THE UNIVERSITY OF MICHIGAN
COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS

Computer and Communication Sciences Department

Technical Report

COMPUTER SIMULATION OF A LIVING CELL

Roger Weinberg
and

Michael Berkus

supported by:
Department of Health, Education, and Welfare
National Institutes of Health

Grant No. GM-12236-03
Bethesda, Maryland

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1969

Distribution of This Document is Unlimited

ABSTRACT

COMPUTER AND SIMULATION OF A LIVING CELL

by

Roger Weinberg and Michael Berkus

Area

Computer simulation of living adaptive systems.

Problem

Write a realistic and useful computer simulation of a living cell.

Method of Inquiry

Simulate the simple unicellular bacterium Escherichia coli as a

program in FORTRAN IV for an IBM/360:67 digital computer.

Criteria for Success

I. Reality of the Simulation
a. The simulated cell should realistically simulate growth curves
of a living cell in the real environments used to adjust the
parameters in the simulation.
b. The simulated cell should realistically simulate growth during
changes from one chemical environment to another.
c. The simulated cell should predict real cell behavior in environ-
ments not used to adjust the parameters in the simulation.
II. Future Usefulness of the Simulation
a. The simulation should supply unique information useful in answer-
ing current questions in biology.
1. The simulation should help to analyze interactions between

metabolic pathways and cellular control mechanisms. It should

iii

accomplish this by its ability to predict data from the
hypotheses incorporated in the program, thereby permitting
tests of these hypotheses against experimental data in the
literature.

The simulation should add information to the literature about
the concentrations of major cell constituents during complex
changes in environmental conditions.

The simulation should be useful for theoretical studies not
amenable to direct experimental analysis in the biological
laboratory. An example would be to study different effects
on metabolism by simulating genetic and metabolic conditions
necessary for the existence of new biochemical pathways in
cell metabolism.

It should be possible to outline a simulation of an evolving

population of living cells.

iv

ACKNOWLEDGEMENTS

Dr. J. A. Jacquez and the Biomedical Data Processing group provided
me with a milieu in which I could begin studies at The University of
Michigan. Dr. John H. Holland encouraged me to enter the strange new field
of computer and communication sciences from genetics, and taught at a level
of excellence which permitted me to remain a student for the requisite
initiation period. Dr. Bernard P. Zeigler, E. Stewart Bainbridge, and
Daniel J. Cavicchio tutored me with patience and skill through many perilous
passages. Ronald Brender, Thomas Schunior and John Foy gave willingly
of their computing knowledge. Dr. Robert B. Helling and Dr. Prasanta
Datta kept me abreastof key happenings in biochemistry and genetics.
Dr. Arthur W. Burks understood my academic problems at all times, and inspired
me by his leadership of the Logic of Computers Group and the Department of
Computer and Communication Sciences at The University of Michigan. Dr. H.
H. Swain and Richard Laing catalyzed my work with their editorial comments
and creative writing. Mr. Thomas Dawson administered the affairs of the
Logic of Computers Group, and the Department of Computer and Communication
Sciences with morale boosting zeal. Miss Linda Beattie typed and drew
with skill and dedication. I have erred at points in spite of all of these

accomplished and generous helpers because I am human.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

I. CRITERIA FOR SUCCESS

1.1. Reality of the Computer Simulation of a Living Cell.

1.2, Future Usefulness of the Computer Simulation of a
Living Cell.

II. COMPUTER SIMULATION OF A LIVING CELL
APPENDIX TO CHAPTER II

ITI. COMPUTER SIMULATION OF ALLOSTERIC INHIBITION
IVv. COMPUTER SIMULATION OF EVOLVING DNA

EPILOGUE: CANCER IN RELATION TO THE COMPUTER SIMULATION OF A
LIVING CELL

REFERENCES

Vi

iii

vii

31

36

44

67

69

Figure

1.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

LIST OF FIGURES

Title

Logarithm of Various Quantities in a Growing Culture.
Flow of Materials.

Differential Equations.

New Concentrations.

Summary of Program.

Growth Cycle.

Cell in Environment 1 (Minimal Medium).

Cell in Environment 2 (Minimal Medium + Amino Acids).
Cell in Environment 3 (Broth).

The cell successfully adjusted its enzyme rate
constants by allosteric modification of its enzymes.

Ratio of concentrations of chemicals at the end of
one time step to base concentrations cell should
maintain, for rate constants calculated at start
of program.

Ratio of concentrations of chemicals at the end of
one time step to base concentrations cell should
maintain, for rate constants obtained by simulating
allosteric modification.

Repression and Allosteric Inhibition.

Number of genes producing initiator substance into
cytoplasm.

Number of genes producing initiator into the cytoplasm.

Creation of new replication sites when cytoplasmic

initiator substance is high enough (greater than one).

Creation of new replication sites when cytoplasmic

initiator substance is high enough (greater than one).

Cell division occurs if conditions are appropriate.

Cell division occurs if conditions are appropriate.

vii

Page

10

11

12

13

14

16

17

18

20

21

21

23

25

27

28

28

29

LIST OF FIGURES (Cont.)

Title

Repression and Allosteric Inhibition.

Preliminary Rate Constants K(1), ..., K(14) for
Flow Rates Between Pools.

Storing different variables (which variable is
indicated by the ID subscript) for the cell in
different environments (which environment is
indicated by the J subscript).

Calculations for allosteric inhibition necessary
to fit data for real cells.

The Chrom Array.
Evolution of Strings.
Evolution of Adaptive Genetic Programs.

Description of strings references when third
dimension of CHROM array ranges from 1 to 40.

Adaptive Genetic Programs.

Non-adaptive genetic program directing the evolution

of adaptive genetic programs as they operate on
populations of strings.

viii

Page

40

41

43

43

46

54

55

56

57

58

CHAPTER 1

CRITERIA FOR SUCCESS

1.1. Reality of the Simulation

a) The simulated cell has realistically simulated growth curves of a
living cell in the real environments used to adjust the parameters in the
simulation. Since a vast amount of experimental data on E. coli is available
in the literature, it was easy to check the behavior of the simulated cell
against data from the real world. The simulated cell produced chemicals and
cell mass at logarithmic rates, and duplicated in stepwise fashion, just as
the real cell does (Figure 1.1). Since the simulated cell produced these
realistic growth curves from a complex interaction of many equations, the
growth curves are a good preliminary confirmation of the simulation.

b) The simulated cell should realistically simulate growth during
changes from one chemical environment to another. Since the control equa-
tions were fitted for growth in different fixed environments, but not for
behavior during a shift in environmental conditions, the behavior of the
simulated cell during a change in its environment comprises a test of new
conditions not used to adjust the parameters in the simulation. Although
the simulated cell could adapt to changes in its environment, further work is
necessary to resolve artificial fluctuations in ATP and ADP concentrations
following the shift.

c) The simulated cell should predict real cell behavior in environments
not used to adjust the parameters in the simulation. The most stringent
test would be a comparison with an experimental situation in which the pools
represented in the simulation are available as experimental measurements

with which the simulation must agree. Growth in a new, completely defined

bogz Of Relative Increment

OF CELLS |

| ' !

I I |

I ! !

I | |

i 1 |

| l |

1,000 s mmomw cmcc s oo meme e/ et et) inftaiaiaiie ittt 1

TOTAL NUMBER

I I oF CELLS | i

| j ! |

| I ! !

0800 cocecccmccecbeeefmn e Y e -) SR P L)

I | | I

] !] 1

| | | |

I I I |

| | n |

0.600p == =====fom e e peeee IRt EEEEES e s oo J

I | I I

| I i !

| | | |

| | | |

| | | |

| | | |

0.400F === f = o= f o e e e e el et Attt Sl tom e mea ey

|] | |

| i i |

[| | |

| I 1 |

| | l |

o.200n __ /L) _____ | B R S A !

| | [i | | 1

) | | | | | |

! I | I | ! I

! | | | | | |

| | | | i | |

| I] I I | |

0.000() il - I IS I |
0.000 900,000 1800.000 2700.000 3600.000 4500.000 5400.000

Time In Seconds

Comparative magnitude of various quantities are a function of the scaling factors used in order
to plot all quantities on one graph. A cell doubles after a DNA replication cycle. The doubling
takes arelatively short time, as indicated by the sudden, stepwise increase in "TOTAL NUMBER OF CELLS",
where as "TOTAL DNA" increases throughout the replication cycle.

Figure 1.1. Logarithm of Various Quantities in a Growing Culture.

chemical medium by the real cell will be used as the data with which the
simulated cell must agree. The response of the program changes both in
different simulated environments, and as a function of modifications of the
hypotheses used to formulate the equations in the program. This output response
serves as data for analyzing the interactions occurring among the hypothetical
subsystems on which the program is based. Interesting and valuable works

have been programmed for solving theoretical mathematical equations in the
study of feedback controls of individual pathways in metabolism (Koch, 1966;
Garfinkel, 1964) and to study repression or induction of one gene (Griffith,
1968). Garfinkel has simulated the glycolytic pathway in elegant detail

for higher protists. Heinmetz (1964) has solved differential equations on

an analog computer in order to study repression of one enzyme. I am syn-
thesizing in one program for a digital computer interacting systems important
and necessary for replication and growth of a real, specific living cell,

Escherichia coli (Weinberg, 1968a, b, c; Weinberg and Berkus, 1969). My

simulation includes homomorphic representations of many biochemical pathways,
gene controls, and mechanisms for cell replication, permitting studies of
interactions of these vital organizational entities in ways not intended or
possible with simulations limited to at most a few metabolic pathways (e.g.,
Garfinkel, 1964).

Simulations have been written for abstract systems which resemble living
cells in their general organization. These simulations were not models of
any particular cell, and were not designed so that the output of the simulation
could be checked against experimental data (Heinmetz, 1966; Yeisley and
Pollard, 1964; Tsanev and Sendov, 1967; Stahl, 1967). Yeisley and Pollard
have simulated production of metabolic intermediates, emphasizing organization

of sequences rather than including feedback, repression, and interaction of

metabolic pathways to control enzyme activity and production. Heinmetz has
simulated a general model for an abstract cell on an analog computer with no
attempt at comparison of the results of the simulation with data from the

real world (1966). Tsanev has simulated an abstract system for regulation

of multiplication of a diploid cell, again with emphasis on making a workable
model rather than on comparison of predictions of the simulation with real
experimental data. Although simulating a real cell requires careful literature
searches, and painstaking accuracy as to metabolic topology and concentrations,
my realistic simulation of E. coli can be used in ways neither envisioned nor
accessible for the abstract models mentioned. I can predict experimental
results for a real organisms, and can improve my simulation as I use it by
correcting discrepancies between the simulation's predictions and real experi-
mental results.

1.2, Future Usefulness of the Computer Simulation of a Living Cell

a) I will try to show that the simulated living cell is useful by
demonstrating that it can by applied to current questions in biology. I will
choose questions concerning interrelationships among metabolic pathways and
control mechanisms which are important in the establishment of a realistic
and stable simulation. The answers to the questions will therefore serve
the two-fold purpose of illustrating the simulation's usefulness, and making
it even fiore useful.

1) Typical questions relating to the interactions among metabolic
pathways and cellular control mechanisms are: Can the simulated ATP/ADP
controls, along with the simulated operon, replicon, and allosteric
inhibition account for the stability of a real cell in changing environ-
ments? Is the simulated cell's stability lost when the ADP/ATP controls

are relaxed? Does charged and uncharged TRNA as a control on protein

synthesis lead to simulated results corresponding to the difference
between normal cells and relaxed mutants?

2) The simulation should add information about the concentrations
of major cell constituents during complex changes in environmental con-
ditions. Since all of the twenty-two pools used to represent metabolism
are represented at all times during the simulation, the concentrations
of these pools will be calculated in every program run. Many of these
concentrations are not measurable in some of the relevant biological
experiments, although the concentrations may influence important factors
being studied. Availability of realistic approximations of all twenty-two
concentrations during many different conditions will be useful for theore-
tical analyses of metabolism.

3) The simulation should be useful for theoretical studies not
amenable to direct experimental analysis in the biological laboratory.
Adding new metabolic pathways, or changing the efficiency of old
metabolic pathways is easily implemented in the simulation, with
automatic prediction of the concentrations of the twenty-two pools of
biochemicals represented. Viability of the simulated cell may be defined
as the ability to duplicate at a rate similar to the duplication rate
of a real cell in a similar environment. Many possible alterations can
be analyzed as to effect, and some chosen for their feasibility for
experimental analysis using criteria such as the viability of the altered
cell, or the simplicity of the alteration in terms of genetic changes
necessary to produce the alteration.

4) The computer simulation should be a working simulation of a
living cell with evolutionary potentialities for the simulation as well

as for the model being simulated.

Living organisms adapt to their environments in two ways; during evolu-
tion and at the level of the individual organism. At the individual level,
an organism adapts over its own life span by changing its phenotype in
response to information it receives from its external and internal environ-
ments. The simulated cell accomplished this type of phenotypic adaptation
when it maintained stability in changing simulated chemical environments
(Weinberg, 1968a, b, c).

