COMPUTER SIMULATION
OF A |
PRIMITIVE, EVOLVING ECO-SYSTEM

Roger Weinberg
Larry K. Flanigan
Richard A. Laing

Department of Computer and Communication Sciences
The University of Michigan
Ann Arbor, Michigan

Department of Health, Education and Welfare
National Institutes of Health
Bethesda,.Maryland
Grant No. GM-12236

National Science ‘Foundation
Washington, ;D.C.
Grant No. GJ-519

Dr. Roger Weinberg
Department of Statistics and Computer Science
Kansas State University
Manhattan, Kansas 66502

SIMULATED, EVOLVING ECO-SYSTEM

Figure

Figure

Figure

Figure

Figure

Figure

2:

FIGURE LEGENDS

Evolution loop: Flow chart.
Utility: FORTRAN calculation.
Individuals: FORTRAN description.

Cross-over: FORTRAN code for a cross-over between
individuals IBl1 and IB2. The cross-over products are
loaded into individuals IWl and IW2.

Inversion: FORTRAN code for inverting the chromosome
segment between IRl and IR2.

Mutation: FORTRAN code for incrementing locus IR1 by
IR1 x T/100.

ABSTRACT

A computer simulation of a primitive, evolving eco-system has
been written. The populatioﬁs are bacteria, and the environments are
three different kinds of bacterial media.

The evolutionary algorithm includes three genetic operators: mutation,
crossing-over and inversion. Selection accomplishes evolutionary
optimization. The program is effective in obtaining optimization of
key parameters in the simulated bacteria. Crossing-over is shown to be
significant in obtaining evolutionary optimization.

Forty different, non-interchangeable loci are used. The chromosome
contains index numbers to identify the loci. This form of the evolu-
tionary algorithm is quite general. It can be easily applied to problems

in artificial intelligence.

COMPUTER SIMULATION OF A PRIMITIVE,
EVOLVING ECO-SYSTEM

Introduction

A computer simulation of a living cell has been written (1-7). In
this simulated living cell, the metabolic processes of a single bacterial
cell were modeled. These metabolic processes could be affected in
a realistic fashion by changes in the environmental media in which
the cells were placed (1-7). That is, we simulated cells capable of
"phenotypic' adaptation. The 'genetic" rate constants which controlled
the cell metabolic behavior were fixed at the beginning of each simu-
lation experiment and did not undergo change. In this present paper
we consider populations of cells, in which, first of all, the rate constants
may differ from cell to cell. Thus some of these cells may be able
easily to handle "environmental crises' while other cells may handle
inputs from their environment so poorly as to be unable to survive.

We also introduce the possibility of alteration of rate constants.

By introducing into our simulated living cell a technique for
the modifying of the rate constant systems of the cell types, and by
permitting the "fittest" cell types to survive (and the least fit cell
types to die), we obtain a paradigm of some of the processes of genetic
adaptation and evolution.

This paradigm for adaptation and evolution is not limited to studies
of bacterial genetics. In fact, this system for simulation of adaptation
and evolution can in a broader but still perfectly reasonable sense,

be seen as a representative of a large class of biological systems of

interest (8-11). One excelient interpretation of this adaptive simulation
is that of a simple eco-system (12).

An eco-system is a complex entity (3). It can, at a single time,
contaiﬁ interacting populations of animals, plants, and protists. These
populations interact with their environment, changing the environment
and being changed by it.

We would like to be able to study different kinds of ecological
interaction whether the system of interest consists of bacteria on a
petri dish, or the flora and fauna of a desert floor.

By gaining an overview of the rules which govern all such systems
(whether customarily viewed as eco-systems or not) we hope to locate
key control points in the system. Key control points are points which
are sensitive to outside manipulation. By acting om these key points,
we may powerfully affect the course of the interacting eco-systems.

Once we pinpoint and understand these key points we may be able to guide
a system toward goals (stable states) desirable to humans. This is,
of course, an extremely difficult problem. Seemingly minor changes
can lead to beneficial or to deleterious changes we did not foresee.

In order to attempt to analyze the behavior of interacting populations,
and to come to understand the laws governing their interactions, we
will want to begin with a very simple systému This simple system will
consist of organisms interacting with each other, and with an environment.
[t will not contain much else. By employing an extremely simple initial
eco-system, we can hope satisfactorily to study it, analyze it and to
draw correct conclusions about it. We can then proceed to more complex

situations.

We will represent the eco-system in a computer simulation, and will
perform simulation experiments with the system. By means of computer
simulation, we can vary various factors in the system. We can change
the population size, the nature of the individuals in the populations,
and the number of different populations.

We can also, in the course of the simulation experiment, manipulate
various factors in the environment of our populations. In the course
of our simulation experiments we may change these parameters: size,
kind and nature of populations, environmental conditions. The changes
we introduce in the system may in turn induce changes in others of our
parameters. After a parameter change the resulting behavior of the
simulated eco-system gives us information concerning the effect of that
parameter change on our eco-system.

If a parameter change has a '"strong' effect of eco-system, we call
it a key parameter. Parameter changes which have no effect on the
eco-system under study, are minor parameterg. As is clear from many
experimental studies, defining major and minor parameters is an important
and demanding task (13). Computer simulation can be a valuable aid to
the experimental biologist or ecologist in this respect.

