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FOREWORD

Under a grant from the Engineering Research Institute, a
special-purpose seml-automatic computer (hereafter called "mechanical
blackboard") has been built to aid in the solution of certain types of
linear programming problems. These are the problems which are usually
called assignment and transportation problems; accordingly, we have
named our mechanical blackboard MITAB (M@phigan Transportation Assign-
ment Blackboard). The purpose of this treatise is to provide (1) a
general discussion of the assignment and transportation problems, (2)
an operation manual for the MITAB, and (3) a set of instructions for the
solution of assignment and transportation problems with the aid of the
MITAB.

One use for the MITAB is as a demonstration device to accompany
lectures on these problems, to illustrate them, and to demonstrate some
of the methods which may be used in their solution. The general discus-
sion in Section I is meant to explain the background of the problem, both
mathematical and practical, and to supply. information which a person
planning to demonstrate the MITAB can use in preparing such a lecture
demonstration. In Section II, a detailed description of the MITAB is
given. In Section IIT, the algorithms for the assignment and transporta-
tion problems are presented. Section IV presents methods of solution
for the various problems. The Appendix includes a comprehensive bibliog-
raphy of works on these types of problems and a suggestion for program-
ming the algorithm for the transportation problem for a high-speed digital
computer.
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SECTION I

INTRODUCTION TO THE ASSIGNMENT AND TRANSPORTATION PROBLEMS

To become familiar with the "assignment problem," an attempt

was made to survey the existing literature on the problem. Some articles
were studied in detail; others were only scanned. An extensive (and,
it is hoped, exhaustive) bibliography has been compiled.

A gignificant improvement was made on one of the existing
methods, thus setting the stage for the "engineering implementation" of
an efficient technique for obtaining solutions to assignment problems.
Just what 1s meant here by the term "engineering implementation" will
be discussed later,

Without becoming involved with the technicalities, we shall
mention some of the methods available for solving the assignment problem.
Mathematical details will occasionally be included in the exposition for
greater clarity.

Nature of the Assignment Problem

The assignment problem can be viewed in the following setting:
Suppose n men are available to work on n jobs and that each man is
assigned a rating on each of the n jobs. For practical reasons let the
ratings be given in terms of nonnegative integers. The assignment
problem consists of finding those assignments of men to Jjobs which maxi-
mize the rating sum. For a particular assignment the rating sum is the
sum of the men's ratings for the Jjobs to which they are assigned.

A natural way of presenting the data is in the form of a
rating matrix. For example:

Job 1 Job 2 Job 3

Man 1 1 7 3
Man 2 5 b 5
Man 3 2 6 6

Examining the matrix, one sees that the rating of Man 1 on Job 2 is 7
(the element in the 1st row and the 2nd column).
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In general, the rating matrix will be n by n, and the rating of
the ith man on the Jjth job will be given by the element in the ith row
and the jth column.

* * * co e e * se. IT¥
T T2 13 13 In
r¥ ¥ r¥ ., r¥ .. r¥

21 22 23 23 on

. rating of ith man

‘r////,/// on jth job.
r* r*

R¥ = r*¥ r¥ r¥ ., SN
il i2 i3 ij in
r¥ r* r¥ ... Tr¥ ,,, r¥
nl n2 n3 nj nn

Rating Matrix for General Problem

(The reason for using "starred" r,.'s will become apparent below.)
1j

The use of the word "solution" in connection with the assignment
problem warrants a word of caution. In one sense a solution always exists.
A1l one has to do is consider the n! possible assignments and pick out
those assignments whose rating sums are maximal. In the case of the 3-
by-3 matrix given above, viz.,

17 3
5 4 5
2 6 6|

the 3! = 6 possible assignments are

1 2
A= 5 3,
1 2 3
A‘E = (]_ 3 2) H
- (1 2 3



1 2

by=G 3 2
2

A5'"(:§ 1 :23))
2

=G 5 1),

where (l % 3 ) is the assignment where Man 1 is assigned to Job jl,
J1 J2 33

Man 2 is assigned to Job Jjp, and Man 3 is assigned to Job j3. Referring
to the rating matrix, it is easily seen that the rating sums for the
various assignments are:

ASSIGNMENT RATING SUM
A l1+4b+6=1
A 1+5+6=1
Aq 7+5+6 =18
Ay T+5+2=1k4
Ag 3+5+6 =1k
Ag 3+4b+2=9

There is only one optimal assignment in this case, namely A3. It is
quite possible that more than one assignment will be optimal for a given
rating matrix. For example, the matrix

2 2 2
2 2 2
2 2 2

clearly has 6 optimal assignments associated with it.

The significant conclusion to be drawn from the above remarks
is that, given enough time and patience, the solution to an assignment
problem can always be extracted by brute force. However, when one con-
siders that a 10-by-10 rating matrix would involve 10! = 3,628,800 dis-
tinct assignments and a problem with a 20-by-20 rating matrix would in-
volve 20! = 2,432,902,008,176,640,000 assignments, one sees the desir-
ability of an algorithm that will yleld a solution with the expenditure
of only a reasonable amount of money and time. So what 1s really needed
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is a good solution rather than just a solution. One additional remark

is in order here. In practice it usually suffices to find only one
assignment that 1s optimal, rather than determining all the optimal assign-
ments (or even determining if there actually is more than one optimal as-
signment).

If one forms a constant matrix whose common element is equal to
the maximum element contained in a rating matrix and subtracts the rating
matrix (element by element) from the constant matrix, then searching for
an assignment with a minimal rating sum for this new matrix is equivalent
to searching for an assignment with a maximal rating sum for the original
matrix., For theoretical reasons the assignment problem is usually thought
of in terms of searching for an assignment with a minimal rating sum. One
can think of the elements of the rating matrix as being measures of in-
efficiency in this case. For example, consider the matrix

1.7 3
R¥ = |5 L 5
2 6 6

The maximal element of this matrix 1s 7. So we want to work with the
matrix

T 77 17 3 6 0 L
R= |7 7 7| - |5 % 5] =1]2 3 2
T 71 2 6 6 5 1 1

The rating sums for the six possible assignments now become:

ASSIGNMENT RATING SUM
Al-(}gg) 6 +3+1=10
%:(%%%) 6+2+1=9
_(1 2 _
A3_(Ql§) 0O+2+1=3
AA=(%§E) 0+2+5="7
(1 2 3 =
As (312) b+2+1=17
A6=(%§;3L) b +34+5=12



The minimum rating sum 1s associated with the assignment A.,. Recall that
the maximum rating sum for the original matrix was also associated with
the assignment A3. A little algebraic manipulation shows that this situa-
tion holds in general. It might be worthwhile to look at a proof of this
statement.

Suppose A = (? ? 3 ? ) is an optimal assignment for
the rating matrix 1 “2 93 °°* *“n

*_ ¥ *

1 F12 ++r in

R¥ = | r*¥ r¥ ., r¥

21 22 2n

r¥ r¥ ,,. r¥

nl n2 nn

in the sense that S = Z?zl r¥ is maximal. Then, if m = max r¥, (all
i=1,2, ..., n j=1, 2, L1 n) and

m m m m
M= m m m . m
bl
m m m ... m

one can form the difference

m-r¥ m-r¥*¥ .., m-r¥ r r ces T
11 12 1n 11 12 1n
M-R*:: . . . = . . . :R.
m-r¥ m-r¥ .., m-r¥ T r ce. T
nl ne nn nl n2 nn

This new matrix, R = M - R¥, has A as an optimal assignment in the sense
that the corresponding rating is minimal. The reason for this is that

ZA ryy = ZA(m - rfj) = zi(m - rfji) = Zi m - Zi r§31 = nm - Zi rfji

*
and Zi riji is maximal.
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Various Methods Available

I. Linear Programming

The assignment problem is a special linear programming problem.
It can be formulated algebraically as follows: Given an N-by-N rating
matrix,

r¥ r¥ r¥ ., r¥
11 12 13 1N
¥ p¥ ¥ *
r21 r22 r23 “en r2N
R*= . . . .
* * * *
er rN2 rN3 .o rNN

where the rfj's are nonnegative integers, find a set of values for the

real variables xij’ subject to the following conditions:
)41 n Z
z‘i=l Xij =1 j=1 Xij = 1, Xij >0, 1,3 Xij rfj = maximum.

At first thought, one would naturally think that the additional require-

ment xgj = Xy (i.e., Xiy = 0 or 1) should be added. However, it turns

out that among the solutions of the problem stated above at lease one must
satisfy the additional condition X%j = Xy

A linear programming model can be couched in the following
algebraic language: Find the values of My Aoy eee A which maximize the
linear form

}\.l Cl + }\,2 Cg + ... + )\.n Cn,
subJject to the conditions that kj >0, J=1,2, ... n, and
r}\. 8, + + }\, a = b
1711 e n 1ln 1
«/ ’
where a;3, by, cj are constants (1=21,2,3 ...m; J=1,2, ..., n).
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It is now a simple matter to identify the assignment problem as
a special case of a linear programming policy. The following table shows
the relation between the algebraic symbols in the two formulations:

GENERAL ASSIGNMENT PROBLEM

i i

ki Xij
cq rfj
m 2N
b. 1
J
aij lor O

It follows that the method of solving linear programming
problems can be applied to the assignment problem. In particular, the
simplex method is available. High-speed computing machinery has been
used in conjunction with a modification of the simplex method to solve
assignment problems.

II. Other Methods

P. S. Dwyer has solved the assignment problem by a method of
reduced matrices. Combinatorial algebra methods are concerned with
various techniques of deciding upon the transformations to be made in
order to obtain n independent O's. These are usually based in one form
or another on Kgnig‘s theorem. This is the basis for H. W. Kuhn's solu-
tion. Other methods that have been proposed for the solution of the
assignment problem (and a generalization thereof called the transportation
problem) include the method of interchange, the method of optimal regions,
the method of bounding sets, and the methods of transformation such as
Fasterfield's method and the detailed method of optimal regions. Any of
these methods may be studied in more detail by consulting the references
in the bibliography.
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III. Our Solution

In the process of examining available methods some time was
spent on trylng to improve the various methods. J. R. Munkres devised
a method for solving the assignment problem that 1s essentially an im-
proved version of a method that has been described in the literature.
It is Munkres' method that was incorporated in the man-machine device
that is now known as MITAB.

Munkres has generalized his method so that it can be used for
solving a more general linear programming problem called the transporta-
tion problem.

The transportation problem may be stated mathematically as
follows: Given an n-by-m matrix D = (dij) and positive integers
r; (i=1,...n) and c; (j=1,...m) such that 2§=1 r;, = Z?:l cy = N, choose
values for the integers xi; which minimize the sum Zi,j Xijdij’ subject
to the conditions

J

m n
X552 0, Zj:l Xiy =Ty Zi:l Xjy = Cy (1)

The assignment problem is a special case of the transportation problem;
it occurs when ry = 1= Cj’

The numbers X4 4 are called quotas, and a choice of the variables
Xij which satisfies conditions (1) above is called an assignment. An
optimal assignment is an assignment which minimizes the form Zi . X, .d, .
»d 1 1]
The simplest physical interpretation of the problem is the
following: One has a fleet of N ships distributed at various stationms.
One wishes to redistribute them in given proportions at a set of new
stations at minimal cost. Here ry 1s the number of ships initlally at
old station i, and c. is the number of ships one wishes to have at new
station J after the redistribution. The quota X4 4 1s the number of ships
to be sent from old station 1 to new station j; and dy; is the cost of
sending a ship over this route. (D is then called the cost matrix. The
numbers ry and c: are the capacities of various stations.) If one has a
given assignment [i.e., a choice of the quotas x4 5 satisfying (1)1, this
choice determines how the ships are to be redistributed, and the sum
Zi,j Xijdij is the total cost of carrying out this redistribution. An

optimal assignment is then one which minimizes the total cost.