In an evolutionary sense, populations of organisms adapt over many cycles
of reproduction, with more fit organisms selected for greater ability to sur-
vive and to produce offspring. A scheme for evolutionary adaptation of the
simulated cell will be outlined (Weinberg and Berkus, 1969), and its validity
supported by theoretical as well as practical considerations (Holland, 1968a,
b; 196%a, b). DNA of a cell can be represented by an array in which is
stored information concerning the various rate constants in the equations
representing a simulated cell. Evolving DNA can be simulated by modifying
arrays representing the DNA of different cells in a population. The evolu-
tionary operators crossing over, inversion, mutation and selection can be
simulated by a genetic program written to modify the contents of the DNA
arrays. Fundamental theories of population genetics by Fisher, Kimura and
Holland (1968a, b; 1969a,b) assure one of the effectiveness of this type of
modification in achieving desired goals. An example of a startling and
interesting prediction arising from Holland's theory is the global optimiza-
tion available to the reproductive plan through the use of local optimization
techniques. The theorem makes heavy use of a series of developments in economics
(Gale, 1967). Not only does a reproductive plan exist for such an accomplish-
ment, but many different goals may be reached by using the same plan over

much of the evolutionary path. The turnpike theorems from economics which

Holland relates to reproductive plans indicate the existence of such robust
plans. The extraordinarily efficient sampling and search technique of natural
populations becomes apparent within the framework of Holland's formal

adaptive system. This efficient sampling technique has profound implications

as to the kinds of task possible to an evolving population.

CHAPTER I1

COMPUTER SIMULATION OF A LIVING CELL

We are trying to write a realistic and useful computer simulation of
a living cell. The enormous advances in molecular biology in the past
fifteen years have greatly increased our understanding of the basic sub-
systems in the living cell. DNA was found to be the molecule on which the
cell records information to be passed on to the next generation. M. H. F.
Wilkins, James D. Watson and Francis H. C. Crick established the precise
structure of the DNA molecule. The molecular code used by DNA to record the
information to be passed on has been successfully analyzed. Viable hypotheses
have been formulated for translation of genetic information into cellular
activity and structure. Experiments have yielded support for specific theories
concerning the control of cellular activity at the level of DNA function.
Control mechanisms have also been discovered which control a given cellular
process by modifications of molecules far removed from DNA. Biology is
entering a new phase. The interactions of the various subsystems analyzed
by the molecular biologists are becoming objects of study. These subsystems
interact among themselves, and with the environment external to the cell.
Current research on regulation of DNA replication (Clark, 1968) and regulation
of enzyme activity (Atkinson, 1966; Murray and Atkinson, 1968), as well as
numerous experimental and theoretical studies of molecular interactions within
the cell (Davis et. al., 1968) have made it possible to model a living cell
in which both metabolism and cell replication are represented.

In a study of interacting systems, the large, high-speed digital computer

is an enormous aid. One can write down hypotheses in the form of logical and

analytic equations. These equations form the program. Environmental con-
ditions can be given to the computer as input data. If the program represents
a living cell, the program generates cell behavior as output.

In order to analyze interactions among DNA, RNA, protein and the acti-
vities of self-reproduction and metabolism in a living cell, a simulation of

the simple unicellular bacterium Escherichia coli was written as a program

in FORTRAN IV for an IBM/360:67 digital computer (Weinberg and Berkus, 1969).
The cell was represented in terms of (1) the concentrations of twenty-two
pools of chemicals (Figure 2.1) and (2) equations representing functional
relationships among pools (Figures 2.2, and 2.3). These equations were used
to predict the change in concentration and total amount of chemicals in each
pool over time (Figures 2.3, 2.4, and 2.5).

Homomorphic mappings are often used from the real world onto the models
used for computer simulations. One must be aware of the approximate nature
of these homomorphisms, and consequent limitations on the predictive ability
of the simulation. An example of a domain for such a mapping would be the
twenty-two pools of chemicals in the simulation of a living cell used to
represent corresponding pools in a real living cell. I hoped that these
pools would create equivalence classes of chemicals with substitution property
over time. The substitution property is usually approximate, and limits the
domain in which the predictions of the simulation are accurate. This
approximation does not necessarily invalidate the model, but should be kept
in mind while using it. One can often use imperfect predictions from imper-
fect models in a Bayesian sense, and work with the new probabilities one

obtains to select possible courses of action.

RIBOSOME]0——

TRNA ATP
MRNA l][
1) ADP
NUCLEOTIDE
DNA

AMINO
ACID

WALL
PRECURSOR

PROTEIN

Figure. 2.1.

GLUCOSE

WALL

Flow of Materials.

10

91

Chndx
100

Chkekx

Chrekx

Chixx
101

Chixx

Chhkax

Chhkx

W N -

Chkkxx

Chrkx

11

DDNA = K(6)*NUC*DT*EK(6)*ATP

DDNA1 = K(6)*(T/DBLE)*.5*IN1*NUC*DT*EK(6)*ATP

DDNA2 = K(6)*(T/DBLE)*,5*IN2+«NUC*DT*EK(6)*ATP

DDNA3 = K(6)*(T/DBLE)*,5*%IN3*NUC*DT*EK(6)*ATP
4O MINUTES TO REPLICATE .5 * DNA

DO 100 1 = 1,10
DRNK(I) = (K8K(I)*NUC*DNA*EK(8)*ATP - KDRNK#*RNK(1))=*DT

DMRNA = DRNK(1) + DRNK(2) + DRNK(3) + DRNK(L4) + DRNK(5) + DRNK(6)
+ DRNK(8) + DRNK(9) + DRNK(10) + DRNK(7)

DTRNA = K(10)*NUC*DT+EK(10)=*ATP
DRIB = K(9)*NUC*AA*DT*EK(9)*ATP
DRNA = DMRNA + ,25*DTRNA + ,75*DRIB
DWALL = K(L4)*GLUC*DT+EK(4)*ATP

DO 101 t = 1,10
DEK(1)= K(7)*AA*(RNK(!)/MRNAO)*DT*EK(7)*ATP

DPRTN = DEK(1) + DEK(2) + DEK(3) + DEK(4) + DEK(5) + DEK(6)
+ DEK(8) + DEK(9) + DEK(10) + DEK(7)

DNUC= -(2.5E9/660,)*DDNA - (1,E6/660.)*DMRNA
+K(1)*GLUC*DT*EK(1)*ATP - (2,5E4/660.)*DTRNA
-(2.E6/660,)*DRIB - K(5)*NUC*DT*EK(5)*ATP

DAA=K(2)*GLUC*DT*EK(2)*ATP - 1,E6/102.*DRIB - (L,E4L/102.)*DPRTN
DATP = K(3)*GLUC*DT *ATP*EK(3) - DNAP*DDNA - MRNAP*DMRNA

- TRNAP*DTRNA - RIBP#*DRIB - PRTNP*DPRTN-WALLP*DWALL

- (AAP*K(2)*GLUC*EK(2)*ATP + NUCP*K(1)*GLUC*EK(1)*ATP +2*K(5)*NUL
*EK(5)*ATP)*DT

DADP = -DATP + K(5)*NUC*DT*EK(5)*ATP

DVOL = K(14)*WALL*DT
INCREASE IN VOLUME PER UNIT INCREASE IN CELL WALL

Figure 2.2

Differential Equations: quantity to the left of =

is the change in amount of the substance; e.g., DDNA
represents the change in the amount of DNA in one time
increment DT. The differential equation underlying

the first equation is

DDNA = K(6)*NUC*EK(6) *ATP*DT for a discrete time
interval DT. As DT approaches 0, we get the
underlying continuous differential equation

1lim D(DNA)/DT = d(DNA)/dt = K(6)*NUC*EK(6)*ATP
DT - O

ADJST = VOLO/(VOLO + DVOL)

Crxxx

VOLN= VOL*EXP (DT* K(1k)*WALL/VOL)
Crknx
DNA = (DNA + DDNA)*ADJST

DNA1 = (DNA1 + DDNA1)=*ADJST
DNA2 = (DNA2 + DDNA2)*ADJST
DNA3 = (DNA3 + DDNA3)=*ADJST
DNA1T = DNAL1=VOL

DNA2T = DNA2=*VOL

DNA3T = DNA3=VOL

MULT = 0.

IF (DNA3T - 1.000010) 151,151,150
150 MULT = MULT + 2,
GO TO 153
151 CONTINUE
IF (DNA3T - ,1) 153,153,152
152 MULT = MULT + 1,
153 CONTINUE
IF (DNA2T-1,000010) 155,155,154
154 MULT = MULT + 2,
GO TO 158
155 CONTINUE
IF (DNA2T-0.1) 157,157,156
156 MULT = MULT + 1,
157 CONTINUE
IF (DNA1T-1.000010) 159,159,158
158 MULT = MULT + 2.
GO TO 161
159 CONTINUE
IF (DNA1T-0.1) 161,161,160
160 MULT = MULT + 1.
161 CONTINUE
DIN = MULT*KIN*(AA/AAQ)*DT

IN = IN + DIN

Do 102 | = 1,10
102 RNK(I) = (RNK(I) + DRNK(I)) =* ADJST
Chxxx

MRNA = (MRNA + DMRNA)*ADJST

TRNA = (TRNA + DTRNA)*ADJST

RIB = (RIB + DRIB)*ADJST

RNA = (RNA + DRNA)=*ADJST

WALL = (WALL + DWALL)*ADJST
Crrks

DO 1031 =1,10
103 EK(lI) = (EK(1) + DEK(1)) *» ADJST
Chrkx

PRTN = (PRTN + DPRTN)*ADJST
NuC (NUC + DNUC)=*ADJST

AA = (AA + DAA)*ADJST

ATP (ATP + DATP)=*ADJST
ADP (ADP + DADP)=*ADJST

Figure 2.3. New Concentrations. The amount of new material made
during one time increment DT is added to the amount of old
material present at the beginning of the time increment, and
the new concentration is obtained by adjusting for the increase
in cell volume during the time increment.

Y

FEED IN INTERNAL CELL CONCENTRATIONS (IN
NUMBER OF MOLECULES PER CELL) FOR ENVIRON-
MENT (I). 1 = MINIMAL MEDIUM, 2 = AMINO
ACIDS, 3 = BROTH.

CALCULATE PRELIMINARY FLOW RATE CONSTANTS
FOR FLOW OF MATERIAL FROM ONE POOL TO ANOTHER
e.g., CHANGE IN DNA PER TIME INCREMENT = K6*DNA.

CALCULATE ENZYME RATE CONSTANTS, REPRESSOR
LEVELS, REPLICATION ROUTINE IN ORDER TO
FIT EXPERIMENTAL DATA.

CALCULATIONS BY GROWING CELL IN ENVIRONMENT (I)
FOR A FEW GROWTH CYCLES, NOT YET USING ALLOSTERIC pe—
INHIBITION TO ACHIEVE PROPER RATES OF CATALYSIS.

[_- STORE VALUES CALCULATED, AND WHICH_, ENVIRONMENT
THEY WERE CALCULATED FOR.

yes

CALCULATE ALLOSTERIC MODIFICATION OF ENZYMES NECESSARY
TO GIVE OBSERVED GROWTH RATES IN THE THREE ENVIRONMENTS
INVESTIGATED.

GROW CELL FOR SEVERAL GROWTH CYCLES IN ENVIRONMENT (I). LET
CELL ADJUST TO ENVIRONMENT I BY USING REPRESSION, REPLICON
CONTROL, AND ALLOSTERIC INHIBITION OF ENZYME ACTION. IF CELL
CAN ADJUST TO DIFFERENT ENVIRONMENTS, THE CALCULATIONS ARE
CONSIDERED A PRELIMINARY SUCCESS.

no

I=1+1

Figure 2.4. Summary of Program.

13

TIME = 0

CALCULATE WHICH MRNA MOLECULES ARE REPRESSED
AND ADJUST RATE CONSTANTS FOR THEIR FORMA-
TION UNDER THIS CONDITION.

MODIFY ENZYME CONSTANTS FOR ALLOSTERIC
INHIBITION IF APPLICABLE.

CREATE THE SITE OF REPLICATION FOR NEW
CHROMOSOME IF ENOUGH INITIATOR IS AVAILABLE.

CALCULATE THE CONTROLS ON THE INITIATOR
PRODUCTION, THE NUMBER OF GENES IN THE
PRODUCTION, AND ANY NEW INITIATOR
PRODUCED.

PRODUCE MRNA, TRNA AND THE RESULTING
ENZYME PRODUCTS.

CALCULATE THE NEW CONCENTRATIONS FOR THE
ADJUSTMENT IN VOLUME. (THESE SHOULDN'T
CHANGE.)

CALCULATE THE INCREASED POOL VOLUMES.

CHECK TO SEE THAT RATIO BETWEEN CON-
CENTRATION OF POOLS AND THE BASE
LEVELS EQUALS ONE.

IF MORE THAN ONE CHROMOSOME HAS REPLICATED
AND NO CHROMOSOME IS INCOMPLETELY REPLICATED,
DIVIDE AND PRODUCE TWO NEW CELLS.

TIME = TIME + DT TIME > LIMI no
Increment Time Counter ?__‘—‘/,/
Yes
CONTINUE

Figure 2.5. Growth Cycle

14

15

The model of the cell was simplified in order to make the computer
simulation manageable. The chemical constituents of the cell were lumped
into the aformentioned pools (Figure 2.1). The pool of proteins was further
divided into different enzyme groups: each enzyme group was associated
with one group of chemical reactions responsible for converting one pool
into another pool in the simulated cell. For example the enzyme group EK2
catalyzed the production of amino acids from carbohydrates. The messenger
RNA pool was subdivided into a separate messenger RNA for each enzyme group.
Variables used in the FORTRAN program for the simulation of a living cell
are defined in the appendix to Chapter II.

The environment simulated was a chemically defined liquid growth medium,
at a temperature of 37 degrees Centigrade, with an abundance of oxygen.

