.
DFW = 0.
DO 90 I = 1, 100
DMEM(1,l) = 0.

90 DMEM(If2) = -1.
RETURN
END

..
C
C Closed-Loop Steer Calculation
C
C DRIVER: Computes closed-loop steering control during the simulation
C
C Author and Modification Section
C
C Author: C. C. MacAdam
C
C Date written: 05/19/88
C
C Written on:
C
C Modifications:
C

C Algorithm Description
C

Purpose and use:

Error conditions:

References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis," Interim
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE07-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-86-41, July 1986.

MacAdam, C.C. glApplication of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,"

Appendix D - Source Code D- 11

C IEEE Transactions on Systems, Man, and Cybernetics,
C Vol. 11, June 1981.
C
C MacAdam, C.C. "An Optimal Preview Control for Linear
C Systems," Journal of Dynamic Systems, Measurement,
C and Control, ASME, Vol. 102, No. 3, September 1980.
C
C
C Machine dependencies: none
C
C Called By: STEER (function)
C
C -
C

SUBROUTINE DRIVER (X, Y, DFW, DFWNOW)
SAVE

C
C Variable Descriptions
C
C---Arguments passed:
C
C X.......time in the simulation (sec)
C Y.......current state vector obtained from WIND/STEER
C DFW closed-loop steering control returned to WIND/STEER
C DFWNOW..current steering angle [average] of front wheels,
C after effects of roll-steer, compliance, etc.
C

DIMENSION Y (5) , YC (5)
DIMENSION DUMVll(4)
DIMENSION DUMVl(4) , VECM (4)
DIMENSION DUMM1(4,4), DUMM;!(4,4)
DIMENSION FFV (4)

C
C--- COMMON blocks---
C

include drvmod. inc
include pars.inc
include aero.inc
include glbl.inc

C
C--- DRIV,BLK common block variables--------------------------------------
-
C
C CAF ... total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C W E ' static load on front suspension (lb)
C WR.... static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C
c--- DRVST1,BLK common block variables
C
C GRAVg ravitational constant
C TICYCL...driver model sample time (sec)
C TSS. minimum preview time (sec)
C DMAX upper bound on front wheel angle steer (rad)
C XP,YP x-y path coords(SAG) wrt inertial coords [input] (ft)
C TAUMEM. ..driver transport time dealy [input parameter] (sec)

Appendix D - Source Code D- 12

. C TFF driver model preview time [input parameter] (sec)
C RM..vehicle mass (slug)
C A. distance from c.g. to front suspension center-line (ft)
C B........distance from c.g. to rear suspension center-line (ft)

. C RI total vehicle yaw inertia (slug-ft)
C PSIO.....current yaw angle reference value (rad)
C NTF......number of points in the preview time interval C NP number of points in the x-ytrajectory table

. . . C TLAST. last time driver model calulated a steer value (sec)
C DFWLST...last value of steer calculated by driver model (rad)
C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM.....2-dim array (time & steer history) used in delay calculat'n C XT,YT transformation of W,YP in vehicle body axes (ft)
C
c--- TRSSTR.BLK common block variables
C
C TTT transition matrix at 10 discrete points in preview interval C TTTl integral of trans matrix wrt preview time
C GV.........vector of control gain coefficients
C
C---Local variables---
C
C YC.......local (body-axis based) copy of state vector Y
C VECM.....observer vector - lateral. displacement from state vector
C DUMVl work vector
C D W l . . . 11

C D Mwork matrix
C DUMM2 I1
C T........time in the simulation (sec)
C EPSIy aw angle between body axis and current index value, PSIO
C PSIO.....current nominal value of yaw angle used for linearization
C NP.......number of points in x-y path table
C XP,YP x-y inertial path table [input] (ft)
C XT,YT x-y path table transformed to body axis [PSIO] system (ft)
C EPSY2 cumulative preview path error squared
C EPSY.....mean squared value of cumulative preview path error
C TSUM.....scalar work quantity
C SS UM..... scalar work quantity
C DFWLST . . . steering control from last calculation (rad)
C TJIp review time ahead from present time value (sec)
C I, J, K. . . . integer counters
C XCARp review distance ahead in feet (ft)
C XOp resent forward postion of vehicle c.g. (ft)
C TTAB.....current time less the driver delay, TAUMEM. Used to access
C the delayed driver response stored in DMEM array. (sec)
C Sl.......scalar work quantity
C Tl.......scalar work quantity
C EPp reviewed path error (ft)
C FFV......aerodynamic lateral accel and yaw accel "sensory1v vector
C
C---Funct-ons and subroutines---
C

EXTERNAL TRAJ, GMPRD
C

C Process Block
C

Appendix D - Source Code

DATA VECM /I. 0, 3*0.0/

Update Aerodynamic accel (force/moment) vector fo r d r i v e r model:

FFV(1) = 0 . 0
FFV(2) = FYA / RM * WEIGHT / SPWGHT
FFV(3) = MZA / ININFT/ RI
FFV(4) = 0 . 0

1 T = X
EPSI = ABS (Y (4) - PSIO)
DO 1 0 I = 1, 5

1 0 YC (I) = Y (I)
I F (EPSI .LE. ,0002) GO TO 30

Update Coord ina te Trans format ion

PSI0 = Y (4)
DO 20 J = 1, NP

XT (J) = XPDR(J) * COS (PSIO) + YPDR(J) * SIN(PSI0)
20 YT(J) = -XPDR(J) * SIN(PSI0) + YPDR(J) * COS(PSI0)

30 YO = -Y (5) * SIN(PSI0) + Y (1) * COS(PSI0)
XO = Y (5) * COS (PSIO) t Y (1) * SIN(PSI0)
Y C (1) = YO
YC(4) = Y (4) - PSI0
EPSY2 = 0.
TSUM = 0 .
SSUM = 0 .
Dm = DFWLST

Return i f time from last c a l c u l a t i o n less t h a n sample i n t e r v a l

I F (T - TILAST .LE. TICYCL) RETURN

Update t i r e c o r n e r i n g s t i f f n e s s e s and v e h i c l e v e l o c i t y
a n d r e c a l c u l a t e t r a n s i t i o n m a t r i x : Not Used P r e s e n t l y
*** COMMENTED OUT ***

CAFTEM = (CCAFl*FFZLl+CCAF2*FFZL2) / (FFZLltFFZL2)
CARTEM = (CCARl*FFZL3+CCAR2*FFZL4) / (FFZL3+FFZL4)
CAF = CAFTEM
CAR = CARTEM
UTEMP = DMVELC
U = UTEMP
CALL TRANS

Loop t o calculate o p t i m a l preview c o n t r o l p e r Refe rences 2 & 3:
(NTF p o i n t s w i t h i n t h e preview i n t e r v a l)

DO 50 I = 1, NTF
T J I = (TFF - TSS) / NTF * I t TSS
DO 40 J = 1, 4

DO 40 K = 1, 4
D W (J , K) = TTTl(J ,K,I)

40 DUMM2(JfK) = TTT(J,K,I)

Appendix D - Source Code

CALL GMPRD(VECM, D W , DUMV11, 1, 4 , 4)
CALL GMPRD(VECM, DuMM2, DUMV1, 1, 4, 4)
CALL GMPRD(DUMV1, YC, T I , 1, 4, 1)

Get observed path input, YPATH, within preview interval a t XCAR f t :

XCAR = XO + U * T J I
CALL TRAJ(XCAR, XT, YT, YPATH)

CALL GMPRD(DUMV11, GV, S1, 1, 4, 1)
CALL GMPRD(DUMV11, FFV, DYAERO, 1, 4 , 1)

EP is the previewed path error a t t h i s preview point.

EP = T I + S1 * DFWNOW + DYAERO - YPATH
TSUM = TSUM + EP * S1
SSUM = SSUM + S1 * S1

Cumulative preview error calculation (unrelated t o control)

EPSY2 = EPSY2 + EP * EP * (TFF - TSS) / NTF

50 CONTINUE

Cumulative preview error calculation (unrelated t o control)

EPSY = SQRT (EPSY2) / (TFF - TSS)

Optimal value - no delay yet .

DFW = -TSUM / SSUM + DFWNOW

Maximum s teer bound se t a t DMAX (arbi t rary)

IF (ABS (DFW) . GT. DMAX) DFW = DMAX * SIGN (I., DFW)

Store s teer history and corresponding times i n DMEM.
Retrieve steer delayed by TAUMEM sec and return as
delayed driver s teer control, DFW.

DO 60 J = 1, 2
DO 60 I = 1, 99

DMEM(101 - 1,J) = DMEM(100 - I, J)
60 CONTINUE

D M E M (1 , l) = DFW
D M E M (1 , 2) = T
TTAB = T - TAUMEM
DO 70 I = 1, 99

IJK = I
IF (DMEM(1 + 1 , 2) .LE. TTAB .AND. D M E M (I , 2) .GE. TTAB)

1 GO TO 90
70 CONTINUE

WRITE (*,80)TAUMEMfDFW,X
80 FORMAT (l o ' , I***** TAUMEM PROBABLY TOO LARGE * * * * * I ,

& /, 3 (l X , G12.6))
STOP

90 DFW = 0 . 0
IF(T .GE. TAUMEM) DFW = D M E M (I J K , l)

Appendix D - Source Code

C
C Save steer and time values for next calulation.
C

DFWLST = DFW
TLAST = X
TILAST = X
RETURN
END

..
C
C Closed-Loop Steer Calculation
C
C DRIVET: Computes closed-loop steering TORQUE control during the simul
C
C Author and Modification Section
C
C Author: C. C. MacAdam
C
C Date written: 01/30/89
C
C Written on:
C
C Modifications:
C
C
C
C Algorithm Description
C
C Purpose and use:
C
C Error conditions:
C
C References:
C
C MacAdam, C.C. "Development of Driver/Vehicle Steering
C Interaction Models for Dynamic Analysis," Final
C Technical Report, U.S. Army Tank Automotive Command
C Contract No. DAAE07-85-C-R069, The University of
C Michigan Transportation Research Institute Report
C No. UMTRI-88-53, December 1988.
C
C MacAdam, C.C. "Application of an Optimal Preview Control
C for Simulation of Closed-Loop Automobile Driving,"
C IEEE Transactions on Systems, Man, and Cybernetics,
C Vol. 11, June 1981.
C
C MacAdam, C.C. "An Optimal Preview Control for Linear
C Systems," Journal of Dynamic Systems, Measurement,
C and Control, ASME, Vol. 102, No. 3, September 1980.
C
C
C Machine dependencies : none
C
C Called By: STEER (function)
C
C
C

SUBROUTINE DRIVET(X, Y, DRTORQ, DRTNOW)

Appendix D - Source Code

SAVE
C
C Variable Descriptions -
C
C---Arguments passed:
C
C X.......time in the simulation (sec)
C Y.......current state vector obtained from WIND/STEER
C DRTORQ closed-loop TORQUE control returned to WIND/STEER
C DRTNOW.....current steering TORQUE
C

DIMENSION Y (7), YC (7)
DIMENSION D M 1 1 (6)
DIMENSION D M 1 (6) , VECM(6)
DIMENSION DUMM1(6,6), DUMM2 (6,6)
DIMENSION FFV(6)

C
C---COMMON blocks---
C

include drvtor . inc
include pars.inc
include aero.inc
include glbl.inc
include vars.inc

C
C---DRIV,BLK common block variables------------------------------------
C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)
C WF....static load on front suspension (lb)
C WR.. ..static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C
C--- DRVST1.BLK common block variables
C
C GRAV..;..gravitational constant
C TICYCL ... driver model sample time (sec)
C TSS.minimum preview time (sec)
C DMAX upper bound on front wheel angle steer (rad)
C XP, YP. . . . x-y path coords (SAE) wrt inertial coords [input] (ft)
C TAUMEM. . .driver transport time dealy [input parameter] (sec)
C TFF. driver model preview time [input parameter] (sec)

RM.vehicle mass <slug)
A........distance from c.g. to front suspension center-line (ft)
B..... ... distance from c.g. to rear suspension center-line (ft)
RI.......total vehicle yaw inertia (slug-ft)
PSIO. current yaw angle reference value (rad)
NTF......number of points in the preview time interval
NP number of points in the x-y trajectory table
TLAST last time driver model calulated a steer value (sec)
STLST ... last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM. 2-dim array (time & steer history) used in delay calculat'n
XT,YT. ... transformation of XP,YP in vehicle body axes (ft)

L c--- TRSSTR.BLK common block variables
C

Appendix D - Source Code

C TTT. transition matrix at 10 discrete points in preview interval
C TTTl integral of trans matrix w r t preview time
C GGV.........vector of control gain coefficients
C
C---Local ~a~iables--
C
C YC.......local (body-axis based) copy of state vector Y
C VECM observer vector - lateral displacement from state vector
C DUMVl work vector
C DUMVll... II

C DUMMlwork matrix
C DUMM2 I1
C T..... . . . time in the simulation (sec)
C EPSIy aw angle between body axis and current index value, PSIO
C PSIO.....current nominal value of yaw angle used for linearization
C NP.......number of points in x-y path table
C XP,YP x-y inertial path table [input] (ft)
C XT,YT x-y path table transformed to body axis [PSIO] system (ft)
C EPSY2 cumulative preview path error squared
C EPSY.....mean squared value of cumulative preview path error
C TSUM scalar work quantity
C SSUM... ..scalar work quantity
C DFWLST ... steering control from last calculation (rad)
C TJIp review time ahead from present time value (sec)
C I, J, K. . . .integer counters
C XCARp review distance ahead in feet (ft)
C XO p resent forward postion of vehicle c.g. (ft)
C TTAB.....current time less the driver delay, TAUMEM. Usedto access
C the delayed driver response stored in DMEM array. (sec)
C Sl.......scalar work quantity
C Tl.......scalar work quantity
C EPp reviewed path error (ft)
C FFV......aerodynamic lateral accel and yaw accel "sensory" vector
C & power boost influence
C
C---Functions and subroutines---
C

EXTERNAL TRAJ, GMPRD
C
w

C
C Process Block -
C
C

DATA VECM /1.0, 5*0.0/
DATA STLST /0.0/

C
C Update Aerodynamic accel (force/moment) vector for driver model:
C

FFV(1) = 0.0
FFV(2) = FYA / FiM * WEIGHT / SPWGHT
FFV (3) = MZA / ININFT/ RI
FFV(4) = 0.0
FFV(5) = 0.0
FFV(6) = 0.0

C
1 T = X

EPSI = ABS (Y (4) - PSIO)

Appendix D - Source Code

DO 1 0 I = 1, 7
1 0 YC (I) = Y (I)

I F (EPSI .LE. , 0 0 0 2) GO TO 30

U p d a t e C o o r d i n a t e T r a n s f o r m a t i o n

P S I 0 = Y (4)
DO 20 J = 1, NP

X T (J) = XPDR(J) * COS(PSI0) + YPDR(J) * S I N (P S I 0)
2 0 YT (J) = -XPDR(J) * S I N (P S I 0) f YPDR(J) * COS (PSIO)

30 YO = -Y (7) * S I N (P S I 0) f Y (1) * COS(PSI0)
Xo = Y (7) * COS(PSIO) t Y (1) * S I N (P S I 0)
YC(1) = YO
YC (4) = Y (4) - P S I 0
EPSY2 = 0 .
TSUM = 0 .
SSUM = 0 .
DRTORQ = STLST

R e t u r n i f time from last calculation less t h a n s a m p l e interval

I F (T - TILAST .LT. TICYCL) RETURN

U p d a t e t i r e cornering stiffnesses and v e h i c l e v e l o c i t y
and recalculate t r ans i t i on matrix: N o t U s e d P r e s e n t l y
*** COMMENTED OUT ***

W T E M = (C W l * F F Z L l + C W 2 * F F Z L 2) / (FFZLl+FFZL2)
CARTEM = (CCARl*FFZL3+CCAR2*FFZL4) / (FFZL3tFFZL4)
CAF = CAFTEM
CAR = CARTEM
UTEMP = DMVELC
u = UTEMP
CALL TRANST

Loop t o calculate optimal p r e v i e w c o n t r o l per R e f e r e n c e s 2 & 3:
(NTF points w i t h i n t h e p r e v i e w i n t e r v a l)

DO 50 I = 1, NTF
T J I = (TFF - TSS) / NTF * I f TSS
DO 40 J = 1, 6

DO 40 K = 1, 6
DUMMl (J, K) = TTTT1 (J, K, I)

40 D W (J , K) = T T T T (J , K , I)
CALL GMPRD (VECM, DUMM1, DUMV11, 1, 6, 6)
CALL GMPRD(VECM, DUMM2, DUMV1, 1, 6, 6)
CALL GMPRD(DUMV1, YC, T I , 1, 6, 1)

Get observed p a t h input , YPATH, w i t h i n preview i n t e r v a l a t XCAR f t :

XCAR = XO t U * T J I
CALL TRAJ(XCAR, XT, YT, YPATH)

CALL GMPRD(DUMV11, GGV, S1, 1, 6, 1)
CAU GMPRD (DUMV11, FFV, DYAERO, 1, 6, 1)

Appendix D - Source Code

C EP i s t h e previewed path e r r o r a t t h i s preview po in t .
C

EP = T 1 t S1 * DRTNOW t DYAERO - YPATH
TSUM = TSUM t EP * S1
SSUM = SSUM t S1 * S1

C
C Cumulative preview e r r o r ca lcu la t ion (unre la ted t o con t ro l)
C

EPSY2 = EPSY2 t EP * EP * (TFF - TSS) / NTF
C

50 CONTINUE
C
C Cumulative preview e r r o r ca lcu la t ion (unre la ted t o con t ro l)
C

EPSY = SQRT (EPSY2) / (TFF - TSS)
C
C Optimal value - no delay y e t .
C

DRTORQ = -TSUM / SSUM + DRTNOW
C
C Maximum steer bound set a t STMAX (a r b i t r a r y)
C

IF (ABS (DRTORQ) . GT. STMAX) DRTORQ = STMAX * SIGN (I., DRTORQ)
C
C S tore torque h i s t o r y and corresponding times i n DMEM.
C Retr ieve steer delayed by TAUMEM sec and r e t u r n as
C delayed d r i v e r torque cont ro l , DRTORQ.
C

DO 60 J = 1, 2
DO 60 I = 1, 99

DMEM(101 - I, J) = DMEM(100 - I, J)
60 CONTINUE

DMEM (1,l) = DRTORQ
DMEM(1,2) = T
TTAB = T - TAUMEM
DO 70 I = 1, 99

IJK = I
IF (DMEM(1 t 1,2) .LT. TTAB .AND. DMEM(I,2) .GE. TTAB)

1 GO TO 90
70 CONTINUE

WRITE (* ,8 0) TAUMEM, DRTORQ, X
80 FORMAT (l o ' , '***** TAUMEM PROBABLY TOO LARGE *****I,

& /,3(1X,G12.6))
STOP

90 DRTORQ = 0.0
IF (T . GE. TAUMEM) DRTORQ = DMEM (IJK, 1)

C
C Save s t e e r and time values f o r next ca lcu la t ion .
C

STLST = DRTORQ
TLAST = X
TILAST = X
RETURN
END

C***
..
C
C *** CHRYSLER I n i t i a l i z a t i o n Entry f o r t h e Driver Model ***