Once we have established our major and minor parameters, we are in
a position to control the course of our eco-system. The major parameters
are likely candidates for the role of "control knobs" of the system.

By manipulation of major parameters, we can guide the course of the
eco-system with a minimum 6f effort.

We take as a concrete expression of our simple paradigm of an

eco-system, an interacting population of Fscherichia coli bacteria.

We chose E. coli because much is known of it, we have come to understand
much of its internal behavior, and in our single cell simulations already
carried out we have a sophisticated working computer simulation of
individuals in such a population (1-7).

The environments we will simulate.will be environments such as
those in which E. colt lives in the real world: beef broth, sugar water,
enriched sugar water. The interaction between organisms will be repre-
sented by following the evolution of our population of organisms over
 tinme.

We will permit competition to exist among the bacterial organisms.
As the organisms grow in an environment, fit organisms will replace
unfit organisms.

We will describe the set of genetic subroutines which has been written.
These genetic subroutines supervise the evolution of our populations
of bacteria over time. We will show that genetic recombination speeds
up evolution in our system. We will al#o use the evolutionary algorithm

in order to obtain a'1010

fold increase in the metabolic stability
of our simulated living-cell.

Simulation of Evolutionary Processes

DNA: In order to produce genetic adaptation, we will simulate
evolution. We will have populations of simulated cells evolving within
the computer. A large part of the evolution will occur through operations
on simulated DNA.

We will represent DNA as two arrays (tables of entries) in the
computer: 1) the ISTR array, 2) the VSTR array (Table 1). We will
store indices of various rate constants in the ISTR array. The values

for these rate-constants will be stored in the .VSTR array.

*0Y-1¢ Pue ‘og

-T2 ‘0T-TIT ‘OT-T STEBNPIATPUT ‘AT2af3dadssxr ‘urejuod 4 pue ‘g €7 ‘1 suorierndod-qng

*TENPTATPUT Y37 9Yy3 103 €6 = (%)} I8yl sueaw styl “-uorieyndod yal

3yl UT ST T[ENPTAIPUT Y31 oYz Jeyl sunsse pue ‘oTdwexa Ino UT €g = (8*1)YISA 391

(%)X 3jue3suod
938X 031 3UuTa19321 UOTIBPWIOJUT SUTBIUOD .coﬂumﬂsmoatnbm Y3al ay3z 103 °(8°1)4ISA
jeyl suesm STYJ “°o7dwexs Ino 103 4 = (8°I)YISI 3191 -uoriendodqns yiy a9yl 103

aH. GOﬁ“ﬂMO&. .r.—.H pax1o03s ST YOIym Jjuejsuod 23ed 3Yyjz JO XIputr 3yl surejuod AWaHVMHmH

I asquny °dL3-T[9) 103 sdeaie YISA Pue YISI
T 479VL

The rate-constants about which information is stored are
rate-constants for separate metabolic processes (Tables 2,3). These
metabolic processes appear in the simulated living-cell. They are
part of the equations by which the simulated living cell changes its
metabolic state over time.

Rate-Constants and DNA: We represent each rate-constant as two
numbers. These two numbers are stored in our arrays. The numbers
are 1) an index number in the ISTR array and 2) a value in the VSTR
array. The index number tells us which of the metabolic rate-constants
we are referring to, and the value tells us the value of the rate-constant
which is indexed (Table 1).

The genetic map for storing indices and values of rate-constants
is separate from the operating computer program which realizes the
expression of this information. The index numbers and rate-constants
stored in the array contain information for setting parameters in the
simulated living-cell. The simulated cell can then function by metabolizing
in various environments. In effect, the rate-constant arrays are the
genotype, while our simulated living cell is the phenotype.

It turns out that this separation of genotype from phenotype is
vital in ofder to utilize nonlinear interactions among different genes.
This nonlinear interaction is utilized in the evolutionary scheme.

The ISTR and VSTR Arraysf We said that we represent genotypic
information in two arrays in the simulation; the ISTR and the VSTR
arrays. Each array has two dimensions: ISTR(I,J) and VSTR(K,L).

In order to access (for computer manipulation) the information in

TABLE 2
Evolving Parameters

The parameters which evolve are rate constants.
One enzyme has 4 rate constants; each rate
constant is the activity of the enzyme with a
certain number of product attached to that

enzyme

Number of Molecules of Product Attached to Jth

Enzyme, with Associated Rate Constant

0 1 2 3
KK(J) - KB (J) KBB(J) KBBB(J)

TABLE 3
Products Associated with Enzyme Rate-constants
Each rate-constant is indexed. The indices
run from 1 to 10. From the index-number, you

‘can tell which product is produced by the

enzyme.

Index

Number Product produced by enzyme
1 nucleosides and nucleotides
2 amino acids

3 ATP

4 cell wall

5 ADP

6 DNA

7 proteins

8 messenger RNA

9 ribosomes

10 transfer RNA

10

these arrays, specific number values must be given to I, J, K, and L.

1) The K entry (which runs from 1 to 40) determines which of the
40 individual cell-types in the population we wish to refer to.

2) The I entry may be 1, 2, 3, or 4. The I entry tells us which
sub-population we are referring to. Sub-populations 1, 2, 3, and 4
refer, respectively, to individuals 1-10, 11-20, 21-30, and 31-40. Since
there is one, characteristic linkage map per sub-population, knowing
the linkage maps of each of the 4 sub-populations tells us the linkage
map of each individual in the simulation.