The basic method for solving such problems is similar to that for
the assignment problem. The optimal assignments are not changed if we
add to or subtract from the rows and columns of the matrix D. Hence we
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seek to alter the matrix D by means of such additions and or subtractions
so the transformed matrix D' = (di.) has the following form: ZEvery element
ij 1s nonnegative, and there exists an assignment such that for each
quota X4 3 which is positive, the corresponding number di. is zero. Then
Zi,j Xijdij = 0, and this assignment 1s necessarily an optimal one.
The usual way of arranging the data in a transportation problem
is as follows:

New Stations

L 5 2 8 2

9 3.2 9 4+ 6 11

6 6 7.5 9 2 6
0ld
Stations L L 6 2 i 6

2 2.7 O 3 7 3

The numbers above the horizontal line are the numbers c.; the numbers r
are written to the left of the vertical line. The matrix (di.) is writ-
ten below and to the right of the lines. An assignment is given by a
quota matrix (Xij)3 for example, one assignment is the following:

b 0o 1 4 o0

O 0 o0 4 2

6 3 1 0 O

o 2 0 0 ©0
Usually these two matrices are combined into one, as follows, with each

quota Xij being written above the corresponding element dij (quotas which
equal zero being omitted):

9 3.2 9 4 6 11
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This means that of the nine ships at old station 1, four are sent to new
station 1 (at a cost of $3.20 apiece), one is sent to new station 3 (at

a cost of $4.00), and four are sent to new station 4 (at a cost of $6.00
apiece). Similarly for the other stations. For this particular assign-
ment, the total cost of the redistribution is $80.80.

If we transform this matrix by adding -5, -1, -2, and 4 to the
respective rows, and 1.8, -4, 1, -1, and -4 to the respective columns,

one brings the matrix into the following form. Here one may pick out
an optimal assignment, which 1s indicated:

L 5 2 8 2
9 0 0 0 0 2
5

6 6.8 2.5 9 0 1
4 4

Ly 3.8 0 1 1 0
4

2 8.5 0 8 10 3

For this particular assignment, the total cost of the redistribution is
$77.80 (relative to the original cost matrix, of course). It happens
that in this case there 1s only one optimal solution, and that is the
one indicated.

There are many other physical interpretations of the trans-
portation problem; let us consider a few of them. One is called the
distribution problem, which is the problem of supplying warehouses (or
wholesale outlets) from factories in the most efficient way. Here ry
represents the output of factory i during a given time period, and c,;
represents the number of units of goods which warehouse (or outlet) J can
absorb in the same period. The number di' represents the cost of pro-
ducing a unit of goods at factory i and shipping it to warehouse Jj, and
Xy s is the number of units of goods assigned to this production-shipping
route. Let R =24 ry and let C = L; cs. If R = C, this is just the
transportation problem as stated previously; in this case the total
capaclty of the factories equals the total capacity of the outlets.

It often happens, however, that the factories can produce more
than the outlets can absorb, or vice versa., In such a case, R # c. 1If
R < C, we introduce a fictitious factory whose output is C - R, defining
the costs for all goods produced at the fictitious factory to be zero.
This has the effect of adjoining a row of zeros to the matrix, and it
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reduces the problem to the previous one. If one finds an optimal assign-
ment, and it states that a certain outlet 1s to receive goods from the
fictitious factory, this means that this outlet does not in actuality
receive these goods.

Similarly, if C< R, one introduces a fictitious outlet with
capacity R - C, defining the cost of shipping goods to this outlet to be
always zero. This has the effect of adjoining a column of zeros to the
matrix. If the optimal assignment states that a certain factory is to
produce goods and ship them to the fictitious outlet, this means that the
factory does not in actuality produce these goods. In this form, the
distribution problem is given the special name of the scheduling problem.
It is the problem of determining at what per cent of capacity various
factories (or machines, etc.) are to be run if the total operation is to
be as efficient as possible.

Another name for the scheduling problem 1s the bid evaluation
problem, in which a central agency requests bids from various manufacturers
to supply goods to various depots. In a competitive situation, the amount
of goods offered will exceed the amount required. The problem is to de-
termine what quantity of goods to order from each manufacturer.

Other variations of the transportation problem can occur. For
example, it might be forbidden to send a ship from old station i to new
station j, or it might be impossible to supply outlet J from factory i.
In such a case, one sets dij = o,

Another example: It might happen, in the scheduling problem,
that one must maintain a certain output at factory 1 or else shut it down
entirely. (Analogously, in the bid evaluation problem, a manufacturer
may set a certain minimum on the bid which he is willing to accept.)
Suppose that factory 1 must maintain an output of at least k units, or else
shut down entirely. Then one proceeds as follows: Factory 1 is divided
into two subfactories, one - section (a) - having output k, and the other -
section (b) - having output ry - k. These are treated as separate factor-
ies. This adds another row to the matrix which is identical with the
first row. Then, we set the cost of shipping from section (a) to the
fictitious outlet equal to « (instead of 0). We obtain an optimal assign-
ment for this matrix; this optimal assignment must assign all the output
of section (a) to real outlets. Iet the total cost associated with this
assignment be T;. Now if R - ry is less than the total capacity of the
real outlets, we cannot shut down factory 1 entirely and still supply all
the outlets. 1In such a case, the assignment associated with Tl is the
best one. Otherwise, however, we remove factory 1 from consideration
entirely (deleting the first row of the matrix D), adjusting the capacity
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of the fictitious outlet accordingly. We obtain an optimal assignment
for the resulting matrix; let the associated total cost be T,. The
assignment associated with the smaller of the numbers T; and T2 is
then the best one.

We mention this last variation to indicate how a single practi-
cal problem may require the solution of several transportation matrices.
There are other variations (which we shall not discuss) which lead to a
similar situation. As the number of such supplementary conditions in-
creases, the number of matrices which must be solved may increase
rapidly.
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SECTION II

DESCRIPTION OF THE MITAB

1.0. THE BOARD

The mechanical blackboard that we wish to describe herein
appears complex only because of the extensive duplication of its basic
elements. It is logical therefore to study first some of these simple
parts to try to gain an understanding of their operation before one
tries to understand the operation of the whole.

1.1, The Cell

The main body of the computer is made up of 400 identical cells
which are arranged in a square array, twenty cells high by twenty cells
wlde. The cells in turn are made up'of two parts. One part is built
around a teleregister for doing the arithmetic operations and the other
part is bullt around a pair of pllot lights to provide certain desig-
nations. We can label a general cell contalning the teleregister Ti'
and the cell containing the lights as Lij' We should not forget, however,
that both these subcells are a part of the general cell of the 400-cell
matrix.
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Fig. 2 THE GENERAL CELL
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1.1.1. The Light Cell

Tet us now start with the simplest part, that of the
light cell. The parts are arranged as seen in Figure 2.
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Fig. 3 LIGHT CELL (Lijj) SCHEMATIC

Figure 3 shows the functional schematic of the light cell. Now note in
Figure 2 that there is a white light to the left and a green light to the
right. Directly under these two lights is a switch which controls them.
If the switch handle is thrown to the left the left-hand light will glow
(white). If thrown to the right, the right-hand light will glow (green).
If the switch is thrown to the center position neither light will glow,
for this 1s the off position of the switch. The specific use of these two
lights is explained in Section IV.

1.1.2. The Teleregister Cell

Now let us discuss the heart of the cell or the tele-
register. The teleregister is an electro-mechanical device which can po-
sition a vertically-mounted drum in any one of eleven positions (see
Figure 4). One position is painted yellow to represent the number zero.
‘The next nine positions have the numbers 1 to 9. The tenth position,
which is just after the ninth and just before the zero, 1s painted black.
It stands for the number 10; normally it is not used. The teleregister
is seen from the front of the machine through a mask so that one number
is displayed at a time.
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1.1.2.1. Adding. As mentioned above, this device is electri-
cally positioned. If one applies a direct current of the proper po-
tential (48 volt d.c.) to the appropriate terminals, the face of the drum
will move one position to the right when the current is removed. This
is the equivalent of adding one. As mentioned before, the drum has
eleven positions. It can be seen, therefore, that if we should do this
eleven times, we would be back on the same position. If we should do this
only ten times, we would have the equivalent of subtracting one.

1.1.2.2. Subtracting. From the foregoing discussion it can be

seen that addition is merely a matter of generating the exact number of
electrical pulses that one wishes to add and applying them to the tele-
register. To subtract, we merely take the number of positions on the
drum (eleven) and find the difference between it and the number which
one wishes to subtract. We then generate this number of pulses and add.
What we are doing in effect i1s to add the complement of the number that
we wish to subtract.

1.1.2.3. Homing. The teleregister is also provided with a
home or cleared position. This is the position where the yellow or zero
appears. If one sends pulses to a teleregister which has an open clear
circult, the teleregister will rotate until it comes to this zero or cleared
position and then will stop. This feéature is very important for setup
since 1t is quite easy to clear the cells and then dial the proper num-
bers in without consciously having to take account of the residual read-
ing of the teleregister.

1.1.2.4. Schematic. In Figure 2 we see the physical layout
of cell Tij as one sees it from the front of the panel. Figure 4A shows
a functional schematic of the same cell. In Figure 2 we can see that
the teleregister is mounted in the upper left-hand corner of the cell.
Right under it is a three-position switch of the same type that was used
under the lights mentioned previously. If this switch is thrown to the
left, the teleregister can be set individually for any desired number.
If thrown to the right, the teleregister is available for arithmetic
operation with other units of its same row or column. If it is thrown to
the center position, which 1s the off position of the switch, the telereg-
ister unit of that cell is disconnected from the rest of the matrix.
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1.2, Matrix

To aid the reader's process of visualizing the whole 20-by-20
matrix of teleregisters and lights, we will show, in the following para-
graphs, how one would construct a very simple version.

1.2.1. Set-Up

Using the teleregisters as basic units let us conceive
of a 3-by-3 array. Assume that all of the Ti. cells are set on their
zero position. We may now go to each cell, one at a time, and throw the
teleregister switch to the left. If we then feed into this line a series
of electrical pulses having the same number as the number which we wish to
insert into the cell, we will cause the teleregister to rotate by steps
to this position. This can be done with a standard telephone dial. After
each number has been inserted the switches are thrown to the right, where
they connect the teleregisters to the banks of row and column access re-
lays. These row and column access relays are only electrical switches
enabling us to add to, or subtract from, the rows and columns.



-25.