Appendix D - Source Code D - 20

C
C DRIVGO: Intializes driver model vehicle-based parameters from COMMONS
C
C Author and Modification Section --
C
C Author: C. C. MacAdam
C
C Date written: 05/19/88
C
C Written on: Mac I1
C
C Modifications:
C
C
C
C Algorithm Description -
C
C Purpose and use:
C
C Error conditions:
C
C References:
C
C MacAdam, C.C. "Development of Driver/Vehicle Steering
C Interaction Models for Dynamic Analysis," Interim
C Technical Report, U.S. Army Tank Automotive Command
C Contract No. DAAE07-85-C-R069, The University of
C Michigan Transportation Research Institute Report
C NO. UMTRI-86-41, July 1986.
C
C MacAdam, C.C. "Application of an Optimal Preview Control
C for Simulation of Closed-Loop Automobile Driving,"
C IEEE Transactions on Systems, Man, and Cybernetics,
C Vol. 11, June 1981.
C
C MacAdam, C.C. wAn Optimal Preview Control for Linear
C Systems," Journal of Dynamic Systems, Measurement,
C and Control, ASME, Vol. 102, No. 3, September 1980.
C
C
C Machine dependencies: none
C
C Called By: INDATA
C
"

C
SUBROUTINE DRIVGO
SAVE

C
C Variable Descriptions
C
C--- Arguments passed: None
C
C
C---COMMON blocks---
C

include drvmod.inc
include pars.inc

Appendix D - Source Code

include glbl . inc
include t i r e . i n c
include vars.inc

C
C---DRIV,BLK common block variables--------------------------------------

C
C CAF. . . t o t a l cornering s t i f fness of t i r e s on l e f t front susp (lb/rad)
C CAR.. . t o t a l cornering s t i f fness of t i r e s on l e f t rear susp- (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (f t)
C WF.... s t a t i c load on front suspension (lb)
C WR.... s t a t i c load on rear suspension (lb)
C U i n i t i a l velocity (f t / sec)
C
C--- DRVST1.BLX common block variables
C
C GRhV g ravi ta t ional constant
C TICYCL...driver model sample time (sec)
C TSS... . . . minimum preview time (sec)
C DMAX upper bound on front wheel angle s teer (rad)
C XP,YP x-y path coords(SAE) w r t i n e r t i a l coords [input] (f t)
C TAUMEM...driver transport time dealy [input parameter] (sec)
C TFF. driver model preview time [input parameter] (sec)

RM.vehicle mass (s lug)
A.d is tance from c.g. t o front suspension center-line (f t)
B distance from c.g. t o rear suspension center-line (f t)
R I t o t a l vehicle yaw i n e r t i a (slug-ft)
PSIO.....current yaw angle reference value (rad)
NTF number of points i n the preview time interval
NP.......number of points i n the x-y t rajectory table
TLAST l a s t time driver model calulated a s teer value (sec)
DFWLST...last value of s teer calculated by driver model (rad)

C TILAST. . . l a s t sample time driver model calulated a s teer value (sec)
C DMEM.. . . - 2 - d i m array (time & s teer history) used i n delay calculat In

C XT,YT transformation of XP,YP i n vehicle body axes (f t)
m
L
C--- Local vari&les---
C
C A.distance from c. g. t o front suspension center-line (f t)
C B.. . . .distance from c.g. t o rear suspension center-line (f t)
C WGHT. . t o t a l s t a t i c weight on front and rear suspsensions (lb)
C RM. . . . t o t a l s t a t i c mass (slug)
C DFW. . . s teer angle of front t i r e s [or average] (rad)
f-
L
C---Functions and subroutines---
C

EXTERNAL TRANS
C - -pppppppp------

C
C Process Block -- ---
C
C

WGHT = WEIGHT
B = WRATIO * WB / 1 2 .
A = (1. - WRATIO) * WB / 1 2 .
RM = WGHT / GRAV
WHBS = A + B

Appendix D - Source Code

WE' = WGHT * B / WHBS
WR = WGHT * A / WHBS

C R I = A * B * R M
RI = IZZ / 12.

C
C Initial Tire Cornering Stiffnesses for Driver Model (lb/rad):
C (flip sign from SAE convention to positive values here)
C

CAF = 0.0
CAR = 0.0
DO 30 NAXLE = 1, 2
DO 20 NSIDE = 1, 2
CALF = 0.0
DO 10 NPOWER = 1, 4

CALF=CALF
1 + CALFA (NPOWER, NAXLE) * FZ (NAXLE, NSIDE) ** (NPOWER-1)

10 CONTINUE
IF(NAXLE .EQ. 1) C A F = C A F - 0.5 * CALF
IF(NAXLE .EQ. 2) CAR = CAR - 0.5 * CALF

20 CONTINUE
30 CONTINUE

C
C Speed in ft/sec:
C

U = V * KMHMPH * 88. / 60.
C
C
C Call TRANS to Calculate Transition Matrix
C

CALL TRANS
C

RETURN
END

C***
..
C
C *** CHRYSLER Initialization Entry for the Driver Model ***
n
L

C DRIVGT: Intializes driver model vehicle-based parameters from COMMONS
C

C Author and Modification Section
C
C Author: C. C. MacAdam
C
C Date written: 01/30/89
C
C Written on: Mac I1
C
C Modifications:
C
C
C
C Algorithm Description
C
C Purpose and use:
C
C Error conditions:
C

Appendix D - Source Code

References:

MacAdam, C.C. lfDevelopment of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis," Final
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE07-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-88-53, December 1988.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,"
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems," Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: INDATA

-
C

SUBROUTINE DRIVGT
SAVE

C
C Variable Descriptions -
C
C--- Arguments passed: None
C
C
C--- COMMON blocks---
C

include drvtor.inc
include pars.inc
include glbl.inc
include tire.inc
include vars.inc

C
C--- DRIV,BLK common block variables--------------------------------------
-
C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR ... total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WE' static load on front suspension (lb)
C WR static load on rear suspension (lb)
C U.initial velocity (ft/sec)
C c--- DRVST1.BLK common block variables
C
C GRAVg ravitational constant
C TICYCL. . .driver model sample time (sec)
C TSS......minimm preview time (sec)
C DMAX upper bound on front wheel angle steer (rad)
C XP,YP x-y path coords(SAE) wrt inertial coords [input] (ft)

Appendix D - Source Code

C TAUMEM ... driver transport time dealy [input parameter] (sec)
C T F Fdriver model preview time [input parameter] (sec)
C RM.vehicle mass (slug)
C A.d i s tance from c.g. t o front suspension center-line (f t)
C B.d is tance from c.g. t o rear suspension center-line (f t)
C RI t o t a l vehicle yaw ine r t i a (slug-ft)
C PSIO.....current yaw angle reference value (rad)
C NTF......number of points i n the preview time interval
C NP..... ..number of points i n the x-y t rajectory tab le
C TLAST....last time driver model calulated a s teer value (sec)
C DFWLST...last value of s teer calculated by driver model (rad)
C TILAST...last sample time driver model calulated a s teer value (sec)
C DMEM 2-dim array (time & s teer history) used i n delay calculat 'n
C XT,YT transformation of XP,YP i n vehicle body axes (f t)
C
C--- Local variables---
C
C A.. . . .distance from c.g. t o front suspension center-line (f t)
C B.. . . .distance from c.g. t o rear suspension center-line (f t)
C WGHT..total s t a t i c weight on front and rear suspsensions (lb)
C RM. . . . t o t a l s t a t i c mass (slug)
C DEW...steer angle of front t i r e s [or average] (rad)
C
C---Functions and subroutines---
C

EXTERNAL TRANS
C
-
C
C Process Block
C
C

WGHT = WEIGHT
B = WRATIO * WB / 1 2 .
A = (1. - WRATIO) * WB / 12.
RM = WGHT / GRAV
WHBS = A + B
WF = WGHT * B / WHBS
WR = WGHT * A / WHBS

C R I = A * B * R M
Kt = I Z Z / 12.
STMAX = 1000.

C
C I n i t i a l Tire Cornering Stiffnesses for Driver Model (lb / rad) :
C (f l i p sign from SAF: convention t o posit ive values here)
C

CAF = 0.0
CAR = 0 . 0
DO 30 NAXLE = 1, 2

DO 20 NSIDE = 1, 2
CALF = 0.0
DO 10 NPOWER = 1, 4
CALF = CALF

1 + CALFA (NPOWER, NAXLE) * FZ (NAXLE NSIDE) ** (NPOWER-1)
1 0 CONTINUE

IF(NAXLE .EQ. 1) CAF = CAF - 0.5 * CALF
IF(MUCLE .EQ. 2) C A R = C A R - 0.5 * CALF

20 CONTINUE

Appendix D - Source Code

30 CONTINUE
C
C Speed in ft/sec:
C

U = V * KMHMPH * 88. / 60.
C
C
C Call TRANS to Calculate Transition Matrix
C

CALL TRANST
C

RETURN
END

..
SUBROUTINE ECHO

..
* Echo parameter values to file to verify that the input was
* interpreted correctly

include drvmod.inc
include GLBL.inc
include PARS.inc
include MNVR.inc
include SUSP.inc
include TIRE.inc
include AERO . inc
include PRNT.inc
CHARACTER*32 FNECHO
CHARACTER*2 4 TIMEDT
LOGICAL ISIT

C
C Get name of echo file from user. Delete old file if it exists.
C

FNECHO = ' '
WRITE (*, (A\) I) Name of (optional) parameter echo file:
READ (*, ' (A)) FNECHO
IF (FNECHO . EQ. ' ') THEN
RETURN

ELSE
INQUIRE (FILE=FNECHO, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IECHO, FILE=FNECHO)
CLOSE (IECHO, STATUS='DELETE1)

END IF
OPEN (IECHO, FILE=FNECHO, STATUS=l NEWt)

END IF

WRITE (IECHO, ' (A/) ')
& ' ECHO FROM WIND/HANDLING SIMULATION, V0.91'
WRITE (IECHO, (A, A/) I) Input file: I , FNREAD

CALL TIMDAT (TIMEDT)
WRITE (IECHO, (A, A/)) Run made at , TIMEDT

WRITE (IECHO, (A,A/) ') ' TITLE: ' , TITLE
WRITE (IECHO, ' (A/))

& GENERAL SIMULATION INFORMATION:'
IF (UNITS .EQ. 'El .OR. UNITS .EQ. 'el) THEN

Appendix D - Source Code

WRITE (IECHO, (T5, A)) ' E n g l i s h U n i t s 1
ELSE

WRITE (IECHO, (T5, A)) ' M e t r i c U n i t s 1
END I F
WRITE (IECHO, ' (T5,A,A) ') ' O u t p u t format: ' , F W T

WRITE (IECHO, (T5, 'V, TEND, DT: ' ' ,T30, 3 6 1 4 . 5) ') V, TEND, DT
I F (IPFUNT .EQ. 1) THEN

WRITE (IECHO, (T5,A)) 'Write t o f i l e every t i m e step1
ELSE

WRITE (IECHO, (T5,A, I 2 , A)) 'Write t o f i l e e v e r y ' , IPR.INT,
& steps'

END I F
WRITE(IECH0, ' (T5, "KSYWND, AIRHO: ", T30, 2 6 1 4 . 5) ')

1 KSYWND, AIRHO
I F (WINDKY . GE. 0) THEN

W R I T E (I E C H O f l (/ A /) ') ' WIND MAGNITUDE TIME HISTORY INPUT:'
DO 3 2 , J=1, WINDKY

WRITE (IECHO, ' (3X, 2G14 .5) ') TWIND (J) , WINMAG (J)
3 2 CONTINUE

ELSE
WRITE (IECHO, ' (/ A /) ')

& Wind input defined by user function FWIND'
END I F

C
I F (NSTEER . EQ. 0) THEN

WRITE (IECHO, (/A/)) SINUSOIDAL STEER:
WRITE (IECHO, (T8, 'TSWBGN, TSWEND: ' I , T 3 0 f 2 G 1 4 . 5) ') TSWBGN,

& TSWEND
WRITE (IECHO, (T8, 'SWSHFT, SWAMPL: , T 3 0 f 2 G 1 4 . 5) ') SWSHFT,

& SWAMPL
WRITE(IECH0, (T8, 'ITSWPRD, SWPHSE:",T30f2G14.5) ') TSWPRD,

& SWPHSE
ELSE I F (NSTEER .LT. 0 .AND. NSTEER .GT. -100) THEN

WRITE (IECHO, (/A/)) DRIVER MODEL INPUT : '
WRITE (IECHO, (T5, IDFULAG, DRPREV: ' , T 3 0 f 2 G 1 4 . 5) ') TAUMEM, TFF
WRITE (IECHO, (/ T ~ , A /)) 'X-Y path coordinates : '
DO 35, J=1, ABS (NSTEER)

WRITE (IECHO, ' (3X, 2G14 .5) ') XPDR(J) , YPDR (J)
35 CONTINUE

ELSE
I F (NEQN . EQ. 11) THEN

WRITE(IECH0, (/A/) I) STEER TABLE - t i m e (s e c) , s w (d e g) :
DO 40, J=1, ABS (NSTEER)

WRITE (IECHO, ' (3X, 2 6 1 4 . 5) ') XPNT (J) , YPNT (J)
4 0 CONTINUE

ELSE
IF(NSTEER .GT.-100) THEN
WRITE(IECH0, ' (/ A /) ') STEER TORQUE TABLE - t i m e (s e c) , s torq

& (i n - l b s) :
DO 42, J=1, ABS (NSTEER)

WRITE(IECH0, ' (3X, 2 6 1 4 . 5) ') XPNT(J) , YPNT(J)
4 2 CONTINUE

ENDIF
ENDIF

END I F
C
C T o t a l vehicle and sprung m a s s p a r a m e t e r s :

Appendix D - Source Code

WRITE (IECHO, ' (/A/) ') ' TOTAL VEEECIX AND SPRUNG MASS PARAMETERS : '
WRITE (IECHO, (T5, 'WEIGHT, SPWGET, -10: I , T30, 3G14 .5))

1 WEIGHT, SPWGHT, WRATIO
WRITE (IECHO, (T5, 'IXSCG, IYS, IZZ, HXZ: I , T30 , 4G14.5) l)

1 IXSCG, IYS, IZZ, IXZ
WRITE (IECHO, (T5, 'WB, WHLRAD, EKGJTZ: *, T30, 3 6 1 4 . 5) I)

1 WB, WHLRAD, HCGTTL

A e r o d y n a m i c p a r a m e t e r s :

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(IECHO,
(IECHO,
(IECHO,
(IECHO,
(IECHO,
(IECHO,

) AERODYNAMIC PAWWZTERS :
1 AREA: I I , T30, a 4 . 5) ') AREA

'KY, KR, KN:I1, T30, 3 G 1 4 . 5) I) KY, KR,
'CLO, KL:", T30, 2 6 1 4 . 5) ') CLO, KL
'CMO, KM:", T30, 2 G P 4 . 5) ') CMO, KM
'CDO, KD:", T30, 2 6 1 4 . 5) ') CDO, KD

S t e e r i n g system:

WRITE (IECHO, (/A/)) STEERING SYSTEM:
WRITE (IECHO, ' (TS, " ISS , KSC, DLASB, KSL: " , T30, 4 6 1 4 . 5)) I S S ,

& KSC, DLASH, KSL
WRITE (IECHO, (T5, IGR, XTRAIL, CSS: ", T30, 3G14 .5)) GR,

& XTRAIL, CSS
WRITE (IECHO, (TS, ICBOOST, SSKEY, CFSS: I , T30, 3G14 .5))

1 CBOOST, SSKEY, CFSS

I F (KINEM) THEN
WRITE (IECHO, ' (/A) ')

& NKINEM o 0 -- Use f u l l kinematics model1
ELSE

WRITE (IECHO, ' (/A) ')
& NKINEM = 0 -- Use simple k i n e m a t i c s modelf

END I F

I F (BEAM) THEN
WRITE (IECHO, ' (/A) ') ' BEAM 0 0 -- Beam rear suspension1

ELSE
WRITE (IECHO, ' (/A)) ' BEAM = 0 -- Independent rear suspension1

END I F

S u s p e n s i o n and t i r e data:

WRITE (IECHO, ' (/ ' l AXLE NUMBER' ' , 12,
/ / T S , l l S u s p e n s i o n and t i r e d a t a t f) ') NAXLE

WRITE (IECHO, (T7, lTRACK, HOROLC: ", T30, 2 6 1 4 . 5) I)

TRACK (NAXLE) , HOROLC (NAXLE)
WRITE (IECHO, ' (T7, 'KZ, KAUX: ' ' , T30, 2G14 .5) ')

KZ (NAXLE) , KAUX (NAXLE)
WRITE(IECH0,' (T7, I1CZJNCE, CZRBND:", T30, 2 G 1 4 . 5) ')

CZ JNCE (NAXLE) , CZRBND (NAXLE)
WRITE (IECHO, (T7, "ALFAO, GAMMAO: I , T30, 2 6 1 4 . 5))

ALFAO (NAXLE) , GAMMA0 (NAXLE)

K i n e m a t i c coefficients:

Appendix D - Source Code

IF (KINEM) THEN
WRITE(IECHO,' (/T5,A) I) 'Kinematic coefficients:'
WRITE(IECH0, ' (T7, A, T30, 2614.5) ')

& YROLCF : , YROLCF (NAXLE ,I) , YROLCF (NAXLE, 2)
WRITE(IECHOI1 (T7, A, T30, 2614.5) ')

& HROLCF : ' , HROLCF (NAXLE, 1) , HROLCF (NAXLE ,2)
IF (BEAM .AND. NAXLE .EQ. 2) THEN
WRITE (IECHO, ' (T7, A, T30, 614.5) ')

& 'Rear axle roll steer: ', CSROLL
ELSE
WRITE (IECHO, ' (T7, A, T30, 2G14.5) ')

& 'CSZ: I , CSZ (NAXLE, 1) , 'CSZ (NAXLE, 2)
END IF
WRITE(IECH0,' (T7, A, T30, 2614.5) ')

& 'CCZ: I , CCZ(NAXLE,l), CCZ(NAXLE,2)
END IF

Compliance coefficients:

WRITE(IECH0,' (/T5,A)') ICompliance coefficients:'
WRITE(IECHO,'(T7, llCSFY, CSMZ, CCFY:", T30, 3G14.5)')

1 CSFY (NAXLE) , CSMZ (NAXLE) , CCFY (NAXLE)

Tire coefficients (positive stiffness input values assumed):

WRITE (IECHO, (/T5,A) I) 'Tire stiffness coefficients: '
WRITE(IECHOI1 (T7, "CALFA:", T16, 4614.5)')

1 (CALFA(J,NAXLE) , J=1,4)
WRITE (IECHO, (T7, 'CGAMMA: " , T16, 4614.5) I)

1 (CGAMMA(J,NAXLE), J=1,4)
WRITE(IECH0, '(T7, ''CALIGN:"I T16, 4614.5)')

1 (CALIGN(J,NAXLE) , J=1,4)
WRITE(IECHOI1 (T7, "KTIRE:I1, T16, 614.5) ') KTIRE(NAXLE)

80 CONTINUE
CLOSE (IECHO)
RETURN
END

..
SUBROUTINE FDAMP (VZ, VROLL, WITCH, FD)

..
C SUBROUTINE FDAMP RETURNS ED, THE DAMPING FORCE ACTING AT EACH WHEEL
C -- ACCOUNTING FOR SEPARATE JOUNCE AND REBOUND COEFFICIENTS.
C POLARITY: NET JOUNCE VELOCITY => POSITIVE FD
c - - - -- - - - - NET REBOUND VELOCITY => NEGATIVE FD
C

IMPLICIT REAL (K,M) . . .
REAL FD (2,2)

C
include SUSP.inc

C
DO 20, NAXLE = 1, 2
DO 10, NSIDE = 1, 2
VDAMP = VZ - XAXLE (NAXLE) * VPITCH

1 + .5 * TRACK(NAXLE) * VROLL * (-l)**NSIDE
IF (VDAMP .GT. 0.0) THEN
FD(NAXLE,NSIDE) = CZJNCE(NAXLE) * VDAMP

ELSE

Appendix D - Source Code

FD (NAXLE, NSIDE) = CZRBND (NAXLE) * VDAMP
END IF

10 CONTIrn
20 CONTINUE

C
RETURN
END

..
SUBROUTINE FUNCTN (T, Y, YP)