The changes in the environment simulated were changes in the chemical con-
stituents of the media. Three different media were "fed" to the simulated
cell: (1) a medium containing glucose, ammonium salt, and minerals (Figure
2.6), (2) a medium containing glucose, minerals, and amino acids (Figure 2.7),
(3) a medium containing glucose, minerals, amino acids, and nucleosides
(Figure 2.8). With successive additions of amino acids, and amino acids and
nucleosides the cell grew faster since it had fewer molecules to make on

its own. This agreed with experimental data from literature on real cells
(Maaloe and Kjeldgaard, 1966). The equations in the simulation were tested
by comparing the growth of the simulated cell with that of a real cell
(Figures 2.4 and 2.5). The simulated cell and the real cell both took 50
minutes to reproduce in mineral medium containing ammonium and glucose,

28 minutes in medium to which amino acids had been added, and 25 minutes in
medium containing both amino acids and nucleosides.

The number of DNA molecules in the simulated cell at the beginning of a

cycle of cell reproduction was 2 for mineral medium, and 3 for both amino acid

Chnxx

Chrxx

Crknx

Chrkx

T = 3000, 16
GENERATION TIME 50 MINUTES

NO = 1,

DT = 1.

CHRMO 2.

FACTR 2.

2 CHROMOSOMES AT TIME 0, BOTH REPLICATE IMMEDIATELY

DBLE = 50+60
50 MINUTES FOR 1 CHROMOSOME TO REPL!CATE

DNA1lZ = 1.

DNA2Z = 1,

DNA3Z = 0,

DNAO = DNAl1Z + DNA2Z + DNA3Z

INLZ = 1,

IN2Z = 1,

IN3Z = 0.

IN11Z = 0.

IN21Z = 0.

IN31Z = 0,

INZ = 0.

MRNAO = 1,.E3

TRNAO = L,.E5

PRTNO = 1,EG6

NUCO = 1,2E7

RIBO = 1,5E4

RNAO = MRNAO + ,25+«TRNAO + ,75%RIBO
CONSIDER WEIGHT OF RNA 1EG6

AAO = 3,E7

GLUCO 40,E-03*1.E-15%2,25*(1/180,)*6,02E23

WALLO 2.25E8
ATPO = 173,E-14*6,02E23+1,E-06
ADPO = 23,E-14+*6,02E23*1,E-06

LNZ2 = ALOG(2,)

bo 2 11 =1,14,1
PRDCO(CI1) = PRDCO(CII)*LN2
RNAO= RNAO=*LN2

vVOLO = 1,
CAA = 0

BROTH = 0
COUNT = 0

IF(CNTRL.EQ.1)CRAZY=0
DNAO= DNAIZ + DNA2Z + DNA3Z

RNA = RNAOQ

DO 4 Il = 1,1k
PRDC K(I1) = PRDCO(II)
DNALl = DNA1Z
DNA2 = DNA2Z
DNA3 = DNA3Z
DNALT = DNA1#VOL
DNA2T = DNA2#*VOL
DNA3T = DNA3*VOL
IN1 = IN1Z
IN2 = IN2Z
IN3 = IN3Z
IN11 = IN11Z
IN21 = IN21Z
IN = INZ
IN31 = IN31Z

Figure 2.6. Cell in Environment 1 (Minimal Medium).

MRNAO = 1.1*MRNAO
TRNAO = ,9+*TRNAO
ATPO = 1.1*ATPO
PRTNO = 1,1*PRTNO
CAA =1

Cwknx
VOLO = 92,2/50.7
DNA1lZ = 1./VOLO
DNA2Z = 1./VOLO
DNA3Z = 1./VOLO
T = (60./2.14)%60,
CHRMO = 3,
FACTR = 3.
DBLE = T
IN3Z = 1./VOLO
IN31Z = 1.

RIBO =((2.1% - 1,20)/(2.4 - 1,20)*((250./135.)*1,.5E4 -
1 1.5E4))*LN2
RNAO = MRNAO + ,25*TRNAO + ,75*RIBO
AA0 = 1.5E8*LN2
Cxxxx ADDITION FOR SOLVE

NUCO = 1,E7

ADPO = (38./62.)*ADPO
GLUCO = GLUCO=*VOLO=*3,
WALLO = WALLO*VOLO

Figure 2.7. Cell in Environment 2 (Minimal Medium + Amino Acids).

These are the quantities which change upon addition
of amino acids to minimal medium.

Chxkx

Chxk*

TRNAQ = 2, *TRNAO
MRNAO = MRNAO*1,1
PRTNO = PRTNO*1.1
BROTH = 1

CAA = 1

VOLO = 117./50.7
DNA1Z = 1./VOLO
DNA2Z = 1./VOLO
DNA3Z = 1./VOLO

T = 25.%60.

DBLE = T

NUCO = 6.E8*LN2
ADDITION FOR SOLVE

AAO = 3,E8

RIBO = (250./135,)*1,5E4*LN2

RNAO = MRNAO + ,25+*TRNAO + ,75*RIBO

ATPO = 1,1*ATPO

ADPO = (59./62.)%23,E-14%6,02E23+*1 ,E~-6*LN2 *1.1
GLUCO = 40.E-3*1.E-15%2,25%(1./180,)*6.02E23*LN2 =2,
WALLO = 2,25E8*VOLO*LN2

Figure 2.8. Cell in Environment 3 (Broth).

These are the quantities which are
different in broth than in minimal
medium.

18

19

medium and amino acid nucleoside medium. This amount of DNA agrees with
data for real cells (Lark, 1966).

One can see from Figure 2.9 that the cell could use allosteric modifi-
cation of its enzyme pools to calculate rates constants which agreed rather
well with the rate constants necessary for realistic growth. All of the
rate constants agreed in the first figure with the proper rate constants
when the calculation was done by the equations representing allosteric
modification for the simulation, and by observation of experimental data
for proper rate constants. However, the rate of production of ATP and ADP
changed when the allosterically modifed enzymes were used in the simulation.
This is shown in Figures 2.10 and 2.11. RADP represents the ratio of ADP
at the end of one time increment to the ratio the simulated cell should main-
tain for proper growth in minimal medium. RADP should be 1.000000 * 0.00001
if the cell is growing correctly. RADP = 3.760564 instead of 1.000000
(Figure 2.11), and RATP = 0.6329882 instead of 1.000000 (Figure 2.11). The
ratios of other chemical pools are approximately 1 when allosteric modifica-
tion of enzyme pools is used to simulate real control of metabolism (Figure 2.11).

The artificial fluctuation of ATP concentration and ADP concentration
did not agree with data for real cells. The errors may have been introduced
by approximating changes in concentrations of the pools during a one-second
time interval by the rate of change of the pools at the beginning of the
one-second interval. The fault in the program is being corrected by intro-
ducing predictor corrector methods (Schied, 1968), by decreasing the size of
the time interval used for calculating successive concentrations for the pools
in the simulation, and by using evolutionary techniques (Chapter IV).

This error illustrates one of the many constraints imposed upon one in

realizing a computer simulation. The hardware and software one uses to obtain

C(1) = 1.469818E-12 C(1) = 1.835376E-12
C(2) = 2.183038E-12 C(2) = 2.294225E-12
C(3) = 1.177201E-10 C(3) = 1.177268E-10
C(4) = 6.903309E-12 C(4) = 6.907760E-12
C(5) = 4.533463E-15 C(5) = 4.531281E-15
C(6) = 1.110285E-20 C(6) = 1.110301E-20
C(7) = 1.539183E-15 C(7) = 1.539176E-15
C(8) = 9.812282E-17 C(8) = 9.812185E-17
C(9) = 2.775713E-24 C(9) = 2.775785E-24
C(10) = 1.539183E-15 C(10) = 1.539060E-15
Rate constants Rate constants by
calculated at simulating "Allosteric
start of program Modification"

Figure 2.9. The Cell Successfully Adjusted its Enzyme
Rate Constants by Allosteric Modification of its Enzymes.

E indicates multiplication by a gower of 10.
e.g., 1.469818E-12 = 1.469818 - 10-12,

21

*UOTIBITFIPOW OTIS3SOITB Jursn

dLv pue dav Jo suotideoxs juejxodut oyl yitm (L1o3ewrxoxdde) 1 oxe

SOT3BI TTB 3BYJ 9JON °SS9IONS S9IBITPUT T FO OTIBI Y “1-0T - 066666°6
= 10-3066666°6 ‘°8°d ‘0T Fo xomod e Aq uoT3edTTdIITnu SOIBITPUT F

*UOTIBOTITPOW DTIXS3ISOTTE SurjeTnuwrs Aq paurelqo
SIUB3ISUOD 93BI IO0J ‘UTBIUTBU PINOYS [[9D SUOTIBIIUSOUOD aseq 03 deois
SWT] 9UO FJO PuUd 9Yl 3B STBITWOUYD JO SUOTIBIIUSDOUOD JO OTI3IRY "II'Z 2andtjq

L0-3¥86666°6 YNYY
00 3¥9509/°€ = dAVY 10-328862€°9 = dIVY

00 3000000°L = N1ddd 00 3000000°L = TIVMY L0O-3266666°'6 = 9I¥¥ L0-3966666°6 = YNYLY
L0-3666666°6 = ZYNQY L0-3666666°6 = LYNGY
00 3122000°L = V¥4 00 JELYO00°L = ONNY
L0-3€66666°6 = YNUWJ L0-3066666°6 = VNQY

"1-0T - S66666°6 = T0-4566666°6
€*8°g 01 Jo aomod ® Aq uorjedrTdriTnu sojedTpPUT g

‘wexdoxd Jo 1ae3lS 3B pejlBINdOIED
SJUB]SUOD 931BI I0F ‘UTBIUTBU PINOYS [[9D SUOTIBIIUSOUOD aseq 03 dois
SWTI3 OUO FO PuUd 9Yl 3B STBITWSYD JO SUOTIBIJUSOUOD JO OTI3eY °Ql'Z °oIndtyg

L0-3266666°6 = VYNud
00 3¥10000°L = dA¥Y L0-39.6666°6 = dLl¥d

00 3000000° L = N1¥ddd 00 3I000000°L = TIVMY L0-3966666 6 = 9I¥Y LO-I86666°6 = YNULY
L0-3666666°6 = YNG4 L0-1666666°6 = LYNQY

L0-3266666°6 = Y¥d 00 3000000°L = ONNY

10-3966666°6 = YNYWY LO-1966666°6 = VNOY

22

the advantages of rapid computational ability and large memory have limita-
tions. The computer uses digital arithmetic to accomplish calculations
involving real numbers. In mapping the field of real numbers onto a finite
field one may lose track of some of the implications in terms of numerical
errors. One may lose the associative and distributive properties of the
real field one is attempting to simulate. Several common types of errors
must be acknowledged, and their baleful influence avoided where possible.
Roundoff error results from approximating a real number of a finite string
of digits. Truncation error results from approximating an infinite series
by a finite series in a numerical technique. Experimental error may be
implicit in the data one analyzes from the real world (Hildebrand, 1956).

The simulated cell produced chemicals and cell mass at a logarithmic
rate, but duplicated in a stepwise fashion (Figure 1.1) just as the real cell
does. Since the simulated cell produced these smooth growth curves from
a complex interaction of many equations, the growth curves are a good pre-
liminary confirmation of the models used to write the simulation.

The simulated cell employed repression to control the production of its
enzymes (Figure 2.12). Repression operated at the DNA level. For example
EK2 was the enzyme pool needed for producing amino acids from carbohydrates.
EK2 was produced under control of DNA by way of the RNA pools as long as
the amino acid pool concentration was below a certain critical level. DNA
directed the production of messenger RNA specific for the production of EK2.
EK2 was produced by hooking together amino acids attached to transfer RNA.
This hooking was done by messenger RNA attached to ribosomes. If the amino
acid level rose above the critical level, production by DNA of messenger
RNA responsible for EK2 production was shorply curtailed; the messenger RNA

already present rapidly decayed, and almost no new messenger RNA for EK2

R(3)

= 0.9

ATP > 1E8
/

no

WALL XE&. R(4) = 0.9

no

no

no

ADP > 1E5)=
"

S

R(5) = 0.9

II

n
[

X =1./(1. - .09%R(1) - .40*R(2) - .40*R(3) - .05*R(4)

1 - .01*R(5))
X = X*MRNA
D0 10 IT = 1,10

K8K(II) = K(8)*RC{II)*(1 - R(II))*X/MRNAQ

Above Three Equations Effect Repression

P1
P3

PIV(II)
P3V(II)

C(I1) = (KK(II) + P1*KB(II)*PRDC K(II)

1 + P3*KBB(II)*PRDC K(II) **2)/(1 + P1*RPDC K(II)

2 + P3*PRDC K(II) **2

Above Three Equations Effect Allosteric Inhibition

yes

no
II = IT + 1 II>1r4?/

Continue p—»

Figure 2.12. Repression and Allosteric Inhibition.

Repression is obtained by adjustment
of KK8K(INTGR). Allosteric inhibition is
obtained through adjustment of C(INTGR).

23

24

production was produced.

In DNA replication a new DNA molecule was produced using the old DNA
molecule as a model. In cell division, a cell split into two new cells
by forming a cell wall partition through its center. DNA replication
(Figures 2.13, 2.14, 2.15 and 2.16) and cell division (Figures 2.17 and 2.18)
were represented as two separate though interdependent processes.