1.2.1.1. Procedure. In Figure 5 we have a simplified schematic
of the Teleregister setup circult for the 3-by-3 array. The mechanism for
directing the pulses to the desired teleregister is provided in each tele-
register cell. If the switch which appears in Figures 3 and 4 is thrown
to the left, that teleregister will follow the pulses that appear on the
setup circuit bus. It can be readily seen that it is possible to have more
than one teleregister connected to the bus at the same time by the use of
these switches. The usual practice will be to connect one at a time to the
bus and proceed to set the proper number into that cell or teleregister.
When this operation is complete, one throws the switch back to either the
off position or to the arithmetic position (on the right). One then pro-
ceeds to the next one and repeats the operation with the appropriate
number,

1.2.1.2. Set-up Switch. Let us now examine the Set-up Switch.
If this switch is thrown to the dial position, dial pulses can be placed
on the set-up circuit bus and thus to any teleregister that is connected
to the bus by its own switch. If the Set-up Switch is thrown downward to
the battery position, the teleregisters can be stepped one step at a time
by connecting and disconnecting the teleregister from the bus. The tele-
register in this case will move one position each time it is disconnected
from the bus. The Set-up Switch can be left in any position and used as
desired by throwing the proper teleregister switch.

1.2.1.3. Push Buttons. In Figure 6 we have a flow diagram of
a 3-by-3 array for the basic calculating matrix. This matrix 1s designed
to show how the functions of addition and subtraction for rows and columns
are accomplished. From the drawing it can be seen that access to the tele-
registers in any row or column is obtained through the row and column
access relays. The control of these relays plus the control of the add
and subtract circuits is provided through the push buttons which are located
on the figure above and to the left of their respective relays. It should
be pointed out that this location on the drawing is not necessarily the
same as the physical location of the devices on the machine that we have
built.

1.2.2. Clearing

In Figure 7 we have the Clear Circuit and ground return
for the teleregisters of our 3-by-3 matrix. As mentioned in paragraph
1.1.2.3, there is a home or cleared position on the teleregister one po-
sition before the "1" position. This is painted yellow. This big yellow
block also represents the zero position, so that it has considerable sig-
nificance not only in the problem but in the setup of the problem.
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1.2.2.1., Clear for Set-Up. In the setup of the problem it is
desirable to have all the teleregisters set to a common position. Further,
it is best that this position be such that one can use a telephone dial
and be able to have the dialed number appear on the teleregister. This
will happen if the teleregisters are in the cleared position before one
starts.

1.2.2.2. Electrical Ground. The electrical ground return is
through the number-one pin of the teleregister bus (see Figure 4A) during
ten of the eleven positions of the teleregister drum. In the eleventh
position, which is the zero or yellow position, the ground return must
occur through the AG pin. If this electrical ground is not present, the
teleregister will not rotate past this position no matter how many pulses
it receives. 1In Figure 7 the "1" ground return line comes out of the upper
left of the Tij block and the AG ground return line comes out of the upper
right-hand corner of the same block, where it Jjoins the clear bus which
goes to the clear switch.

1.2.2.3. Ten Pulses to Clear. It can be imagined that there are
a number of different means that one might use to clear the entire matrix.
We can readily see that, no matter what position a teleregister may be in,
it will never take more than ten pulses to bring it back to the zero or home
position, since there are only eleven positions on the drum before it re-
peats itself., Therefore, if we can open the clear circuit on each tele-
register and feed it ten pulses, each of the nine teleregisters in the case
of our 3-by-3 device, or each of the four hundred in the case of our 20-by-20
mechanical blackboard, will then find its home position and would be
showing zero (yellow position).

1.2.2.4%. FEasy Clearing. In our mechanical blackboard, the
easlest way to do this is to throw the clear switch downward from the
operate to the clear position, which opens the clear bus, and then push the
row-subtract buttons (ten pulses) consecutively one at a time until all
the teleregisters are cleared. The above operation is assuming that the
teleregister switches are in the arithmetic condition.

1.2.3. Light-Cell Bus

In Figure 8 we are merely trying to emphasize the
simplicity of the cell light system. There is no interconnection between
the cells Li‘ other than the bus which feeds 12 volt a.c. power to each
one of the cells Lij'

1.2.4, Bars

In addition to the electrical features, let us now add
two-color bars (covering bars) to each row and column (see Figures 2 and 2A).
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In the black position they are inactive. In the silver position they in-
dicate that the row or column is covered. Some of the bars have a third
color (red) to help set off the double rows used in the solution of the
transportation problem. It can be seen that we can expand this 3-by-3
array into a 20-by-20 array with no change of theory or practice.
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2.0. CONTROL

2.1. Control Panel on Face of Computer

In Figure 9 we see a diagram of the major features of the
front of the mechanical blackboard. We see that the row-subtract push
buttons are the first column to the right of the 20-by-20 matrix with its
row and column covering bars. 1In the second column to the right are the
row-add push buttons. In the first row below the matrix are the column-
subtract push buttons. To the extreme right of the mechanical blackboard,
between the row-add push buttons and the edge of the mechanical black-
board, lies the control panel.

2.1.1. Problem-Changeover Switch

In Figure 10 we have an enlarged view of the control-
panel section. If we start at the top, we see that the first control
that we come to is the Problem-Changeover Switch. This mechanical black-
board was built to be able to work two types of problems. The first is the
Assignment Problem and the second is the Transportation Problem. The
function that this switch performs i1s to prevent automatically any arith-
metic operation on the first row and column plus all the even rows during
the solution of a Transportation Problem. It does this through relay b1
by disabling the control circuits of the proper row relays and the proper
contacts of the column relays. In the Assignment position nothing is
disabled. Each position of the switch 1s indicated by the pilot light:

a green pllot light to the left for the Assignment Problem and a white
pilot light to the right for the Transportation Problem.

2.1.2. Clear Switch

The next control below the Problem-Changeover Switch
is the Clear Switch. During the solution of the problem, the clear switch
is left in the up position, called the operate position. In this position
the upper pilot light comes on (green). When one wishes to erase the
problem from the matrix, he throws this switch downward, as mentioned in
paragraph 1.2.2.4, to the clear position, which is indicated by the light-
ing of a white pilot light underneath the switch. One then proceeds to
push the row-subtract buttons to clear the teleregisters. ‘

2.1.3. Set-Up Switch

Next down from the Clear Switch we find two switches.
The one on the left is called the Set-up Switch and the one on the right,
the Add Switch. The Set-up Switch was described in paragraph 1.3.1.2;
the dial position is indicated by the glowing of a white pilot light lo-
cated above the switch. The downward position of the switch, which is
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ig. 9A. Front View of Computer
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Fig. 9B. Rear View Showing Wiring and Power Supply
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Fig. 9C., Left End View Showing Row Relays and Ten Pulser
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fig. 10A. View of Upper Control Panel Section
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¥ig. 10B. View of lLower Control Panel Section



4o

called Battery, applies 48 volt d.c. to the set-up-bus in case one wishes
to make his own pulses wilth the teleregister switches.

2.1.4. Add Switch

The right-hand switch is called the "Add Switch;"
it controls the mode of operation of the add circuitry. If the switch
is downward in the battery position, the pushing of any of the row-add
buttons will add one to that row. Throwing the switch upward puts the
switch in the dial position and lights a white pilot light to designate
this condition. In this position it is possible to push any one of the
row-add buttons and then dial the number that one wishes to add to that
particular row. In this way one can use the telephone dial to add and
subtract any number from one to ten.

2.1.5. Telephone Dial

The telephone dial that has been mentioned in the
preceding paragraphs hangs on a hook Jjust under the Set-up Switch and
Add Switch. It is equipped with a spring cord so that one can remove it
from the hook and use it at the other end of the computer. For shipping
or moving purposes the cord is equipped with a telephone plug, so that the
dial and cord may be disconnected completely.

2.1.6. Ten-Pulser Supervisory Lights

Directly beneath the telephone dial are two super-
visory lights for the ten-pulser. The white light on the left, labeled
Subtract in Progress, indicates the duration of the subtracting process.
During this time a second subtract button should not be pushed. It should
be mentioned that the circuit is so designed that it is not necessary to
hold one's finger on the subtract button during the subtracting process.
Further, it is so designed that, if one does continue to hold one's finger
on the subtract button even after the subtraction has taken place, no damage
or malfunction will occur. Under these cilrcumstances, one sees the par-
ticular row teleregisters subtract one by taking ten steps, the Subtract-
in-Progress light goes on at the beginning of subtraction and goes out
at the end. The green Ten-Pulser Reset light on the right fails to light
until one takes his finger off the subtract button. When the finger is
removed, the ten-pulser resets and the reset light glows. This light should
always be 1lit whenever the ten-pulser is not being used, which signifies
that the ten-pulser is ready for subtraction.

2.1.7. Column-Add and -Subtract Switch

Mounted externally on the right-hand edge of the
mechanical blackboard is a switch which can be used to convert the column
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push buttons to either addition or subtraction. This switch is slightly
above and to the right of the power controls.

2.1.8. Power Control

At the extreme bottom of this panel is a section
devoted to the control of the power used by the mechanical blackboard.
The power switch is located in the lower right-hand corner of this group.
The line fuses for the a.c. supply and for the d.c. supply are located
Just above the power switch. A pilot light for the a.c. supply is located
Just below it on the left. On the d.c. supply are two additional output
fuses on the 24-# and 48-volt outputs. These are located above the line
fuses, left to right, respectively, with their corresponding pilot lights
located Jjust above. It should be noted that, since the a.c. supply is
merely a pair of transformers, we are only fusing the primary side in this
case,
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3.0. CONTROL SUB-CHASSIS

Until now we have ignored the details of the control subassembly.
We have referred to it as if it were a black box. However, it is really
several black boxes, since the chassis is multifunctional.

3.1. Description

We have on this unit a part which is used to generate ten
pulses for our subtract "1" circuit. We also have the equipment for the
add "1" circuit. Lastly, we have a part that is devoted to limiting the
pulse length to the teleregisters.

3.1.1. Subtract Circuit (Ten-Pulser)

In paragraph 1.1.2.2 it was pointed out that, if one
wishes to subtract, it is only necessary to add the difference between the
number that one wishes to subtract and the number of positions on the
teleregister. If we wish to subtract "1," we must generate ten pulses.
The following is a description of the device designed to generate these
pulses automatically.

3.1.1.1. Step-Switch Count. If we look at Figure 11, we can
find RY 46 (step switch) at the right-hand side. This is the heart of
the ten-pulser. By proper treatment, this device can be made to count.
In our circuit, we start it with RY 43 (start relay), and after it has
counted to ten pulses, we arrange to have RY 44 (stop relay) stop the
circuit. If one then removes his finger from the subtract button, the
ten-pulser is ready to start all over again.

3.1.1.2. Start Relay. As an aid to understanding the ten-
pulser, we have drawn a time-sequence diagram (see Figure 13). The first
thing that happens is that a ground is applied to the start line by pushing
a subtract button. An instant later the start relay pulls up (RY 434
and B) and remains up until the finger is removed from the subtract
button, which in this case is after the subtraction has taken place. It
should be noted that two actions are directly connected to the duration
of operation: the row-# and column-relay lock circuit and the reset
ground. This means that the row or column relay will remain locked as
long as the start relay is activated. It also means that the ten-pulser
circuit will not reset as long.as one has his finger on the subtract
button, even if the subtraction is finished.

3.1.1.3. Stop Relay. The stop relay halts the generation
of pulses after the tenth pulse has been reached. The Subtract-in-
Progress light is 1it by the pull-up of the start relay and is extinguished
even before the start relay is released by the stop relay. The operating
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ground for the step-switch system and the start-relay lock circuit have a
similar relationship to the start and stop relays. They function while
the Subtract-in-Progress light is 1it.