..
C SUBROUTINE FUNCTN DEFINES THE EQUATIONS OF MOTION FOR THE 5 D.0.F
C VEHICLE + THE 2 D.0.F STEERING SYSTEM (A SECOND ORDER SYSTEM FOR
C THE STEERING WHEEL INERTIA/COLUMN AND FIRST-ORDER SYSTEM FOR THE
C LOWER WHEEL ROTATIONAL MOTION (NO WHEEL INERTIA) :
C YP(1) = F(Y, T), WHERE Y, YP AREVECTORS, AND YP(1) =DY(I)/DT.
C STATE-VECTOR Y AND T ARE PASSED TO FUNCTN, AND VECTOR YP RETURNED.
C

SAVE VSW1, VSW2
IMPLICIT REAL (K,M)
REAL IXSRA, Y (13), YP (13)

C
include GLBL.inc
include PARS.inc
include SUSP.inc
include AERO.inc
include VARS . inc
include TIRE.inc
DATA VSW1, VSW2 /2*0.0/
DATA ALF1, ALF2, ALFlPR, ALF2PR / 4 * 0.0/

CONVERT VECTOR Y INTO NAMES

XG = Y (1)
YG = Y (2)
z = Y (3)
ROLL =Y(4)
PITCH = Y(5)
YAW =Y(6)
VROLL = Y (7)
WITCH = Y (8)
VYAW = Y(9)
BETA = Y (10)
vz = Y (11)

Steering System STATE Variables:

IF (NEQN .EQ. 13) THEN
vsw = Y (12)
SW = Y (13)

ENDIF

GET CURRENT STEERING WHEEL ANGLE OR STEERING WHEEL TORQUE
CONTROL INPUTS: (depending upon inclusion, or not, of steering sys)

COMaL = STEER (T)
IF (NEQN . EQ. 11) THEN
sw = corn

Appendix D - Source Code

IF (NEQN . EQ. 13) THEN
STORQ = CONTEL

ENDIF

CALCULATE CURRENT GEOMETRY AND FORCES

CALL ROLLAX(ROLL, YROW(, HROLAX, IXSRA)
CALL FDAMP (VZ, VROLL, VPITCH, FD)
CALL WH.EELZ(Z, ROLL, PITCH)
CALL TIRSUB(BETA, V, VYAW, ROLL)
CALL AIRACT(T, YAW, BETA, WAW)

EQUATIONS OF MOTION

(I) ROLL MOMENT :

M S m = SPMASS * HROLAX
SUMFY = SUM(FY) + FYA
SUMMZ = SUM(MZ) t MZA + XAXLE(l)*(FY(l,l) + FY(1,2))

& + XAXLE (2) * (FY (2,l) + FY (2,2))

AROLL = (SPWGHT * YROLAX - IXZ / IZZ * SUMMZ + MXA
& - KROLL * ROLL - MSHR / MASS * SUM(FY)
& + . 5 * TRACK (1) * (FD (1,l) - ED (1,2))
& + . 5 * TRACK(2)*(FD(2,1) - FD(2,2)))
& / (IXSRA - MSHR * MSHR / MASS - IXZ*IXZ/IZZ)

(I1) LATERAL FORCE :

VBETA = (SUMFY - MSHR * AROLL) / (MASS * V) - VYAW

(111) YAW MOMENT:

AYAW = (SUMMZ - IXZ * A R O U) / IZZ

(IV) VERTICAL FORCE:

AZ = (WEIGHT + FZA - SUM(FZ)) / SPMASS

(V) PITCH MOMENT:

APITCH = (XAXLE(1) * (KZAXLE(1) * ('2 - XAXLE(1) * PITCH)
& + FD (1,l) + FD (1,2))
& + XAXLE (2) * (KZAXLE (2) * (Z - W E (2) * PITCH)
& + FD(2,l) t FD(2,2)) + MYA) / IYS

(VI) POWER-STEERING SYSTEM (Lash & Coulomb Friction included):

IF (NEQN .EQ. 13) THEN

Calculate equivalent single steering system stiffness based on input
values for the steering column, steering linkage, and gear ratio:

KSS = 2.*GRfGR*KSC*KSL / (2, *KSL + GR*GR*KSC)

Appendix D - Source Code

XPM = XP + XTRAIL

P o w e r B o o s t (cboost is p e r c e n t a g e / 1 0 0 contribution by p u m p) :
cboost = 0 -> no power steering boost

EXPR = 1. + 2 . * XPM * CB * (CA / TODEG) / KSS

ASW = (STORQ - KSS / (GR**2) * ((1 . - 1. / EXPR) * SW - 2. * XPM
& * CA * GR * CB * (BETA + XAXLE(1) * VYAW / V) / (EXPR * KSS)))
& / I S S - CSS * vsw / I S S

ASW = ASW * TODEG

U p d a t e c o l u m n "wrap-up" torque, mmcol = m - iss * asw:
(m e a s u r e d i n t e s t s)

MMCOL = STORQ - I S S * ASW / TODEG

Add c o u l o m b f r i c t i o n and c h e c k for p o l a r i t y change :

I F (ABS (VSW) . GT. 0 . 0 1 .AND. VSW2 .NE. 0 . 0) THEN
ASW = ASW - SIGN ((CFSS / I S S * TODEG) , VSW)
I F (SIGN (1. ,VSW) .NE. SIGN (1. ,VSWl) .AND.

& S I G N (1 . ,VSW) .EQ. S IGN(1 . ,VSW2)) THEN
vsw = 0 . 0
ASW = 0 . 0
VSWl = 0 . 0
v s w 2 = 0 .o
Y (1 4) = 0 . 0

END I F
ELSE

I F (ABS (ASW) . GT . (CFSS / I S S * TODEG)) THEN
ASW = ASW - SIGN((CFSS / I S S * TODEG), ASW)

ELSE
ASW = 0 . 0

ENDIF
END IF

vSW2 = VSWl
VSWl = VSW

F r o n t Wheel A n g l e s :

FW (1) = SW / GR / (1. + (XP1 + XTRAIL) * CB * CAI / TODEG / (KSS
& / 2.)) + (XP1 + XTRAIL) * CAI * CB / (KSS / 2 .) * (BETA +
& XAXLE(1) * VYAW / V) / (1. + (XP1 + XTRAIL) * CB * CA1 / TODEG

Appendix D - Source Code D - 32

FW(2) = SW / GR / (1 . + (XP2 + XTRAIL) * CB * CA2 / TODEG / (KSS
& / 2 .)) + (XP2 + XTRAIL) * CA2 * CB / (KSS / 2 .) * (BETA +
& XAXLE(1) * VYAW / V) / (1 . + (XP2 + XTRAIL) * CB * CA2 / TODEG
& / (KSS / 2 .))

C
C Include the lash (d e g) :
C

I F (ABS (DLASH) . GT. 0 . 0 0 1) THEN
ALFlPR = (BETA + XAXLE (1) * VYAW / V) * TODEG - FW (1)
I F (ABS (ALFlPR) . GT . DLASH) THEN
ALFl = ALFlPR - SIGN (DLASH, ALFlPR)
FW(1) = BETA + XAXLE(1) * VYAW / V - A L F l / TODEG

ELSE
FW(1) = BETA + XAXLE(1) * VYAW / V

ENDIF

ALF2PR = (BETA + XAXLE (1) * VYAW / V) * TODEG - FW(2)
I F (ABS (ALF2PR) . GT. DLASH) THEN

ALF2 = ALF2PR - SIGN (DLASH, ALF2PR)
FW(2) = BETA + XAXLE(1) * VYAW / V - ALF2 / TODEG

ELSE
FW(2) = BETA. + XAXLE(1) * VYAW / V

ENDIF

ELSE

no lash: (t o radians)

FW(1) = FW(1) / TODEG
m (2) = FW(2) / TODEG

ENDIF

E n d of steering s y s t e m calculations.

INERTIAL DISPLACEMENTS OF TOTAL CG:

VDIR = YAW + BETA
VXG = V * COS (VDIR)
VYG = V * S I N (VDIR)

LATERAL ACCELERATION OF TOTAL CG (W/O CONTRIBUTION OF ROLL-ACCEL.) :

AY = (VYAW + VBETA) * V / G

P a t h curvature:

RHO = (VBETA + VYAW) / V

C o n v e r t n a m e s i n t o array YP

Y P (1) = VXG

Appendix D - Source Code

YP(2) = VYG
YP (3) = vz
YP(4) = VROLL
YP (5) = VPITCH
YP(6) = VYAW
YP(7) = AROLL
YP (8) = APITCH
YP (9) = AYAW
YP (10) = VBETA
YP (11) = AZ

C
C Steering System STATE Variables:
C

IF (NEQN .EQ. 13) THEN
YP(12) = ASW
YP (13) = VSW

ENDIF
C
C Copy array Y into common block for use by driver model
C

DO 150, J = 1, 13
YOUTDR (J) = Y (J)

150 CONTINUE
C

RETURN
END ..
FUNCTION FWIND (T)

..
C This function is an optional user-defined subroutine used to
C calculate or define a wind profile in lieu of entering time history
C wind profiles. It is called when the WINDKY parameter is entered as
C a negative integer; a positive entry for WINDKY forces a table
C look-up instead.
C
C Time, T, is passed to the subroutine; the wind magnitude, FWIND, is
C returned.
C

include GLBL.inc
C
C (user-defined code)
C

WIND = 20.0 + 2.0 * (SIN(l.O*T) +SIN (2.5*T) +SIN (3.5*T)
1 +SIN (4.5*T) +SIN (5.5*T) +SIN (6.5*T) +SIN (8.5*T) +SIN (10, S*T)
2 +SIN (12.7*T) +SIN (1.9*T) +SIN (5.0*T) +SIN (7.5*T) +SIN (9,4*T)
3 +SIN (0.63*T) +SIN (3.1*T) +SIN(6.8*T) +SIN (lO.O*T) +SIN (1 5*T)
4 +SIN(14.1*T) +SIN (15.7*T) +SIN(16.9*T) +SIN (18.2*T) +SIN (19,5*T)
5 +SIN (22.0*T) +SIN (25.1kT) +SIN (0.85*T))

C
C

RETURN
END

...................................
C
...................................

SUBROUTINE GMADD (A, B, R, N, M)
DIMENSION A (N*M) , B (N*M) , R (N*M)
W N * M

Appendix D - Source Code

DO 10 I=l,NM
lo R(I)=A(I) +B (I)

RETURN
END

...................................
C

SUBROUTINE GMSUB (A, B, R, N, M)
DIMENSION A (N*M) , B (N*M) , R (N*M)
NM=N*M
DO 10 I=l,NM

10 R (I) =A (I) -B (I)
RETURN
END

C***
..

C
C *** Matrix Product Subroutine ***
C
C GMPRD: Computes matrix product
C
C Author and Modification Section
C
C Author: IBM Scientific Subroutine
C
C Date written:
C
C Written on:
C
C Modifications: C. MacAdam
C

C Algorithm Description
C
C Purpose and use: R = A B
C
C Error conditions:
C
C Machine dependencies : none
n
L

C Called By: DRIVER
C

SUBROUTINE GMPRD(A, B, R, N, M, L)
C
C Variable Descriptions
C
C--- Arguments passed:
n
L

C A.....N x Mmatrix
C B.....M x L matrix
C R.....N x L resultant matrix = A B product
C N.....integer row dimension of A
C M.....integer column dimension of A (or row dimension of B)
C L.....integer column dimension of B
C

Appendix D - Source Code

DIMENSION A (N*M) , B (M*L) , R (N*L)
C

C None
C
C---COMMON Vari&les---
C
C None
C

C I R , I K , M, K, L, IR, JI, J, N, IB, I K , e tc i n t e g e r counters
n
L
C---Functions and subroutines---
C
C None
C
"
C
C Process Block -- ----
C

IR = 0
I K = -M
DO 10 K = 1, L

I K = I K + M
DO 10 J = 1, N

IR = IR + 1
J I = J - N
I B = I K
R(1R) = 0.
DO 10 I = 1, M

J I = J I + N
IB = IB + 1

10 R(1R) = R(1R) + A (J I) * B (1 B)
RETURN
END

..
SUBROUTINE INDATA

..
C (1) Get f i l e names from t h e user ,
C (2) connect t h e f i l e s t o t h e i r Fo r t r an i / o u n i t s ,
C (3) r ead t h e d a t a s e t from u n i t IREAD,
C (4) echo t h e parameter va lues t o u n i t IECHO,
c (5) and, perform t h e necessary conversions of phys i ca l u n i t s .
C

IMPLICIT REAL (K,M)
LOGICAL ISIT

C
inc lude m o d . i n c
inc lude GLBL.inc
inc lude PARS.inc
inc lude MNVR. i n c
inc lude SUSP.inc
inc lude TIRE.inc
inc lude AERO.inc
inc lude PRNT.inc

C

Appendix D - Source Code

C Get input file name from user
C

WRITE (*, (///A/A/A/A/A/A))
& ' CHRYSLER-UMTRI CROSSWIND STABILITY PROJECT',
& WIND / STEER SIMULATION - Version 1.0, Feb 89',' ',
& Copyright (c) The Regents of The University of Michigan1,
& 1987-1989, Ann Arbor, Michigan. All Rights Reserved.',' '

C
100 WRITE(*, (A\) I) Name of input file: '

READ(*, ' (A) ') FNREAD
INQUIRE (FILE=FNREAD, EXIST=ISIT)

IF (.NOT. ISIT) THEN
WRITE (*, (A, A, A)) ' File 'I ' , FNREAD,

& does not exist. Try again.'
GO TO 100

END IF
OPEN(IREAD, ERR=100, STATUS='OLD1, FILE=FNREAD)

C
C Read general simulation and maneuver parameters:
C

READ (IREAD, ' (//A) ') TITLE
READ (IREAD, ' (A) ') UNITS
READ(IREAD, ' (A) ') FRMT
DO 3 I=1,10
IF (FRMT(1:I) .NE. I) THEN
FRMT = FRMT(1:)
GO TO 4

END IF
3 CONTINUE
4 CONTINUE

C
CMD--Use MIMKEY=l for Mac, 2 for IBM PC

IF (FFMT.(:l) .NE. (I) THEN
NUMKEY = 1
FRMT = 'Binary1

ELSE
N m a Y = 5

END IF
C)

READ(IREAD,530) V, TEND, DT
READ (IREAD, 520) IPRINT
READ (IREAD, 530) KSYWND, AIRHO
READ (IREAD, 520) WINDKY
W N D = 0.0
IF (WINDKY .GE. 0) THEN
DO 5 J = 1, WINDKY
READ(IREAD,530) TWIND(J), WINMAG(J)

5 CONTINUE
ELSE
VWIND = FWIND (T)

ENDIF
C

READ (IREAD, 520) NSTEER
IF (NSTEER .EQ. 0) THEN
READ (IREAD, 530) TSWBGN, TSWEND
READ (IREAD, 530) SWSHFT, SWAMPL
READ(IREAD,530) TSWPRD, SWPHSE

Appendix D - Source Code

IF (NSTEER .LT. 0 .AND. NSTEER . GT. -100) THEN
NP = -NSTEER
CALL DRIVE1 (SW)

ENDIF
IF (NSTEER . GT . 0) THEN
DO 10, J=1, ABS (NSTEER)
READ(IREAD, 530) XPNT(J), YPNT(J)

10 CONTINm
ENDIF

Total vehicle and sprung mass parameters:

READ (IREAD, 530) WEIGHT, SPWGHT, WRATIO
READ(IREAD, 540) IXSCG, IYS, IZZ, IXZ
READ (IREAD, 530) WB, WHLRAD, HCGTTL

Aerodynamic parameters:

READ (IREAD, 530) AREA
READ(IREAD, 530) KY, KR, KN
READ(IREAD,530) CLO, KL
READ(IREAD,530) CMO, KM
READ(IREAD,530) CDO, KD

Steering system:

READ(IREAD, 540) ISS, KSC, DLASH, KSL
READ(IREAD, 530) GR, XTRAIL, CSS
READ (IREAD, 530) CBOOST, SSKEY, CFSS

Calculate equivalent single steering system stiffness based on input
values for the steering column, steering linkage, and gear ratio:

KSS = GRkGR*KSC*KSL / (KSL + GR*GRkKSC)

Suspension and tire data:

READ (IREAD, 520) NKINEM
IF (NKINEM .EQ. 0) KINEM = .FALSE.
READ(IREAD, 520) NBEAM
IF (NBEAM .EQ. 0) BEAM = .FALSE.

READ(IREAD,530) T'RACK(NAXLE), HOROLC(NAXLE)
READ(IREAD, 530) KZ(NAXLE), KAUX(NAXLE)
READ (IREAD, 530) CZJNCE (NAXLE) , CZRBND (NAXLE)
READ(IREAD, 530) ALFAO (NAXLE), GAMMA0 (NAXLE)

KINEMATIC COEFFICIENTS:

IF (KINEM) THEN
READ (IREAD, 530) YROLCF (NAXLE, I), YROLCF (NAXLE, 2)
READ (IREAD, 530) HROLCF (NAXLE, 1) , HROLCF (NAXLE, 2)
IF (BEAM .AND. NAXLE .EQ. 2) THEN
READ (IREAD, 530) CSROLL

Appendix D - Source Code

ELSE
READ (IREAD, 530) CSZ (NAXLE,l), CSZ (NAXLE, 2)

END IF
READ(IREAD,530) CCZ(NAXLEll), CCZ(NAXLE12)

END IF

Compliance coefficients:

READ (IREAD, 530) CSFY (NAXLE) , CSMZ (NAXLE) , CCFY (NAXLE)

Tire stiffness coefficients:

READ (IREAD, 540) (CALFA (JINAXLE) J=1,4)
READ (IREAD, 540) (CGAMMA(J,NAXLE), J=l, 4)
READ (IREAD, 540) (CALIGN(J,NAXLE), J=lt 4)
READ (IREAD, 530) KTIRE (NAXLE)

30 CONTINUE

CLOSE (IREAD)

Change from metric to English units, if specified

IF (UNITS .EQ. 'El .OR. UNITS .EQ. lev) THEN
G = 386.1
ININFT = 12
KMHMPH = 0.056818
TODEG = 180.0 / PI
UDISP = 'in1
UDIST = ' ftl
UANGL = 'degl
UVELFT = 'ft/st
UOMEGA = 'deg/secl
UFORC = 'lbl
UTORQ = 'in-lbl

END IF

General simulation and maneuver parameters:

Include steering system dynamics only if non-zero damping:

IF (ABS(SSKEY) .LT. 0.001) NEQN = NEQN - 2
WRITE(*,'(" ",A//)') TITLE

IF (IECHO . GT. 0) CALL ECHO
V = V / KMHMPH
VWIND = VWIND / KMHMPH
KSYWND = KSYWND / TODEG
GRTODG = GR * TODEG

DO 80, NAXLE=l, 2
KAUX (NAXLE) = KAUX (NAXLE) * TODEG

With english units, SW, KSC, KSL stay in deg, while FW, VFW
stay in rad (with metric units, all are in rad, and todeg = 1)

Appendix D - Source Code D - 39

ALFAO (NAXLE) = ALFAO (NAXLE) / TODEG
GAMMAO (NAXLE) = GAMMAO (NAXLE) / TODEG
I F (NSTEER .EQ. 0) SWPHSE = SWPHSE / TODEG

C
C C o n v e r t p o l y n o m i a l coefficients f r o m deg t o rad:
C

IF (KINEM) THEN
DO 5 0 , NPOWER = 1, 2

YROLCF (NPOWER, NAXLE) = YROLCF (NPOWER, NAXLE) * TODEG **
& NPOWER

HROLCF (NPOWER, NAXLE) = HROLCF (NPOWER, NAXLE) * TODEG * *
& NPOWER

CSZ (NPOWER, NAXLE) = CSZ (NPOWER, NAXLE) / TODEG
CCZ (NPOWER, NAXLE) = CCZ (NPOWER, NAXLE) / TODEG

50 CONTINUE
END I F

C o m p l i a n c e coefficients:

CSFY (NAXLE) = CSFY (NAXLE) / TODEG
CSMZ (NAXLE) = CSMZ (NAXLE) / TODEG
CCFY (NAXLE) = CCFY (NAXLE) / TODEG

C h a n g e CALFA po l a r i t y t o c o n f o r m w i t h SAE: conventions
and convert p o l y n o m i a l coefficients f r o m deg t o rad

DO 7 0 , NPOWER = 1, 4
CALFA (NPOWER, NAXLE) = -CALFA (NPOWER, NAXLE) * TODEG
CGAMMA (NPOWER, NAXLE) = CGAMMA (NPOWER, NAXLE) * TODEG
CALIGN (NPOWER, NAXLE) = CALIGN (NPOWER, NAXLE) * TODEG

7 0 CONTINUE
80 CONTINUE

C
RETURN

C
5 2 0 FORMAT (BN, 1 4)
5 3 0 FORMAT (3 F 1 2 . 0)
5 4 0 FORMAT (4 F 1 2 . 0)

C
END ..
SUBROUTINE I N I T ..