DNA was simulated as a circular molecule. Before initiating DNA
replication, an empty site for attachment of the newly produced DNA to the
cell membrane had to be available. If an empty DNA site was present on
the cell membrane, a DNA molecule already present in the cell would begin
replication of a new DNA molecule which would attach to the empty DNA
site. Once a DNA molecule started to replicate its rate of replication
was dependent on energy available as ATP (adenosine triphosphate), and on
the availability of enough nucleotides to form the new DNA.

New DNA sites of attachment on the membrane were produced under control
of the initiator gene (Figures 2.13 and 2.14). High concentration of amino
acid stimulated the rapid production of new sites, and therefore allowed
more DNA molecules to replicate at the same time. This led to faster growth.
This faster growth expressed the relationship between the number of replica-
ting DNA molecules and metabolic conditions.

Whenever any DNA molecule had completely replicated, a decision was
made by the simulated cell as to whether it should divide (Figure 12). 1If
the cell could divide without breaking any DNA strands in the process of
replication, it did divide. Otherwise it waited until interfering strands
completed their replication, and then looked again to see if the road was
clear for division. This model of DNA replication and cell division produced

simulated division rates similar to division rates of real cells growing in

Is Chromosome no
(i) Being

Formed?

Is Chromosome
(1) Replicat-
ing?

es

mult = mult + 2 mult = mult + 1

l

Continue p—»

Figure 2.13. Number of genes producing initiator substance
into cytoplasm.

Number of genes = MULT. The number of genes
increases by one for every chromosome which has
multiplied greater than ten percent of its length.

26

MULT = 0.
IF (DNA3T - 1.000010) 151,151,150
150 MULT = MULT + 2.
GO TO 153
151 CONTINUE
IF (DNA3T - ,1) 153,153,152
152 MULT = MULT 1.
153 CONTINUE
IF (DNA2T-1.000010) 155,155,154
154 MULT = MULT + 2.
GO TO 158
155 CONTINUE
IF (DNA2T-0.,1) 157,157,156
156 MULT = MULT + 1,
157 CONTINUE
IF (DNA1T-1,000010) 159,159,158
158 MULT = MULT + 2,
GO TO 161
159 CONTINUE
IF (DNA1T-0.1) 161,161,160
160 MULT = MULT + 1.
1ol CONTINUE

+

+

Figure 2.14. Number of genes producing initiator substance
into the cytoplasm.

Number of genes = MULT. The number of genes
increases by one for every chromosome which has
multiplied for greater than ten percent of its
length.

27

‘ooueyd ® 3198 S03TS Idylo ‘pojeaad ApedxTe ST INI FI

Tenbs 10 ueyl xs3eaad ST NI FT Po3eBIID 91TS uotaedT1dex 9yl oq TTTM INI ‘°8°dF
* (suo ueyl xe3leaxd) ySnous y31y ST

oourlsqns J03BTIITUT OTUse[dO3AD uUsyM S93TS uotaedTITdox MOu JO UOTIBAI)

‘U0 031

‘STz 9an31q

L

1

TENI

T

TZNI

T

TINI

T

= ¢NI

!

ZNI

T + NI

= NI

dANIINOD ja—

I =

INI

sok

I-N

I
mox—

NI
ou’

IF (IN - 1.) 69,55,55

55 IN = IN-1,
56 IFCINI - 1.) 57,57,58
57 INlL = 1.

GO TO 69
58 IF (IN2 - .1) 59,59,60
59 INZ = 1.,

GO TO 69
60 IF (IN3 - 1.,) 61,61,62
61 IN3 = 1,

GO TO 69
62 IF (IN11 - .1) 63,63,64
63 IN11 = 1.

GO TO 69
64 IF (IN21 - .1) 65,65,66
65 IN21 = 1,

GO TO 69
66 IF (IN31 - ,1) 67,67,68
67 IN31 = 1,
68 IN = IN+ 1

69 CONTINUE

Figure 2.16. Creation of new replication sites when
cytoplasmic initiator substance is high enough
(greater than one).

E.g., IN1 will be the replication site created
if IN is greater than or equal to one. If INl has
already been created, other sites get a chance to

appear.

IF (DNA1T - 2,) 81,76,76
76 IF (1.000010 - DNA2T) 77,77,78
77 IF (DNA2T - 2,) 81,78,78
18 {F (1,000010 - DNA3T) 79,79, 80
79 IF (DNA3T - 2,) 81,80,80
80 NO = 2=NO

IN = IN/2,

IN1 IN11

IN2 IN21

IN3 IN31

IN11 0.

IN21 0.

IN31 0.

COUNT = 0,

DT = 1.

VOL = VOL/2,

Figure 2.17. Cell division occurs if conditions are
appropriate.

28

DNAIT > 27)0

DNAT <
1.000017?

yes

DNA2T 2 27

DNA3T <
1.00001?

yes

DNA3T 2> 27

yes

NO
IN
IN1
IN2
IN3
IN11
IN21
IN31
COUNT
VOL

L T T I T N | NN [A 1 N |
=t
=
w
ot

VOL/2

Replication
Routine

|

CONTINUE

l

Figure 2.18. Cell division occurs if conditions
are appropriate.

30

real media (Davis et. al., 1968).

Of course if the amino acid concentration fell too low, insufficient
amino acids were available for hooking together into the EK2 enzyme; pro-
duction of all enzymes was blocked in the event of extreme scarcity of
amino acids.

The simulated cell employed feedback inhibition to control the activity
of the enzymes already present (Chapter III). For example EK2Z, the enzyme
for production of amino acids from carbohydrates, appeared in three different
forms: pure enzyme, enzyme with one molecule of amino acid attached to it,
and enzyme with two moleéules of amino acid attached to it. These three
forms of EK2 had different catalytic ability. The relative amount of EK2
in each form determined the activity of the EK2 present in the cell in terms
of its efficienty in converting carbohydrate into amino acids. The percen-
tage of EK2 in each of the three forms was determined by the number of amino
acid molecules per cell volume unit (one cell volume unit was taken as
the volume of a cell growing rapidly in mineral glucose medium with ammonium
salt). The higher the amino acid concentration in the simulated cell, the
greater was the percentage of EK2 in its low activity form, and the less

effective was the EK2 in production of amino acids from carbohydrates.

A2
A3
AAO
AAP
AAO

ADJST
ADPO
ADP
ATPO
ATP

ATPSB
BROTH
CAA

CHRMO
CNTRL

COUNT
CRAZY
(1)
DAA
DADP

DAPO2
DATP

DDNA1L
DDNA2
DDNA3

DDNA
DEK(1)

DEK(2)
DEK(3)
DEK (4)
DEK(5)
DEK (6)
DEK(7)

DEK(8)
DEK(9)

31

APPENDIX TO CHAPTER II

VARIABLES IN PROGRAM:

= O = O OO OO0 [oNeNeoNeoNe]

OO OO

o O

o

oNoNoNoNo)

A
0
1

array
floating point
integer

arrays used in solve function to obtain rate constants used
in allosteric inhibition

amino acid concentration at time zero

ATP molecules used to make 1 amino acid molecule

amino acid concentration

adjustment factor
ADP concentration
ADP concentration
ATP concentration
ATP concentration

for

concentrations from volume increase

at time O

at time zero

array to store ATP concentrations in different environments
equals 1 if cell growing in broth

equals 1 if cell growing in casamino acid

number of chromosomes at time 0

equals 1 if cell using metabolic controls to adjust growth

rate

number of growth cycles made
used as a logical variable

enzyme rate constants
amino acid concentration

ATP concentration from literature
ATP concentration calculated from rate constants

amount chromosome 1 in one time increment
amount of chromosome 2 in one time increment
amount of chromosome 3 in one time increment

total DNA in one time increment
enzymes for nucleotide production in one time

amino acid production in one time
glycolysis production in one time

wall production in one time increment
ADP, ATP synthesis in one time increment
DNA synthesis in one time increment

protein production in one time increment
MRNA synthesis in one time increment

change in
change in ADP concentration
change in
change in
in one time step
change in
change in
change in
change in
change in
increment
change in enzymes for
increment
change in enzymes for
increment
change in enzymes for
change in enzymes for
change in enzymes for
change in enzymes for
change in enzymes for
change in enzymes for

ribosome synthesis in one time increment

32

Appendix to Chapter II (Cont.)

DEK(10) 0 change in enzymes for TRNA production in one time increment

DIN 0 change in initiator concentration in one time increment

DNAO 0 DNA at time zero

DNA1 0 chromosome 1 "concentration'", i.e., amount/volume of cell

DNA1Z O chromosome 1 at zero time

DNALT O total chromosome 1

DNA2 O chromosome 2 ''‘concentration'

DNA2T 0 total chromosome 2

DNA2Z 0 chromosome 2 at zero time

DNA3 0 chromosome 3 ''concentration"

DNA3T O total chromosome 3

DNA3Z 0 chromosome 3 at zero time

DNAP O ATP used per DNA molecule synthesized

DNA O DNA

DNASB A 0 array to save concentrations of DNA in different environments

DNUC 0 change in nucleotide concentration

DBLE 0 time for cell to go through one reproductive cycle

DPRTN 0 change in protein in one time increment

DRIB O change in ribosome in one time increment

DMRNA 0 change in MRNA in one time increment

DRNA 0 change in total RNA in one time increment

DRNK (1) A O change in MRNA for enzyme EK(i) in one time increment.
i ranges from 1 to 10.

DT 0 length of one time increment, = differential

DUM1 0 dummy variable in solve function

DUM2 0 dummy variable in solve function

DUM3 0 dummy variable in solve function

DVOL 0 change in cell volume in one time increment

DWALL 0 change in cell membrane and cell wall in one time increment

DPRDK A 0 array of change in product concentration in one time increment

PRD A O the stored array of the previous four product values, for
predictor corrector

DPRD A O array of the four previous D(product) values for the predictor
corrector

PPRD A O current array of the predictor values of products

CPRD A O current array of corrector values of products

EK(1) 0 concentration of enzymes for nucleotide production

EKZ (1) 0 concentration of enzymes for nucleotide production at zero time

EK(2) 0 concentration of enzymes for amino acid production

EKZ(2) 0 concentration of enzymes for amino acid production at zero time

33

Appendix to Chapter II (Cont.)

where 3
4
5
6
7
8
9
0

1

FACTR
GLUCO
GLUC
ID
IN11

IN11Z
IN1
IN1Z
IN21
IN21Z

IN2
IN2Z
IN31
IN31Z
IN3

IN3Z
IN
II
INZ
K(1)

K(2)
K(3)
K(4)
K(5)
K(6)

K(7)
K(8)
K(9)
K(10)
K(14)

KDRNK
K8K (i)
K8KZ (1)
KBB (i)

KB

indicates

indicates

indicates
indicates
indicates
indicates
indicates
indicates

locNeoNeoNeoN® eNeoBoNoNe OO+~ OO loNoNoNeoNe] oNoNeoNeNe O~ O OO0

[oNeoNeNe

glycolysis

cell wall production
ADP, ATP production
DNA production
protein production
MRNA production
ribosome production

TRNA production
factor by which chromosomes multiply in one reproductive cycle
glucose concentration at zero time
glucose concentration
integer variable in RPLACE routine
site for replication of chromosome 11, = 1 if it is present
site for replication of chromosome 11 at zero time
site for replication of chromosome 1, = 1 if it is present
site for replication of chromosome 1 at zero time
site for replication of chromosome 21
site for replication of chromosome 21 at zero time
site for replication of chromosome 2
site for replication of chromosome 2 at zero time
site for replication of chromosome 31
site for replication of chromosome 31 at zero time
site for replication of chromosome 3
site for replication of chromosome 3 at zero time
concentration of initiator in cytoplasm
an integer variable
initiator concentration at zero time
preliminary rate constant for nucleotide production

for
for
for
for
for

constant
constant
constant
constant
constant

rate
rate
rate
rate
rate

preliminary
preliminary
preliminary
preliminary
preliminary

amino acid production
glycolysis

cell wall production
ADP production

DNA production

for
for
for
for
for

constant
constant
constant
constant
constant

rate
rate
rate
rate
rate

protein production

MRNA production

ribosome production

TRNA production

volume increase as a function

preliminary
preliminary
preliminary
preliminary
preliminary
of wall

constant for MRNA decay

constant for MRNA EK(i)

rate constant for MRNA for EKZ(i)

rate constant for allosterically inhibited enzyme EK(i)
with two molecules of product attached to the enzyme

array of rate constants of allosterically inhibited enzymes

with one molecule of product attached to the enzyme

rate
rate

34

Appendix to Chapter II (Cont.)

KIN
K8K (i)
KK (i)
K(i)

LN2

L

M
MRNAO
MRNAP
MRNA

MULT
NO
NUCO
NUCP
NUC

P1
P1V
P3
P3V

PRDCO

PRDCK
PRDC

PRDC(1)
PRDC (2)
PRDC(3)

PRDC (4)
PRDC(5)
PRDC (6)
PRDC(7)
PRDC(8)

PRDC(9)
PRDC(10)
PRDC(11)
PRDC(14)
PRTNO

PRTNP
PRIN
RAA
RADP
RATP

0

oNeoNoNoNe) ol eoNe ol e] (@] [oNeoNoNe oo oNoNe] O OO+ (@) [oNeNe)

[oNeoNoNoNo)

[eNoNoNoNe)

preliminary rate constant for initiator production

rate constant for production of EK(i)

rate constant for uninhibited enzyme EK(i)

array to store preliminary rate constants, used for each
environment

natural logarithm of 2

integer variable for calling on solve function
integer variable for printing loop

MRNA concentration at time zero

ATP per MRNA molecule produced

MRNA concentration

number of genes producing initiator

number of cell in population (doubles when cell divides)
molecules of nucleotide at zero time

molecules of ATP to make one nucleotide

concentration of nucleotide

rate constant
array of equilibrium rate constants for enzymes
equilibrium rate constant for two molecule allosteric inhibition
array of equilibrium rate constants for two molecule
allosteric inhibition
array equivalenced to products at zero time

array equivalenced to products

array for storing concentrations of products in different
environments

NUC

AA

ATP

WALL
ADP
DNA
PRTN
MRNA

RIB

TRNA

GLUC

VOL

protein concentration at zero time

ATP molecules used per protein molecule formed
protein concentration

ratio of amino acid concentration to a base level
ratio of ADP concentration to a base level

ratio of ATP concentration to a base level

35

Appendix to Chapter II (Cont.)