3.1.1.4. Start-Relay Iock Circuit. As mentioned in the
discussion of the control panel, the purpose of the Subtract-in-Progress
light is to warn the operator that a second subtract button should not
be pushed until the subtraction is complete. The start-relay lock circuit
is to insure that the subtraction once started will be completed regard-
less of whether one keeps his finger on the subtract button or not. The
operating ground 1s the ground that controls the operation of the step
switch.

3.1.1.5. ©Step-Switch Cycle. When this ground is applied the
step-switch system begins to step by itself from the home position at a
rate set by the thryatron delay circuit, which controls the time delay
between steps. The stepping continues until the switch reaches the 19th
step, at which time the stop relay pulls up, ending the operation. During
the travel from the home position to the 19th step, the action of the
plate-circuit relay of the thyratron delay circuit (RY 45) and of the motor
magnet of the step switch (RY 46) is as shown in the time-sequence dia-
gram (Figure 13).

3.1.1.6. Ten-Pulse Output Flow. The action of the tele-
register pulse relay (RY 47) is to pull in on the odd-numbered steps.
The relay which controls the pulse-limiter circuit (RY 49) follows the
action of the 48-volt pulses fed in by the teleregister pulse relay
(RY 47) or the add relay (RY 48). The action of the pulse-limiter plate
circuit relay is to break the circuit to the teleregisters in the case of
a long pulse, Since the diagram (Figure 13) was made up under the assump-
tion that the operator held his finger on the subtract button, the last
(or tenth) pulse was a long pulse; therefore, the pulse limiter functioned
and shortened the tenth pulse directly from the teleregister pulse relsy
(RY 47). It should be noted that the pulse limiter (RY 50) releases a
lock circuit on the ten-pulser start relay. This circuit insures an
adequate length for the tenth pulse.

3.1.1.7. Step-Switch Reset. When the operator finally takes
- his finger off the subtract button, the start relay falls out because
there is an open lock circuilt and an open start line. A reset ground is
then provided and the step-switch system will take one step to the home
(or twentieth) position, which is equivalent to the zero position. The
ten-pulser is now ready for another subtraction operation. If the op-
erator does not hold his finger on the button, as he did in the case Jjust
described, the start relay falls out as soon as the stop relay pulls up,
and the system resets. This condition, as mentioned earlier, causes the
reset pilot light to glow.
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3.1.2. Add Circuit

The add circuit, which is also taken care of by the
sub-chassis, works in the following manner. When one pushes an add
button, one contact pulls in a row relay and the other contact puts a
ground on the start add line. This ground will pull in the add relay
(RY 48) which will place 48 volts d.c. on the teleregister bus going
into the pulse-limiter circuit. The action is the same as that of the
ten-pulser. As soon as the pulse is too long, the pulse-limiter circuit
breaks the circuit. At this break the teleregisters will all move one
position, which is the purpose of the circuit.

3.1.2.1. Add Circuit and Lockup Functions. The operation
of the add circuit in several functional respects is very similar to
that of the subtract circuit. First, the power to operate the teleregis-
ters does not go through the push buttons, since they do not have the
current-carrying capacity. Instead, a relay with heavy contacts is used.
Further, the add relay will lock up Jjust as does the start relay'for the
ten-pulser, insuring that the addition will take place independent of the
duration of pushing the button. The lock circuit for the row relays is
also connected to this locking function. ILastly, the add circuit is re-
leased at the end of one pulse when that pulse exceeds the pulse duration
set into the pulse-limiter circuit. The diagrams of Figure 17 show the
add-circuit functions. The first diagram shows the timing that occurs
when one starts the add circuit with a short pulse. The second diagram
shows how the circuit reacts when one pushes the add button and holds
it. It can be seen that the length of the output pulse is the same in
both cases. The only difference is that, when one holds his finger on
the button, some of the relays are held up until the button is released,
but no second pulse is produced; i.e., the end of the pulse is not depend-
ent on the release of the add button.

3.2. Electronic Circuits

3.2.1. Step-Switch Circuits

We have avoided in our previous discussions any de-
tailed mention of several portions of the sub-chassis. These portions
include the electronic circuits and the stepping switch. We will now
treat the electronic circuits associated with the step switch of the
ten-pulser,

3.2.1.1. Thyratron Time Delay. Let us now consider the
Thyratron Time Delay which drives the stepping switch. Figure 1LA is a
diagram of cathode~bias circuit, which puts a positive voltage on the
cathode with respect to the shield grid. This allows one to produce a
critical grid voltage (firing voltage), which is twenty or thirty volts
positive with respect to ground.
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3.2.1.2. Integrator. Figure 14B shows a typical time-delay
circult or integrator circuit. If a constant voltage is applied to the
right end of this circuit, the voltage measured at the other end rises
exponentially toward the applied voltage. If the charging resistor is made
variable, it is possible to change the rate of rise of this voltage and
s0 control the timing of the whole delay circuit.

3.2.1.3. Plate Circuit. In Figure 14C we have tried to
show the essential elements of the anode or plate circuit. A plate drop-
ping resistor is inserted in series with the plate relay to set the proper
current for the relay and tube. The arc suppressor network, seen to the
left, 1s an attempt to suppress the inductive kick of the relay when the
circuit is broken. The plate relay (RY 45) performs two functioms: it
provides an operating ground for the motor magnet of the step switch and
a discharge ground for the time-delay capacitor.

3.2.1.k. Motor Magnet. Figure 14D is a diagram of the step-
ping switch motor and level connections. On the left-hand side are connec-
tions to the motor magnet and the interrupter springs. If a ground is
applied to point X, the motor magnet will pull up. This opens the inter-
rupter contacts and compresses the wiper driving spring. When the motor
magnet is released, the interrupter contacts reclose and the wiper driv-
ing spring. When the motor magnet is released, the interrupter contacts
reclose and the wiper driving spring is allowed to advance the step switch
to the next position.

3.2.1.5. Step-Switch Contact Levels. Figure 14D also shows
that the first and second levels of the step switch are arranged to operate
the stop relay on the nineteenth position and the reset pilot on the
twentieth. The third and fourth levels have all the contacts, except the
twentieth, strapped together and are used whenever the ten-pulser must
be reset. The fifth and sixth levels have their odd-numbered contacts
strapped together, so that they will feed one pulse for every two steps of
step switch and ten pulses for 19 steps, or one-half revolution of the
wiper assembly.

3.2.1.6. Complete Circuit. Now let us combine all these
elements and see how they work together. In Figure 1LE we see the com-
bination. If an operating ground is supplied to the circuit, the voltage
will begin to rise across the storage capacitor. During this rise time
the tube will remain unconducting because of the cathode-bias voltage.
As soon as the voltage across the capacitor, Cls’ reaches the critical
grid voltage as set by the cathode-blas resistor, Rls’ the tube fires and
the plate relay pulls up, applying a ground to the motor-magnet circuit
and discharging the time delay capacitor C,,, so that it will be ready to
start the next cycle. When the motor magnet pulls up, it breaks the plate
circuit allowing the plate relay to release and the tube to extinguish.
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This in turn will allow the motor magnet to release and step the stepping
switch to the next position.  Since the tube is extinguished and the time
‘delay capacitor is discharged, the circuit is ready to repeat the cycle as
long as there is a ground at the base of the cathode resistor.

3.2.1.7. Adjustments. The critical grid voltage is set by
setting the circuit to its slowest speed (R)g, fully counterclockwise)
and then noting the firing voltage with a vacuum-tube voltmeter at the
control grid. A value of 25 to 30 volts is a good mean value. This is
known as setting the sensitivity. After it is set, it is only necessary
to turn the speed control for the desired speed of subtraction that still
gives reliable operation of the teleregisters.

3.2.2. Pulse-Limiting Circuit

Turning to Figure 15A, we take up the pulse-limiting
circuit. Since this circuit is very similar to the thyratron delay cir-
cuit discussed above, we will only show the ways in which the circuit
differs from it.

3.2.2.1. Pulse-Cycled Charging. In the pulse-limiting
circuit there is a slightly different function to perform and a different
cycle through which to go. The pulse limiter is supposed to work only
when one of the pulses which passes through it is too long. However,
unlike the former circuit we must recycle the storage capacitor after each
pulse whether the tube fires or not. Only in this way can we properly
sense the length of the individual pulses. In Figure 15A we see this
pulse-cycled charging circuit. Note that in this circuit the charging path
is closed only when the 48-volt pulse is applied to the pulse line, which
in turn will pull up the relay (RY 49). When there is no pulse, the
charging circuit is open. Also, when there is no pulse, a discharge path
is connected across the storage capacitor.

3.2.2.2., Resetting State of Charge. It can be seen then, that
the state of charge i1s brought back to zero after each pulse and that no
series of pulses which are individually shorterthan the critical length,
as set into the pulse limiter, will trip the circuit.

3.2.2.3. Plate Circuit. 1In Figure 15B we have a diagram of
the anode circuit of the pulse limiter, showing the plate-dropping re-
sistor, as before, as well as the plate-circuit relay. The functions of
the two sets of break contacts are shown also. The top set breaks the out-
going pulse, and the bottom set of contacts breaks the locking circuit
to the add relay (RY 48), releasing this circuit after one pulse has been
terminated.
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3.2.2.4. Complete Circuit and Adjustment. Figure 15C shows
the final combination with the two circuits that feed pulses into the
pulse limiter. It should be noted that one would set the critical firing
voltage or sensitivity of the tube in the same way as described for the
delay circuit. The potentiometer that constitutes the cathode-bias re-
sistor increases the critical firing voltage as it is turned toward the
clockwise end. The charging resistor is connected differently in this
case, since it is the duration that one is interested in and not the speed
of the step switch. Since we measure the time delay in a different way,
the control is arranged to accept a longer pulse, when it is turned in the
clockwise direction.

3.2.2.5. Wave Shapes. Figure 16 shows some of the wave
shapes that one should expect to find in the pulse-limiter circuit for
different-length pulses. This diagram is meant to show that during
normal pulses there is no action in the pulse limiter. If a long pulse is
received, however, the critical grid voltage 1s exceeded by the charge
on the storage capacitor (integrator circuit) to the tube fires, limiting
the pulse length.

3.3. Power Supplies

3.3.1., Dual-Voltage D.C. Supply

The last item that we should cover is the dual-voltage
power supply. This supply is really two supplies in one. The single
power transformer has two primary windings with the low-voltage taps at
the ends of the windings tied together, so that the windings are in
parallel. The two secondaries are connected individually to two full-wave-
bridge selenium rectifiers. The first rectifier feeds a single "L-Section"
L-C filter. The output voltage of the first rectifier is also added in
series to that of the second and then fed into a second filter which is
identical with the first. The output voltage of this part of the supply
is nominally 48 volts with respect to ground, while the output of the
first part is nominally 24 volts with respect to ground. Two points
should be noted at this time. The first is that the output capacitors
are 15 working volts d.c. 2000 mfd. capacitors used in series with 25-ohm
equalizing resistors across each. They also provide a minimum load. The
second point is that the output capacitor for the 48-volt section is not

independent of the output capacitor for the 24-volt section (see Figure
18).

3.3.2. 12-Volt A.C. Supply

We might mention that there are two six-volt trans-
formers with their secondaries tied in series to give twelve volts.
These supply the power for the matrix pilot lights. The fusing is only in
the primary circuit while the on-pilot light is only on the secondary
12-volt bus.