C
C I n i t i a l i z e input-based values and non-zero variables
C

IMPLICIT REAL (K,M)
include G L B L . i n c
include P A R S . i n c
include S U S P . i n c
include AERO . i n c
include V A R S . i n c
include P R N T . i n c

MASS = WEIGHT / G
SPMASS = SPWGHT / G
USWGHT = WEIGHT - SPWGHT

Appendix D - Source Code

XAXLE (2) = - WB * WRATIO
XAXLE(1) = WB + XAXLE(2)
FZOWHL(1) = . 5 * WEIGHT * WRATIO
FZOWHL(2) = . 5 * WEIGHT * (1 - WRATIO)
XCGSP = WB * (2 * FZOWHL(2) - . 5 * USWGHT) / SPWGHT
XWBCGS = . 5 * WB - XCGSP
XWBCGT = . 5 * WB - XAXLE (1)
HCGSP = (HCGTTL * WEIGHT - WHLRAD * USWGHT) / SPWGHT
ROLLVR = . 5 * TRACK (1) / HCGTTL
QZERO = AIRHO * AREA / 2
KROU = 0.

C
DO 20, NAXLE = 1, 2

C
C Approximate effects of tire stiffness + damping in suspension:
C

TRXSQR = . 5 * TRACK(NAXLE)**2
SUMKZ = KZ (NAXLE) + KTIRE (NAXLE)

C
C Reduce overall damping coefficients for negligible tire damping:
n

CZJNCE(NAXLE) = CZJNCE(NAXLE) * KTIRE(NAXLE) / SUMKZ
CZRBND (NAXLE) = CZRBND (NAXLE) * KTIRE (NAXLE) / SUMKZ

Total vertical suspension rate at wheel (parallel springs):

KZSSP = KZ (NAXLE) + KAUX (NAXLE) / TRKSQR

Overall vertical rate (suspension and tire in series):

KZTTL = KZSSP * KTIRE (NAXZIE) / (KZSSP + KTIRE (m E))

KZ <--- overall vertical rate without auxiliary roll stiffness:

KZ (NAXLE) = KZ (NAXLE) * KTIRE(NAXLE) / SUMKZ

C Adjusted auxiliary roll rate (in parallel with kz):
C

KAUX (NAXLE) = (KZTTL - KZ (NAXLE)) * 'I'RXSQR
C
C Effective roll stiffness and axle vertical stiffness
C

KROLL = KROLL + KZ (NAXLE) * TRKSQR + KAUX (NAXLE)
KWIXLE(NAXLE) = 2 * KZ(NAXLE)
HCGSRC (NAXLE) = HCGSP - HOROLC (NAXLE)
DO 10, NSIDE = 1, 2
ALFA (NAXLE, NSIDE) = - (-1) **NSIDE * ALFAO (NAXLE)
GAMMA (NAXLE, NSIDE) = - (-1) **NSIDE * GAMMA0 (NAXLE)
FZ (NAXLE, NSIDE) = FZOWHL (NAXLE)
KNMSTR(NAXLE,NSIDE) = 0.0
KNMCBR (NAXLE, NSIDE) = 0.0

10 CONTINUF,
20 CONTINUE

RETURN
END

..
FUNCTION LENSTR (STRING)

..

Appendix D - Source Code D - 41

* count characters in left-justified string. M. Sayers, 8-9-87

CHARACTER* (*) STRING
N = LEN (STRING)
DO 10 L = N, 1, -1
IF (STRING(L:L) .NE. .AND. STRING(L:L) .NE. char(3)) THEN
LENSTR = L
RETURN

END IF
10 CONTINUE

LENSTR = 1
RETURN
END

..
C ..
C
C NAASA 2.1.020 MINV FTN 06-24-75 THE UNIV OF MICH COMP CTR
C .. C
C
C SUBROUTINE MINV
C
C PURPOSE
C INVERT A MATRIX
C
C USAGE
C CALt MINV(A,N,D,L,M)
C
C DESCRIPTION OF PARAMETERS
C A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY
C RESULTANT INVERSE.
C N - ORDER OF MATRIX A
C D - RESULTANT DETERMINANT
C L - WORK VECTOR OF LENGTH N
C M - WORK VECTOR OF LENGTH N
C
C REMARKS
C MATRIX A MUST BE A GENERAL MATRIX
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
C IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
C THE MATRIX IS SINGULAR.
C
C ..
C

SUBROUTINE MINV (A, N, D, L, M)
DIMENSION A(*) ,L (*) ,M(*)

C
C .
C
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.

Appendix D - Source Code D-42

DOUBLE P R E C I S I O N A, D, BIGA, HOLD

THE C MUST ALSO BE REMOVED FROM DOUBLE P R E C I S I O N STATEMENTS
APPEARING I N OTHER ROUTINES USED I N CONJUNCTION WITH T H I S
ROUTINE.

THE DOUBLE P R E C I S I O N VERSION O F T H I S SUBROUTINE MUST ALSO
CONTAIN DOUBLE P R E C I S I O N FORTRAN FUNCTIONS. ABS I N STATEMENT
1 0 MUST BE CHANGED TO DABS.

SEARCH FOR LARGEST ELEMENT

D=1.0
NK=-N
DO 80 K = l , N
NK=NKtN
L (K) =K
M (K) =K
KK=NKtK
BIGA=A (KK)
DO 2 0 J=K,N
IZ=N* (J - 1)
DO 20 I=K,N
I J = I Z t I

l o IF (ABS (BIGA) - ABS (A (1 J))) 15,20,20
1 5 B I G A = A (I J)

L (K) =I
M (K) =J

2 0 CONTINUE
C
C INTERCHANGE ROWS
C

J = L (K)
IF (J-K) 35,35,25

25 KI=K-N
DO 30 I = l , N
K I = K I +N
HOLD=-A (K I)
J I = K I - K t J
A (K I) =A (JI)

30 A (J I) =HOLD
C
C INTERCHANGE COLUMNS
C

35 I=M (K)
I F (I -K) 4 5 , 4 5 , 3 8

38 JP=N* (1 - 1)
DO 4 0 J = l , N
JX=NKt J
J I = J P + J
HOLD=-A (J X)
A (J K) = A (J I)

4 0 A (J I) =HOLD
C
C D I V I D E COLUMN BY MINUS PIVOT (VALUE OF P I V O T ELEMENT I S

Appendix D - Source Code D-43

C CONTAINED I N BIGA)
C

45 I F (BIGA) 48,46,48
46 D=O.O

RETURN
48 DO 55 I = l , N

I F (I -K) 50,55,50
50 IK=NKtI

A (IK)=A (IK) / (-BIGA)
55 CONTINUE

C
C REDUCE MATRIX
C

DO 65 I = l , N
IK=NKt I
HOLD=A (IK)
I J=I -N
DO 65 J = l , N
I J=I J t N
IF(I-K) 60,65,60

60 I F (J -K) 62,65,62
62 K J = I J - I t K

A (I J) =HOLD*A (KJ) +A (I J)
65 CONTINUE

C
C DIVIDE ROW BY PIVOT
C

KJ=K-N
DO 75 J = l , N
K J=K J t N
I F (J-K) 70,75,70

70 A (KJ) =A (K J) /BIGA
75 CONTINUE

C
C PRODUCT OF PIVOTS
C

D=D*BIGA
C
C REPLACE PIVOT BY RECIPROCAL
C

A (KK) =l.O/BIGA
80 CONTINUE

C
C FINAL ROW AND COLUMN INTERCHANGE
C

K=N
l o o K=(K-1)

I F (K) 150,150,105
105 I=L (K)

I F (I - K) 120,120,108
108 ;JQ=N* (K-1)

JR=N* (1-1)
DO 110 J = l , N
Jx= J Q t J
HOLD=A (J-K)
JI=JR+ J
A(Jx)=-A(J1)

110 A (J 1) =HOLD

Appendix D - Source Code

120 J=M(K)
IF (J-K) 100,100,125

125 KI=K-N
DO 130 I=l,N
KI=KI +N
HOLD=A (KI)
J'I=KI-K+ J
A (KI)=-A (JI)

130 A(JI) =HOLD
GO TO 100

150 RETURN
END ..
SUBROUTINE OPNOUT ..

C SUBROUTINE OPNOUT INITIALIZES THE OUTPUT ERD FILE.
C

IMPLICIT REAL (K,M)
CHARACTER*32 LONGNM(66), GENNM(66), RIGBOD (66), THISRB
CHARACTER* 32 FNOUT
CHARACTER*24 TIMEDT
CHARACTER*8 SHORTN(66), UNITNM(66)
CHARACTER* 4 LORR (2)
CHARACTER*l AXLE (2) , SIDE (2)
INTEGER NCHAN
LOGICAL ISIT

include GLBL.inc
include PARS.inc

C
DATA AXLE/'ll, '2'/, SIDE/'L1, 'R1/, LORR/'Leftl, '~ght'/
DATA TIMEDT/' I /

C
110 WRITE (*, (A\)) Name of simulation output file :

READ (*, ' (A) ') F'NOUT
IF (FNOUT .NE. ' ') THEN
INQUIRE (FILE=FNOUT, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IOUT, FILE=FNOUT)
CLOSE (IOUT, STATUS='DELETE1)

END IF
OPEN (IOUT, FILE=FNOUT, STATUS='NEW1)
WRITE (*,*) "

ELSE
WRITE (*, *) 'Output file is required!
GO TO 110

END IF

Start with 0 output channels

NCHAN = 0

Time

NCHAN = NCHAN t 1
LONGNM (NCHAN) = 'Time1
SHORTN (NCHAN) = 'Time
GENNM (NCHAN) = 'Time1

Appendix D - Source Code

UNITNM (NCHAN) = 'sect
FUGBOD (NCHAN) = 'Time '

Input S tee r Angle

NCHAN = NCHAN t 1
LONGNM (NCHAN) = ' Input S tee r Angle1
SHORTN (NCHAN) = ' S t ee r i n 1
GENNM (NCHAN) = 'Angle
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = ' Input '

Input S tee r Torque

IF (SSKEY .NE. 0.0) THEN
NCHAN = N C W t 1
LONGNM (NCHAN) = ' Input S tee r Torquef
SHORTN (N C W) = 'SW Torq'
GENNM (NCHAN) = 'Torque1
UNITNM (NCHAN) = UTORQ
FUGBOD (NCHAN) = ' Input

END IF

THISRB = 'Body'

X Pos i t ion

NCHAN = NCHAN t 1
LONGNM (NCHAN) = 'X Posi t ion , Sprung Mass cgl
SHORTN (NCHAN) = 'X cg'
GENNM (NCHAN) = ' X Pos i t ion '
UNITNM (NCHAN) = UDIST
FUGBOD (NCHAN) = THISRB

Y Pos i t ion

NCHAN = NCHAN t 1
LONGNM (NCHAN) = 'Y Posi t ion , Sprung Mass cgl
SHORTN (NCHAN) = ' Y cg'
GENNM (NCHAN) = ' Y Pos i t ion1
UNITNM (NCHAN) = UDIST
RIGBOD (NCHAN) = THISRB

Z Pos i t ion

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' 2 Posi t ion , Sprung Mass cgl
SHORTN (NCHAN) = ' Z cg'
GENNM (NCHAN) = ' 2 Pos i t ion1
UNITNM (NCHAN) = UDISP
RIGBOD (NCHAN) = THISRB

Roll Angle

NCHAN = NCHAN t 1
LONGNM (NCHAN) = 'Roll Angle '
SHORTN (NCHAN) = 'Rol l '
GENNM (NCHAN) = ' R o l l 1

Appendix D - Source Code

UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

P i t c h A n g l e

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' P i t c h Angle '
SHORTN (NCHAN) = ' P i t c h 1
GENNM (NCHAN) = ' P i t c h '
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

Yaw Angle

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Yaw A n g l e
SHORTN (NCHAN) = 'Yaw'
GENNM (NCHAN) = 'Yaw
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

R o l l R a t e

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' R o l l R a t e 1
SHORTN (NCHAN) = 'p '
GENNM (NCHAN) = ' R o l l R a t e 1
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

P i t c h R a t e

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' P i t c h R a t e 1
SHORTN (NCHAN) = 'q'
GENNM (NCHAN) = ' P i t c h R a t e f
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

Yaw Rate

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Yaw Rate
SHORTN (NCHAN) = 'rl
GENNM (NCHAN) = 'Yaw Rate
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

B o d y S l i p Angle

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' V e h i c l e S l i p Angle1
SHORTN (NCHAN) = ' s l i p '
GENNM (NCHAN) = I A n g l e f
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

X V e l o c i t y , Sprung Mass cg

Appendix D - Source Code

NCHAN = NCHAN t 1
LONGNM (NCHAN) = ' X V e l o c i t y , S p r u n g Mass cgl
SHORTN (NCHAN) = 'X dot1
GENNM (NCHAN) = ' X V e l o c i t y 1
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = THISRB

Y V e l o c i t y , S p r u n g Mass cg

NCHAN = NCHAN + 1
LONGNM (NCHAN) = l Y V e l o c i t y , S p r u n g Mass cgl
SHORTN (NCHAN) = 'Y dot '
GENNM (NCHAN) = ' Y V e l o c i t y 1
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = THISRB

Z V e l o c i t y , Sprung Mass cg

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' Z V e l o c i t y , Sprung M a s s cgl
SHORTN (NCHAN) = 'w cgl
GENNM (NCHAN) = ' Z V e l o c i t y 1
UNITNM (NCHAN) = U D I S P / / ' / s f
RIGBOD (NCHAN) = THISRB

L a t e r a l A c c e l e r a t i o n

NCHAN = NCHAN t 1
LONGNM (NCHAN) = ' L a t e r a l A c c e l e r a t i o n a t cgl
SHORTN (NCHAN) = ' A y cgl
GENNM (NCHAN) = ' L a t e r a l A c c e l e r a t i o n 1
UNITNM (NCHAN) = ' g V 1 s 1
RIGBOD (NCHAN) = THISRB

V e h i c l e Path C u r v a t u r e

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' V e h i c l e P a t h C u r v a t u r e '
SHORTN (NCHAN) = ' R h o cgl
GENNM (NCHAN) = ' V e h i c l e P a t h C u r v a t u r e
UNITNM (NCHAN) = 'I/' / / UDIST
RIGBOD (NCHAN) = THISRB

A e r o d y n a m i c D r a g Force

NCHAN = NCHAN t 1
LONGNM (NCHAN) = ' A e r o d y n a m i c D r a g Force1
SHORTN (NCHAN) = ' Fx A e r o l
GENNM (NCHAN) = 'Force1
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB

A e r o d y n a m i c Side Force

NCHAN = NCHAN t 1
LONGNM (NCHAN) = ' A e r o d y n a m i c S i d e F o r c e 1
SHORTN (NCHAN) = Fy A e r o l

Appendix D - Source Code

GENNM (NCHAN) = 'Force1
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB

A e r o d y n a m i c Down F o r c e

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' A e r o d y n a m i c Down Force1
SHORTN (NCHAN) = ' F z A e r o l
GENNM (NCHAN) = 'Force1
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB

A e r o d y n a m i c R o l l M o m e n t

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' A e r o d y n a m i c R o l l M o m e n t 1
SHORTN (NCHAN) = 'Mx A e r o l
GENNM (NCHAN) = ' M o m e n t 1
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

A e r o d y n a m i c P i t c h M o m e n t

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' A e r o d y n a m i c P i t c h M o m e n t 1
SHORTN (NCHAN) = 'My A e r o l
GENNM (NCHAN) = ' M o m e n t 1
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

A e r o d y n a m i c Yaw Moment

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' A e r o d y n a m i c Yaw M o m e n t 1
SHORTN (NCHAN) = 'Mz A e r o '
GENNM (NCHAN) = ' M o m e n t 1
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

A i r Speed

NCHAN = NCHAN t 1
LONGNM (NCHAN) = ' A i r Speed1
SHORTN (NCHAN) = 'V A i r 1
GENNM (NCHAN) = 'Speed1
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = ' Input

A e r o d y n a m i c S l i p Angle

NCHAN = NCHAN + 1
LONGNM (NCHAN) = ' ~ e r o d ~ n A c S l i p Angle I
SHORTN (NCHAN) = ' S l i p A i r 1
GENNM (NCHAN) = 'Angle
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

Appendix D - Source Code

Tire/Wheel variables. There are 2 nested loops here: the outer
indexed the axle, and the inne r indexes the side.