3) The J entry. (which runs from 1 to 40) gives the position on
the simulated chroﬁosome of the information for the L entry in VSTR.
(This positional information on rate-constant characteristics is required
in ofder to carry out the genetic spatial rearrangément processes of
inversion and crossover.)

Thus, ISTR(1,8) = 4 means that K(4) is the index name of the
rate-constant that individuals in sub-population 1 have in their
chromosome position 8, while VSTR(6,8) = 93 means that 93 is the value
of the rate-constant that individual cell-type number 6 has in its chrom-
osome position 8. Since individual 6 is in sub-population 1, K(4) = 93
for individual 6.

Effective Evolution: The genetic operators we chose can use
nonlinear interactions to permit the population to evolve toward a
desired end. E.g., we will be selecting for individuals in which a
set of three rate-constants, set at certain values, produce a meta-
bolically stable cell. We have a good chance for selecting for this

three-rate-constant combination even if each rate-constant alone does

11

not confer a selective advantage.

The genetic operators we will employ are those which have evolved
over millenia of time in real populations. Since selection is intense
in the real world, and evolution of systems bf characteristics does
occur, we have experimental evidence that we can select for systems of
desirable characteristics. Furthermore, theoretical analyses of evolution
assure us that simple genetic operators are powerful devices for nonlinear
optimization. Our scheme is highly specific, and has a strong chance
of suécess from the beginning.

Genetic Operators: We will use the genetic operators found in nature.
The physical operation, carried out on a real chromosome by each real
genetic operator, will be simulated by a programming operation employing
simulated genetic operators acting upon the simulatéd chromosome. The
three genetic operators we will simulate are 1) crossing-over,

2) inversion, and 3) mutation.

1) Crossing-over in the real cell is the interchange of segments
between two chromosomes. Crossing-over in the simulated cell is the
interchange of numbers contained in segments of two simulated chromosomes.
Since a simulated chromosome is an array, simulated crossing-over is
thé interchange of numbers in segments of two arrays.

Crossing-over permits preferential increase in the numbers of groups
of subroutines which interact well. This is true for real and simulated
populations (12,14).

Cross-over sets up the concept of genetic distance. Without
genetic distance, there could not be close-linked genes versus weakly-linked

genes. Crossing-over is basic for the system an evolving population

12

uses, since it permits it to take advantage of nonlinear interactions
among systems of genes.

2) Inversion in a real cell is a reversal in sequence of part of
the real chromosome. Inversion in a simulated cell is a reversal in
the contents of part of an array. The array used for the simulated
inversion is the array which represents DNA. Inversion is necessary
in order to rearrange the genetic locations of different subroutines.
Functionally-related genes may work well together. These genes should
remain together during evolution. In order for genes to remain together,
they should be closely-linked. Inversion allows genes to become
closely-linked.

Inversion changes the locations of genes at random. By changing
the locations of genes, inversion permits genes to become closely linked.
Inversion also separates closely-linked genes from each other. If a
close-linked system of favorably-interacting genes arise, the system
will tend to evolve as a group. Evolution of groups of genes which.
function as a single system is quite common in real populations. The
process is called co-adaptation (8,9,10,15,16,17). In order to implement
co-adaptation, the genes of the interacting system often become closely-linked
on a linkage map. Genes which ére closely-linked tend, through the course
of evolution, to remain together. If such closely-linked genes work
well together, then this confers a strong selective advantage upon the
organism possessing the felicitous combination.

3) Mutation is the process of changing the value of a gene. In
our simulation, a gene may start with a value of 10. We may mutate

the gene by adding 5 to its value. After the mutation, the gene has a

13

value of 15. It has mutated from a value of 10 to a value of 15.

Haploidy in Nature: We simulate haploid populations. There is
evidence that such populations can be quite effective in the struggle
for survival., Many haploid populétions_of bacteria exist in nature.
Furthermore, haploid bacteria often érowd out their diploid protozoan
competitors. Bacteria crowd out protozoa in beef stew left out in.the
open during warm weather. Indeed, haploid bacteria and algae replace
diploid fish in a stream, if food for bacterial and algae growth becomes
available in the stream. In rapidly changing environments,
primitive, haploid organisms often replace diploid competitors.

Haploid bacteria do not use domiﬁance, and yet they do well in
the struggle for survival. We reason that our simulated population,
which represehts a bacterial population, will also ée able to evolve
without the use of dominance.

Populations of Strings: Efficiency of programming also motivated
oﬁr representation of a population of strings. There is only one repre-
sentation of any particular string in the program. The utility of a
string is increased if it is supposed to represent a large number of
individuals. That is, instead of storing the same information in a
large number of separate strings, to represent each of the separate
copies of a string; we merely record the utility of each string-type.
From the utility value of a particular string we can calculate the
“"size" of the population which would possess that string. By allowing
each array to represent a different string, we are preserving maxi mum

variability with minimum computation'and storage. Since the rate-in-change

14

of fitness-of-the-population is approximated by the variability, we would
like to preserve maximum variability in the population. We should.note
that linkage increases the rate-of-change of fitness. The contribution
of linkage to rate-of-change of fitness is added to the contribution

of variance (16).