-57-

LINOYID H3LIWIT 3SInd 967 *b14

< IVIa ¥0 A¥311vs
aay 1Yvis
TTO4LNOD
Q (8v AY) < ALIAILISNTS | | Sy
i >
Ab2+ OMK. *
Ve

1inddi0 aav

LINDHID 1oVH149NS
= AbeH[ N (6 AM)
mm_oH (1 A¥) I (05 AY)
(9% AM) H S6ly ASL +
9% S SI3A3T Ol
o
A8y + © $351Nd 1NdLNO

8 e AY



Fig. 15D. PFront and Back View of Ten Pulser
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3.3.3. Power Plugs

When the mechanical blackboard is set up after it
has been shipped or moved, a power cord must be plugged into the back of
the mechanical blackboard. The plug is a Hubbel Twist-Lok plug, which
should be inserted into the socket and turned to the right. Two other
plugs may have been disconnected, namely, the input and output plugs on
the d.c. power supply. The input plug is a standard two-pronged wall plug,
while the output plug is a four-pin aircraft plug. In inserting the latter
plug one should be careful to match the keyway and to screw in the knurled
clamping nut on the body of the plug. These two plugs and sockets are
located on one face of the supply, inside the case on the top of the wood
cabinet. Since the sub-chassis 1s sometimes removed for malntenance and
repair, one should check the Jones Plug, which connects it to the rest of
the board.

3.3.4. Tubes and Fuses

The electronic tubes used in the machine are 2D21
thyratrons. The fusing for the machine is done with Buss 3AG Little
Fuses. The sizes are tabulated below.

Main Power 3 amp.
2L-volt Output 1 amp.
48-Volt Output 3 amp.
12-Volt A.C. .T5-1 amp.

The fusing is designed for proper adjustment and use. Some adjustments
of the sub-chassis will blow the 48-volt fuse, and more than the designed
load of 20 lights will blow the 12-volt a.c. fuse.
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SECTION III

AIGORITHMS FOR THE ASSIGNMENT AND TRANSPORTATION PROBLEMS

The Assignment Problem

The problem is that of choosing a set of m independent elements
of the matrix A = (Xij) such that the sum of these elements is minimum.
We assume for the present that the elements of A are integers.

Two remarks are in order: (1) There is a theorem of Kbnig
which states: If A is a matrix, and m is the maximum number of independent
zero elements of A, then there are m lines which contain all the zero
elements of A. (2) It is readily seen that the solution of our prob-
lem is not changed if we replace X4 3 by Yijo where Vi3 = %43 - Ui - V3
(ui and Vs are arbitrary constants).

These facts provide a basis for H. W. Kuhn's algorithm: M. M,
Flood has outlined it in the following form:

Step 1. Subtract the smallest element in A from each element
of A, obtaining a matrix A; with nonnegative elements and at least one zero.

Step 2. Find a minimal set 51 of lines, n; in number, which
contain all the zeros of Ay. If ny = n, there is a set of n independent
zeros, and the elements of A in these n positions constitute the re-
quired solution.

Step 3. If ny <n, let hl denote the smallest element of Ry
which is not in any line of Sq. Then hy > 0. Add h; to each element
of A which 1s in a line of S; and subtract hy from every element of Aj.
Call the resulting matrix Ao; it will be nonnegative.

Step 4. Repeat Steps 2 and 3, using Ao in place of Ay. The
sum of the elements of the matrix is decreased by n(n - ny)hy in each
application of Step 3, so the process must terminate after a finite number
of steps.

To complete the algorithm, it is necessary to give a construc-
tive procedure for carrying out Step 2, i.e., for finding (1) a minimal
set of lines which contain all zeros and (2) a maximal set of inde-
pendent zeros. The present algorithm differs from Kuhn's at this point.
Our procedure follows.

1n the course of the problem, certain lines will be distin-
guished; we will speak of these lines as covered lines. An element of
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the matrix is said to be noncovered, once-covered, or twice-covered,
depending whether it lies in precisely non-, once-, or twice-covered
lines. We will distinguish some zero elements by means of asterisks,
and some by means of primes. (We refer to "starred zeros" and "primed
zeros," respectively). At the beginning, no lines are covered and no
zeros starred or primed.

Step 2a. Cover the row and column of each starred zero (if
any); erase all primes (if any). Choose a non-covered zero element
(if any); star it; cover its row and column. Repeat until all zeros are
covered. [These starred zeros are independent. )

Step 2b. Find a twice-covered starred zero Z and examine for
the following possibilities:

(I) If there is a once-covered zero C in Z's column and no
once-covered zero in its row, prime C and uncover Z's row (leaving C and
Z covered). If there is a once-covered zero R in Z's row and none in
its column, prime R and uncover Z's column (leaving R and Z covered).

(11) If there is a once-covered zero in Z's column and one in
Z's row, prime both and go at once to Step 2c.

(IITI) 1If there is no once-covered zero in Z's row and none in
its column, do nothing.

Repeat Step 2b for each twice-covered starred zero in turn.
Continue repeating until either (II) holds, or there are no more twice-
covered starred zeros, or each twice-covered starred zero has no once-
covered zero in its row and none in its column. In the first case, go to
Step 2c¢. In the last two cases, certain starred zeros are once-covered;
they will be called primary zeros. The covered lines containing them
will also be called primary. The primary lines are characterized by the
fact that they belong to every minimal set of covering lines for the zeros
of A. Go to Step 2d.

Step 2c. We begin this step at the point when (II) has Jjust
been applied to the starred zero Z. Let Co = Z. Let Cy denote the primed
zero in Cqp's column. Iet C, denote the O* in Cy's row (if any). Repeat,
using Co in place of Cy. Continue repeating until the sequence comes to
a stop, at some O', CQJ+1’ which has no O¥ in its row. Then one has a
sequence Cp, Cq, «..) CEj+l of alternating starred and primed zeros. [We
must prove that, given C,,, CEi+l may be found; we must also prove that
the chain is finite. ©Note first that no line contains more than one 0%
and no covered line more than one 0', so that the sequence is uniquely
specified. We proceed by induction, assuming that Cpoi_1 1s a once-covered
O' whose column is covered. The row of Cp;_; 1s not covered, so that
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the starred zero Csy in this row has only its column covered. Then (I)
applies to Cpy at some stage of the testing process, and there is a 0',
Cois1’ in the column of Cpj. Since Cpi,) Was once-covered at the moment
it was primed, it is still once-covered. Hence the induction hypothesis
is satisfied. Furthermore, Cp;,y was primed previous to the priming of
Coi-1- The row of Cpy was not covered when Cpj_j was primed (or Cog-1
could not have been once-covered), so that the uncovering of Coy's row and
the priming of Cpy,; must have taken place previously. Hence the sequence
is finite, and all the members of the sequence are distinct.]

Let Ro = Z. ILet Ry be the 0" in Ro's row. Let Ry denote the
0% in Ry's column (if any). Repeat, using Rp in place of Ry. Continue
repeating until the sequence comes to a stop, at some O', Rok4+], which
has no 0% in its column. [A similar argument shows that this is always
possible, and that each starred zero Roy has its row covered.]

All the members of the sequence
Rox+1, Roks «-+5 Ry 2, Cy, ... Cpgs Coj+1

are distinct elements of the matrix. [All the Ci lie in covered columns
and the R; in covered row, and each member of the sequence except Z is
once-covered.] Unstar each starred zero of this sequence, and star each
unstarred zero of the sequence. It is clear that after this starring and
unstarring, the resulting set of starred zeros will be independent. [If
two of the primed zeros of this sequence are in the same line, this line
is uncovered. There must be a 0¥ in this line; then this O%* must appear
twice in the sequence, which is a contradiction.] This set is larger by
one than the previous set of independent zeros. Return to Step 2a.

Step 2d. Uncover the column of each twice-covered 0% (if any).
Then each 0% is covered exactly once (so that there are as many covered
lines as starred zeros), and all zeros of the matrix are covered. [Each
application of (I) or (III) leaves all zeros covered, and (II) does not
occur, by hypothesis. Uncovering the column of each twice-covered 0¥
cannot make a non-covered zero appear, since no twice-covered 0% had a
once-covered zero in its column at the beginning of this step.] Then
the covered lines form the required minimal set Sy of lines containing
all the zeros, and the starred zeros form a maximal set of independent
zeros. [It is obvious that a set of lines containing all the zeros of
a matrix cannot contain fewer lines than the largest number of independ-
ent zeros. Since here there are the same number of covered lines as
starred zeros, the preceding statement holds. ]

Since Step 2¢ increases the number of starred zeros each time it
occurs, it can repeat only a finite number of times. Hence we must complete
Step 2d at last, and at this point we have the required set of covered lines.
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The following variations on this algorithm improve the effici-
ency of the operation:

(1) In Step 1, one should subtract from each row its smallest
element, and then subtract from each column of the resulting matrix its
suallest element. (This will give many zeros immediately.)

(2) At the end of Step 2, a certain maximal set of independent
zeros are starred. After Step 3, each starred zero will still be zero
(being once-covered). [Note: +this shows that Step 3 cannot decrease the-
maximal number of independent zeros.] When one returns to the beginning
of Step 2a, he should leave these zeros starred; they will form a good
initial "trial set" of independent zeros.

(3) For theoretical purposes, it does not matter, in Step 2a,
in what order the starred zeros are tested. In hand computations much
labor may be saved by an adroit choice of this order.

As remarked previously, Step 3 decreases the sum of the elements
of the matrix, so that the algorithm has only a finite number of steps.
One may prove the following stronger result. Suppose that the application
of Step 3 does not increase the maximal number of independent zeros. Then
when one repeats Step 2, one arrives at the end of Step 2b with more pri-
mary covered lines than he had at the end of the preceding application of
Step 2. [Since each once-covered zero remains zero after Step 3, one
proves easily that those lines which were primary at the end of Step 2b
before will be primary lines again. But Step 3 made a zero appear which
was not in any primary covered line; this zero causes some previous second-
ary zero to become primary on the second round.]

From this result it follows that our initial assumption that
the elements of A were integers is not necessary to the operation of the
algorithm. This assumption was used only to show that the algorithm had
a finite number of steps. The result Just proved shows that after at most
n applications of Step 3, the maximal number of zeros in the matrix must
be increased. The finiteness of the algorithm follows.

We may also use this result to obtain an absolute maximum for
the number of operations needed to solve completely any n-by-n assignment
problem, using the present algorithm. We assume that variation (2) is
incorporated into the algorithm. The operations considered are the follow-
ing elementary ones: scan a line, cover or uncover a line, add to or
subtract from a line, star or unstar a zero, prime or unprime a zero.

The maximum is obtained as follows: suppose that we have a matrix with
m starred independent zeros. We find a maximum for the number of opera-
tions necessary to obtain a matrix with m + 1 starred independent zeros,
assuming the worst possible situation. Then Step 2a takes 3m operations.
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In Step 2b, one tests and retests the starred zeros a number of times;
this takes at most m + 3m operations (of which m are "uncover a line,"
m are "prime a zero," and 2[m(m + 1)/2] are "scan a 1line"). In the worst
case, (II) will not occur and we will apply Step 2d and Step 3. This
requires at most 2m + 2n operations, and the number of primary starred
zeros will be increased by one in the repetition of Step 2. Hence this
process repeats at most m times, after which the maximal number of in-
dependent zeros must be at least m + 1. Steps 2a and 2b are applied
again, and (II) must occur. This brings us to Step 2c, which requires at
most Um + 1 operations. Then after at most

m[ (3m) + (m? +3m) + 2m + 2n)] + (3m) + (w2 + 3m) + (bm + 1)
operations, we obtaln a matrix with m + 1 starred independent zeros.