DO 100, NAXLE = 1, 2
DO 80 NSIDE = 1, 2

THISRB = SIDE(NS1DE) / / side, Axle / / AXLE(NAXLE)

Steer of road wheel

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Total Steer, ' / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) // St r / / AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'
RIGBOD (NCHAN) = THISRB

Tire s l i p angle

NCHAN = NCHAN + 1
LONGNM (NCHAN) = Slip Angle, / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) // Alph ' / / AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'
RIGBOD (NCHAN) = THISRB

Tire camber angle

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Camber Angle, / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) / / Gamm ' / / AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle
RIGBOD (NCHAN) = THISRB

Tire side force

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Side Force, I / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) / / ' Fy ' / / AXLE (NAXLE)
UNITNM (NCHAN) = UFORC
GENNM (NCHAN) = 'Force
RIGBOD (NCHAN) = THISRB

Tire Aligning Moment

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aligning Moment, / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) / / ' Mz ' / / AXLE (NAXLE)
UNITNM (NCHAN) = UTORQ
GENNM (NCHAN) = 'Moment1
RIGBOD (NCHAN) = THISRB

Tire ver t ica l force

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Load, ' / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) / / ' Fz ' / / AXLE (NAXLE)
UNITNM (NCHAN) = UFORC

Appendix D - Source Code

GENNM (NCHAN) = 'Force1
RIGBOD (NCHAN) = THISRB

C
C Suspension Displacement
C

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Vert Disp, ' / / THISRB
SHORTN (NCHAN) = SIDE(NS1DE) / / ' Z ' / / AXLE(NAXLE)
UNITNM (NCHAN) = WISP
GENNM (NCHAN) = 'Displacement1
RIGBOD (NCHAN) = THISRB

C
C Suspension Damping Force
C

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Damping Force, / / THISRB
SHORTN (NCHAN) = SIDE (NSIDE) / / ' Fdmp ' / / AXLE (NAXLE)
UNITNM (NCHAN) = UFORC
GENNM (NCHAN) = 'Force1
RIGBOD (NCHAN) = THISRB

80 CONTINUE
100 CONTINUE

C
C Write Header Info for ERD file
C
C Set parameters needed to write header
C NUMKEY = 1 for 32-bit floating-point binary, 5 for Text
C

NSAMP = TEND / DT / IPRINT + 1
NRECS = NSAMP
IF (MMKEY .NE. 5) THEN
NBYTES = 4*NCHAN

ELSE
NBYTES = 1

END IF
C
C Write standard ERD file heading.
C

WRITE (IOUT, ' (A) ') 'ERDFILEV2.00 '
WRITE (IOUT, 410) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, DT*IPRINT

410 FORMAT(S(I6, ','),E13.6)
411 FORMAT (A8,255A8)
412 FORMAT (A8, 31A32 : 2(/'&1000 I , 31A32))

WRITE(IOUTI1(AfA)') 'TITLE ', TITLE
WRITE(IOUT,411) 'SHORTNAM', (SHORTN(J), J=1, NCHAN)
WRITE (IOUT 4 12) ' LONGNAME ' , (LONGNM (J) , J=1, NCHAN)
WRITE (IOUT, 411) 'UNITSNAM' , (UNITNM (J) , J=1, NCHAN)
WRITE (IOUT, 412) 'GENNAME ', (GENNM(J), J=l, NCHAN)
WRITE (IOUT, 412) 'RIGIBODY', (RIGBOD(J), J=1, NCHAN)

C
WRITE (IOUT, ' (A) ') 'TRUCKSIMWind/Steerl

C
IMPH = NINT (V * KMHMPH)
IF (UNITS .NE. 'El .AND. UNITS .NE. 'el)

& IMPH = NINT (V * KMHMPH / 1.61)
WRITE (IOUT, ' (A, 15) ') ' SPEEDMPH' , IMPH

C
IF (NUMKEY .EQ. 5) WRITE(IOUT, '(A,A)') 'FORMAT ' , F W

Appendix D - Source Code

C
CALL TIMDAT (TIMEDT)

WRITE (IOUT, ' (A, A))
& 'HISTORY Data generated with Wind/Steer model at I ' , TIMEDT
WRITE (IOUT, ' (A,A)) 'HISTORY Input file was ' , FNREAD
WRITE (IOUT, ' (A) ') ' END '

C
C If this is a Mac or PC, and data will be binary, then close header
C and create binary file. The following line is used to disable the
C creating of a second file for MTS.
C
C--Use this only for the MTS version.
C RETURN
501 CONTINUE

IF (NUMKEY .NE. 5) THEN
CLOSE (IOUT)
LNAME = LENSTR (FNOUT)
FNOUT = FNOUT (: LNAME) / / ' . BIN '
INQUIRE (FILE=FNOUT, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IOUT, FILE=FNOUT)
CLOSE (IOUT, STATUS='DELETE1)

END IF
C--The following 2 lines are for the Mac version.

OPEN (IOUT, FILE=FNOUT, STATUS='NEW1, ACCESS='SEQUENTIAL1,
& FORM='UNFORMATTED1)

C--The following 2 lines are for the PC version.
* OPEN (IOUT, STATUS='NEW1, ACCESS='SEQUENTIAL1,
* & FORM='BINARY1)

END IF

RETURN
END

..
SUBROUTINE OUTPUT(T, Y, YP) ..

Subroutine OUTPUT copies (at each output step) the simulation
variables into a buffer array in a sequence as specified in the
header, and outputs the buffer into the erd-file in binary or
text f om.

IMPLICIT REAL (K,M)
INTEGER*2 LEN2, IBMROW, IBMCOL
REAL BUFFER(66), Y (*) , YP(*)

include GLBL.inc
include PARS. inc
include VARS.inc
include AERO.inc

Fill the ERD buffer. The following code should create a one-to-one
match between the label sets created in routine OPNOUT and output
variables put into the array BUFFER.

'+
NCHAN = 0

C

Appendix D - Source Code

Time and inputs

BUFFER (NCHAN + 1) = T
BUFFER (NCHAN + 2) = SW
NCHAN = NCHAN + 2
I F (SSKEY .NE. 0 . 0) THEN

NCHAN = NCHAN + 1
BUFFER (NCHAN) = STORQ

END I F

Body posit ion variables

BUFFER (NCHAN + 1) = Y (1) / ININFT
BUFFER (NCHAN + 2) = Y (2) / ININFT
BUFFER (NCHAN t 3) = Y (3)
BUFFER (NCHAN + 4) = Y (4) * TODEG
BUFFER (NCHAN + 5) = Y (5) * TODEG
BUFFER (NCHAN t 6) = Y (6) * TODEG
NCHAN = NCHAN + 6

Body speed variables

BUFFER (NCHAN + 1) = Y (7) * TODEG
BUFFER (NCHAN t 2) = Y (8) * TODEG
BUFFER (NCHAN + 3) = Y (9) * TODEG
BUFFER (NCHAN t 4) = Y (1 0) * TODEG
BUFFER (NCHAN t 5) = YP (1) / ININFT
BUFFER (NCHAN t 6) = YP (2) / ININFT
BUFFER (NCHAN t 7) = Y (1 1)
NCHAN = NCHAN + 7

L a t e r a l A c c e l e r a t i o n , P a t h C u r v a t u r e

BUFFER (NCHAN + 1) = AY
BUFFER (NCHAN t 2) = RHO * ININFT
NCHAN = NCHAN + 2

A e r o d y n a m i c variables

BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
BUFFER
NCHAN =

(NCHAN + 1) = FDRAG
(NCHAN + 2) = FYA
(NCHAN + 3) = FZA
(NCHAN + 4) = MXA
(NCHAN + 5) = MYA
(NCHAN + 6) = MZA
(NCHAN t 7) = VA
(NCHAN t 8) = BETAIR
NCHAN + 8

T i r e / W h e e l variables

DO 100, NAXLE = 1, 2
DO 80, NSIDE = 1, 2

BUFFER (NCHAN + 1) = TTLSTR(NAXLE,NSIDE) * TODEG
BUFFER (NCHAN + 2) = ALFA (NAXLE, NSIDE) * TODEG
BUFFER (NCHAN + 3) = GAMMA (NAXLE,NSIDE) * TODEG
BUFFER (NCHAN + 4) = FY (NAXLE, NSIDE)
BUFFER (NCHAN + 5) = MZ (NAXLE, NSIDE)

Appendix D - Source Code

BUFFER (NCHAN + 6) = FZ (NAXLE,NSIDE)
BUFFER (NCHAN + 7) = ZW (NAXLE,NSIDE)
BUFFER (NCHAN + 8) = FD (NAXLE, NSIDE)
NCHAN = NCHAN + 8

8 0 CONTINUE
1 0 0 CONTINUE

C
C Write data t o the f i l e .
C
C--The next 3 l ines are fo r t h e Mac

I F (T .EQ. 0 .) WRITE (*, ' (A / ~ X , A) ') ' P r ~ g r e s s : ' , ~ s e c ~
CALL TOOLBX (Z ' 8 9 4 0 9 0 0 0 1 , 0 , -11)
WRITE (*, ' (F 6 . 2) ') T

C--The next 11 l ines are f o r the IBM PC
-k I F (T .EQ. 0 .) THEN
*. IBMROW = 18
* IBMCOL = 1 0
* WRITE (*, ' (/ / / / / A \) ') ' '
* CALL SETCUR (IBMROW, IBMCOL)
.rt WRITE (*, (A, 12X,A\)) ' P r o g r e s s : I , ' secl
* END I F

* IBMROW = 18
* IBMCOL = 2 2
* CALL SETCUR (IBMROW, IBMCOL)
* WRITE (*, ' (F 6 . 2 \) I) T
C--End IBM PC s t u f f

I F (NUMKEY .EQ. 5) THEN
WRITE (IOUT, F W) (BUFFER (J) , J=l, NCHAN)

ELSE
C
C--This l i n e i s only for MTS
C LEN2 = NBYTES
C CALL WRITE (BUFFER, LEN2, 1 6 3 8 4 , LNUM, IOUT)
C
C--This l i n e i s f o r the Mac and the PC

WRITE (IOUT) (BUFFER (J) , J=1, NCHAN)
END I F

C
RETURN
END ..
FUNCTION POLY 4 (COEF, FZ)

..
* evaluate 4 - t h order p o l y n o m i a l

REAL COEF (*)
POLY4 = COEF (1) + COEF(2) *FZ + COEF (3) *FZfFZ + COEF (4) *FZf*3
RETURN
END

..
SUBROUTINE ROLLAX (ROLL, Y ROLAX, HROLAX, IXSRA) ..

C S u b r o u t i n e ROLLAX re turns YROLAX and HROLAX, t h e dynamic la tera l
C and vertical distances of t h e sprung m a s s cg f r o m t h e r o l l axis i n
C a non-rolling reference f r a m e , and IXSRA, t h e s p r u n g - m a s s moment of
C iner t ia about t h e instantaneous r o l l axis, as functions of r o l l .

Appendix D - Source Code

C (Effects of roll-axis inclination the from x-x axis are neglected.)
C

IMPLICIT REAL (K,M)
REAL IXSRA

C
include PARS.inc
include SUSP.inc

C
C For each axle, find dynamic r.c. displacements in sprung mass
C with sprung cg as origin
C

DO 40 NAXLE=l, 2
YRC(NAXLE) = 0.0
HRC(NAXLE) = HCGSRC (NAXLE)
DO 20 NPOWER=l, 2
YRC (NAXLE) = YRC (NAXLE) + YROLCF (NPOWER, NAXLE) * ROLL* *NPOWER
HRC (NAXLE) = HRC (NAXLE) t HROLCF (NPOWER, NAXLE) * ROLL**NPOWER

20 CONTIrn
40 CONTINUE

C
C Find y and z projections of roll-axis distance from sprung cg
C in sprung-mass (rolling) reference frame
C

YRACG = YRC(1) + (YRC(2) - YRC(1)) * XCGSP / WB
HRACG = HRC(1) + (HRC(2) - HRC(1)) * XCGSP / WB

C
C Transform y and z projections into non-rolling frame
C (Approximating: cos (roll) = 1, sin(rol1) = roll)
C

YROLAX = YRACG + HRACG * ROLL
HROLAX = HRACG - YRACG * ROLL

C
C Calculate IXSRA based on ixscg and roll-axis arm (YRACGf*2+HRACG**2)
C

IXSRA = IXSCG + (YRACG * YPACG + HRACG * HRACG) * SPMASS
C

RETURN
END

..
FUNCTION STEER (T)

..
C Function steer returns the steering wheel-angle (deg), SW,
C or steering wheel torque (in-lbs), STORQ,
C as a function of T in one of 3 control modes:
C (NSTEER > 0) -- use table look-up
C (NSTEER = 0) -- sinusoid function
C (NSTEER < 0) -- Driver model
C (NSTEER < -100) -- sinusoidal torque sweep
C

SAVE
IMPLICIT REAL (K,M)
include vars.inc
include mnvr. inc
include glbl.inc
include pars.inc
include drvmod. inc

C
DIMENSION YDR (7)

Appendix D - Source Code

C
DATA DFW,DFWNOW /2*0 .0 /
DATA DRTORQ, DRTNOW /2*0 .0 /

C
I F (NSTEER) 1 0 0 , 200, 300

C
C Driver model:
C

1 0 0 IF(ABS(SSKEY) .LE. 0 . 0 0 1) THEN
YDR(1) = YOUTDR(2) / ININFT
YDR(2) = YOUTDR(10) * V / ININFT
YDR(3) = YOUTDR(9)
YDR(4) = YOUTDR(6)
YDR(5) = YOUTDR(1) / ININFT
DFWNOW = (TTLSTR(1, l) + TTLSTR(1,2)) * 0 . 5
CALL DRIVER(T, YDR, DFW, DFWNOW)

C
C Add k i n e m a t i c a n d c o m p l i a n c e steer effects (pr ior time s tep) and
C c o n v e r t t o degrees a t steering w h e e l :
C

STEER = (DFW - (KNMSTR(1,l) + KNMSTR(1,2)) * 0 . 5 -
1 (CPLSTR(1, l) + CPLSTR(1,2)) * 0 . 5) * GRTODG

C
C No i n i t i a l s t e e r i n g f r o m driver d u r i n g lag period:
C

I F (T .LE. TAUMEM) STEER = 0 . 0

ELSE
I F (NSTEER . LT . -1 0 0) THEN

WO = 0 . 1 * 6 . 2 8 3 2
WMAX = 4 . 0 * 6 . 2 8 3 2
WW = (WMAX - W O) / 2 . 0 * (1. - COS (6 . 2 8 3 2 / 2 5 . * T)) + WO
STEER = 2 0 . * SIN (WW * T)
RETURN

ELSE
YDR (1) = YOUTDR(2) / ININFT
YDR(2) = YOUTDR(10) * V / ININFT
YDR(3) = YOUTDR(9)
YDR(4) = YOUTDR(6)
YDR(5) = YOUTDR(13) / TODEG
YDR(6) = YOUTDR(12) / TODEG
YDR(7) = YOUTDR(1) / ININFT
DRTNOW = STORQ / ININE'T
CALL DRIVET (TI YDR, DRTORQ I DRTNOW)
STEER = DRTORQ * ININE'T

No i n i t i a l torque from driver d u r i n g lag period:

I F (T .LE. TAUMEM) STEER = 0 . 0

RETURN

END I F

Appendix D - Source Code

C
C S i n u s o i d a l steer f u n c t i o n :
C

200 I F (T .LT. TSWBGN) THEN
STEER = 0 . 0

ELSE
I F (T .LE. TSWEND) STEER = SWSHFT +

1 SWAMPL * SIN (2*PI* (T-TSWBGN) /TSWPRD + SWPHSE)
END I F

C (FOR T > TSWEND, STEER I S NOT CHANGED)
RETURN

C
C S t e e r table:
C

300 I F (T .LT. XPNT(NSTEER)) GO TO 310
C
C S t e e r i n g a n g l e p a s t t h e end o f t h e t a b l e r e t a i n s end v a l u e :
C

STEER = YPNT (NSTEER)
RETURN

C
310 I F (INDX .NE. 0) GO TO 330

C
C F i r s t ca l l - pre-compute e lements i n SLOPE a r r a y
C

DO 320, J=1, NSTEER-1
SLOPE(J) = (YPNT(J+l) - YPNT(J)) / (XPNT(Jt1) - XPNT(J))

320 CONTINUE
C
C Increment i n t e r v a l J i f t >= XPNT(J+l), else pop t o i n t e r p o l a t e :
C

330 DO 340, J = 1, NSTEER-1
INDX = J
I F (T .GE. XPNT(J) .AND. T .LT. XPNT(J+l)) GO TO 350

340 CONTINUE
C

350 STEER = YPNT (INDX) + (T - XPNT (INDX)) * SLOPE (INDX)
C
C INDX w i l l h o l d t h e number (index) o f t h e 'active1 table i n t e r v a l
C

RETURN
END ..
FUNCTION SUM (MATRIX)

..
C FUNCTION SUM PERFORMS A SUMMATION OF ALL COMPONENTS
C OF A 2 X 2 MATRIX ("WHEEL" ARRAY)
C

REAL MATRIX (2,2)
C

SUM = MATRIX(1,l) + MATRIX(1,2) + MATRIX(2,l) + MATRIX(2,2)
RETURN
END

..
SUBROUTINE TABLE (M, N, X, Y , Z , Q)

..
C Table look-up r o u t i n e . Q = Y (X) , FOR X = Z . Sea rch o v e r range
C X (M) -> X (N) .

Appendix D - Source Code D-57

C
DIMENSION X(*), Y(*)

C
INC = 1
DO 20 I = M, N, INC
IF (Z .LE. X(1)) GO TO 30

20 CONTINUE
Q = Y (N)
RETURN

30 IF (I .NE. M .AND. Z .NE. X(1)) GO TO 40
Q = Y(I)
IF (I .EQ. M .AND. Z .LT. X(1)) Q = Y(M)
RETURN

40 Q = (Y(I)*(Z - X(I - INC)) - Y(I - INC)*(Z - X(1))) / (X(1) - X(I
1- INC))
RETURN
END ..
SUBROUTINE TIMDAT (TIMEDT) ..

C Get date and time
C
C <-- TIMEDT char*24 string containing time & date.
C

CHARACTER* 2 4 TIMEDT
CHARACTER* 3 6 MONTHS
INTEGER*2 YEAR, MONTH, DAY, HOUR, MIN, SEC, 1100
MONTHS = lJanFebMarAprMayJunJulAugSepOctNovDec'

C--The following 4 lines are for the IBM PC (using Microsoft
C--time and date functions)
* CALL GETDAT (YEAR, MONTH, DAY)
* CALL GETTIM (IHOUR, MIN, SEC, 1100)
* WRITE (TIMEDT, 100) IHOUR, MIN, MONTHS (MONTHf3-2:MONTH*3),
* & DAY, YEAR

C--get time for MTS version
C CAU TIME (22, 0, TIMEDT)

C--The following 5 lines are for the Apple Mac
C--(using Absoft time & date functions)

call date (m, iday, iyear)
call time (isec)
write (tirnedt, 100)

& isec/3600, mod (isec, 3600) / 60, months (m*3-2:m*3),
& iday, 1900 + iyear

100 FORMAT (12,l:',12.2,l on 1,A3,13,1,1,15)
RETURN
END ..
SUBROUTINE TIRSUB (BETA, V, VYAW, ROLL)

..
* This subroutine solve simultaneous equations for slip and camber
* angles. It assumes a tire model that is linear with alpha and gamma
* but which has alpha and gamma coefficients that can be 3d-order
* functions of Fz.
*

Appendix D - Source Code

IMPLICIT REAL (K,M)
DIMENSION A(4,4), B(4,4), C(4), D(4,4), E(4,4), F(4)
DIMENSION ALFAV(4), GAMMAV(4)
DIMENSION R(4,4), S(4,4), VW(4), WWW(41, LV(41, W(4)
include' TIW.inc
include SUSP.inc
include VARS . inc
include PARS.inc
DATA ALFAV, G?MMAV /4*0.0, 4*0.0/
DATA LV, MV /4*0, 4*0/

C
C Zero out work matrices:
C

DO 20 I = 1, 4
DO 10 J = 1, 4
A(1,J) = 0.0
B(1,J) = 0.0
D(1,J) = 0.0
E(1,J) = 0.0

10 CONTINUE
C(1) = 0.0
F(1) = 0.0

20 CONTINUE
C
C Load work matrices:
C

DO 100 NAXLE = 1, 2
YWPART = BETA + VYAW * XAXLE (NAXLE) / V

C
IF (NAXLE .EQ. 2 .AND. BEAM) THEN

C
C Case for beam rear axle (no camber compliance, same steer compliance
C for both wheels):
C

DO 80 NSIDE = 1,2
IJ = (NAXLE-1) *2 + NSIDE
IK = - (-1) **NSIDE
A(IJ,IJ) = 1. + CSFY (NAXLE) * POLY4(CALFA(l,NAXLE),

& FZ (NAXLE,NSIDE))
& + CSMZ (NAXLE) * POLY4 (CALIGN(l,NAXLE), FZ (NAXLE,NSIDE))

A(IJ, IJ + IK) = CSFY(NAXLE) *
& POLY4 (CALFA (1, NAXLE) , FZ (NAXLE, NSIDEtIK))
& + CSMZ(NAXLE) * POLY4(CALIGN(l,NAXLE), FZ(NAXLE,NSIDE+IK))

B (I J, I J) = -CSFY (NAXLE) * POLY 4 (CGAMMA (1, NAXLE) ,
& FZ (NAXLE, NSIDE))