We have said that our population consists of strings which are all
different from each other. We did this to preserve variancé, and thereby
speed up the increase-in-fitness of our population. Although high
variability speeds up the increase-in-fitness, it has a disadvantage.

Fit individuals may not become fixed. A population which does very
well may not be maintained. We do remedy the lack-of-fixation of fit
individuals. O0ld strings are preserved each generation as members

of the next generation (40% of the old population will be saved intact
in an example we will use later). Therefore, the population remembers
good genes by saving good individuals.

Carrying Out the Simulation

In our simulation of evolvingvDNA, we will make all nonevolving
traits part of the environment. Only the evolving traits will be subject
to genetic manipulation. In effect, the simulated cell, and the simulated
environment are largely fixed. Only a few of the parameters in the
simulated cell evolve. These parameters are present in our evolving
strings. They are used to set values in a simulated cell; the simulated
cell then grows in three simulated environments. The success of the
simulated cell measures the success of the parameter settings. The

string is judged by the success of the parameter settings.

15

The simulation is written in FORTRAN. It takes 30 minutes of computer
time per generation. One generation involves the reproduction of all 40
individuals in our population. Most of this computer time is spent in growing
the simulated-cell. The genetic sub~routines take on the order of one
minute per generation.

Selection: Survival of the fittest strings will govern the evolution
of our populations of strings (Figure 1).

Criteria for Selection: We can easily select the best strings in
a population. The property of the simulated cells which indicate phenotypic
limitations for the cell, and is particularly easy to observe, is a wide
disparity between simulated chemical_concentrations of cell metabolites
and the concentrations necessary for balanced growth. This property is
correlated to a program variable, and the program variable is used to
calculate the performance of a string. We can see the inabiiity to maintain
biochemical equilibria necessary for iife in a disparity between the con-
centrations of biochemicals in the running simulation, and optimal con-
centrations.

Biochemical Pools and Fitness: The ratios of simulated biochemical
pools tb optimal biochemical pools should be 1 if metabolic equilibrium
is perfectly maintained (5). Departures of the ratios from 1 indicate
metabolic instability. The further the ratio departs from 1, the lower
should be the value of the utility function. The utility function decreases
‘as the ratio departs from 1 because we have included the term (ratio + 1/ratio)
in the denominator of the utility function. Recall that the lower is the
utility function, the less is the rate of reproduction of the individual
under consideration. Therefore by the previous calculation, we select

against metabolic instability.

16

Progfamming the utility is done as follows: 1) Utility is set to
one at the beginning of each cell's growth. 2) Each time step, utility
is decremented according to the formula in Figure 2. As we said, the larger
tﬁe deviation of the chemical rations of products 1-10 is from 1, the smaller
is the utility. The cell is run for 15 minutes in each environment, with
a simulated time step of 1 minute. Thus, the utility loop is iterated
45 times in obtaining a utility for an individual.

Once we obtain utilities for all 40 individuals, we select the best
40% of the population as parents. The offspring replace the worst 40%
of the population; The middle 20% of the population remain as they were,
except for mutational modifications.

We destroyed 40% of the population each generation. Death rates are
not this regular in real populations. However, even these primitive
genetic procedures do induce a complex quantity, average excess, on each
string in the population. To obtain this average excess, we would have
to calculate it over the run of the program. It is important to perceive
that although this average excess exists, it does not appear as a number
in the running genetic-program which effects the evolution of programs
in the computer. If one were simulating the theory of evolution rather
than attempting the evolution of an effective (here effective means
metabolically stable) program, one might want to calculate the average
excess of each program, rather than to define it implicitly. Our implicit
definition of average excess consists of the genetic procedure we use
when we produce new programs from old ones.

Let us briefly consider the probability of replacement of a program

in the population. We will see that the amount of utility awarded to a

17

program influences the probability that the program will be retained by
its genetic supervisor. In our example, forty percent of the programs
disappear after a run. In order to be a member of the survival population,
a newly generated program has to be in the best 60 percent (6 top out of
a population of 10). The higher the value of one of the old surviving
programs is, the.less likely it is that the old-timer will be supplanted
by a newcomer in the next reproductive cycle.

In exploring a genetic space with evolutionary procedures, we can
never expect to explore the entirety of the genetic space. Indeed, part
of the value of the evolutionary search is the exploration of "interesting'
regions of the genetic space. The type of simulated cell we start out
with in our simulated evolution makes our search space even more inter-
esting. We have used sophisticated molecular interactions in our beginning
simulated cell, and we use this as a take-off point for further evolution.
We have included negative feedback of metabolic processes at both the DNA
and cytoplasmic levels. We have also used positive controls of DNA and
cell division. All of these mechanisms enable real cells to survive, and
imply that further evolution will take place in a particularly productive
subset of possible physiological states. Furthermore, the molecular mech-
anisms underlying many of these sophisticated relationships are often simple
and direct, and easy to program. For example, DNA replication involves
only a few basic concepts (1). We have an initiation site at which DNA
replication begins. Once DNA starts to replicate, it continues to replicate
until the whole DNA molecule has been duplicated. A few simple rules of
this type insure a stable transfer of genetic information from one generation
to the next. The ease with which one can program realistic life-phenomena

makes it easy to test fairly large populations of cells as to fitness in

18

a particular environment.