We sum this expression fromm = 1 to m = n-1, and add the 2n+l
operations required initially. The final maximum on the number of op-
erations needed 1is

(n* + 1403 - n2 - en)/k .

This maximum is of theoretical interest, since it is so much smaller than
the n! operations necessary in the most straightforward attack on the
problem. Needless to say, in usual applications of our method, the num-
ber of operations is not nearly of this order of magnitude, especially

if one incorporates variations (1) and (3) into his program as well as

(2).

The Transportation Problem

Our algorithm for the assignment problem may be generalized to
the transportation problem. The proof of the correctness of the general-
ized algorithm is much the same as the proof for the special one; we leave
its construction to the reader.

The transportation problem may be stated as follows: Iet D =
(d; J) be an n-by-m matrix of nonnegative integers, and let rl (i =1,...,n)
and cj (j=1, ...,m) be positive integers such that Z} Zc Deter-
mine the values of the variables Xij which minimize the sum Zi 3 lele,
subject to the conditions

n
Xij—>- O, Zj..:l Xij = Cj, and ZJ =1 lJ = ri.
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One may think of the following physical situation: There are

N ships placed at positions Pl’ ooy Pn’ and ry denotes the number of
ships at position Pi' One wishes to move these ships to new positions
Pl‘, ey Pm', so that there will be c; ships at position Pj'. The num-
ber dij is the cost of moving a ship from position P; to position P.'.
The number Xy s stands for the number of ships to be moved from Pi to

Ps'; it will be called the quota assigned to di.. The problem is to
cﬂoose these quotas so that the total cost of moving the ships 1is as
small as possible. This problem is also called the distribution problem.

A statement of the algorithm follows. We work with the cost
matrix D = (di‘)' In the course of the problem, we will distinguish cer-
tain lines of %he matrix; we call them covered lines, and we will distin-
guish certain zero elements of the matrix by means of asterisks and
primes (as in the algorithm for the assignment problem). In addition,
we will assign to each element of the matrix a nonnegative quota Xij’
which may be changed in the course of the problem. FEach element of the
matrix whose quota is positive will be called essential. (These elements
will always be zeros). At any stage of the problem, the number c. -

Zi Xi3 will be called the discrepancy of the jth column at that stage,
and the number r; - Zj Xij will be called the discrepancy of the ith row.
These discrepancies will always be nonnegative; when all of them vanish,
the corresponding quotas are a solution to the problem.

Preliminaries, All quotas are zero; no lines are covered; no
zeros are starred or primed. Subtract from each row of the matrix D its
smallest entry; then subtract from each column of the resulting matrix
its smallest entry.

Step 1. Erase all asterisks and primes. Cover each row and
column (if any) whose discrepancy is zero.

Choose a non-covered zero element Z (if any); increase its quota
until the discrepancy of either Z's row or column is zero (or both).
Cover that line (or lines) whose discrepancy is zero. Repeat, until all
zeros are covered.

Step 2. Find a twice-covered, essential zero Z and apply the
following tests to it:

(I) If there is a once-covered zero C in Z's column and no
once-covered zero in Z's row, star Z, prime C, and uncover Z's row (leav-
ing C and Z covered). If there is such a once-covered zero which is al-
ready primed, let it serve as C rather than prime another once-covered
Zero.



-T1-

If there is a once-covered zero R in Z's row and none in Z's
column, star Z, prime R, and uncover Z's column (leaving R and Z covered).
If there is such an R which is already primed, do not prime another one.

(II) 1If there are once-covered zeros C and R in Z's column and
its row, respectively, star Z, and prime C and R. (Again, if there is a
zero already primed in the column, let it serve as C. Similarly for R.)
Go at once to Step 3.

(III) If there is no once-covered zero in Z's row and none
in Z's column, do nothing.

Repeat these tests for the twice-covered essential zeros, until
either test (II) holds, or there are no more twice-covered, essential
zeros, or each twice-covered, essential zero has a once-covered zero in
neither its row nor its column. In the last two cases, go to Step L.

Step 3. Let Co = Z. lLet Cl denote the 0' in Cqy's column.
Let C, denote the O* in Cq's row (if any). Repeat, using C, in place of
Co- Continue repeating until the sequence ends at a primed zero CEj+l
which has no 0% in its row. Iet & > O denote the discrepancy of the row
of Cpjyy- (The discrepancy of its column is zero).

Let RO = Z. Let Ry denote the O' in Ry's row. ILet R, denote the
0% in Ry's column. Repeat, using R, in place of Ry. Continue repeating
until the sequence stops at a primed zero Roy,7, which has no 0¥ in its
column. Iet p > O denote the discrepancy of the column of Rpy,q- (The
discrepancy of its row is zero). We have a sequence of alternating
primed and starred zeros

R2k+l, ng, oo ey Rl, Z, Cl’ o0y CEJ’ C2J‘+lo

We note that no uncovered line contains more than one 0%, and no covered
line contains more than one 0', so that the construction of this sequence
is uniquely specified.

Let 7 denote the smallest quota assigned to any 0¥ of this se-
quence, and let 3 denote the minimum of o, B, and y. Add d to the quotsa
of each O' of the sequence, and subtract & from the quota of each O¥% of
the sequence. Return to the beginning of Step 1.

Step 4. Find a twice-covered essential zero (if any); uncover
its column. Repeat until there are no twice-covered essential zeros left.
Let h be the smallest non-covered element of the matrix. Then h > O.

Add h to each covered row and column, and subtract h from the entire
matrix. Return to Step 1.
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SECTION IV

SOLUTION OF ASSIGNMENT AND TRANSPORTATION PROBLEMS
ON THE MITAB

The Mechanical Blackboard

We give here only the most elementary introduction to the
mechanical blackboard. The face of the mechanical blackboard may seem
rather complicated at first; this is due mainly to the extensive dupli-
cation of its basic elements. The main body of the mechanical black-
board is made up of 400 cells, arranged in a 20-by-20-square array.

Each cell consists of a teleregister, two pilot lights (white and green),
and two switches:

W G
teleregister (5 @] O ¢—— lights

swi tch s ) ) «———— switch

The lights are controlled by the switch just beneath them. When it is

thrown to the left, the left (white) light glows; when it is thrown to

the right, the right (green) light glows. When it is in the center po-
sition, both lights are off. These lights are turned on and off during
the course of the problem; the white light, for example, corresponds to
the asterisk we used in our discussion of the assignment problem.

A teleregister is an electro-mechanical device which can posi-
tion a vertically mounted drum in any one of eleven positions. One
position is a yellow blank, which represents the number zero. The next
nine positions display the numbers 1 to 9. The tenth position, which
follows the ninth and precedes the zero, is painted black; it represents
the number 10. The teleregister is seen from the front of the machine
through a mask, so that one number is displayed at a time.

The teleregister drum is electrically positioned. If one applies
an electrical pulse to the teleregister, the face of the drum will move
one position to the right. This is the equivalent of adding one to the
displayed number. Since there are eleven positions, it can be seen that,
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if we should do this eleven times, the teleregister would be back in the
same position. If we should do it only ten times, the number displayed
would be decreased by one. From this discussion, it is clear that addi-
tion is merely a matter of generating the exact number of electrical
pulses one wishes to add and applying them to the teleregister. To sub-
tract some number h, we generate 11 - h pulses and apply them to the
teleregister.

The teleregister is controlled by the switch just beneath it.
When the switch is thrown to the left, the teleregister is connected to
the "set-up circult" of the entire matrix, and pulses which are fed into
this circuit will reach the teleregister. When the switch is thrown to
the right, the teleregister is connected to the "arithmetic circuit" of
the row and column in which it lies. This is the normal position of the
switch, In the center position, the teleregister is disconnected from
both circults, and no pulses will reach it.

The telereglster is also provided with a "home" position; this
is the position in which the zero appears. If one sends pulses to &
teleregister which has an open clear circuit, the teleregister drum will
rotate until it comes to the zero position and then will stop. The clear
circults are controlled by a switch on the control panel - the second
switch from the top in the upper right-hand corner of the face of the
mechanical blackboard. When this switch is flipped down, in "clear"
position, the clear circuit of every teleregister is open, and no tele-
register will cycle past the zero position. When it is flipped up, the
teleregisters will cycle past zero just like any other number.

Now let us consider the use of the push buttons which appear to
the right of, and beneath, the array of teleregister cells. At the bot-
tom of each column, there is a push button. If one pushes one of these
buttons, 10 electrical pulses are fed into the "arithmetic circuit" of
the column in which it lies. Hence, each teleregister in this column
whose switch is to the right will receive 10 pulses, and its displayed
number will be decreased by one. For this reason, the button is called
a column-subtract button.

Just to the right of each row are a pair of push buttons. If
one pushes the left button of such a pair, 10 electrical pulses are fed
into the arithmetic circuit of the row in which this button lies. Each
teleregister in this row whose switch is to the right will receive 10
pulses, and its displayed number will be decreased by one. It is called
a row-subtract button. If one pushes the right-hand button of this pair,
a single pulse is fed into the arithmetic circuit of that row. Each
teleregister in this row whose switch is to the right will receive one
pulse, and its displayed number will be increased by one. This button
is called a row-add button.
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Finally, let us consider the control panel, which is on the
right side of the face of the computer. A diagram of it follows;
é stands for a switch and O for a pilot light.

Assignment (o} ® (o] Transportation
Problem Problem
O Operate
® (Clear switch)
O (Clear
O (pial) O (Dial)
Set-up switch ® Add switch
(Battery) (Battery)

Telephone

Dial

(o) o]

Subtract in progress Ten-pulser reset

The switch at the top is the Problem Switch. Its use will be explained
later. The second switch controls the clear circuits of all the tele-
registers. Its use was already explained.

The two switches Jjust below, labelled Set-up and Add, control
the set-up circuit and the add operations, respectively. In our solution
procedures, the Set-up switch is left in the up position. In this case,
when one dials a number on the telephone dial attached to the mechanical
blackboard, that number of pulses are fed into the set-up circuit of the
matrix, so they will affect each teleregister whose switch is to the
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left. This is used in setting up a matrix on the mechanical blackboard.
If the Set-up switch should be flipped down, the dial will not feed pulses
into the set-up circuit. However, in this case, if one flips a tele-
register switch to the left and back again, the teleregister will receive
one pulse.

In our solution procedure, the Add switch 1s always down.
Possible uses for the up position are given in the Appendix.

The pair of lights Jjust beneath the telephone dial have a
supervisory function. When a subtract button is pushed, the left light
of this pair goes on and stays on until the subtraction is completed.
During this time one must be careful not to push another subtract button.
When the subtraction is completed, this light goes off and the right-hand
light of the pair goes on.

At the bottom of the control panel is the power switch, along
with four fuses and two pilot lights. The power is on when the switch
is flipped wup.

Finally, stretched across the array vertically and horizontally
are 40 metal rods painted different colors on different sides. They may
be rotated so that one or another of their colored sides is exposed.