B (I J, I J + IK) = -CSFY (NAXLE) *
& POLY4 (CGAMMA (1, NAXLE) , FZ (NAXLE, NSIDEtIK))

C (IJ) = - (-1) **NSIDE * ALFAO (NAXLE) + YWPART
& - CSFY (NAXLE) * POLY4 (CGAMMA (l,NAXLE), FZ (NAXLE,NSIDE))
& * GAMMA (NAXLE , NSIDE)
& - CSFY (NAXLE) * POLY4 (CGAMMA(l,NAXLE), FZ (NAXLE,NSIDE+IK))
& * GAMMA (NAXLE, NSIDEtIK) - KNMSTR (NAXLE, NSIDE)

D(IJ,IJ) = 1.
E(IJ,IJ) = 0.0
F (IJ) = (-1) **NSIDE*GAMMAO (NAXLE)

8 0 CONTINUE
C

ELSE

Appendix D - Source Code

C '
C Independent wheels, with coupling between camber and steer:
C

DO 90 NSIDE = 1,2
IJ = (NAXLE-1) *2 + NSIDE

C
C Check for dynamic steering system: (strcon is either fw(i)
C or sw / grtodg)
C

IF(NAXLE .EQ. 1 .AND. ABS(SSKEY) .GT. 0.001) THEN
CSMZ (NAXLE) = 0.0
STRCON = FW (NSIDE)

ELSE
STRCON = SW / GRTODG

END IF
C

A(IJ, IJ) = 1. + CSFY (NAXLE) * POLY4 (CALFA(1,NAXLE) ,
& FZ (NAXLE, NSIDE))
& + CSMZ(NAXLE) * POLY4(CALIGN(l,NAXLE), FZ(NAXLE,NSIDE))

B(IJ,IJ) = -CSFY(NAXZIE) * POLY4(CGAMMA(l,NAXLE),
& FZ (NAXLE, NSIDE))

C (IJ) = - (-1) **NSIDE * ALFAO (NAXLE) + YWPART
& - (2 - NAXLE) * STRCON - KNMSTR (NAXLE, NSIDE)

D(IJ,IJ) = 1. t CCFY(NAXLE) *
& POLY4 (CGAMMA(l,NAXLE), FZ(NAXLE,NSIDE))

E (I J, I J) = - CCFY (MUU;E) * POLY4 (CALFA (1, NAXLE) ,
& FZ (NAXLE, NSIDE))

F (I J) = (-1) **NSIDE*GAMMAO (NAXLE) + ROLL
& + KNMCBR (NAXLE, NSIDE)

90 CONTINUE
C

ENDIF
C
100 CONTINUE

C
C Calculate tire gammas and slip angles:
C
C gammas:
C

CALL MINV (A, 4, DET, LV, MV)
CAU GMPRD (E,A,R, 4,4,4)
CALL GMPRD (R,B, S, 4,4,4)
CALL GNSUB (D, S,R, 4,4)
CALL MINV (R, 4, DET, LV, MV)
CALL GMPRD (E,A, S, 4,4,4)
CAU GMPRD (S, C,WV, 4,4,1)
CALL GMADD(WV,F,WWW,4,1)
CALL GMPRD (R,WWW, GAMM?iV, 4,4,1)

C
C slipangles:
C

CALL GMPRD (B,GAMMAV,VW, 4,4,1)
CALL GMADD (WV, C,WWW, 4,l)
CALL GMPRD (A,WWW,ALFAV, 4,4,1)

C
C
C Calculate Tire Moments and Forces from gammas and slip angles:
C

Appendix D - Source Code

DO 200 NAXLE = 1, 2
DO 190 NSIDE = 1,2

C
C Update gammas and slip angles in common block variables:
C

IJ = (NAXLE-1) *2 t NSIDE
GAMMA(MIXLE,NSIDE) = GAMMAV(1J)
ALFA (NAXLE, NSIDE) = ALFAV (I J)

C
C Calculate tire aligning moments and lateral forces:
C

MZ (NAXLE,NSIDE) = ALFA(NAXLE,NSIDE) * POLY4 (CALIGN(l,NAXLE),
& FZ (NAXLE, NSIDE))

FY (NAXLE, NSIDE) = ALFA (NAXLE, NSIDE) * POLY4 (CALFA (1, NAXLE) ,
& FZ (NAXLE, NSIDE))
& t GAMMA(NAXLE,NSIDE) * POLY4 (CGAMMA(l,NAXLE),
& FZ (NAXLE, NSIDE))

C
C Calculate compliance steer and "total" steer (kinem + compl + strcon
C input) :
C

CPLSTR (NAXLE, NSIDE) = CSMZ (NAXLE) * MZ (NAXLE I NSIDE)
& + CSFY (NAXLE) * FY (NAXLE, NSIDE)

TTLSTR (NAXLE I NSIDE) = KNMSTR (NAXLE ,NSIDE)
& + CPLSTR (NAXLE, NSIDE)
& t (2 - NAXLE) * STRCON

190 CONTIMTE
200 CONTINUE

C
RETURN
END

..
C
C *** Trajectory Subroutine ***
C
C TRAJ: Computes lateral displacent of previewed path as a table look-up
C
C Author and Modification Section
C
C Author: C. C. MacAdam
C
C Date written: 01/01/88
C
C Written on:
C
C Modifications :
C

C Algorithm Description
C
C Purpose and use:
C
C Error conditions:
C
C Machine dependencies: none
C
C Called By: DRIVER

Appendix D - Source Code

.,
C

SUBROUTINE TRAJ(X, XT, YT, YPATH)
SAVE

C
C Variable Descriptions
C
C---Argument s passed:
C
C ->X.......forward displacement (ft)
C ->XT......longitudinal path coordinates (ft)
C ->YT......lateral path coordinated corresponding to XT values (ft)
C <-YPATH...lateral displacement of path corresponding to X, (ft)
C
C

DIMENSION XT (*) , YT (*)
C
C---Local variables---
C
C J.......integer counter
C SLOPE ... dYT/dXT of path at X
C
C--- Functions and subroutines---
C
C None
C

C Process Block --
C
C SEARCH FOR XI,XI+l:

DO 10 J = 1, 99
IF (X .GE. XT(J) .AND. X .LT. XT(J+ 1)) GO TO 30

10 CONTINUE
WRITE (*,20)

20 FORMAT (l o ' , 'X-SEARCH IN SUB. TRAJ FAILED.')
STOP

30 SLOPE = (YT(J + 1) - YT(J)) / (XT(J + 1) - XT(J))
YPATH = YT (J) + SLOPE * (X - XT (J))
RETURN
END

C***

C
C Transition Matrix Calculation.
C
C
C TRANS: Computes transition matrix of the linearized system
C
C Author and Modification Section
C
C Author: C. C. MacAdam
C
C Date written: 05/19/88
C
C Written on:
C
C Modifications:

Appendix D - Source Code

" -
C
C Algorithm Description
C
C Purpose and use: Used by the driver model in predicting future states
C
C Error conditions:
C
C Machine dependencies : none
C
C Called By: DRIVGO
C
-
C

SUBROUTINE TRANS
SAVE

C
C Variable Descriptions
C
C--- Arguments passed: None
C

DIMENSION SV(4), SD (4), SVI (4)
C
C---COMMON blocks---
C

include dnrmod. inc
C c--- DRIV,BLK common block
C
C CAF...total cornering stiffness of tires on lef2front susp (lb/rad)
C CAR ... total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WF. ... static load on front suspension (lb)
C WR static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C
c--- DRVST1.BLK common block variables
C
C GRAVgr avitational constant
C TICYCL ... driver model sample time (sec)
C TSS......minimum preview time (sec)
C DMAX upper bound on front wheel angle steer (rad)
C XP, YP. . . . x-y path coords (SAE) wrt inertial coords [input] (ft)
C TAUMEM ... driver transport time dealy [input parameter] (sec)
C TFF. driver model preview time [input parameter] (sec)
C RM.vehicle mass (slug)
C A........distance from c.g. to front suspension center-line (ft)
C B... distance from c.g. to rear suspension center-line (ft)
C RI. total vehicle yaw inertia (slug-ft)
C PSI0 current yaw angle reference value (rad)
C NTF......number of points in the preview time interval
C NP.... ... number of points in the x-y trajectory table
C TLAST....last time driver model calulated a steer value (sec)
C DFWLST. ..last value of steer calculated by driver model (rad)
C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM 2-dim array (time & steer history) used in delay calculatln
C XT,YT transformation of W,YP in vehicle body axes (ft)

Appendix D - Source Code D-63

C
c--- TRSSTR.BLK common block variables
C
C TTT.......transition matrix at 10 discrete points in preview interval
C TTTl integral of trans matrix w r t preview time
C GV.........vector of control gain coefficients
C
C---Local vari&les--
C
C DELT time step in local Euler integration (sec)
C A1 lat accel coefficient of sideslip veloc in linearizd system
C Bl....... I1 yaw rate I1

C A2..yaw accel " sideslip vel If

C B2 11 yaw rate 11
C Cl.. steer control gain coefficient for lateral accel
C C2.......steer control gain coefficient for yaw moment
C ULAST. ... last value of forward velocity (ft/sec)
C NBEG integer startin counter value
C NENDl....integer ending counter value
C NENDV....integer ending counter value
C J........integer counter
C SV..state vector: y,v,r,yaw,x [SAEI
C SVl......integral of state vector
C SD.......state vector derivative
C
C---Functions and subroutines---
C
C None
C
C
C
C Process Block -
C
C

DELT = 0.01
Al=-2. * (CAFtCAR) / m / u
B1 = 2. * (CAR*B - CAF*A) / RM / U - U
A2 = 2. * (CAR*B - W * A) / RI / U
B2 = -2. * (CAR*B*B t W*A*A) / RI / U
C1=2. * C A F / R M
C 2 = 2 . * C A F / R I * A
ULAST = U
GV(1) = 0.
GV(2) = C1
GV(3) = C2
GV(4) = 0.
DO 70 J = 1, 4
NBEG = TSS / DELT t 1
NENDl = (TFF t ,001 - TSS) / NTF / DELT
NENDV = NENDl
DO 10 L = 1, 4
SV(L) = 0.0
SVI(L) = 0.0

10 CONTINE
TIME = 0.

C
C Initialize each state in turn to 1.0 and integrate (Euler) .
C

Appendix D - Source Code

SV(J) = 1.0
DO 60 I = 1, NTF
DO 40 K = NBEG, NENDV
SD (1) = SV(2) t U * SV(4)
SD (2) = Al * SV(2) t B1 * SV(3)
SD (3) = A2 * SV(2) + B2 * SV(3)
SD(4) = SV(3)
DO 20 L = 1, 4
SV (L) = SV(L) + SD (L) * DELT

2 0 CONTINUE
TIME = TIME t DELT
DO 30 L = 1, 4
SVI (L) = SVI (L) t SV(L) * DELT

3 0 CONTINUE
4 0 CONTINUE

C
C Store "impulsen responses in TTT columns, integral in TTT1.
C TTT is a NPT-point tabular transition matrix, TTTl is its integral.
C (See References 2 & 3.)
C

D O S O L = l , 4
TTT(L, J, I) = SV(L)
TTT1 (L, J, I) = SVI (L)

5 0 CONTINUE
NBEG = NBEG + NEND1
NENDV = NENDV + NENDl

60 CONTINUE
70 CONTINUE

RETURN
END

..

..
C
C Transition Matrix Calculation.
C
C
C TRANST: Computes transition matrix of the linearized system (torque
C version of the driver model)
C
C Author and Modification Section
C
C Author: C. C. MacAdam
C
C Date written: 01/30/89
C
C Written on:
C
C Modifications:
C
C
C
C Algorithm Description
C
C Purpose and use: Used by the driver model in predicting future states
C
C Error conditions:
C
C Machine dependencies: none

Appendix D - Source Code

C
C Called By: DRIVGT
C
C - -
C

SUBROUTINE TRANST
SAVE
REAL KSSL, ISSL

C
C Variable Descriptions ---
C
C---Arguments passed: None
C

DIMENSION SV(6), SD(6), SVI(6)
C
C---CmON blocks---
C

include dnrtor . inc
include pars.inc
include glbl.inc
include tire.inc
include vars.inc

C
C---Dm,BM common block
-
C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WE.... static load on front suspension (lb)
C WR.... static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C c--- DRVST1.BLK common block variables
C
C GRAVg ravitational constant
C TICYCL...driver model sample time (sec)
C TSS. minimum preview time (sec)
C DMAX upper bound on front wheel angle steer (rad)
C XP, YP. . . . x-y path coords (SAE) wrt inertial coords [input] (ft)
C TAUMEM...&iver transport time dealy [input parameter] (sec)
C TEE. driver model preview time [input parameter] (sec)
C RM..vehicle mass (slug)
C A,.... ... distance from c.g. to front suspension center-line (ft)
C B........distance from c.g. to rear suspension center-line (ft)
C RI....... total vehicle yaw inertia (slug-ft)
C PSIO.....current yaw angle reference value (rad)
C NTF......nunber of points in the preview time interval
C NP. number of points in the x-y trajectory table
C TLAST....last time driver model calulated a steer value (sec)
C DFWLST...last value of steer calculated by driver model (rad)
C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM. 2-dim array (time & steer history) used in delay calculattn
C XT, YT. . . .transformation of W , YP in vehicle body axes (ft)
C
c--- TRSSTR.BLK common block variables
C
C TTTT.......transition matrix at 10 discrete points in preview interval

Appendix D - Source Code D-66

C TTTTl integral of trans matrix wrt preview time
C GGV.........vector of control gain coefficients
C
C---Local variables---
C
C DELT.....time step in local Euler integration (sec)
C Al.......lat accel coefficient of sideslip veloc in linearizd system
C Bl.. If yaw rate n
C A2. .yaw accel " sideslip vel I1
C B2.. 11 yaw rate 11
C Cl.......steer control gain coefficient for lateral accel

....... C C2 steer control gain coefficient for yaw moment
C ULAST. ... last value of forward velocity (ft/sec) C NBEG integer startin counter value
C NENDl....integer ending counter value
C NENDV....integer ending counter value
C J........integer counter
C SV.state vector: y,v, r, yaw, x [SAEI
C SVl integral of state vector
C SD.......state vector derivative
C
C---Functions and subroutines---
C
C None
C
C
C
C Process Block -
C
C

CSDAML = CSS * TODEG / ININFT
KSSL = KSS * TODEG / ININFT
XP = - POLY4(CALIGN(l,l), FZ(1,l)) / POLY4(CALFA(1,1), FZ(1,l)) /

& ININFT
XM = XTRAIL / ININFT
ISSL = ISS / ININFT
CSSL = CSS * TODEG / ININFT
DELT = 0.01
A l = - 2 . * (CAF+CAR) / R M / U
B 1 = 2. * (CAR*B - CAF*A) / RM/ U - U
A2 = 2 . * (CAR*B - CAF*A) / RI / U
B2 = - 2. * (CAR*B*B + CAF*A*A) / RI / U
C1=2. * C A F / R M
C 2 = 2 . * C A F / F u * A
Dl = 1. / GR / (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL)
El = 2. * (XP + XM) * CAE' * (1. - CBOOST) / (U * KSSL

& * (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL))
F1 = A * El
A 3 = 2 . * (XP + XM) * CAF * (1. - CBOOST) / (GR * U * ISSL

& * (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL))
B3 = A * A3
C3 = - KSSL / (GR**2) * (1. - 1. / (1. + 2. * (XP t XM)

& * CAF * (1. - CBOOST) / KSSL)) / ISSL
D3 = - CSSL / ISSL
ULAST = U
GGV(1) = 0.
GGV(2) = 0.

Appendix D - Source Code

GGV(3) = 0 .
GGV(4) = 0 .
GGV(5) = 0 .
GGV(6) = 1. / I S S L
DO 7 0 J = 1, 6

NBEG = TSS / DELT + 1
NENDl = (TFF + , 0 0 1 - TSS) / NTE' / DELT
NENDV = NENDl
DO 1 0 L = 1, 6

SV(L) = 0 . 0
S V I (L) = 0 . 0

1 0 CONTINUE
TIME = 0 .

C
C I n i t i a l i z e e a c h state i n t u r n t o 1 . 0 and integrate (E u l e r) .
C

S V (J) = 1 . 0
DO 6 0 I = 1, NTF

DO 40 K = NBEG, NENDV
SD (1) = S V (2) + U * S V (4)
S D (2) = (A1 + C1 * E l) * S V (2) + (B1 + C1 * F 1) * S V (3)

& t C 1 * D l * S V (5)
S D (3) = (A2 + C2 * E l) * SV(2) + (B2 + C2 * F 1) * S V (3)

& + C2 * D l * SV(5)
SD (4) = S V (3)
S D (5) = S V (6)
S D (6) = A3 * S V (2) + B 3 * S V (3) + C3 * S V (5) + D3 * S V (6)

DO 2 0 L = 1, 6
SV(L) = SV(L) + SD (L) * DELT

CONTINUE
TIME = TIME + DELT
DO 3 0 L = 1, 6
SVI (L) = SVI (L) + SV(L) * DELT

3 0 CONTINUE
4 0 CONTINUE

C
C S t o r e "impulse" responses i n TTTT c o l u m n s , integral i n TTT1.
C TTTT i s a NPT-po in t tabular t ransi t ion matrix, TTTl i s i t s integral .
C (S e e R e f e r e n c e s 2 & 3.)
C

DO 50 L = 1, 6
TTTT(L, J , I) = SV(L)
TTTT1 (L, J, I) = SVI (L)

CONTINUE
NBEG = NBEG + NENDl
NENDV = NENDV + NENDl

6 0 CONTINUE
7 0 CONTINUE

RETURN
END

..
SUBROUTINE WHEELZ (2, ROLL, PITCH)

..
C S u b r o u t i n e w h e e l z updates t h e matrices ZW, FZ, KNMSTR, KNMCBR i n
C common /VARS/ - namely: vertical displacement, n o r m a l ground load,
C b u m p - s t e e r angle and bump-camber angle for e a c h w h e e l , re lat ive t o
C s ta t ic t r i m .