RC A O array of repression constants for MRNA repression

RDNA1 0 ratio of chromosome 1 concentration to a base level

RDNAZ 0 ratio of chromosome 2 concentration to a base level

RDNA 0 ratio of DNA concentration to a base level

REK(i) A 0 ratio of EK(i) concentration to a base level, i = 1,...,10
RIBO 0 ribosome concentration at time zero

RIBP 0 ATP used per ribosome made

RIB 0 ribosome concentration

RNAO O RNA concentration at time zero

RNA O RNA concentration

TRNAO 0 transfer RNA concentration at time zero

TRNAP 0 ATP per transfer RNA molecule made

TRNA 0 transfer RNA concentration

RNK (1) A O concentration of MRNA for enzyme EK(i), 1 = 1,...,10

RNKZ (1) A O concentration at zero time of MRNA for EKZ(1), i=1,...,10
RNUC 0 ratio of nucleotide concentration to a base level

RON 1 used as a logical variable turning repression on

RPRTN 0 ratio of protein concentration to a base level

RRIB 0 ratio of ribosome concentration to a base level

RMRNA 0 ratio of MRNA concentration to a base level

RRNA 0 ratio of RNA concentration to a base level

RTRNA 0 ratio of TRNA concentration to a base level

RRNK (i) A O ratio of RNK(i) concentration to a base level, i = 1,...,10
R A 0 array for repression constants

RVOL 0 ratio of new volume to oldvolume at end of one time increment
RWALL 0 ratio of pool for wall to a base level in terms of concentration
SUM A O array used in solve function

T 0 generation time in seconds

VOLO 0 volume of cell at time zero

VOLN 0 volume at end of one time increment

VOL 0 volume

WALLO 0 concentration of pool for wall production at time zero
WALLP 0 ATP molecules used per molecule of cell wall produced

WALL 0 concentration of pool for wall production

X 0 variable used in repression routine

XK(i,j) value of K(i) in environment (j)

value of EK(k) in environment (j)
value of K8K(i) in environment (j)

loNeNel

A
XEK(i,j) A
XK8(i,j) A

CHAPTER III

COMPUTER SIMULATION OF ALLOSTERIC INHIBITION

Feedback Inhibition Used in Simulation of a Living Cell

pl p3
Ee_ " EB____* BEB
p2 p4

Three different forms of enzyme:

E = concentration of pure enzyme,

EB = concentration of enzyme with one molecule of
product B attached,
BEB = concentration of enzyme with two molecules of

product B attached.

pl, p2, p3, and p4 are rate constants for the rate of formation of various
forms of the enzyme as a function of the concentrations of other forms of

the enzyme, and concentrations of product B.

d(E) = . L] .
—E—t—— = -pl E B + p2 EB
d(EB)
dt = pl «E+«B-p2-EB-p3-+EB-B+ p4 - BEB
d (BEB)
BT p3 « EB « B - p4 - BEB
s d(E) _ d(EB) _ d(BEB) _ .
At equilibrium, it il = 3t = 0. The total concentration

of enzyme is equal to the sum of the concentrations of its three alternate

forms:

Etotal = E + EB + BEB

36

Manipulating the equations for equilibrium conditions one can obtain
the following expressions for E, EB, and BEB, where new rate constants are

defined as follows:

Pl

pl/p2

P3

p3/p4

Expressions for E, EB, and BEB:

1
E = E .
total 1 L p1 . B+ P3 . B
EB = Pl+B-+E
2
BEB = P3 + B° + E

Manipulations leading to expressions for E, EB, and BEB:
at equilibrium,
pl « B+ E

p3 + B . E

p2 * EB

p4 - BEB

EB = (pl/p2) » B+ E = Pl .+ B +E
BEB = (p3/pd) - B>« E = P3.B°.E
= - - = —B]:—- . —Eé-ozo
E = Eioray ~EB-BEB =B iy -pz B BE-pg B - F

Dividing out E from both sides, one obtains

Manipulating, and substituting P1 = pl/p2 and P3 - p3/p4 one obtains

1

total), p1 . B+ P3 . B

E = E

37

38

which gives the three expressions we started out to obtain. Setting equal

the two equations giving déE) one obtains
K(k,j) + B, .., *A = [KK+E+KB - EB+ KBB + BEB] + A

Substituting in expressions for E, EB, and BEB in terms of Etotal’ one obtains

[E]
K(k,j) * B, poq " A=A total = + [KK+ KB » P1 + B + KBB + P53 - BZ
1+P1l B+ P3 B

]

Cancelling out A and Eto from both sides of the equation, and re-arranging,

tal
one gets

KK+ Pl - B« KB+ P3+ B> + KBB=K(k,j) - (1+PL+B + P3 - B).

Since B is simply a product of the reaction A » B the concentration of
product (k) in environment (j) is PRDC(k,j). One similarly indexes the KK,

KB, and KBB series so that

KK(k) = the rate constant KK associated with product PRDC(k)

KB(k) = the rate constant KB associated with product PRDC(k)

KBB(k) = the rate constant KBB associated with product PRDC(k)
PRDC(k,j) = B for product (k) in environment (j).

Substituting in the indexes for purposes of iterative calculations, one

obtains the equation

KK(k) + P1 « PRDC(k,j) - KB(K) + P3 » PRDC(k,j)% - KBB(K) =

K(k,j) » (1L + PL » PRDC(k,j) + P3 - PRDC(k,j)?).

For each product k, one obtains three linear equations for the three
unknowns KK(k), KB(k), and KBB(k) for the three values of the environment
j=1,3=2,and j = 3. j=1 indicates mineral glucose environment, j = 2

indicates amino acids have been added (indicated by the program variable

39

CAA = 1), while j = 3 indicates a broth environment (indicated by the pro-
gram variable BROTH = 1). There are three rate constants for different forms

of an enzyme catalyzing a reaction.

KK = rate constant of pure enzyme E.
KB = rate constant of enzyme EB which has one molecule of B
attached to it.
KBB = rate constant of enzyme EBB which has two molecules of

B attached to it.

These rate constant lead to the following form for catalysis by different
forms of the enzyme, and the differential equation for the chemical reaction

catalyzed by the enzyme.

A+E=eB+E

A+ EB-—EE.»B + EB

A + BEB—BB o + BEB
déf) = KK +E +A+KBo+EBo+A+KBB « BEB » A =

(KK « E + KB « EB + KBB « BEB) + A

(See Figure 3.1.)

In terms of the rate constants calculated for each environment (Figure
3.2) K(k,j) = rate constant for production of product (k) in environment (j)
where

d(B) o .
at- = K(G3) s Epea A

B = amount of PRDC(k,j) = amount of product (k) in environment (j).

Etotal = E + EB + BEB

k3
by

45
46
47
48
49
50
51
52
53
5S4

10
114

1
2

40

DO 44 11 = 1,14

R(I1) = 0.

IF (NUC - 5.E7) 6,145,145

R(1) = .9

IF (AA - 5.E7) 48,47,47

R(2) = .9

IF (ATP - 1.E8) 50, 49,49

R(3) = .9

IF (WALL - 4.E8) 52,52,51

R(4) = .9

IF (ADP - 1.E5) 54,53,53

R(5) = .9

CONTI NUE
X = 1,/(1. - .09%R(1) - .4O*R(2) - .4O*R(3) - .O05*R(4)
-.01#*R(5))
X = X*MRNA
DO 10 Il = 1,10
K8KCI1) = K(8)*RC(I1)*(1 = R(I1))*X/MRNAO
PL = PIV(II)

CCit) = (KK(Il) + PL*KB(11)*PRDC K(I1)
+ P3+KBB(11)*PRDC K(11) **2)/(1 + P1*PRDC K(I1l)
+ P3*PRDC K(I1) #%2)

WRITE(6,114)11,C(11), K8K(I1)
FORMAT (4HO C(IZ 2H)= E 13,6,5H K8K(12,2H)= 1PE13.6)

Figure 3.1. Repression and Allosteric Inhibition.

Repression is obtained by an adjustment of
K8K(II). Allosteric inhibition is obtained through
an adjustment of C(II).

Chukx
Coknx

Cunux

Chhxx

Chakw

N -

Cunxn

Cuwnw

WA

110

& WN

N =

b1

K(5) = ((ADPO/T + ATPO/T)/NUC) *LN2
K(6) = (DNAG/NUCO)/T *LN2
KDRNK = LN2/60.

K(8) = (LN2*MRNAO/T + KDRNK*MRNAO)/(NUCO*DNAOQ)

K(10) = (TRNAO/NUCO)/T *LN2
K(9) = RIBO /(NUCO*AAO=*T) *LN2
K(4) = WALLO/ (GLUCO=*T) *LN2
K(7) = PRTNO/(AAO=T) *LN2

KIN = (FACTR*CHRMO -~ INZ)/(CHRMO*DBLE*(IN1Z+IN2Z))
1ST DBLE MINUTES, CHRMO GENES MAKE IN - INZ
KIN IN IN PER GENE PER SEC

DDNA = K(6)*NUC

DMRNA = K(8)*NUC#DNA - KDRNK#*MRNA
DTRNA = K(10)=*NUC

DRIB = K(9)*NUC*AA

DWALL = K(4)=*GLUC

DPRTN = K(7)+*AA

K(1)=(LN2*NUCO/T + (2.5E9/660.)*DDNA+(1.E6/660.)*DMRNA
+ (2.5E4/660.)*DTRNA + K(5)*NUC
+(2.E6/660,)*DRIB)/GLUCO

IF(BROTH.EQ.1) K(1) = 0,1#K(1)

DNUC = K(1)*GLUC - (2.5E9/660.)*DDNA - K(5)*NUC
-(1.E6/660.)*DMRNA

- (2.5E4/660.)*DTRNA- (2.E6/660,)*DRIB
K(2)=(LN2*AAO/T +(1.E6/102.)+DRIB

+ (4,EL/102.)*DPRTN)/GLUCO

IF((CAA.EQ.1).0R.(BROTH,EQ.1)) K(2) = 0,1*K(2)

IF(ABS(COUNT).GT.1.AND.COUNT.LT.9.9) GO TO 110

DAPOZ2 = (LN2#15,*1.E-8*6,02E23%38./6.)

/ (3600.%22.4*1,E3*1,E3)

K(3) DAPO2/GLUCO

DNAP (6.E4/,0033)%(2.5/2,)
MRNAP 7.5E4/12,5

TRNAP (7.5E4/12,5)%(2,5E4/1,E6)

PRTNP (2.12E6/1.4E3)*(4,E4/6.EL)

RIBP = (7.5E4/12.5)*(2.E6/1.E6) + (2,12E6/1400.)*(1.E6/6.EL)
WALLP = (2.E8/2,25E8)*(6,5E4/32.5)*(150,/2,.E6)
+(.25E8/2,25E8)*(8,75E4/1,25EL)*(750./1,.E3)

NUCP = (K(3)*GLUC - DNAP*DDNA - MRNAP+*DMRNA - TRNAP*DTRNA
- RIBP*DRIB - PRTNP*DPRTN - WALLP*DWALL -ATPO/T=*LN2

- 2*K(5)*NUC)
/(K(2)*GLUC + K(1)*GLUC + K(L4)*GLUC)

AAP = NUCP

WALLP = WALLP + NUCP

CONTINUE

IF(ABS(COUNT-4,),LE.0.1,0R,ABS(COUNT-7.).LE.0.1)

K(3) = (ATP/T*LN2+DNAP*DDNA + MRNAP*DMRNA + TRNAP*DTRNA +
RIBP*DRIB + PRTNP*DPRTN + WALLP+*DWALL + AAP#*K(2)*GLUC +
NUCP*K(1)*GLUC + 2+K(5)*NUC)/GLUC

DATP = K(3)*GLUC - DNAP*DDNA - MRNAP=*DMRNA

- TRNAP*DTRNA - RIBP*DRIB - PRTNP+*DPRTN

- WALLP*DWALL - AAP*K(2)*GLUC - NUCP*K(1)*GLUC - 2*K(5)=*NUC
K(5) = (ADP*LN2/T + DATP)/NUC

DADP = -DATP + K(5)=*NUC

K(14) = VOLO/(T *WALLO) *LN2

DVOL = K(1y)=WALL

Figure 3.2. Preliminary Rate Constants K(1), ..., K(14) for
Flow Rates Between Pools.

These rate constants are later used to calculate
enzyme rate constants.

42

Qé%l = change in amount of B as a derivative with respect to time.

Given the three equations in three unknowns KK(k), KB(k) and KBB(k)

(Figure 3.3) one solves for the unknowns in the SOLVE routine of the program
(Figure 3.4). Trial values of Pl and P3 are used in the equations. All
other quantities are available after data is collected for the simulated

cell growing in each of its three environments.