We have considered methods for altering the genetic makeup of
populations of simulated cells. These alterations will allow us to explore
a space consisting of alternate genotypes. The point at which we begin
our exploration, as well as the region we will investigate, are very small
compared to the complete space of all possible genotypes theoretically
available to the simulated cell. The complexity of our simulated cell
at the beginning of an evolutionary run implies that we begin by storing
information in a complex genotype. In effect, we begin our evolution
from an interesting point in our genetic space. We are limited as to
how profoundly we may modify this geﬁetic point.

Genetic inertia exists in that genetic changes from a given point in
evolution are small compared to the total changes which can occur in
a very long period of evolutionary time. A mutation only effects a rela-
tively small change in total genotype. The same may be said for other
genetic modificaﬁions which occur. Which genetic changes survive is very
closely dependent on the structural and functional relationships existing
in the cell. Sophisticated evolutionary schemes may well embody this
information. We hope that by allowing our genetic programs to evolve, we
can obtain a good evolutionary scheme for our simulation. In simulating
our evolutiénary scheme, we must specify the genetic loci we wish to
use, as well as procedures for modifying the values at each locus.

The Operation of the Computer Program

Genetic Loci: We will pick as unfixed variables from which to generate
our population of strings 40 control parameters which the cell uses for

phenotypic adaptation to changing environments (Tables 2,3). These 40

19
parameters are control constants which function to calculate allosteric
modification of enzyme activity after the enzyme has already been formed.
They fall into 4 natural groups: 1) KK(J) = rate constant for the Jth
enzyme when that enzyme has no molecules of productvattached to it, 2)
KB(J) = rate constant for the Jth enzyme when that enzyme has 1 molecule
of product attached to it, 3) KBB(J) = rate constant for the Jth enzyme
when that enzyme has 2 molecules of product attached to it and 4) KBBB(J) =
rate constant for the Jth enzyme when that enzyme has 3 moleculés of
product attached to it.

The product associated with the Jth enzyme is listed in Table 3.

For indices 1-10 respectively, the associated products are 1) nucleosides
and nucleotides, 2) amino acids, 3) ATP, 4) cell wall, 5) ADP,

6) DNA, 7) proteins, 8) messenger RNA, 9) ribosomes, and 10) tfansfer
RNA.

The computer details of the total evolutionary system are
straighfforward. We will keep the simulated-cell program, and all variables,
in program common (the fixed storage area shared by many sub-programs.)

We will instruct the computer to bring in simulated-environments, a
genetic-program, and the 40 string population supervised by the
genetic-program. |

The program for the simulated cell receives the values of the variables
according to the information in a stored string. Each string represents
one individual cell. The simulated-cell program will be run, and a
utility will be calculated for it according to how well it did at main-
taining metabolic stability in fluctuating simulated-environments.

The supervising genetic-program will continue to allow cells in its
population to grow for a short time, until it has awarded a utility to
each of the 40 strings in its population. The genetic-program will then
operate on its 40 string populati§n to form a new 4d/$trihg population.

The genetic-program will direct the evolution or its 40 string pop-

20
ulation (made up of 4 10-string sub-populations) according to the utilities

awarded to the members of its population. The genetic-program will use
these utilities to select the best members of each sub-population. The
genetic-program will utilize its own genetic information to operate on
the strings in its population.

The genetic-program stores information concerning genetic manipulation
of the evolving strings. This information determines crossing-over,
inversion, mutation, and selection.

The actual mechanics of programming are straightforward (Figure 3).
The description of the INDIVth string is easily obtained by reading the
attributes of the entities into the performing program. This is done
for VSTR(INDIV,1) through VSTR(INDIV,40). The program for the simulated
céll then has the proper values for its variables. It can, therefore,
make a simulated run and receive a utility rating.

Each of the 40 individuals, in turn, grows accqrding to the values
read into that individu;ls VSTR segment. After this time, the generation
counter, GCNT, is updated by adding 1 to if. The genetic sub-routines
then carry our crossing-over, inversion, mutation, and selection.

Simulated Crossing-Over: Crossing over is very easy to program
since all individuals which form crossover pairs have the same linkage
map. Inversions do occur, but when an inversion is produced, it is used
to generate a population which evolves as a group. The unequal probabilities
of crossing-over for different regions of the linkage map are realized
by associating a cumulative frequency-distribution with the crossover
operator indexed in thé genetic program (adaptive or nonadaptive). This
probability is an attempt to simulate the inequalities in probability
of crossing over for different regions of real chromosomes. Such inequalities

are induced by the presence of inversion heterozygotes during crossing

21

over in real organisms. Such inversion heterozygotes are not simulated
because of the complications introduced into the programming procedure
for crossing over. Inversions are simulated, however, since they are a
powerfui permutation operator allowing the evolving populations to
experimént with various linkage maps.

The program for exhibiting crossing-over will be discussed. The
two individuals with the highest and next highest utilities will be used
in our example.

In order to program a cross-over betwéen individuals VSTR(IB1,J)
and VSTR(IB2,J), the following sequence of instructions can be used
(Figure 4). 1IBl1 and IB2 are variable, and denote individual strings.
The cross-over takes place between position IRl and IR2. The cross-over
products are loaded into strings VSTR(IW1,J) and VSTRIWZ,J). IWl and
IW2 denote the worst two individuals in the sub-population.