Appendix D - Source Code

polarity : jounce displacement => positive ZW, FZ --------- rebound displacement => negative ZW, FZ

IMPLICIT REAL (KIM)

include SUSP.inc
include VARS,inc

DO 30, NAXLE = 1, 2
MOMENT = KAUX (NAXLE) * ROLL

& - HOROLC (NAXLE) * (FY (NAXLE, 1) + FY (NAXLE, 2))
DO 20, NSIDE = 1, 2
THISZW = Z - XAXLE(NAXLE) * PITCH

1 + . 5 * TRACK(NAXLE) * ROLL * (-l)**NSIDE
ZW(NAXLE,NSIDE) = THISZW
FZ (NAXLE, NSIDE) = FZOWHL (NAXLE) t THISZW * KZ (NAXLE)

1 + (-1) **NSIDE * MOMENT / TRACK (NAXLE) t FD (NAXLE, NSIDE)

IF (KINEM) THEN
IF (NAXLE .EQ. 2 .AND. BEAM) THEN
KNMSTR(2,NSIDE) = CSROLL * ROLL

ELSE
KNMSTR (NAXLE, NSIDE) = - (-1) **NSIDE

& * (CSZ (1,NAXLE) * THISZW
& + CSZ (2,NAXLE) * THISZW * THISZW)

KNMCBR (NAXLE,NSIDE) = (-1) **NSIDE* (CCZ (1, NAXLE)
& * THISZW + CCZ(2,NAXLE) * THISZW * THISZW)

END IF
END IF

20 CONTINUE
30 CONTINUE

RETURN
END

Appendix D - Source Code

............................. > AERO:

REAL KY, KL, KR, KM, KN, KSYWND, MXA, MYA, MZA, KD
INTEGER WINDKY
COMMON /AERO/ AIRHO, AREA, QZERO, KY, CLO, KL, KR, CMO, KM, KN,
1 VWIND, KSYWND, VA, BETAIR, FYA, FZA, MXA, MYA, MZA,
2 CDO, KD, FDRAG, WINDKY, TWIND(1000), WINMAG(1000)
SAVE /AERO/

COMMON /DRVSTl/ G W , TICYCL, TSS, DMAX,XPDR (loo), YPDR (loo), TAUMEM,
1 TFF, RM, A, B, RI, PSIO, NTF, NP, TLAST, DFWLST, TILAST,
2 DMEM(100,2), XT (loo), YT (100)
SAVE/DRVSTl/
COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, u
SAVE /DRIV/
COMMON /TRSSTR/ TTT (4,4, lo), TTT1(4,4, lo), GV(4)
SAVE/TRSSTR/

............................. > DRVTOR:

COMMON /DRVSTl/ GRAV,TICYCL,TSS,DMAX,XPDR(lOO), YPDR(100), TAUMEM,
1 TFF, RM, A, B, RI, PSIO, NTF, NP, TLAST, DFWLST, TILAST,
2 DMEM(100,2), XT (loo), YT (100)
SAVE /DRVSTl/
CoMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
sAVE/DRIV/
COMMON /TRSTOR/ TTTT (6,6, lo), TTTT1(6,6, lo), GGV(6), STMAX
SAVE /TRSTOR/

............................. > GLBL:

CHARACTER* 8 0 TITLE
CHARACTER*32 FNREAD, FRMT
CHARACTER*8 UOMEGA, UTORQ, UANGL, UVELFT
CHARACTER*2 UDISP, UDIST, UFORC
CHARACTER*l UNITS
REAL KMHMPH, ININFT
INTEGER NBYTES
PARAMETER (1-4, IECHO=7, IOUT=8)
COMMON /GLBL/ NEQN, V, TEND, DT, NUMKEY, LNAME,

& IPRINT, PI, ININFT, KMHMPH, G, TODEG, TITLE,
& UOMEGA, UANGL, UVELFT, UTORQ, UDISP, UDIST, UFORC,
& FNREAD, FRMT, NBYTES, UNITS
SAVE /GLBL/

REAL XPNT (999), YPNT (999), SLOPE (999)
COMMON /MNVR/ NSTEER, INDX, TSWBGN, TSWEND, SWAMPL, TSWPRD,
1 SWPHSE, SWSHFT, DRLAG, DRPmV, XPNT, YPNT, SLOPE
SAVE /MNVR/

Appendix D - Source Code Include Files

C
c > PARS:
C

REAL IXSCG, IXZ, IYS, IZZ, ISS, KSS
REAL MASS, KSC, KSL, KROLL
COMMON /PARS/ MASS, SPMASS, IXSCG, IXZ, IYS, IZZ, HCGTTL, WHLRAD,
1 WEIGHT, SPWGHT, USWGHT, WRATIO, WB, GR, GRTODG,
2 ISS, KSC, CBOOST, SSKEY, XTRAIL, KROLL, CFSS,
3 XWBCGS, XWBCGT, XCGSP, HCGSP, DLASH, CSS, KSL, KSS
SAVE /PARS/

C
c > PRNT:
C

CHARACTER* 8 0 VNAMES , VUNITS
CHARACTER*12 BLNK12
REAL PRBUFF(O:50,5)
COMMON /PRNT/ LINE, NPAGE, VNAMES, VUNITS, BLNK12, PRBUFF
SAVE /PRNT/

C
c > SUSP:
C

LOGICAL KINEM, BEAM
REAL TRACK(2), XAXLE (2), KZ (2), KZAXLE(2), KAUX(2)
REAL KTIRE (2), CZJNCE (2), CZRBND (2), ALFAO (2), GAMMA0 (2)
REAL FZOWHL(2), HOROLC(2), HCGSRC(2), CSFY(2), CSMZ(2), CCFY(2)
REAL CSZ (2,2), CCZ (2,2), YROLCF (2,2), HROLCF (2,2), YRC (2), HRC (2)
COMMON /SUSP/ KINEM, BEAM, CSROLL, TRACK, XAXLE, KZ, KZAXLE,
1 KAUX, KTIRE, CZJNCE, CZRBND, ALFAO, GAMMAO, FZOWHL,
2 HOROLC, HCGSRC, YROLCF, HROLCF, CSFY, CSMZ, CCFY,
3 CSZ, CCZ, YRC, HRC
SAVE /SUSP/

C
c > TIRE:
C

REAL CALFA(4,2), CGAMMA(4,2), CALIGN(4,2)
COMMON /TIRE/ CALFA, CGAMMA, CALIGN
SAVE /TIRE/

C
c > VARS:
C

REAL ALFA(2,2), GAMMA(2,2), FY(2,2) , MZ (2,2), FD (2,2) , FZ (2,2)
REAL ZW(2,2), KNMSTR(2,2), CPLSTR(2,2), TTLSTR(2,2), KNMCBR(2,2)
REAL YPOUT (13) , YOUTDR (13) , FW (2) , MMCOL
COMMoN /VARS/ SW, FW, AY, RHO, ALFA, GAMMA, FY, MZ, FD, FZ, ZW,
1 KNMSTR, CPLSTR, TTLSTR, KNMCBR, YPOUT, YOUTDR,
2 STORQ, BOOST, MMCOL
SAVE /VARS/

Appendix D - Source Code Include Files

APPENDIX E - DRIVER MODEL

This appendix contains copies of two technical papers which fully document the
concepts implemented in the computer code used to represent the driver model closed-loop
steering control process. Additional documentation is provided by comments contained in
the computer code itself; see Appendices C and D (Subroutines DRIVGO, DRIVE1,
TRANS, DRIVER, AND TRAJ).

The material is reproduced here by permission of the IEEE Transactions on
Systems, Man, and Cybernetics journal (Copyright IEEE), and the ASME Journal of
Dynamic Systems, Measurement, and Control (Copyright ASME).

Appendix E - Driver Model

Application of an Optimal Preview Control
for Simulation of Closed-Loop

Automobile Driving
CHARLES C. MACADAM .

~bstmet- ~n o p t i d preview c o d method is applied to the auto* automobile path following problem products substantive
bile path I O U O ~ ~ ~ problem. t h i 4 ~ i~ 4 to e x d m h. a g e m a t &ha compaG &th drivei/vehicle expe&en-
Wht-Gm *tory * results -w a- tal measurernab for both straight-line regulatory driving
p-nd m m n t s Tbe method is fmther'dem~rtscmted by c l od -
1- ddrtim of an automobile drivcr/vehide system during fnnsient and transient lane-change maneuvas.
l a d e maneuvers. The computer simulation d t s rn-compared
with equivalent vehicle test me+rurrm~nts. 11. THE OFTMU PREVIEW CONTROL

T HIS PAPER pre&ts example applications (to the
automobile path following problem) of a general

method of control syqthesis presentM in [I]. The method is
demonstrated here by simulation of a closed-loop automo-
bile/driver system and the results compared with
driver/vehicle test measurements. Results for the optimal
preview control are also discussed within the context of
manual control pursuit tracking task findings.

The control technique demonstrated herein is designed
for application to linear time-invariant systems utilizing
preview control strategies for regulation or tracking tasks.
A common example of this type of control strategy occurs
during normal automobile path following in which drivers

Before applying the optimal preview control of [I] to the
automobile path following problem, the main results and
symbol definitions contained therein are briefly reviewed
in this section for later reference. As derived in [I], for the
linear system

x = Fx + gu (1
1, = rnrx

where
(2)

x n X 1 state vector,
y scalar output related to the state by the n x lmT

constant observer vector transpose,
F constant n X n system matrix,

and
g constant n X 1 control coefficient vector,

"look-aheadT' to follow a desired path. Human operators, the optimal uO(r which a -
as part of various man-machine systems, typically employ of the locai perfomansc inda,
preview control strategies to control and stabilize such
systems. It is widely recognized that human operators are A 1 t + ~

capable of controlling and .adapting to a wide variety of
J = t ([f (?) - ~ (1)] ~ ((1 - - ~) ~ d d r l (3)

dynamicd systems, many of which are vehicles with pre- over the current preview interval (r, r + 'T) where
view-oriented control rquirements such as automobiles,
bicycles, and complex aircraft [2]-(81. Clearly human con- W arbitrary weighting function over the preview inter-

trol of most vehicles would not be possible without some val

training by the operator to acquire an understanding of the and

vehicle response to various control inputs. While a ctrtain f previewed input,
portion of this training serves to 1dent;ly and reinforce is given
learned open-loop responses for repeated and familiar con-
trol task scenarios, the remainder frequently serves to 00 F n (q - t)"
identify and 'reinforce the operatois understanding or n !
"feel" of the vehicle reqbnst to control inputs continually -,

in use for closed-loop regulation and/or pursuit nttds. It is
in this latter control category for general linear system (n + l)!
representations capable of pmicw control strategies, that
the method presented in [I] can frnd particular application.
As wiU be demonstrated in this paper, application to the

Manuscript raxivcd Oaober 10, 1980; mid Much 2, 1981.
Tbc author u with the Highway Wety Research Insticurt of the .W(T - r) d1

Univmity of Mi* Ann Arbor, MI 48109. 1 (4)

00i8-9472/81/06004393$00.75 0 1981 1EEE

rut r r u . . ~ ~ . r u . b a uh alrrmcl. blA.*, ANO ChdcAhE11CS, VOL. SMC-i I, NO. 0, IUN6 I Y o r

where I is the identity matrix. For the special case of charactgisdc roots of the constant matrix
W(q - I) = S(TI), the Dirac delta function for 0 < T <
T, (4) simplifies to [F - gcTI (9)

where

the single-point preview control version of (4), where For the special'case of W(q) = 6(1T), (9) becomes
. r O ~ ~ l r r \ " l

Equation (6) represents a proportional controller with 1 n=I "' J'

gain inversely related to the preview interval 1T and oper-
ating on the error between the previewed input f(t + P) 111. APPIJCA~ON To CONTROL P I J R S ~
and yo(t + F), that portion of the previewed output deriv- TRACKING TASKS AS REPRESENTED BY

ing from the state vector's cunent initial condition. Like- STRAIGHT-LINE AUTOMOBILE DRIVING
(4) can be intqreted as a proportional sontroller m e we~-knom and characteristic property ex-

operating 0x1 a similar error averaged and weighted Over hibited by human operaton in vacking tasb the --
the prhew interval (t, t + T) by the additional trnos port delay deri\ing from perceptual and neurom-lar
appearing in (4). mechanisms. By introducing this inherent delay property a

1t h also shown in [l] that the o p h d solution uO(t) can pos tern in the optimal preview c o n ~ l formulation, exccl-
be expressed in terms of my current nonophal u(t) and agreemat can be dmonsvated betwm typical man-
correspondingly nonzero preview output error c(t) as ual control pursuit tracking task results and the resulting

optimal controller modified to include the inheren;
transport delay (heretofore referred to as the "modified"

u"(t) = u(t) + ('1 optimal preview control).
For reasons of clarity and notational simplicity, the

where

OD Fn(q - t)"
+ (n , t) P l + 2 .

n= l n !

For the special case of W(q - t) = 8(F), as before, (7)
reduces to

The formulation expressed by (7) can be useful in describ-
ing systems which do not achieve, though closely ap-
proximate, the defrned optimal system behavior. Such cases
may arise from limitations in achieving the precise optimal
control due to time lags or dynamic properties inherent in
the controller and not accounted for a pnori in the optimi-
zation. The next two sections adopt this ,view for the
=/driver man-machine system in an attempt to dcmibe
and explain actual closed-loop driving behavior.

. Finally, it was also shown in [I] that information con-
cerning stability of the closed-loop system utilizing the
optimal preview control of (4) or (7) is provided by the

discussion in this section will make use only -of (81, the
single-point preview' control version of (7). Equation (8)
can be represented by the block diagram of Fig. 1, where
G(s) = [Is - F] "g represents the controlled element vec-
tor transfer function, and u(t), the current control, is
related to the optimal control uO(t) by a transfer function
H(s) (previously assumed equal to one in the derivation of
the optimal controI uO(t)). The introduction of the H(s)
transfer function is useful in describing systems which
function (or are presumed to do so) in an error minimiza-
tion fashion, but fail to achieve the precise optimal control
due to an inherent limitation within the controller or
control process itself, e.g, delays resulting from processor
calculations and sample hold operations in digital systems.
or perceptual/neuromuscular lags in the case of a human
controller. By letting H(s) = e'", those actual delay lirm-
tations displayed by human operators during tracking tasks
can be approximated by the parameter 7, an effective
transport lag. By incorporating this approximation and
noting then that the transfer function relating u(t) and
t(t + P) is e'"/(l - e '")KP, Fig. 1 reduces to Fig. 2,
a single-loop pursuit tracking formulation. The open-loop
transfer function Yo(s) relating y(t + 7) and t(t + P) is
given by

e-ST
+ mr'(t + r, t)G(s)

YO(4 = 1 - e-s7 KT'

Y 4 A b f : OPTIMAL PREVIEW CONTXOL I- '

e
Fig. 1. Block diagram for the single-point preview control

X(t)-
rnT$(t +i0,t) f(t+T')

- Fig 2 Equivalent block diagram for the singlepoint preview control, H(s) = e'",

The stability of this system is determined by the char-
acteristic roots of 1 + y, (~) , or equivalently,

+ y(t+T*)

To test the utility of this model by comparison with
experimental findings, open-loop gain/phase frequency re-
sponse results measured by Weir er al. [9, Fig. 12-C] for an
automobile straight-line regulatory control task are pre-
sented in Figs. 3 and 4. These experimental results repre-
sent the open-loop frequency response relatbg the driver's
output (presumably an estimate of future lateral position) '
to an assumed enor, derived by the driver, between the
previewed input (straight road ahead) and the driver's
output. Since this may be categorized as a form of linear
pursuit tracking, the formulation of (1 1) is accommodated.
Also shown in Figs. 3 and 4 is the frqucncy response
calculation for (11) with parameters 7" = 3.0 (s) and r =
0.26 (s). The model output y(t + TS) is the estimated
vehicle lateral position at time t + T*; the input f(r + TS)
a 0 is the lateral displacement of the previewed path. The
automobile (F, g) dynamics used in (1 1) appear in Ap-
pendix I-A and duplicate those identified in [9]. The values
of P and T were selected to fit the experimental data as
closely as the single-point model would permit. As can be
sctn, the model and experimental results display excellent
agreement. Not only does the preview model reproduce the
- 6 db/octave slope of the familiar manual 'con troI "cross-
over" model [2], [8] gain characteristic, but also the peaking
phase characteristic usually displayed in manual control
task experimental data of this kind.

The model parameters F and r appearing in (I 1) repre-
sent the average preview time used by the driver and

,

-

Fig. 3. Frequency response gain comparison

+

I 1

his/her effective transport lag associated with this particu-
lar control task. The values of 7" and'7 used here fall well
within the range identified by other investigators studying
straight-line automobile driving [lo]-1121 and human oper-
ator tracking performance [2], [4], [9].

Interestingly, for the relatively simple control task of
typical straight-line automobile regulation as discussed here,

KT'
-

- - KT'
-

Fig 4. Frequency response phase comp*~

the vehicle dynamics portion of the total transfer function
(11) does not play a dominant role e x q t at very low
frqucncies. As a result, the open-loop transfer function
gain characteristic (11) is closely approximated by the
human operator term, e"'/(1 - e'") i e's'/~s. Such a
result would support the well-known fact that tracking task
test results for simple automobile regulation [8], [91 can.
gerierally be approximated by the "cross-ovei' model form
Ce'"/s (C being the "cross-ova" gain constant) in the
vicinity of the cross-over frequency. Moreover, in such
cases where the above approximation dots hold, 1/r be-
comes C in the "cross-over" model representation.

For the simple manual wntrol pursuit tracking task, as
represented here by straight-line automobile regulation, the
mod5ed optimal preview controller, even employed in
only a single-point form [W(q - t) = 6(cl*)], appears to
accurately mimic human control behavior. It might, there-
fore, seem reasonable to conjecture that human operator
strategy during simple pursuit tracking (or at least straight-
line automobile regulation) is closely akin to an optimal
preview error minimization process wbich ignores or is
unaware of transport delay mechanisms inherent in the
control processor. A more stringent test of this hypothesis
is offered in the following section wherein transient auto-
mobile path following is examined using the m a l e d
optimal preview wntrol model in its complete form

APPuCAT'ION OF lHE PREVIEW CONTROL
FOR sDlUL.4fl0~ OF CLOSED-LOOP TWSIMT

A~OMOBILE PATH FOLLOWING
The previous section addressed the applicability of the

optimal preview control to the problem of preview regula-
tion and the effects of an inherent transport delay within

30.5 tl

Fig. 5. Lane-change test course.

+ S I N L R T E D
flERSURED

Fig. 6. Qd-loop si.ulation/tat result comparison.

the controller. Using straight'-line automobile regulation as
an example, the singlepoint preview model was compared
with experimental results within the frequency domain. In
this section application to the tracking problem is demon-
strated using the general preview control model (7), with an
inhetent transport time delay to simulate a closed-loop
automobile/driver path following maneuver. Results from
the model are compared with time history measurements
from corresponding full-scale vehicle tests.

The specific closed-loop maneuver examined here re-
quired an automobile driver to perform a standard 3.66 rn
(12-ft) lanechange within a distance of 30.5 m (1 00 ft) at a
vehicle sped of approximately 26.8 m/s (60 rni/h). The
initiation and completion of the lane change was con-
strained by 3.05-m wide (10 ft) cone-marked lanes (Fig. 5). '

The tat vehicle was a standard American compact with
measured parameter values shown ixi Appendix I-B. A
representative test result for this vehicle/driver combina-
tion appears in Fig. 6, showing recorded-time histories
of lateral acceleration, yaw rate, and front-wheel steer
angle [13].

Also shown in Fig. 6 are computer simulation results
using the optimal preview control (7) with an assumed
human operator transport delay term e"' relating u O (t)
and u(t) . The transport lag term is included here, as in the
previous section, to approximate the principal human oper-
ator lag effects. The calculation of (7), steer angle, seen in
Fig. 6 is for values of 7 = 0.2 (s) and T = 1.3 (s) using ten
equally spaced points in the preview interval to approxi-
mate the integral. The values of T and 7 were selected to
closely fit the test measurements. The (F, g) automobile
dynamics model is the same twodegree-of-freedom model
appearing in Appendix I-A, evaluated for the parameter
values identified in Appendix I-B. The previewed input
f(q) appearing in (7) represents the desired lateral path
deviation and was obtained during the simulation using the
simple straight-line path segments shown in Fig. 5 as input.

As seen from Fig. 6, excellent agreement can be obtained
between the experimental results and simulation predic-
tions using the two numerical parameters (7, T) and a
simple straight-line path input. Variations in the value of T

primarily influenced the closed-loop system damping; larger
values producing reduced damping. Variations in the value
of T influenced control (steering) amplitude as well as
damping; larger values of T lower control am-
plitude and increased'darnping.
- Finally, Fig. 7 shows a comparison of the preview model
predictions and m e w e d test results for a modified set of
vehicle dynamics (F, g). The same vehicle was employed
but with modifications to its mass center and rear tires so
as to produce a new set of parameter values listed in
Appendix I-C. As shown in Fig. 7 the principal change in
the closed-loop response from Fig. 6 is an increased steer-
ing gain (lower steering amplitude for the same nominal
maneuver) and decreased damping. Larger values of T (0.3)
and T (1.55) were required in the calculation of (7), shown
as steer angle in Fig. 7, to better approximate the reduced
damping and smaller amplitude steering control. A com-
parison of computed vehicle path trajectories, correspond-
ing to the baseline and modified vehicle responses shown
in Figs. 6 and 7, appears in Fig. 8.