Chrks

17

14

16 DO 13 1D
XK(ID,J
XEK(ID,

PRDC (

13 XK8K(ID,J)

= 1,10

) = C(ID)
J EK(ID)

| = PRDC K(I1D)

) =
D,dJ)
= K8K(ID)

Figure 3.3. Storing different variables (which variable is
indicated by the ID subscript) for the cell in different
environments (which environment is indicated by the J
subscript.

DO 12 L = 1,10
IX =L
Pl = 10./PRDCO(L)
P3 = 100./PRDCO(L)**2
PIV(L) = P1
P3V(L) = P3
REPLACE INTERNAL FUNCTION SOLVE(IX)
DO 14 1V =1,3,1
A2(11) = P1*PRDC (I1X,11)
A3(C11) = P3*PRDC (IX,11)**2
SUMCIT) =XK(IX, 11) = (1, + A2(C11)+ A3(11))
DUM1 = A2(3) - A2(1)
DUM2 = A2(2) - A2(1)

DUM3 = A3(2) - A3(1)

KBB(IX) = (SUM(3)-SUM(1))-(DUM1/DUM2)=*(SUM(2) - SUM(1))
/(A3(3) - A3(1) - (DUM1/DUM2)=*DUM3)

KB(IX) = (SUM(2) - SUM(1) - DUM3=*KBB(IX))/DUM2
KK(1X) = SUM(1) - A3(1)*KBB(IX) - A2(1)*KB(IX)

Figure 3.4. Calculations for allosteric inhibition
necessary to fit data for real cells.

43

CHAPTER 1V

COMPUTER SIMULATION OF EVOLVING DNA

The computer simulation of a living cell adapts phenotypically to
three different chemical environments (Chapter II). I will extend the
simulation so that the cell can adapt genetically as well as at the pheno-
typic level. I will represent DNA as an array in the computer in which are
stored the indexes and values of various rate constants in the equations
representing the simulated cell (Figure 3.1).

Four powerful genetic operators for evolution of populations are
1) crossover, 2) inversion, 3) mutation and 4) dominance.

Crossing over permits preferential multiplication of groups of sub-
routines which interact well, giving coadaptation. Without crossing over
all subroutines are equally linked on the string referencing an individual
as a collection of subroutines, so that there is no such concept as 'close
together on the linkage map'.

Inversion is necessary to rearrange the genetic location of different
subroutines, so that those that should be close together on the genetic
map get a chance to approach each other during evolution.

Mutation is necessary to explore a large genetic space, and also to
regenerate attributes of functions lost through selection.

Dominance is necessary to preserve attributes of functions which are
at a temporary disadvantage, but may be useful at some later time in evolution.

Duplication of individuals, as well as the genetic operators crossing
over, inversion, and mutation will be simulated by operations on the con-
tents of the arrays. The modified arrays will be used to calculate the

modified rate constants by which the new populations of simulated cells grow.

44

45

I will partially realize the function of dominance in my simulation by
strongly directed mutation to restricted sets of mutant alleles, a mechanism
not possible in real DNA, but one which realizes one function of dominance,
i.e., the conservation of genetic variability in a population.

Since the simulation is of a haploid bacterial population, I will
attempt to simulate in a reasonable amount of computer storage populations
of haploid bacteria, which store variability without extensive use of
dominance and diploidy. This is to make easier the realization of genetic
mechansims used by real bacterial populations, rather than because diploidy
is unreasonable. Indeed diploidy offers a natural and straightforward way
to realize the power of genetic operators, and to store genetic variability
for evolutionary demands put on the population by changing environments.
Furthermore, diploidy permits storage in the form of valuable substrings of
successful alleles, allowing many sampling advantages which will be diminished
in my representation of a population by applying genetic operators to
individuals who represent the means of probability density functions, defined
by the formula for the density together with the mean and variance of the
density. However, many haploid populations of bacteria exist in nature in
environmental niches which are accessible to less successful diploid competi-
tors, e.g., protozoa, indicating that the haploid mechanisms are more success-
ful than the diploid ones in certain circumstances.

An excellent feature of a general scheme like Holland's is its extreme
flexibility. One can consider part of an organism as the string which forms
an individual in the population, and the rest of the organism as part of the
environment. Since the theoretical development is much easier for a station-
ary environment, I will consider all loci which are fixed during the whole

evolution of the programs as the environment, and will consider only unfixed

1 nonadaptive
GENETIC PROGRAM

4 GENETIC PROG
supervising-- -

40 Strings 1
Population

Entity
Attribute
Mutationl
Pattern

15 Entities Referenced by 1 String = 1 Individual

Column Number = Position of Entity Reference on String
= 2nd Dimension of Array
1 € Column Number < 15

Row Number = 1st Dimension of Array. 1 < Row Number < 4
Row Number :1 = Index of Entity Referenced = Locus Referenced
2 = Attribute of Entity Referenced = Value of Locus

3 and 4 Describe Mutation Pattern for Entity Referenced in Row 1
3 = Number Controlling Interval over Which Random Number is Generated
for Mutation
4 = Index of Probability Distribution over Increments of Mutation for
Monte Carlo Method.

INDIVIDUAL IN POPULATION = STRING IN POPULATION IS INDICATED BY THE THIRD DIMEN-
SION OF THE ARRAY. THE CONTENTS OF THE ROWS AND COLUMNS CONTAIN INFORMATION ABOUT
ATTRIBUTES AND GENETICS OF THE INDIVIDUAL INDEXED BY THE THIRD SUBSCRIPT.

e.g., CHROM (1,4,2) = 3 MEANS THAT THE 3™ ATTRIBUTE OF THE 2"¢ INDIVIDUAL IS

INDEXED BY THE 4th COLUMN OF CHROM ARRAY INDICATED. 1 < INDIVIDUAL INDEXED < 40.

THE LAST FOUR STRINGS INDEXED CONTAIN INFORMATION ABOUT THE GENETIC PROGRAM SUPER-
VISING EVOLUTION. 41 < GENETIC PROGRAM < 44,

Figure 4.1. The Chrom Array.

46

47

loci as strings. Since I am free to set linkage parameters as I wish, I

can increase linkage to account for those fixed loci which do not explicitly
appear. Most of the genetic characteristics of the indivudals such as muta-
tion rate and crossover will be represented as separate strings of adaptive
or non-adaptive genetic programs, each of which will supervise the evolu-
tion of a population.

It is important to have adaptive genetic programs which can evolve,
since selective procedures may lead to unexpected consequences, such as
death for long legged chickens, and should be amenable to modification.

(The biological example, death for long legged chickens, refers to an experi-
ment in which longer shanks were selected in populations of chickens
(Wallace, p. 455).) The populations so selected always became extremely
unfit.

There are two detectors of phenotypic limitations on genetic evolution
of the simulated cells which are particularly easy to observe. One is a
wide disparity between simulated chemical concentrations of cell metabolites
and the concentrations necessary for balanced growth. The second straight-
forward detector of phenotypic imbalance is the inability to modify the
simulated enzymes to account for the growth rates required in the three
simulated environments. The impossibility of manipulating the enzymes to
produce required growth rates immediately shows up as the inability to pro-
duce a solution in the solve routine of the computer program (Chapter 3).
The inability to maintain biochemical equilibria necessary for life shows
up in a departure of the ratios of the concentrations of biochemicals to
the necessary concentrations. These ratios should be 1 if metabolic
equilibrium is maintained, and departures of the ratios from 1 indicate

instability. For this reason, the utility function which directs the rate

48

of reproduction of each individual in the population contains the sum of
(ratio + 1/ratio) in its denominator, so that the further the ratio departs
from 1, the lower the value of the utility function, and the less the rate
of reproduction of the individual under consideration. Inability to solve
the equations for allosteric modification of the enzyme pools adds a 10 to
the denominator of the utility function, so that individuals which can not
use allosteric modification correctly can still be ranked as a function of
how far off their ratios are.

Inducing sophisticated quantities by simple genetic operations on finite
strings relates directly to Holland's description of the complex populations
of schemata and operators on schemata, both conservative and nonconservative
which are present in simple finite populations of evolving strings, and which
confer upon these simple finite populations of strings powerful evolutionary
capabilities. The complexity of calculation of average excess induced
by elimination of forty percent of the population at each reproductive
cycle illustrates the ease with which one can realize something which takes
a good deal of effort to describe in quantitative terms, and points up
the advantages of studying evolving schemata in the space of a "success-
fully" evolving population of strings.

It is important to distinguish between selection induced on schemeta
by genetic operations on three dimensional arrays referencing heuristic
programs, and the criteria used directly on the programs themselves. To
illustrate this perhaps subtle, and certainly profound distinction, I am
going to illustrate the genetic operation of selection by eliminating sixty
percent of the strings each reproductive cycle, and fill in the missing sixty
percent with new strings produced from the old strings not eliminated by the

genetic operators crossing over, inversion, and mutation. A strings utility

49

will be proportional to how well and how quickly the simulated cell which

is the description of the string adjusts to changes in simulated environ-
ments. The environment for the evolving strings is all fixed loci represented
by the equations simulating cell growth and adaptation, as well as the
changing simulated environment for the cell. To return to the number
judging performance by the string description as opposed to a sophisticated
measure such as average excess for that string, how well and how quickly

the simulated cell adjusts to changes in its chemical environment will be
simply expressed as utility = 1/(a sum of ratios of current chemical con-
centrations compared to the desired chemical concentrations + the computer
time it took the genetic operators to modify the string during evolution +
10 if the program was unable to correctly accomplish allosteric inhibition).
Since the last three quantities are in the denominator of the formula for
utility, the larger the deviation of the chemical ratios, the longer the
time to evolve, and the greater the failure to solve for allosteric modifica-
tion, the less the utility. Obviously computer time doesn't even exist

in the real cell, and to destroy sixty percent of the programs is a clumsy
and unsubtle procedure. However, given this environment, each string does
have some average excess induced on it, which would have to be calculated
over the run of the program. It is important to perceive that this average
excess exists, but does not appear as a number in the running genetic pro-
gram which effects the evolution of programs in the computer. If one were
simulating the theory of evolution rather than the evolution of an effective
program to accomplish a task, one would certainly want to calculate the
average excess of each program rather than defining it implicitly by the
genetic procedure for producing new programs from old ones.

It will be recalled that the utility of the best individual produced

50

under direction of an adaptive genetic program, as judged by that adaptive
genetic program is recalculated by the nonadaptive genetic program. The
nonadaptive genetic program gives the utility it calculates for the descrip-
tion of the best string in its population to the adaptive genetic program
directing evolution of that population of strings. This utility is then
used by the nonadaptive genetic program to direct the evolution of the
adaptive genetic programs. Elimination of unnecessary genetic operations

is both a practical advantage to the programmer, and an experimental fact

in competitive natural populations. Therefore the time it took the adaptive
genetic program to manipulate its population to produce the best string is
added to the denominator of the SUM which is the utility given to that
adaptive genetic program. Much of the information contained in rows 3 and 4
of the strings CHROM column can be approximated by ignoring the cumulative
frequency distribution indexed in the 4th row, and simply using the uniform
distribution. An adaptive genetic program which does this will gain in
utility. For example FREQ(3) may be set to a uniform frequency distribution,
and effectively ignored for the jth entity during mutation since the random
number generator itself sets up a uniform distribution by choice of the
correct interval in which the random numbers are generated. If the loss in
evolutionary power does not overbalance this gain in utility by economizing
on computer time, some of the information in the 3rd and 4th rows of the
CHROM array may be dropped from the program eventually. It was included to
indicate the ease with which a general and powerful evolutionary program may
be written. Since the whole growth and phenotypic adaptation procedure takes
less than 3 seconds of IBM 360 computer time, and may be shortened, the
program is not as time consuming as it might appear to be at first glance.

Storage of large blocks of the program on disks or in files until needed

51

would also economize on computer costs.

A brief consideration of the probability of replacement of a program
in the population shows that the amount of utility judged to be associated
with the program influences the probability that the program will be erased
by its genetic supervisor. In order to be a member of the survival popula-
tion, a newly generated program has to be in the best four in the population
of running programs. The higher the value of one of the old surviving
programs, the less likely it is to be supplanted by a newcomer in the next
reproductive cycle. I do not want to discuss these calculations in detail,
since my main point is to use Holland's formal theory of adaptive systems
to support the validity of writing extremely simple, albeit evolutionarily
powerful heuristic programs.

Sophisticated molecular interactions effecting negative feedback of
metabolic processes at both the DNA and cytoplasmic level, as well as positi
controls of DNA and cell division enable a real cell to survive well, and
to explore only a particularly productive subset of possible physiological
states. The molecular mechanisms underlying many of these sophisticated
relationships are often simple and direct from a molecular point of view.
For example, looking to see whether DNA is in the process of replicating,
and not replicating the cell unless all DNA which has begun replication
has completed replication simply involves a replication site occurring at
a potential site of cell division. Only when replication of the circular
DNA molecule is completed can the new cell wall be laid down. This type of
sophisticated limitation of possible actions also occurs in genetic modifica-
tion through inertia, in that a chromosome only undergoes small changes
compared to all possible changes which may occur. Which changes survive is

very closely dependent on the structural and functional relationships existing

in the cell, and sophisticated evolutionary schemes may well embody this
information.