Since the best 4 strings in a sub-population are saved after a round
of phenotypic adaptation and evaluation, the foregoing procedure will be
eﬁecuted twice. The first execution obtains the cross-over products
of the two best individuals. It loads them into the space occupied by
the two worst individuals. The second execution obtains the cross-over
products of the third and fourth best individuals. It loads them into
the space occupied by the third and fourth from worst individuals.

We will pick the column for crossover by Monte Carlo techniques.

We used a random-number interval from 1 to 40. Two calls to IRAND gave
us the two points between which a crossover occurred.

Biological crossover-frequency is influenced by many factors. We

have already mentioned inversion heterozygotes. Chemical differences

22

on different parts of real chromosomes also alter crossover-frequency

of each chromosome region; There are also complex interactions between
different parts along the length of chromosomes undergoing crossing-over.
However, the assumption of constant crbssover-frequency per unit string-length
for simulated strings is a close approximation to the relation between

peréent recombination per unit physical-length for real chromosomes.

The linkage map of the real chromosome approximates a linear-function

of percent-recombination for map-distances of less than forty percent.
Constant probabilities of crossover per unit-length is therefore a rea-
sonable first approximation.

Simulated Inversion: Inversions are somewhat artificially simulated
(Figure 5). For programming simplicity, there is never any sub-population
in which different members of the same sub-population have different
inversions. This is accomplished as follows.

The best sub-population, as judged by the genetic-program, is selected.
An inversion is introduced into a copy of this best sub-population.

The inverted copy then replaces the worst sub-population. The process
is then repeated, with the inverted version of the second best
sub-population replacing the next to worst sub-population. The goodness
of a sub-population is judged from its best individual.

To select the actual inversion site, the genetic-program uses a
random number interval from 1 to 40. It calls IRAND to obtain the two
inversion sites. The genetic-program inverts the chromosome segment
between IRl and IR2 (Figure 5).

After two execution of the inversion sub-routine each of the two

worst sub-populations will be replaced with inverted versions of the two

23

best sub-populations. The point of this complex interaction is the
improvement of linkage maps for the purpose of putting genes in favorable
positions on the string (recall our discussion of co-adaptation).

Simulated Mutation: The locus to undergo mutation is chosén by the
genetic program (Figure 6). The mutational increment is then obtained
by using the random-number interval (-200, +200).

Mutation is a string is effected by the genetic-program. An example
of the kinds of values used in mutation follows.

The entity to mutate is K(5), which has a current value of 5. The
mutational increment is set at +T/100 by calling on the random-number
generator, IRAND. IRAND generates a number between -200 and +200. The
mutational increment thus may range between -2 x K(5) and +2 x K(5).
Since K(5) has a current value of 5, the mutational increment ranges
from -200 x 5 to +200 x 5. The next value of K(5) will be in the range
5+ (-2 x5) to5 + (2 x5). This value of K(5) will be obtained by
adding the value of the mutational increment (-2 x 5 to +2 x 5) to the
current value for K(5) which is 5.

The mutational increment is accomplished by the code
VSTR(I,IR1) = VSTR(I,IR1) + (1. + T/100.) (Figure 6).

Generality of the Reproductive Scheme

Since the parameters indexed by the chromosome arrays are not limited
to biochemical rate-constants, the computer simulation of an evolving
eco-system may be used to explore many different genetic spaces. This
generality may be used to realize various heuristic programs. An example
is selection of sets of sub-routines useful in pattern recdgnition (18).

The pattern recognition task has been written as a population of computer

TABLE 4

UTILITY AFTER 8 GENERATIONS OF SELECTION

no

Crossing-over Crossing-over

.732 « 1072 728 + 1072
.236 « 1071 .202 « 10°%
618 « 1077 .539 . 1074
.719 . 10710 .765 « 10710
.265 « 1072 .236 « 1072
.230 « 1072 184 « 1072
.346 « 1072 .908 « 1075
.566 « 10710 .565 « 10710
.241 « 107 .225 + 1072
.595 « 107° .496 + 107
.224 « 107} .181 - 107}
.882 « 1072 .425 « 1072

F

774

The probability that the variance due to

crossing-over is significant is greater

“than -99.995%.

24

25

programs which evolve over time. Their evolution is a function of how
well the programs do the specific task, pattern recognition, assigned
to them,

Heuristic programming may have interesting applications. One can
obtain programs by heuristic programming which carry out ill-defined
algorithms., Tasks with a well-defined goal-and-reward scheme are
particularly suitable for evolutionary programs (11,12,15,16).

Results and Discussion

We obtained two basic results: 1) crossing-over improves our
evolutionary algorithm and 2) a 1010 fold increase in utility is
obtainable by using the evolutionary algorithm. These results will
be presented. We will then discuss their significance.

Crossing over improves our evolutionary algorithm: We did the
following experiment in order to test the effect of crossing-over on
our system. We generated 4 sub-populations of strings. We allowed each
sub-population to evolve for 9 generationms. During’this time, crossover,
mutation, and selection were all used by the genetic program.

At the end of 9 generations of evolution, we recorded the
maximum-utility individual in each of the 4 sub-populations.

We then repeated the previous experiment, but did not use
crossing-over during evolution. Thus we obtained the result of
evolution without crossing-over.