Characteristic roots for each of the closed-loop systems,
as calculated from the constant matrix (13), are shown in
Fig. 9. The matrix (13) (see Appendix I-D) is similar to
that given by (9) but includes the influence of the transport

I
lag term e'" approximated by the firstsrder Pade poly-

I nomial

Note that the reduced damping in the driver/vehicle
responses, displayed in Figs. 7 and 8, is equivalently repre-
sented by the corresponding closed-loop characteristic root
locations shown in Fig. 9.

z '." - SIRULRTEO
--t nEASURED

a0

0.CO 1.00 2.00 3.00 4.00 5.00 6.00
TInE

v SIflULRTED

--C flERSUREO

a
a

6

0.00 1.00 2.00 3.00 4.00 5.00 6.00
T I N

Fig. 7. Closed-loop simulatioa]test result comparison- modified
vehicle.

BRSELINE VEHICLE
flOOIFIEO VEHICLE

&w

Fig. 8. Siulated trajectories.

% BRSELINE VEHICLE
Q I#XlIFIED VEHICLE o ::

x
-5.00 -4 .00 -3.00 -2.00 -1.00 0.00

RERL

Fig 9. Characteristic rood of the baseline and rnodifd closed-loop
wt-

3Y6 EU TUhSCTJON ON SISTE)LS, U, AND CYBERNETICS, VOL. SMC-I I , NO. 0 , JUHE 1Y01

These results and those of the previous section demon-
,strate useful application of the optimal preview model in
simulation of closed-loop automobile driving. The prin-
cipal conclusion concerning these results is that driver
steering control strategy during path following can be
accurately represented as a time-lagged optimal preview
control. Similar applications and extensions to problems in
other fields are clearly suggested by the results shown here.

The optimal preview control model, applied here to the
closed-loop automobile path following problem, offers a
useful and direct method for representing closed-loop be-
havior of linear driver/vehicle systems. It is suggested that
driver automobile steering control strategy during path
following can be viewed as a time-lagged optimal preview
control process.

The general linear system formulation of the preview
control methodology, demonstrated here, permits appli-
cation to a broad range of problems relating to man-
machine systems.

. .
A. Vehicle Dynamics '

The linear dynamical equations of an automobile for
0 lateral and yaw motions arc

where

y inertial lateral displacement of the vehicle mass
center,

o lateral velocity in the vehicle body axis system,
r yaw rate about the vertical body axis,
3 vehicle heading angle, and

front tire steer angle, contrbl variable.

The parameters appearing in (A1)-(A4) are

U forward vehicle velocity,
C,, Can front and rear tire cornering coefficients,
a, b fonvard and rearward locations of tires from

the vehicle mass center, and
m, I vehicle mass and rotational inertia.

The above equations can be expressed in matrix notation
as

and

The calculation ,of (1 1) appearing in Figs. 3 and 4 used
the following parameter values identified in [9] for ve-
hicle D

a = 1.41 m (4.63 ft)
b = 1.41 m (4.63 ft)
m = 2016 kg (138 slug)
I = 4013 m.N.s2 (2960 ft-lb.s2)
U = 22.3 m/s (73.3 ft/s)
C,, = 25 266 N/rad (5 680 lb/rad)
Can = 70 933 N/rad (15 960 lb/rad).

The constant observer vector mr = (1,0,0,0) provided the
vehicle lateral position y.

B. Biueline Vehicle Parameter Values

The vehicle parameter values listed below and used in
the calculations appearing in Fig. 6 were derived from
vehicle whtelbase/weight measurements and steady-state,
constant-steer vehicle test results [I31

a = 1.37 m (4.5 ft)
b = 1.22 m (4.0 ft)
m = 1563 kg (107 slug)
I = 2712 m.N.s2 (2 000 ft.lb.s2)
U = 25.9 m/s (85 ft/s)
Car= 19 438 N/rad (4 370 lb/rad)
Can = 33 628 N/rad'(7 560 lb/rad).

The weighting function W appearing in (7) was selected as.
constant 1.0 over the ten-point preview interval.

C. Modified Vehicle Parameler Values

The vehicle parameters of Appendix I-B were altered to
those values shown in this section by a rearward shift in
the vehicle mass center and a decrease in rear tire inflation

pressures into (AIO) produces the closed-loop state equation

a = 1.43 m (4.7 ft)
b = 1.16~11(3.8ft)
m = 1753 kg (120 slug)
I = 2712 m.N.s2 (2000 ft-lb.s2)
U = 25.9 m/s (85 ft/s)
Car = 20 906 N/rad (4700 lb/rad)
C,, = 29 536 N/rad (6W lb/rad).

The closed-loop calculation using these parameter values
appears in Fig. 7.

D. Stability of the C lased -bp Optimal Preview-Controlled
System Including a Transpon Time Log

Given the system

where F, g, uO, and cr are defined in (I), (4), and (9). If the
transport time lag e '" is approximated by the first-order
Pade polynomial, "-

(A7) becomes

Substitution of

and

equivalent of (A6)-(A8). For small 7 , stability of the
time-lagged optimal preview-controlled system is provided
by the characteristic roots of the system matrix appearing
in (A1 I).

[l] C. C. MacAdam, "An optimal preview control for linear systems,"
J. Dynamic System, Measurement, Control, Sept, 1980.

121 D. T. McRucr, n d., "New approaches to human-pilot/vchicle
adyns," Systems Technology, Inc., Tech Rep., AFFDL-TR-67-
150, Feb. 1968.

131 W. W. Wierwille, G. A. Gagne, and 1. R Knighf "An experimental
study of human operator models and closed-loop analysis methods
for high-speed autombile driving," IEEE Tram. Hwn. Factors
Electron., vol HFE-8, no. 3, pp. 187-201, Sept 1967.

(41 K Tanaka, N. Goto, and K. Wasbiru, "A comparison of techniques
for identibrig human operator dynamics utilizing time series analy-
sis," in Proc. Twelth Annv. Con/. M a n d Connd, Univ. of IIlinois,
Urbam IL, May 25-27, 1976, pp. 673-693.

[5] D. H Weir, "Motorcycle handling dynamics and r idn control and
the effect of design configuration on response and performance,"
PhD. dkrtat ion, Univer. of California, Los Angela, CA 1972

[6] S. Ben-@ and J. R Ellis, " 7 % ~ control of an articulated semitrailer
vehicle," in Vehicle S a / q Lrgi'htion-Its Engineering and Sm'd
Implicationr. London: Mechanical Enginering Publications
Limited, 1975.

[I D. L. Kleinman, S. Baron, and W. K Levison, "An optimal control
model of human response, part I: 'Ihcory and validation," Awe
marica, vol. 6, pp. 357-369, 1970.

[8] D. T. McRucr et d., "New results in driver steering control models,"
H w Factors, vol. 19, pp. 381-397, Aug. 1977.

[9] D. H Weir, R J. DiMarco, and D. T. McRu:r, "Evaluation and
correlation of driver/vehide data," voL II, F i Tech. Rep., Na-
tional Highway Traffic Safety A&, DOT-HS-803-246, Apr. 1977.

(101 R G. Mortimer and C. M. Jorgeson, "Eye fixations of driven as
affected by highway and traffic characteristics and moderate doses
of alcohol," in Proc. Sixteenth Annu. Meenng, Human Factorr

Oct 17- 19, 1972, pp. 86-92.
[I I] M Kondo and A. Ajirnine, "Driver's sight point and dynamics of

the driver-vehicle-system related to it," SAE Paper No. 680104,
Automotive Euginnring C o n p s , Detroit, MI, Jan. 8- 12, 1968.

[I21 D: A Gordon, "ExperimentaI isolation of driven' visual input."
Public Rmdr, voL 33, pp. 266-273, 1966.

(131 "Comparison of vehicle test procedum," Convacz DRDA 781433,
Highway Safety Research Institute, University of Michigan, 1978.

A n Optimal Preview Control f o r Linear Systems

A technique for synfhzsizing closed-loop control of linear
rime-invariant sysrems during tracking of previewed inputs is
presented. l 3 e derived control is directly dependent upon the
properr ia of the controlled system and is obtained by
minimization of a definedpreviewed output error.

I Introduction
This paper presents a general method of control synthesis
applicabie to linear time-invariant systems utilizing preview
control strategies for regulation or tracking tasks. A common
example .of this type of dynamical behavior occurs during
normal automobile path following in which drivers "look-
ahead" to follow a desired path. A frequent source of preview
control strategies in various man-machine systems is, of
course, the human operator. It is widely recognized that
human operators are capable of controlling and adapting to a
wide variety of dynarnical systems, many of which are
vehicles with preview-oriented control requirements such as
automobiles, bicycles, and complex aircraft [l-71. Although
this paper does not offer evidence as to the utility of the
proposed control synthesis for man-machine systems in-
vo!ving preview strategies, it is suggested that the method
presented here can be applied to such problems. Portions of
the work by Tomizuka [S], which treated a similar problem,
indicated useful application of optimal preview control
methods in representing man-machine dynamical behavior.

The particular method presented in this paper is directly
applicable t o general linear system representations assumed to
incorporate preview control strategies that depend only upon
knowledge of the current values of the state and control. The
optimal control is derived by minimization of a performance
index that is defined as a mean squared preview output error.
It will be shown that the derived control function is not ar-
bitrary or independent but depends directly upon the
dynamical properties of the controlled system.

I1 Statement of the Problem
Given the lintar system

x = F x + g u (1)

y=mTx (2)

' R a u r c h Associate, University of Michigan. Highway Safety R s u r c h
Innitule, Ann Arbcr. Mich. 48109

Con~rrbuled by the Dynamic System; and Control Diskion of TKE AMERICAV
Socnn or MECHLVICU ESGIKEEU. Manuscript received a1 ASME
Headquaners. Jul!. 9, 1980.

where,

x is t h e n x 1 state vector
y is the scalar ourput related to the state by the n x 1 mf

consfant observer veaor transpose
F is the constant n x n system matrix

and

g is the constant n x 1 control coefficient veaor

find the control, u (t) , which minimizes a local performance
index,

r+T

J A 45, I V (?) - X ~) I W (~ - ~) I ~ ~ ? (3)

over the current preview interval (t,t + T), where,

W is an arbitrary weighting function over the preview
interval
and f is the previewed input.

The performance index given by (3) represents the weighted
mean squared error between the previewed input and the
previewed output as defined below.

The previewed output, y($, is reiated to the present state,
~ (0 , by , -

where,

#(?,I).=exp(F(?- 01
is the transition matrix of the system F [9] .

If u (t) is assumed seleaed on the basis of a constant
previewed control, u (4) = u (t) , equation (4) simplifies t o

7

y (q) = m r l (b t) x (t) + u (t) {, m T 0 (? , t) b 4 (5)

and the performance index, (3), can be written as

The above assumption simply requires the resulting o g
timization to reflect a control strategy dependent only upon
current values of the state and conrrol. This assumption is, in
pan , motivated by the potential application to those man-
machine systems, wherein, it is assumed the human operator
is limited in deriving or having knowledge a priori of more
complex or optimal control waveforms over the preview
interval.

The necessary condition for minimization of J, defined by

188 1 Vol. 102, SEPTEMBER 1980 Transactions of the ASME

:quation (61, with respect to the control, u (f) , is provided-by,
:iJidu = 0, or

= ' (?-on
Equating o (7 , 5) uith exp[F(?-E)] = I + z P - ,

n - l n!

??here I is the identity matrix, and performing the d[in-
~egrations, (7) becomes

Equation (1 1) represents a proportional controller with gain
inversely related to the preview interval, T , and operating on
the error between the previewed input, f (r + T) , and
y , (r + T) , that portion of the previewed outpur deriving
from the state vector's current initial condition. Likewise,
equation (9) can be inrerpreted as a proponiona! controller
operating on a similar error averaged and weighted over the
preview interval (r, r + 7) by the additional terms appearing
in q u a t i o n (9).

The optimal solution, uo (I) , can also be expressed in terms
of any current non-optimal u (0 and correspondingly nonzero
preview output error, E (I) , by writing equation (9) as

I + T

uo (1) = [l r [f (7) - m ' ~ (n , t) x (f) - u (f) ~ (n)]

I + T

* A i r) w (T - r) d ? + u (t) jl A ' (?) W a - f) l]

where

,,, (n + l)!
(8)

iolving (8) for u (I) yields (n + I) !

= F (V - ~) ~
Nrllt) A I + C

n-1 "!

For the special case of W(7-t) = 6(F), as before, equation
(13) reduces to

vhere u0 (t) represents b e optimal solution. For the special
case o f W (7 - I) =' 6 (7 ') , the Dirac delta function for 0
< 7' s 7, (9) simplifies t o

/(!+T)-*T[I+ " I

The formulation expressed by equation (13) can be useful in
describing systems which do not achieve, though closely
approximate, the optimal system behavior. Such cases may
arise from limitations in achieving the precise optimal control
due to time lags or dynamic propenies inherent in the con-
troller and not accounted for a priori in the optimization.

While equations (9) and (13) are equivalent mathematiglly,
the latter deomonstrates an explicit relationship between the
derived optimal control and the previewed output error
function appearing in the performance index of the original
problem formulation. Simply stated, the current control level
is modified only in response to a nonzero function of the
previewed output error, and, in this sense, analogous to an
integral controller.

Finally, dependence of the derived optimal control upon the
system (F, g) propenies is clearly demonstrated by the explicit
presence of F and g in equations (9) and (13). Furthermore.
information concerning stability of the closed-loop system
utilizing the optima1 preview control of equation 19) or (13) is
provided by the characteristic roots of the constant matrix

oumal of Dynamic Systems, Measurement, and Control SEPTEMBER 1980, Vol. 1021 189

Introduction

where

resulting from the substitution of (9) into (1). For the special
case of I+" 7) = 6 (T') , (15) becomes

I l l Summary

The optimal preview control model presented here offers a
useful and direct method for representing closed-loop
behavior of linear systems utilizing preview control strategies.
The &rived control is directly related to the properries of the
linear system and the previewed input. Further, the method is
formulated in terms of general linear system representations,
thereby permitting applications to a wide varie:y of problems.

References
1 McRuer, D.T.. et al., "New Approaches to Human-Pilot/Vehicle

Analysis." Systems Technology, Inc., Tech. Rept. AFFDL-TR-67-150, Feb.
1968.
2 Wiemille, W.W., Gagne. G.A.. and Knight, J.R., "An Experimental

Stuey of Human Operator Models and Closed.Lmp Analysis Mahods for
High-Speed Automobile Driving," IEEE Trans. on Human Facrors m Elm-
rronrcs, 1'01. H F E J , No. 3, Sept. 1967, pp. 187-201.

3 Tanaka. K., Goto, N.. and Washizu, K., "A Comparison of Techniques
for Identifying Human Operator Dynamics Utilizing Time Series Analysis,"
Promdings 01 /he Tvclfrh Annuol Conference on Manual Conrrol, University
o f Illinois, Urbana, Ill.. May 15-27. 1976, pp. 673-693.

4 Weir, D.H., "Motorcycle Handling Dtnamics and Rider Control and the
Effm of Daign Configuration on Response and Performmcc," Ph.D. thesis,
Cni\aslty of California. Lo3 Angela, 1972.

5 Ben-Ari, S.. and Ellis, J.R.. "The Control of an Aniculaled Semitrailer
Vehicle," Vehicle S n j e ~ , ~ kgirlorion-lrs Engrncrring and Social Irnplica/ions,
Ciechanical Engineering Publications Limited, London, 1975.

6 Kleinman, D.L., Baron. S., and Levison. W.H., "An Optimal Control
3lodel of Human Response, Pan I: Theory and Validation," Auromarica, Vol.
6. 1970, pp. 357-369.

7 McRuer, D.T.. a al.. "New Results in Driver Steering Control Models,"
Human Facrors, Voi. 19, Aug. 1977. pp. 381-397.

8 Tomizuka, M., "TheOptimd Finite Preview Problem and Its Applicauon
to Man-Machine Systems," Dissenation. >!IT. Cambridge. Mass., Sept., 1973.

9 D'Angelo, H., Linear f i m c h r y i n g Sys~ems: Analysis and Synrhesis,
A l l y and Bacon, Boston. 1910.

Asymptotic Theory of Freight Car Hunting

The purpose of the present paper is twofold. The first is to
obtain an analytic express~on for the critical s p e d of a

k simple formula is derived for fhe hunting speed of a freight
car from an 8 degree of freedom linear model using asymp-
totic techniques. A comparison is made between the ap-
proximation and ezucr (numerical) solutions. The two agree
within 10 percenr for parameter values typical of present
designs.

' D:recior of Research, Railroad D)nuni;l, Inc., Ardmore, Pa.
P r m t Address: Associate Profasor. University of Pennsylvania.

Philadelphia. Pa.
Cortributed by the Dynamic Systems and Control Division o f f KE AMERICAN

Hadquaners, July 9. 1980.

multidegree of freedom model of a freight car which is simple
enough to convey physical insight into the hunting problem
while at the same time complex enough to have validity for
realistic vehicles. The second is to illustrate the simplification
which can be effected in problems of this type by employing
asymptotic methods. These methods are model independent
and rely on the fact that the creep forces dominate the motion.

Previous work has included analytical studies of simple
Vehicles [I-21 and numerical solutions for realistic vehicles [3-
41. The present work can be viewed as a generaiizauon and
formal mathematical justification of the former, which
although cleverly done are ad hoc by nature and seem to be
restricted to systems with few degrees of freedom, and a
specialization of the latter, giving the same results in the
region of validity of the expansion but being restricted by
nature to specific regions in parameter space. The utility of
the present work is in the simple result which it yields. From
this one can obtain physical insight into the phenomenon as
well as w i l y calculable answers.

Model Description
We consider a model of the lateral dynamics of a freight car

composed of a rigid car body pinned at either end to a truck.
The pin connection transmits a linear damping moment
(constant c I,) between the car body and the truck. Each truck,
see Fig. 1, is composed of 2 wheelsets, two rigid sideframes
connected by ball joints to each wheelset, and a bolster, which
contains the car connection (centerplate) at its midpoint, is
constrained to move parallel to each wheelset by means of
frictionless sloned pins in each sideframe, and is restrained
from moving freely in that direction by 2 linear springs
(constant k each) and dampers (constant c each) at cach end.
In the real system this restraict is provided by the shear
stiffness of the bolster springs, whose primary function is to
suppon the car weight, and the sliding of the friction wedges
laterally. Further, because the springs and dampers are
separated by a distanced, there is a moment tending to square
the truck due to both the springs (constant 4kd2) and the
dampers constant 4cd2). In addition, the bolster has mounted
symmetrically with respect to the centerplate, constant
contact sidebearings (constant kB each) whose function is to
provide a torsional spring restraint for the bolster relative to
the car body (constant 2kB d). Actually the sidebearings also
transmit a damping moment between the bolster and the car
body (constant ZCBd); however, this has the same form as
the centerplate moment and can be combined with it. There
are eigh! degrees of freedom in this model and we will take as
our independent coordinates s, f, BF, 9, 9, @, BR, uR .
Here the superscripts represent the front and rear truck
coordinates, x is the axial displacement of the truck centroid
relative to the track center line, I) the yaw angle of cach
wheelset of the truck as a result of the kinematic constraint, 6
the trail angle of the truck, and u the bolster displacement
relative to the truck centroid. The equations of motion, which
have been derived elsewhere [5] and which are quite similar to
others which have been discussed in the literature [4], are
written here in dimensionless form in terms of sum and
difference coordinates,

190 1 Vol. 102, SEPTEMBER 1980 Transactions of the ASME