I will pick as unfixed variables from which to generate my population
of strings (and schemata) fifteen control parameters which the cell uses
for phenotypic adaptation to changing environments (Figure 3.4). The five
control constants corresponding to repression of enzyme production by DNA
are R(1), ..., R(5) (Appendix to Chapter II). The ten control constants
corresponding to allosteric inhibition of enzyme activity after the enzyme
has already been formed are P1V(1), ..., P1V(5), P3V(1), ..., P3V(5).

I will keep the simulated cell program and all variables in program
common, and call in the simulated environments, adaptive genetic program,
and the ten string population from disk storage. The program for the simu-
lated cell will receive the values of its variables according to the infor-
mation of a string representing one individual, the simulated cell program
will be run, a utility will be calculated according to the adaptive genetic
program, values of the variables will be filled in according to the next
string in the population, until all of the strings in the ten string popu-
lation have obtained a utility for that run. The adpative genetic program
will then operate on the ten string population to form a new population
according to its genetic information and the utilities awarded to each strin
when its values were loaded into the simulated cell program and run. The
adaptive genetic program and its ten string population will then be returned
to disk storage, and the next adaptive genetic program and population will
be brought into core (Figures 3.2 and 3.3). Each adaptive genetic program
will be awarded a utility dependent on information in a non-adaptive genetic
program. The four adaptive genetic programs and the non-adaptive genetic

program will then be loaded into core, and the two worst adaptive genetic

52

g

53

programs will be replaced by programs generated from the two best adaptive
genetic programs. I will introduce inversions in the populations of strings
supervised by the two best adaptive genetic programs, and use these modified
strings to form the new populations of the new adaptive genetic programs
just formed. The inversions will only appear in the populations of the
new adaptive genetic programs, and will be homozygous in these populations
for ease of genetic operations on the populations (Figures 3.2 and 3.3).

Information concerning genetic manipulation of the evolving strings
will be stored in the references to the adaptive genetic programs (Figure
3.5). This information determines crossover, inversion, mutation and
selection. The pattern of mutation, once the locus to mutate has been
determined by the adaptive genetic program, will be referenced by the third
and fourth rows of the array containing the string which will mutate. The
non-adaptive genetic program directs evolution of the adaptive genetic pro-
grams in much the same way that the adaptive genetic programs direct the
evolution of the strings of individuals (Figures 3.3, 3.5 and 3.6).

The actual mechanics of programming are straightforward. The descrip-
tion of the (I + J)th string is easily obtained by a DO loop which loads
the attribute of the entity into the entity for ENTITY(1) through ENTITY(14).
The program for the simulated cell then has the proper values for its
variables so that it can make a simulated run and receive a utility rating.
The indexes for the respective entities, together with the attribute associated
with the entity are stored in the CHROM array with a value of the third

dimension of the array equal to I + J. The program statement is

DO 1, K=1,14,1
1 ENTITY(CHROM(1,K,I + J) = CHROM(2,K,I + J)

ADAPTIVE GENETIC PROGRAM (I)
STRING (I), ..., STRING (I+9)

(ol
]
—
—
]
—
Y

LOADED INTO CORE.

)

DESCRIPTION OF STRING (I+J) FORMED BY SETTING ENTITIES

INDEXED BY FIRST ROW OF STRING (I+J) TO ATTRIBUTE J
WHOSE VALUE IS IN CORRESPONDING COLUMN OF 2nd ROW OF

STRING (I+J). -

‘

SIMULATED CELL ADAPTS
TO ITS THREE SIMU-
LATED ENVIRONMENTS.

!

UTILITY OF STRING (I+J) CALCULATED FROM ADAPTIVE ABILITY
OF THE SIMULATED CELL WHICH IS ITS DESCRIPTION, ACCORDING
TO UTILITY PROCEDURE OF ADAPTIVE GENETIC PROGRAM (I).

FOUR STRINGS WITH HIGHEST UTILITY GENERATE SIX STRINGS BY

J = J+1

no

J >107

yes

CROSSOVER, AND DIRECTED MUTATION UNDER DIRECTION OF ADAPTIVE
GENETIC PROGRAM (I) TO REPLACE SIX LOW UTILITY STRINGS IN
POPULATION OF TEN UNDER CONSIDERATION.

I=1+1

ABSOLUTE GENETIC PROGRAM CALCULATES THE UTILITY OF THE ADAPTIVE
GENETIC PROGRAM (I) DIRECTING EVOLUTION. THE ABSOLUE GENETIC
PROGRAM CALCULATES ADAPTIVE GENETIC PROGRAM (I) UTILITY BY
JUDJING THE UTILITY OF ITS BEST INDIVIDUAL STRING.

Figure 4.2. Evolution of Strings.

GO TO EVOLUTION
OF ADAPTIVE GENETIC
PROGRAMS .

54

EVOLUTION OF
ADAPTIVE GENETIC
PROGRAMS

BEST 2 ADAPTIVE GENETIC PROGRAMS FORM 2 NEW
ADAPTIVE GENETIC PROGRAMS TO REPLACE THE 2
LOW UTILITY ADAPTIVE GENETIC PROGRAMS. NON-
ADAPTIVE GENETIC PROGRAM DIRECTS CROSSING
OVER AND DIRECTED MUTATION OF THE 2 ADAPTIVE
GENETIC PROGRAMS.

THE BEST ADAPTIVE GENETIC PROGRAM INDUCES AN
INVERSION INTO ITS POPULATION TO FORM THE
POPULATION OF ADAPTIVE GENETIC PROGRAM (I + 2).
THE BEST ADAPTIVE GENETIC PROGRAM DOES NOT
INTRODUCE THE INVERSION INTO ITS OWN POPULA-
TION. THE NEXT BEST ADAPTIVE GENETIC

PROGRAM DOES THE SAME FOR ADAPTIVE GENETIC
PROGRAM (I + 3).

GO TO
I=1+1] BEGINNING

Figure 4.3. Evolution of Adaptive Genetic Programs.

55

IOTA = RANGE
'INDEX ENTITY FOR ATTRIBUTE MUTATION PATTERN
OF EQUALS OF ENTITY EQUALS
ENTITY LOCUS INDEXED INCREMENT IN ATTRIBUTE
1 PIV(1) (-107%, +10%) +Normal: mean P1V(1)/10 =
variance
2 P1V(2) " " 2
3 P1V(3) " " 3
4 P1v(4) " " 4
5 P1V(5) " " 5
6 P3V(1) " " +Normal: mean P3V(1)/10 =
variance
7 P3V(2) " " 2
8 P3V(3) " " 3
9 P3v(4) " " 4
10 P3V(5) " " 5
11 R(1) (0, 1) +Uniform: -1, 1. R >0. If
R €0, set to 0.
12 R(2)
13 R(3)
14 R(4)
15 Utility of individual referenced by 3rd dimension of
array. Utility is calculated by the genetic program
supervising evolution, so there are some empty spaces
here.

Figure 4.4,

Description of Strings References when
Third Dimension of CHROM Array Ranges from 1 to 40.

56

57

RANDOM NUMBER INTERVAL
AND CUMULATIVE FREQUENCY
DISTRIBUTION USED TO

INDEX EFFECT GENETIC OPERATION
OF ENTITY ATTRIBUTE OF INDEXED ENTITY
ENTITY RANGE
1 CTOSSOVET (1,14) Random (1,N(1)), Freq. (1)
2 inversion (1,14) Random (1,N(2)), Freq. (2)
length = 2*Random (1,5)
3 mutation (1,15) Random (1,N(35), Freq. (3)
4 coefficients for (0,1) Random (1,N(4)), Freq. (4)
5 utility polynomial etc.
6 for string being
7 operated on.
8
9
10
11
12
13
14
15 Utility of this adaptive genetic program, calculated by non-adaptive

genetic program.

Figure 4.5. Adaptive Genetic Programs.

Adaptive genetic programs:

N(I) and FREQ(I) are determined by a non-

adaptive GENETIC PROGRAM, which also operates on the adaptive genetic programs
as evolving strings. The nonadaptive GENETIC PROGRAM determines utility by

a polynomial which evaluates the best individual the adaptive genetic pro-

The attribute of the adaptive genetic
program references the column in the string(s) upon which the adaptive

genetic program is currently operating.

gram offers it from its population.

RANDOM NUMBER INTERVAL
AND CUMULATIVE FREQUENCY
DISTRIBUTION USED TO

INDEX EFFECT GENETIC OPERATION
OF ENTITY ATTRIBUTE ON CURRENT ADAPTIVE
ENTITY RANGE GENETIC PROGRAM

1 crossover (1,14) Random (1,14)

2 inversion (1,14) Random (1,14) length 2*
Random (1,5) or less.

3 mutation (1,15 Random (1,15) for
entity attribute/2
for magnitude.

4 coefficients for (0,1) all coefficients = 1.

5 utility polynomial

6 for best individual

7 produced by adaptive

8 genetic program

9 being operated on

10

11

12

13

14

15

Figure 4.6.

: Non-adaptive Genetic Program Directing the
Evolution of Adaptive Genetic Programs as they
Operate on Populations of Strings.

58

59

Crossing over is very easy to program since all individuals which
form crossover pairs have the same linkage map. Inversions do occur, but
when an inversion is produced, it is used to generate a population which
evolves as a group. The unequal probabilities of crossing over for
different regions of the linkage map is realized by associating a cumula-
tive frequency distribution with the crossover operator indexed in the
genetic program (adaptive or non-adaptive). This probability is an attempt
to simulate the inequalities in probability of crossing over for different
regions of real chromosomes induced by the presence of inversion heterozy-
gotes during real crossing over, since such heterozygotes are not simulated
because of the complications introduced into the programming procedure
for crossing over. Inversions are simulated, however, since they are a
powerful permutation operator allowing the evolving populations to experi-
ment with various linkage maps.

An example of crossing over will be programmed for the individuals
with the highest and next highest utilities in the population of ADAPTIVE
GENETIC PROGRAM (1). These strings will be ordered so that they occupy the
first two positions in the population of ADAPTIVE GENETIC PROGRAM (1)

i.e., CHROM (I,J,1) refers to the Ith row, and Jth column of the individual
with highest utility in the population supervised by ADAPTIVE GENETIC PRO-
GRAM (1). CHROM (I,J,2) refers to the string with second highest utility

in an analogous manner. To obtain the crossing over parameter, a random
number is generated in the range 1 to N, where N is stored in the location
CHROM({41,2), i.e., N is the attribute of the 4lst entry. The crossover
will then occur at the right of the column in the CHROM vector designated
by the random number if the random number is less than the number of columns

in the CHROM vector; otherwise no crossover will take place. The larger

60

the value of N, the less the probability of a crossover. To generate a

probability curve other than uniform for crossing over, a cumulative

probability distribution could be used, and one could pick the point on

the chromosome whose cumulative distribution function is less than but

closest to a random number which was generated between 0 and 1 (Mize and

Cox, 1968). The same Monte Carlo technique can be used to obtain proba-

bility distributions for mutational increments for any desired probability

distribution.

To program a crossover between individuals CHROM (I,J,1) and CHROM

(1,J,2), the following sequence of instructions can be used, where I and

J are variable, and denote individual strings, the crossover takes place

at position X, and the crossover products are loaded into strings

CHROM (I,J,5) and CHROM (I,J,6).

K=1
DO1TTI-=1,4,1
DO 1J =1,X,1

CHROM (I,J,K + 4)
1 CHROM (I,d,K + 5)

DO 21 =1,4,1

DO 2 J

X,15,1
CHROM (I,d,K + 5)
2 CHROM (I,J,K + 4)

KEY

K is the base for denoting
CHROM (I,J,K) the individual.
CHROM (I,d,K + 1) I denotes the row of the
CHROM array.

J denotes the column of the
CHROM array.
CHROM (I,4,K) the following 6 lines effect

crossing over.

CHROM (I,J,K + 1)

Since the best 4 strings are saved after a round of phenotypic adaptation

and evaluation by the ADAPTIVE GENETIC PROGRAM (1), the recombinant will be

loaded into CHROM (I,J,5), thus destroying the 5th individual in ranking

with respect to utility.

If both products of the crossover are saved,

61

the second recombinant will be loaded into CHROM (I,J,6).

The column for crossover will be obtained by Monte Carlo techniques,
using the random number interval and cumulative frequency distribution
located in the column of the adaptive genetic program which indexes the
crossover entity. (1 happens to index crossing over, so the 3rd and
4th rows of the column containing a 1 in its first row will contain, respec-
tively the random number interval and cumulative distribution used to
generate the point of crossover point). For a simplified example of
Monte Carlo techniques let the random number be generated over (1,14).

Let x be the column to the left of the crossover point. Let F(x) be the
cumulative distribution for the probability of a crossover occuring to the
right of x. The crossover point x = F_l(u) (Mize and Cox, p74). The
crossover does not occur if a random number is generated outside of the
range of F-l(x), allowing mutation to increase or decrease the probability
of crossing over for the whole chromosome by changing the length of the
interval over which the random number is generated if it is wider than

the range of F_l(x). If this is not useful, it can be discarded by the
genetic program, and a random number interval (1,14) used.