We repeated our experiments to obtain 12 populations which had

evolved with crossing-over, and 12 populations which had evolved without

crossing-over (Table 4). Crossing-over improved the final utility obtained

26

at the 99.995% significance level. We used the F test for two-way
classification (19). We can conclude that crossing-over is an essential
part of the genetic algorithm. There are situations, such as ours,
where crossing-over significantly improves the evolutionary algorithm.
Theoretical work (16,17) indicates that cross-over should lead to
more effective evolutionary optimization. Our results support this
prediction. Our simulation of a living-cell realistically embodies existing
biochemical pathways. Our simulated evolution represents the evolution
of genes concerned with these biochemical pathways. Our result is that
cross-over speeds up evolution for our system. Our genes represent 40
different control constants interacting in a complex, and realistic way.
Therefore, our results are a valid instantiation of the theoretical pre-
diction that cross-over is a necessary and effective part of the
evolutionary scheme.

4 10°

0 fold increase in utility is obtainable: The simulated
population evolved for 120 generations. The genetic program used all

of its genetic operators during this period of evolution. The operators
mutation and crossing-over operated during each generation. Inversion‘
operated every 10 generations. Selection operated every generation, as
described previously.

The population started out its evolutionary run with a very low
utility. The maximum utility of any individual was .202 x 10-10 in the
starting population. The final population, after 120 generations of
evolution, had a maximum utility of .932 x 10™%, This 10'9 £014

improvement is impressive.

27

We had the population traverse this long path of improvement in
order to test the kind of improvement accessible to the evolutionary
algorithm. We were interested in seeing whether the evolutionary algorithm
would become stranded on any local optimization peaks. Since our evolving
parameters interact in complex, and often unknown ways, the existence of
local peaks is strongly probable. The very improvement of evolution by
crossing-over argues for nonlinear interaction of the different, evolving
parameters (14). The success of the evolutionary-algorithm in producing
a high final maximum from an extremely strong low initial value is an
argument that the evolutionary-algorithm is often able to avoid being
stranded on local optimization peaks.

Discussion of Results: Many computer programs have been written
analyzing genetic interaction of a small number of.loci (15,16). Genetic
simulations of quantitative inheritance have also been written (12,14).
Our simulation, on the other hand, studies the complex interaction of
40, quite different parameters. Our use of an index set also allows
us to vary genetic order as we run.

In addition to analyzing genetic events, we are using genetics in
an optimization technique. We feel that it is important to emphasize
the importance of crossing-over in the genetic algorithm, since many
evolutionary optimization programs do not use it (11).

The generality with which we wrote our genetic algorithm makes it
applicable to problems in pattern recognition, and artificial intelligence
in general.

To demonstrate the effectiveness of the full, evolutionary algorithm

we allowed 125 generations of growth, using crossing-over, inversion,

mutation and selection. We started our run with a population whose

maximum utility was .202 x 1071, The final population had individuals

with a utility of .932 x 10", This 10!

0 fold increase in utility is an
impressive example of the kind of improvement obtainable from the

evolutionary algorithm.

28

ACKNOWLEDGEMENTS

Professor B. P. Zeigler stimulated us intellectually, supported
us emotionally, and in addition helped us with the writing.
Professor J. H. Holland gave freely of his own ideas, and of the
computer facilities at the Logic of Computers Group at The University

of Michigan.

29

10.

11.

12.

BIBLIOGRAPHY

Goodman, E.D.; Weinberg, R.; and Laing, R.A. A Cell Space Embedding
of Simulated Living Cells. 1970 Summer Computer Simulation
Conference, Sponsored by ACM, IEEE, SHARE, and SCI, Denver,
Colorado, (1970).

Weinberg, R. Analytic and Logical Equations in a Computer Simulation
of Cell Metabolism and Replication. Sixth Annual Symposium on
Biomathematics and Computer Science in the Life Sciences, The
University of Texas, 102, (1968a).

Weinberg, R. Computer Simulation of a Living Cell. Bacteriological
Proceedings, G114, (1968b).

Weinberg, R. and Zeigler, B. P. Computer Simulation of a Living
Cell: Multilevel Control Systems. J. of the Amer. Soc. for Cyber.
(to be published) (1970). '

Weinberg, R. and Berkus, M. Computer Simulation of Evolving DNA.
Biometrics, 25, 447, (1969a).

Weinberg, R. and Berkus, M. Computer Simulation of a Living Cell.
Technical Report 01252-2-T, Ann Arbor, Michigan: The University
of Michigan, (1969b).

Zeigler, B. P. and Weinberg, R. System Theoretic Analysis of Models:
Computer Simulation of a Living Cell. J. of Theor. Biol. (to be
published) (1970).

Fraser, A. S. The Evolution of Purposive Behavior, in Purposive
Systemg. von Foerster, H. (Ed.) New York: Spartan, 1968,

Holland, J. H. Hierarchical Descriptions, Universal Spaces and
Adaptive Systems, in Essays on Cellular Automata. Burks, A. W.
~ (Ed.) Urbana, Illinois: University of Illinois Press, 1970.

Holland, J. H. A New Kind of Turnpike Theorem, Bulletin of the
American Mathematical Soctety, 75, 1311, (1969).

Fogel, L. J.; Owen, A. J.; and Walsh, M.F. Artificial Intelligence
Through Simulated Evolution, New York: Wiley, 1966.

Jain, S. K. Simulation of Population Biology Models in the Theory
of Evolution. 1970 Summer Computer Simulation Conference,
Sponsored by ACM, IEEE, SHARE, and SCI, Denver, Colorado, (1970).