This is used during the course of the problem to mark certain rows and
columns. A vertical rod belongs to the column of numbers Jjust to the
right of it, and a horizontal rod corresponds to the row Jjust beneath it.

Instructions for Setting Up a Problem
On the Mechanical Blackboard

A1l switches should be in their normal positions as follows:

Problem switch to the left (Assignment problem)

Clear switch in Operate position

Set-up switch up

Add switch down

Power switch on

Each teleregister switch to the right (arithmetic position)
Fach light switch off (center position)

If not all the numbers of the matrix are zero, we first clear
them to zero. We do this as follows:

Flip the Clear switch to Clear position
Push the Subtract button for each row
Flip the Clear switch back to Operate position
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Then we are ready to set up the matrix. One should limit one-
self to matrices containing only numbers between O and 9. For an assign-
ment problem, we have Jjust a square matrix of numbers to set up. We in-
sert a number in a teleregister as follows:

Flip the teleregister switch to the left

Dial the desired number on the telephone dial. (If the
desired number is 0, do not dial anything. Dialing
0 would set up the number 10 on the teleregister.)

Flip the teleregister switch back to the right

This must be done for each element of the matrix. The set-up
can be done more rapidly if one person dials the numbers while another
flips the switches.

If the assignment matrix is smaller than 20-by-20, it will not
fill the entire board. It should be set into the upper left-hand corner
of the face of the mechanical blackboard, and then it should be "set off"
from the remaining part of the face by turning the rods corresponding to
the first unused row and the first unused column so that their red sides
are exposed. Since only the black and silver sides of the other rods
will be used in the problem, these red lines will serve to set off the
matrix you will be working with. Incidentally, it is a very good idea
to 1limit oneself to a small matrix, say 10-by-10, until one is thoroughly
familiar with the particular solution procedure one is trying to learn.

If one wishes to work a transportation problem he has a more
complicated set of numbers to enter into the board. One should proceed
as follows: First clear all entries to zero. Set the covering rod
corresponding to every even-numbered row so that the red side is exposed.
Do the same for the rod corresponding to the first column. Subtract one
from every even-numbered row, leaving these rows filled with black blanks.

Then you are ready to set up the matrix. The numbers r; are
entered in the even-numbered rows of the first column; the other elements
of the first column should be set to the black blank (by dialing O). The
numbers cy are set into the first row (beginning with the second column),
and the cost matrix D = (dij) is set up in the remaining odd-numbered
rows (also beginning with the second column). The even-numbered rows
will be used to enter the quotas X3 in the course of solving the problem.

The red lines help to divide up the matrix, grouping neighbor-
ing rows together and associating the element di' with its corresponding
quota xij Just above it. The vertical red line will help to remind one
that the first. column is not a part of the cost matrix.



-80-

From this discussion, it is clear that the largest transpor-
tation matrix which the computer will handle is one of size 9 by 19.
If the matrix is smaller than this, the unused rows and columns may be
set off by red lines, as in the assignment problem.

In solving the transportation problem, one wishes to add to,
and subtract from, rows and columns of the cost matrix D only, without
affecting the capacities and the quotas. How do we allow for this?

This is the function of the Problem Switch at the top of the control
panel. After the transportation matrix is set up on the board, this
switch is flipped to the right. This automatically cuts off the first
row and column and all the even-numbered rows from the arithmetic op-
erations. Then the add and subtract buttons affect only the cost matrix,
as 1s desired.

Finally, how does one handle entries of «» in an assignment or
transportation problem? In place of », enter the number 5 and then
disable the teleregister by throwing its switch into the center posi-
tion. This number will not change, no matter what additions or sub-
tractions are carried out, so that it behaves like » for all practical
purposes. The reason we choose the number 5 rather than some other
positive number (which would seem to work as well), will be explained
later.

Methods for Solving the Problems

The covering rods have a black side, a silver-colored side,
and a red side. The red side is used only to partition the matrix, or
to set off a sub-matrix, as previously explained. The black and silver
sides are used to distinguish certain rows and columns in the course of
the problem. When the silver side is exposed, the corresponding row
or column 1s said to be covered; when the black side is exposed, it is
sald to be non-covered. An element of the matrix is said to be covered
if it lies in some covered row or column; otherwise it 1s non-covered.
An element of the matrix may have one of the lights next to i1t turned
on. Such elements will always be zeros; we shall speak of green zeros
and white zeros, meaning zero elements whose green or white lights,
respectively, are lighted.

A, The Assignment Problem - First Method

This method is an adaptation of one of the author's algorithm
for the assignment problem, which appeared in the Journal of the Soclety
for Industrial and Applied Mathematics .
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Preliminaries. All lights should be off, and all rows and
columns uncovered. Scan each column for its smallest element, h; if h
is positive, subtract h from the column. After doing thls for each
column, do the same for each row.

Step 1. Find a zero Z. If there is no white zero in its row
and none in its column, turn on Z's white light. Repeat, until all the
zeros in the matrix have been considered. Then cover each column which
contains a white zero.

Step 2. Find a non-covered zero; turn on its green light. If
there 1s a white zero W in its row, cover W's row and uncover W's column.
If there is no white zero in its row, go at once to Step 3.

Otherwise, repeat this procedure until all zeros are covered.
Then go to Step k.

Step 3. There is a chain of alternating green and white zeros,
which may be found as follows: Begin with the uncovered green zero;
denote 1t by Z,. Go to the white zero in its column (if there is any
such white zero), denote thls white zero by Zl’ Go to the green zero
Zo in Zl's row; then go to the white zero Z3 in Z,'s column (if any).
Continue until the chaln ends at a green zero Zy, which has no white zero
in its column.

As you follow along this chain, turn off each white light and
change each green light to white. If there are now n white lights
(where n is the order of the matrix), the problem is solved. [Do not
try to follow backward along the chain from its end to its beginning,
because the chain may not be unique in this direction. Note also that
the chain may contain only one element, that is, it may begin with a
green zero which has no white zero in its row and none in its column.]

Turn off all green lights, uncover every row, and cover every
column which contains a white zero. (Those columns which are already
covered will remain covered.) Return to Step 2.

Step 4. Find the smallest non-covered entry h of the matrix;
it will be greater than zero. Check for possible overflow (see Part B
below). Then add h to every covered row, and subtract h from every un-
covered column.

Return to Step 2, without changing any lights or covering rods.



Any error which is detected immediately can easily be corrected;
mistakes in Step 4 must be detected immediately if they are to be cor-
rected, so one should be especially careful to follow instructions in
Step 4 exactly.

Other mistakes can be handled as follows: Uncover all rows
and columns. Turn off all green lights. Check to see that only zeros
have white lights on, and that the set of white zeros are independent.
(You may have to turn off some white lights). Cover every column con-
taining a white zero, and begin Step 2 again.

B. Overflow; Impossible Problems

Certain difficulties arise from the fact that each teleregister
has a rather small capacity. To allow for this, we will sometimes slip
an eraser over the switch beneath a teleregister. This will indicate that
11 should be added to the number appearing on the face of the teleregister
to obtain the number which actually belongs in that position of the matrix.
Hence, a yellow blank on the teleregister together with an eraser on the
switch stand for the number 11 in our matrix.

" Ordinarily, we should not attempt to solve matrices which con-
tain elements larger than 9. But even with this restriction, elements
larger than the capaclity of the teleregister may arise in the solution
of the problem. The effect of the transformations in Step 4 is to in-
crease each twice-covered element by h and to decrease each non-covered
element by h. (A twice-covered element is one whose row and column are
both covered.) Hence, some elements may become larger than 10 after
Step 4. We check for this as follows:

Before carrying out the transformation, check each twice-covered
element. If adding h to it will make it bigger than 10, slip an eraser
over the switch beneath it. (For example, if h = 1, scan each covered
line looking for a black blank which is twice-covered. For each such one
you find, slip an eraser over its switch.)

Then, if there is any non-covered element with an eraser on its
switech, check to see whether subtracting h from the number will make it
10 or smaller; if so, remove the eraser from this switch.

After doing this, you have checked for possible overflow, and
you may go ahead with Step 4, carrying out the additions and subtractions.

If too many elements of the assignment or transportation matrix
are infinite, the problem may not have a solution. When this is the case,
it may be recognized as follows:
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The number « was entered as 5, and the teleregister was dis-
abled. (Incidentally, the reason for using 5 rather than some other
nunber is to avoid confusion in taking care of overflow.) In the course
of solving the problem, one may come to the point where he begins Step
4, and finds that each non-covered entry is 5, and that none of them
change when the transformation is carried out. This is precisely what
happens when the problem has no solution, i.e., when it is impossible to
assign every man to a job for which he is quailified.

At this point, we have a "partial assignment'" of men to jobs;
this assignment is indicated by the white zeros. Suppose there are m
of these white zeros. This indicated assignment is optimal in the fol-
lowing sense: m is the maximal number of men which may be assigned to
jobs (assuming a man can be assigned only to a job for which he is
qualified), and of all the possible admissible assignments of m men to
m jobs, this assignment has minimal rating sum.

C. The Assignment Problem -~ Second Method

This method is due to H. W. Kuhn (adapted somewhat for our
facility.) It differs essentially from the preceding method only in
Steps 2 and 3.

Preliminaries. Same as before.

Step 1. Same as before, except do not cover any columns.

Step 2. Uncover every row and column; turn off all green
lights (if any). Attempt to construct a chain of alternating green and
white zeros. Find the topmost row which contains no white zero; let Zo
denote the zero farthest to the left in this row. Turn on Zo's green
light.

A zero is sald to be eligible to be a green zero if there is
no green zero already in its column. ILet Zl be the white zero in Z,'s
column; then find the eligible zero farthest to the left in Zl's row
and turn on its green light. Continue similarly. The process will end
in one of two ways: If it ends with a green zero which has no white
zero in its column, the desired chaln has been constructed. Go to
Step 3.

Otherwise, it ends with a white zero Zi which has no eligible
zero left in its row. Cover the column of Zi’ go back to the green zero
Zi-l in this column, and turn off its green light. Choose the next
eligible zero in the row of this former green zero, turn on its green
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light, and continue the chain. If there is no eligible zero left in the
row, it means that the chain ends at the white zero in this row, so that
this same procedure applies again.

It may be that eventually this applies to the first white zero
Zl in the chain, i.e., there is no eligible zero left in Zl's row. Then
the preceding paragraph applies again: we cover Zl's column, turn off
Z2o's green light, choose the next eligible zero in this row as the new
Zqo, and start the chain again. If there is no eligible zero in this row,
we find the next row which contalns no white zero and start again. If
there is no such row left, there are no chains possible. Then cover the
row of every non-covered white zero, and go to Step 4.

Step 3. You now have a chain of alternating green and white
zeros, which begins and ends with a green zero. Follow along the chain,
turning off each white light and changing each green light to white.
Return to Step 2.

Step 4. Same as before.

D. Alternate Solutions

One solves the assignment problem by bringing the matrix into a
form A' where there are n independent zeros, picked out by means of white
lights. These zeros constitute an optimal assignment. One may ask whether
there are other assignments which are optimal. Clearly, each choice of
n independent zeros of A' defines an optimal assignment; conversely, these
are all the optimal assignments.