Not only inversions, but also chemical differences on different parts
of real chromosomes alter biological crossover frequency. There are
complex interactions between different parts along the length of chromo-
somes undergoing crossing over. The assumption of constant crossover fre-
quency per unit string length is a close approximation to the relation
between linkage and percent recombination for real chromosomes. The linkage
map of the real chromosome approximates a linear function of percent
recombination for map distances less than forty percent. Constant proba-

bility of crossover per unit length is therefore a reasonable first

62

approximation for Holland's theoretical development. However, the proba-
bility distributions I use to simulate the action of inversion heterozygotes,
will also take care of much of the genetic control exercized by real cells
on different rates of crossover for different regions of their chromosomes.
Since the probability distribution used is under genetic selection, and the
probability distributions stored in the computer may be mixed for Monte
Carlo simulations (Mize and Cox, Chapter 6), this simple expedient realizes
many complex genetic functions, and therefore generating probability distri-
butions for crossover actuation seems a practical utilization of computer
facilities in effecting simulated evolution. Experimental observations upon
relationships between linkage, percent recombination, and cytological
observations are available in the literature (Strickberger, 1968).
Inversions are somewhat artificially simulated for programming simplicity.
The best adaptive genetic program as judged by the non-adaptive genetic
program, selects the sites of inversion using the random number interval
and frequency distribution in its column which indexes the inversion entity
(column with a 2 in row 1). It then inverts this segment of the strings
of its population for loading into the population of the third best adaptive
genetic program. Similarly the second best adaptive genetic program intro-
duces an inversion into its population for loading into the population of
the worst adaptive genetic program. The inversions are not introduced into
the populations of the two best genetic programs. However, the two worst
adaptive genetic programs are replaced by genetic combinations of the two
best genetic programs, so there is some possibility for good genetic pro-
cedures to evolve and interact with improved linkage maps effected by inver-
sion. By appropriate choice of random number interval and cumulative

density, one can easily manipulate the probability of obtaining any particular

63

number. This is particularly useful in directed mutation, where the incre-
ment in an attribute becomes easy to control, implicitely defining the
recessives stored by a string as its high probability mutants. The whole
population of potential mutants changes when an attribute changes, partially
simulating a change in dominance. This correspondence is so indirect,
however, that I would consider it an experimental part of the program.

Since the random number interval and frequency distribution referenced are
also subject to mutation and selection along with the rest of the string, the
population may evolve an efficient simulation of natural dominance since
dominance is useful.

The locus to undergo mutation is obtained by the genetic program, and
the mutational increment is then obtained by using the random number interval
stored under the locus (locus = entity) undergoing mutation. Mutation in
the adaptive genetic programs is analogously effected by the nonadaptive
genetic program. The non-adaptive genetic program only mutates under
direct manipulation by the programmer. An example of the kinds of values
used in directed mutation follows. The entity to mutate is k(5), which
has a current value of 5. The mutational increment is set at n * 5 by
the information stored along with the index of the entity in the CHROM array.
The value for n is obtained by calling on the random number generator, and
generating a number between -20 and +20 as directed by the density distri-
bution specified along with the index of the entity. The mutational
increment thus ranges from -20 + 5 to +20 - 5, in intervals of 5. The next
value of k(5) will be one of the numbers in the range -20 « 5 + 5 to
+20 + 5 + 5, obtained by adding the value of the mutational increment (-20 « 5
to +20 + 5) to the current value for k(5) which is 5. This procedure differs

from natural natural mutation where most mutants are random alterations, and

64

therefore useless, so that saving recessive alleles through protection by
dominance in diploids becomes necessary. Directed mutation saves time and
storage in a computer simulation since much unnecessary mutation is ruled
out, recessive alleles do not have to be stored, and complex calculations for
dominant alleles in the canonical realization of the string are eliminated.
The directed mutation procedure can be quite simple as outlined above for
the entity k(5).

My motivation for only one representation of any particular string in
the program is that I would like to preserve maximum variability with
minimal computation and storage, since variability is equal to the rate in
change of fitness of the population by Fisher's Fundamental Theorem. The
value of the utility of an individual, rather than a number of copies of that
individual, determines the contribution of that individual to the next
generation. There might also be a population of the best unused string
from each population to be saved but not used except for recombination, as
well as the directed mutation scheme, which permits nonrandom mutation to
alleles likely to be useful, in order to permit realization of dominance
without lengthy computation. This may lead to lack of fixation of fit
individuals, but will enable the evolving strings to try out more combinations.
Since old strings are preserved each generation both as members of the
next generation (40% of the old population is saved intact) and as poten-
tial population members through directed mutation which is rigged to produce
useful alleles, the population is unlikely to '"forget' a good set of
parameters once they are obtained.

The action of the operon in the simulated cell is particularly interest-
ing, since the same repression technique can be applied to replication of

portions of DNA by examining concentration of quantities in the program

65

produced under the direction of one of the loci in the string. If the
evolving string references simple subroutines, the genetic program may
generate duplicates of the locus which needs modification when the threshold
for the quantity reaches a danger level (either too high or too low), or
pick alternate subroutines from a list to add to the string, or call the
operator for man machine interaction in production of a new subroutine to
add to the string, the new subroutine being designed to supplement the
offending subroutine already present which was not doing its job.

In a program as complex as the simulated cell, the duplication operator
would be a signal for man machine interaction, with the man modifying the
subroutine not predicting correctly, or adding a new subroutine to extend
one already present. The predictors, however, are easy to define for the
simulated cell, since each parameter is closely associated with a simulated
activity. P1(k) and P3(k) would need modification when the catalytic
activity of enzyme EK(k) increased in spite of the fact that too much PRDC(k)
was already present. R(k) should be examined if MRNA(k) increased when
PRDC(k) was already too high, or if MRNA(k) decreased when PRDC(k) was too
low, for either of these actions would indicate that R(k) is not doing the
job it is predicted that it will do.

In a program with simpler subroutines, like Cavicchio's pattern recog-
nition program, the signal for duplication of a locus might well enable the
genetic program directing evolution to modify an old locus to produce
the needed function.

A lumping operator on strings would be related to schemata (Holland).

A gene could be merged with another gene by the lumping operator which
would convert the references to two parameters to a reference to one parameter.

The lumped genes are closely related to successful schemata, since their

66

survival indicates that the genes which constitute them are successful in
combination with each other. By allowing directed mutation within the lumped
group of genes, one may reap the reward of hidden recessives becoming domi-
nant without sacrificing the advantage of a coadapted set of genes remaining
linked through evolution.

Since the parameters indexed by the chromosome arrays are not limited
to biochemical rate constants, the realization of Holland's reproductive
scheme as a computer simulation may be used to do a genetic search of many
different spaces, thereby realizing heuristic programs. Examples are the
kinds of subroutines useful in pattern recognition (Cavicchio, 1968) or
production of English sentences using a generative grammar (Bono, 1968).
Both of these tasks have been written in preliminary form as populations of
computer programs which evolve over time as a function of how well they
do the specific task assigned to them. Heuristic programming may have
interesting applications in obtaining programs to accomplish many ill

defined algorithms for tasks with a well-defined goal and reward scheme.

EPILOGUE

CANCER IN RELATION TO THE COMPUTER SIMULATION OF A LIVING CELL

Curing cancer is an example of the type of extension of the simulation
of a living cell which I would like to eventually make (Heinmetz, 1966).
Modifications of the computer simulation might help to screen for cancer
curing environments. Cancer is caused by uncontrolled growth of cells in
the body. Normally many human cells stop growing in adults, or grow slowly.
A human liver cell, for example, is inhibited from growing and dividing by
contact inhibition, that is by contact with other liver cells. In a
cancerous cell, this inhibition is ineffective. The cancer cells grow
without proper controls, crowding out other cells. Another type of control
of normal cells is determined by the tissue in which they may grow.

Normal liver cells will not grow at all in the lungs, while cancer cells
derived from liver may grow in the lungs and crowd out lungs cells.
Invasiveness and uncontrolled growth of cancer cells makes them difficult
to remove by surgery, and may kill the man afflicted. Understanding the
types of changes in cellular control mechanisms giving rise to uncontrolled
growth may help in curing cancer by suggesting rational approaches to the
prevention of changes leading to cancer, and to plans of attack against
cancer cells.

Two types of changes in cellular control mechanisms may lead to uncon-
trolled, cancer-like growth: 1) a mutation in the cell's genes may alter
the cell's control genes; 2) virus genes may enter the cell's chromosome,
and subsequently alter the cellular control systems (Davis et. al., 1968).
Simulation of cancer caused by mutation and by hidden viruses may enable

one to simulate the effect of various environments on normal and cancer

67

68

cells, and thereby help to find chemical environments which are likely
candidates to test as cancer cures. The rapidity with which one can simu-
late the effect of different environments may enable one to '"test'" in

far greater amount and detail than one could investigate in actual experi-
ments where limitations of time, space, and experimental organisms are
strong constraints. The control of DNA replication in bacteria and in
humans is intimately related to the cell membrane, suggesting that exten-
sion of the microbial model of DNA replication to human cells may prove

feasible (Clark, 1968. Comings and Kakefuda, 1968).

69

REFERENCES

Atkinson, D. E. (1966) '"Regulation of Enzyme Activity", Annual Rev. Biochem.,
35, 85-123.

Bono, P. R. (1968) '"A Heuristic Program Which Produces Generative Grammars'",
Ann Arbor, Mich.: Project for Course in Simulation of Biological Systems,
CCS 680, The University of Michigan.

Cavicchio, D. J., Jr. (1968). "A Heuristic Program Which Recognizes Patterns",
Ann Arbor, Mich.: Project for Course in Simulation of Biological Systems,
CCS 680, The University of Michigan.

Comings, D. E. § Kakefuda, T. (1968). "Initiation of Deoxyribonucleic
Acid Replication at the Nuclear Membrane in Human Cells", J. Mol. Biol.,
33, 225-230.

Clark, J. D. (1968) ''Regulation of Deoxyribonucleic Acid Replication and
Cell Division in Escherichia coli B/r'", J. Bacteriol., 96, 1214-1224.

Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., & Wood, W. B.
(1968) Microbiology, New York: Harper & Row.

Fisher, R. A. (1958) The Genetical Theory of Natural Selection, New York:
Dover.

Gale, D. (1967) "A Geometric Duality Theorem with Economic Applications",
Review of Economic Studies, 32, 19-24.

Garfinkel, D. (1966) '"A Simulation Study of Mammalian Phosphofructokinase',
J. Biol. Chem., 241, 286-294.

Griffith, J. S. (1968) ''Mathematics nf Cellular Control Processes', J. Theoret.
Biol., 29) 202-216.

Heinmets, F. (1964) '"Analog Computer Analysis of a Model-System for the
Induced Enzyme Synthesis", J. Theoret. Biol., 6, 60-75.

Heinmets, F. (1966) Analysis of Normal and Abnormal Cell Growth, New York:
Plenum Press.

Hildebrand, F. B. (1956) Introduction to Numerical Analysis, New York:
McGraw-Hill

Holland, J. H. (1968a) 'Hierarchical Descriptions, Universal Spaces and
Adaptive Systems', University of Michigan Technical Report 08226-4-T,
Ann Arbor, Michigan.

Holland, J. H. (1968b) "Theory of Adaptive Systems', Course in Department
of Computer and Communication Sciences, The University of Michigan.

70

Holland, J. H. (1969a) '"Hierarchical Descriptions, Universal Spaces and
Adaptive Systems", in a Collection of Papers on Cellular Automata (ed.
A. W. Burks), Urbana: University of Illinois Press.

Holland, J. H. (1969b) "Adaptive Plans Optimal for Payoff by Environments',
in Proceedings of the Second Hawaii Conference on System Sciences.

Kimura, M. (1965) 'Changes of Mean Fitness in Random Mating Populations
when Epistasis and Linkage are Present', Genetics, 51, 349-363.

Koch, A. L. (1967) 'Metabolic Control Through Reflexive Enzyme Action",
J. Theoret. Biol., 15, 75-102.

Lark, K. G. (1966) 'Regulation of Chromosome Replication and Segregation
in Bacteria', Bacteriol. Rev., 30, 3-32.

Mize, J. H., and Cox, J. G. (1968) '"Essentials of Simulation'", Englewood
Cliffs, N. J.: Prentice-Hall

Murray, A. W. and Atkinson, M. R. (1968) '"Adenosine 5' Phosphorothioate.
A Nucleotide Analog That Is a Substrate, Competitive Inhibitor, or
Regulator of Some Enzymes That Interact with Adenosine 5'-Phosphate',
Biochemistry, 7, 4023-4029.

Stahl, W. R. (1967) "A Computer Model of Cellular Self-Reproduction",
J. Theoret. Biol., 14, 187-205.

Strickberger, M. W. (1968) Genetics, New York: Macmillan.

Sugita, M., and Fukuda, N. (1963) '"Functional Analysis of Chemical Systems
in vivo Using a Logical Circuit Equivalent'", J. Theoret. Biol., 5,
412-425.

Tsanev, R. and Sendov, B. (1966) '"A Model of the Regulatory Mechanism of
Cellular Multiplication', J. Theoret. Biol., 12, 327-341.

Wallace, B. (1968) Topics in Population Genetics, New York: W. W. Norton.

Weinberg, R. (1968a) "Analytic and Logical Equations in a Computer Simu-
lation of Cell Metabolism and Replication', Sixth Annual Symposium on
Biomathematics and Computer Science in the Life Sciences, The University
of Texas, ppl02-103.

Weinberg, R. (1968b) "Computer Simulation of a Living Cell', Bacteriological

Proceedings, Gl114.

Weinberg, R. (1968c) '"Computer Simulation of Self-reproduction by a Living
Cell", Genetics, 60, 235.

Weinberg, R. and Berkus, M. (1969) '"Computer Simulation of Evolving DNA",
Abstract to be published in Biometrics.

Yeisley, W. G. and Pollard, E. C. (1964) '"An Analog Computer Study of
Differential Equations Concerned with Bacterial Cell Synthesis", J.
Theoret. Biol., 7, 485-501.

SITY O

RSRMEAA

9015 036