30

13.

14,

15,

16.

17.

18.

19.

31

Watt, K. E. F. Ecology and Resource Management, New York:
McGraw-Hill, 1968.

Hedrick, P. W. Selection in Finite Populations. II. The Selection
Limit and Rate of Response for a Monte Carlo Simulation Model,
Genetics, 6§, 175, (1970).

Lewontin, R. C. Population Genetics, in Annual Review of Genetics,
Volume 1, Palo Alto: Annual Reviews, Inc., (1967).

Crow, J. E. and Kimura, M. An Introduction to Population Genetics
Theory, New York: Harper and Row, 1970,

Wallace, B. Topics in Population Genetics, New York: W.W. Norton, 1968.

Cavicchio, D. J., Jr. Adaptive Search Using Simulated Evolution.
Ph.D. Dissertation, The University of Michigan: Ann Arbor,
Michigan, 1970.

Mood, A. M. and Graybill, F. A. Introduction to the Theory of
Statistice, New York: McGraw-Hill, 1963.

BEGIN ~| INITIALIZE VALUES
FOR ALL 40

INDIVIDUALS
4"——"">[I=]]
‘v<ﬁ I[=I+1
[\
CALCULATE UTILITY
FOR Ith @,
INDIVIDUAL, VSTR(I)
yes
Y

GENETIC SUB-ROUTINES <t 1=1}|
SELECT FOR BEST STRINGS

IN Ith SUB-POPULATION <3~——“———~]

PRODUCE 4 NEW INDIVIDUALS I=1+1
AS OFFSPRING OF 4 BEST
INDIVIDUALS

REPLACE 4 WORST INDIVIDUALS
IN Ith SUB-POPULATION BY
THE 4 NEW INDIVIDUALS JUST

PRODUCED -

\‘\

vos TIME \\\

INVERT ISTR ARRAYS OF FOR N
COPIES OF 2 BEST SUB- INVERSION .~
POPULATIONS. REPLACE ~.? 7
2 WORST SUB-POPULATIONS :
WITH THESE COPIES. \]/;O

r

| INCREMENT GENERATION
COUNT, GCNT, BY 1

Fig. 1. Evolution loop: Flow chart.

po 51 =1, 10
5 UTILCINDIV) =(2*UTILCINDIV) + 1,E-12)/
1(RATIOCI) + (1/(RATIOCI) + 1,E-12)))

Fig. 2. Utility: FORTRAN calculation.

IFILE=1
I=IFILE
READ (1'"IFILE) (VSTR(1,J), J=1,40)

IF (JFILE-41) 3,5,5
GCNT=GCNT+1

Fig. 3. Individuals: FORTRAN description.

c CROSSOVER CODE

DO 50 K=10,40,10
DO 5C J=1,2
| =K+J+J-4
IBI=1UTIL(1-7)
IB2=1UTIL(1-6)
IWl=1UTIL(1-1)
IW2=1UTIL(1)
IF (INCNT) 30,30,26
26 CALL IRAND(1,40,IR1,T)
CALL fRAND(1,40,1R2,T)
IF (IR1-IR2) 30,50,25
25 I=1R1
IR1=1R2
iR2=1|
30 PO 35 1=1,40
VSTR(IW1, 1)=VSTR(IB1,1)
35 VSTR(IW2,1)=VSTR(IB2,1)

1F (INCNT) 50,50,36
36 DO 40 | = IR1,IR2
T=VSTR{IW1, 1)
VSTR(IWL, 1)=VSTR(IW2, 1)
L0 VSTR(IWZ, 1)=T
50 CONTINUE

Fig. 4. Cross-over: FORTRAN code for a cross-over between
individuals IBl1 and IB2, The cross-over products are

loaded into individuals IW1l and IW2.

INVERSION CODE

10 CALL 1RAND(1,40,IR1,T)
CALL IRAND(1,40,IR2,T)
IF (1R1~-1R2) 120,110,115
115 K=IR1
IR1=1R2
IR2=K
120 IF (IR1-1) 125,135,125
125 1C=IR1-1
DO 130 J=1,IC
ISTR(12M,J)=1STR(11M,J)
DO 130 K=1,10
111=11+K
121=12+K
130 VSTR(121,J)=VSTR(I11,J)
135 IF (1R2-40) 140,150,140
140 1C=1R2+1
DO 145 J=1C, 40
ISTRCI2M,Jd)=1STR(11M,J)
DO 145 K=1,10

oo

111 =11+K

121=12+K
145 VSTR(121,J)=VSTR(I111},J)
150 IC=1R2

DO 160 J=1IR1,IR2
ISTR(I2ZM,J)=ISTR(I1IM,IC)
DO 155 K=1,10
111=11+K
121 =12+K
155 VSTR(121,J)=VSTR(I11,1C)
160 iC=1C-1

Fig. 5. Inversion: FORTRAN code for inverting the chromosome

segment between IR1 and IR2.

MUTATION CODE

P X @]

DO 60 1=1,40

CALL IRAND(1,u40,1R1,T)

CALL IRAND(-200,220,1R2,T)

VSTR(I,IR1)=VSTR(I,!R1)*(1,0+T/100,0)
60 CONTINUE

Fig. 6. Mutation: FORTRAN code for incrementing locus IRl by

IR1 x T/100.