One can investigate the other optimal assignments as follows:
Uncover all rows and columns. Turn off all green lights. If any white
zero 1s the only non-covered zero in its row or in its column, the assign-
ment is unique at that point. Cover the row and column of this white
zero. Repeat this until every non-covered row and column contains at
least two non-covered zeros.

If all elements are covered at this point, there is only one
optimal assignment. If not, there is at least one other optimal assign-
ment. Proceed as follows, considering only the non-covered elements:
Choose a white zero Zg; find an eligible zero 22 in its row and turn on
its green light. Find the white zero in Z,'s column and continue the
chain. The object is to construct a chain which comes back to Zl eventu-
ally. If you are successful in doing this, the chain will be called a
circuit. If one has a circuit, he may turn off all white lights in this
circuit and change all the green lights to white, in which case he has
an alternate optimal assignment.
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We shall not state precise procedures for finding all the
alternate solutidns, for these procedures are rather complicated.
Besides, for the relatively small matrices we consider (at most 20-by-20)
there are usually so few circuits which can be constructed that all the
alternate solutions can easily be found.

E. The Transportation Problem

We assume the problem is set up as indicated on page 79. Flip
the Problem Switch to the right (Transportation Problem).

In the course of the problem, the matrix D will be transformed
by additions to, and subtractions from, its rows and columns. The quotas
X4 3 will be changed individually during the course of the problem. Ini-
tially, they are all set at the black blank; in general, when a quota is
zero, we will set it at the black blank rather than at the yellow blank.
In this way we shall avoid confusing the zeros in the cost matrix with
the quotas which are zero. Since we will alter the quotas individually,
this will cause no trouble. To change a quota from the black blank to
the number 3, for example, one will have to dial 4 rather than 3.

Any element of the cost matrix whose associated quota is non-
zero will be called an essential element of the cost matrix. (These
elements will always be zeros.)

The numbers which appear in the first row and column of the
mechanical blackboard will also be changed in the course of the problem.
Initially, the constants r; and cy are inserted there; as the Xij are
changed,

m
@y =Ty - Ly ¥y
will replace ry, and
n
By = o5 - Liol %y

will replace c.. The notations Q4 and 53 are called the discrepancies
of the ith row and jth column, respectively. They indicate how much
factory capacity and warehouse capacity remain to be assigned. When
all the discrepancies are zero, the corresponding xij give a solution
to the problem.

Preliminary. All lights should be off and no rows and columns
covered. We work with the cost matrix D. Scan each column for its
smallest entry; if it is positive, subtract it from the column. Then do
the same for each row.
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Step 1. Scan the columns one by one for zero elements. Sup-
pose you find such a zero Z at position i,j. ILet h denote the smaller of
a; and Bj. If h > 0, increase Z's quota by h and decrease ¢; and Sj by
h. [Z's quota is entered in the teleregister just above Z; B. appears
at the top of this column and 04 appears at the left end of the row in
which this quota lies., If Z's quota is originally set at the black blank,
flip its switch (the switch just above Z) to the left and dial h+l on
the dial; then flip the switch back. To decrease 0y and ﬁj, flip their
switches to the left and dial 11-h on the dial; then flip the switches
back. The @; or Bj may be the yellow blank; it 1s only the quotas Xij
which we set at the black blank when they are zero.]

Repeat this procedure for each zero in the matrix, Then cover
every column whose discrepancy B is zero.

Step 2. Find a non-covered zero; turn on its green light.
If the discrepancy ¢; of its row 1s positive, go at once to Step 3. If
the discrepancy of its row is zero, cover this row; then for each essen-
tial twice-covered zero in this row, turn on its white light and uncover
its column. (A twice-covered element 1s one whose column and row are
both covered.)

Repeat until all zeros are covered. Go to Step 4.

Step 3. There is now a unique chain of alternating green and
white zeros, beginning at the non-covered green zero, just as in the
Assigmment Problem. The first green zero of the chain lies in a row
having positive discrepancy Q3 each white zero of the chain has a posi-
tive gquota; and the last green zero of the chain lies in a column having
positive discrepancy 53. Let h be the smallest of these numbers. [To
find h, follow along the chain and keep track of the smallest of these
numbers. Note that you are not concerned with the quotas of the green
zeros at the moment. ]

Decrease Q3 by h, increase the quota of each green zero of
the chain by h, decrease the quota of each white zero of the chain by
h, and then decrease Bj by h. [Follow along the chain, changing these
numbers as you go. Do not try to read backwards along the chain, for
the chain may not be unique in this direction. Note also that the chain
may contain only one element.]

Turn off all green and white lights, uncover all rows, and
cover every column whose discrepancy is zero. Return to Step 2.
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Step 4. Find the smallest non-covered entry h of the matrix;
it will be positive. Check for overflow (see Part B above). Then add
h to every covered row, and subtract h from every uncovered column.

Go back to Step 2, without altering any lights or covering rods.

One checks for overflow in the same way as one checks it in
the assignment problem. In practice, overflow occurs more frequently
in the Transportation Problem than in the Assignment Problem.

If a problem has no solution, this is detected in the same
way as in the assignment problem (see Part B above).

If one makes a mistake in Step 4, he must detect and correct
it immediately. If one makes a mistake in another step, he should pro-
ceed as follows: Turn off all lights; uncover every row and column.
Check each row to be sure that the only essential elements are zeros.
Check each row to be sure that the sum of the quotas 1n that row plus
the discrepancy of that row equals the original capacity of the row.

Do the same for each column. Then cover every column whose discrepancy
is zero, and begin Step 2.

Finally, how does one find alternate optimal solutions (if
such exist)? We suppose the problem has been solved by the previous
procedure, Turn off all lights; uncover all rows and columns. Check
each row and column; it should contain at least two non-covered zeros,
at least one of which 1s essential. If it does not, cover that row or
column. (For in such a case, the choice of quotas for that row or
column is unique.) Repeat until every non-covered row and column con-
tains two non-covered zeros, at least one of which is essential.

If all elements are covered, the solution is unique. Other-
wise, there may be alternate solutions (but we cannot guarantee that
there will be, as we could in the assignment problem). They may be
found as follows: try to construct a circuit of alternating green and
white non-covered zeros (as in the assignment problem), choosing only
essential zeros as white zeros. Suppose that you find such a circuit.
Let h be the smallest quota associated with a white zero of the circuit.
If k is any number such that O <k < h, one can obtain an alternate
solution by increasing the quota of every green zero in the circuit by
k and decreasing the quota of every white zero in the circuit by k.

It is usually a fairly complicated procedure to try to find all the
optimal solutions.
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APPENDIX

SUGGESTIONS FOR PROGRAMMING AN AILGORITHM FOR THE
TRANSPORTATION PROBLEM FOR A HIGH-SPEED DIGITAL COMPUTER

The transportation problem is the following: Given an n-by-m
matrix D = (dij) and positive integers ry (i=1,...,n) and c, (J=1,...,m)
such that Zi ry = Y, c, = N, choose values of the variables x;. which

minimize the form Zi 3 xijdij subject to the following conditions:
J
n m
Xij ._>. O, Z xiJ = Cj, and Z xij = I'i.
i=1 J=1

There are a number of methods for attacking this problem.
One which is especially adapted to solving such problems by hand has
been given by one of the authors. Thils method may also be adapted to
a high-speed digital computer. An adaptation of this method which is
thought to be suitable for programming on such a computer is presented
herewith., Included are flow diagrams for the programming of the
method.

A column may be covered or non-covered; a row may be uncovered,
covered, or well-covered. Certaln entries of the matrix will be distin-
guished by means of asterisks and primes. The number Xj j will stand
for the number of units assigned "to be shipped" from i to j; it is
called the quota assigned to dij- The numbers o = ry - Zj Xy and
5€h= cj - 2; xjj are called the discrepancies of the ith row and the

J column, respectively; when they vanish, the problem will be solved.

Preliminaries. Subtract its smallest element from each
column of D; then subtract its smallest element from each row of the
resulting matrix.

Step 1., Find a O in the matrix at position i,j. Increase the
quota Xij by the smaller of the two numbers y and Bj' Repeat for each
0 in the matrix.

Step 2. Cover each row and column whose discrepancy is zero,
and only those., If the discrepancy of every row is O, go to Step 7.

Step 3. Test each uncovered column as follows, and continue
until there are no uncovered, untested columns remaining:

(I) If Z's row is well-covered, do nothing.
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(II) If Z's row is covered, prime Z, "well-cover" Z's row,
and consider the well-covered zeros in this row (if any). For each such
zero whose quota is positive, star this zero and uncover its column.

(III) If Z's row is non-covered, prime Z and go at once to
Step k4.

If alternative (III) does not occur at any time, go to Step 5.

Step 4. You have just primed a non-covered zero Z at position
P1,497. Find the starred zero in Z's column, then find the primed zero
in this starred zero's row. ILet this new primed zero's indices be poqp.
Repeat until you finally obtain a primed zero at px,qx which has no
starred zero in its column. Let h be the smallest of the numbers R
By 20 Xpy,qq4 (1=1,...,k-1). (The numbers Xp 1qg 8F€ the quotast

assigned to the starred zeros of the sequence). Add h to the quota of
each 0' of the sequence, and subtract h from the gquota of each 0% of the
sequence. Go to Step 6.

Step 5. Uncover each covered row (but not the well-covered
rows). Iet h be the smallest non-covered entry of the matrix. Add h to
each well-covered row, and subtract h from each uncovered column. Go
to Step 3. (Each uncovered column becomes an untested column now. )

Step 6. Erase all asterisks and primes. Go to Step 2.

Step 7. This step is necessary only if you wish to regain the
original matrix. ILet uy be the total amount subtracted from the 1%h Trow;
let v,; be the total amount subtracted from the QEE column (since the
beginning of the problem). Add u; to each row; add \f to each column.
The X44 8re a solution to the problem, and the original matrix di is
back again. The original capacity ry is merely Zﬁ xij’ and 3 is Z& xij'

One needs the following storage positions in the memory of the
computer: Xij, ¥ij» 214 ¥4 By 71s B3s Uy, Vy (1=1,...,n; 3=1,...,m).

Initially, the numbers dy 4 are read into positions Zy 30 the
numbers ry into positions ¢y, and tge numbers cJ into positions BJ. The
other numbers are set equal to zero.

The meanings of the new symbols are as follows: Z4 is the
cost matrix, modified by the additions and subtractions from r¢ws and
columns.
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The number Yij has the meaning: if Yij =

i
—
-

the element 213 is primed;

I
no
-

the element Zij is starred.

The number y; has the meaning: if 7, =0, row 1 is uncovered,

fl
-
-

row 1 1s covered,

row 1 is well-covered.

]
N
-

The number Sj has the meaning: if Sj = 0, column j is uncovered and
untested,

l

1, column j is uncovered and
tested,

2, column j is covered.

Flow diagrams, showing the connections between the various
steps, follow:
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At the end of Step 7, the original matrix is back in the
positions Z4 39 and the original capacities are back in positions Q4
and Bj‘ If ghis is not desired, Step 7 may be omitted.



i-51 {
I 3+l Tes (IS i=n2? )—I—mi—) 1+1
-1
J -1
Set h—Zij
No N .
(}s h=02? :)——-(}s j=m2? j)—SUJ_9J+1 Replace h by min(h,zij)
Yes Yes (
Set U.i=h j - 1 Replace Zi,j by Zij - h
J-1 No
i 141 ——‘ Isi=n2¢? » Yes / = M2 No J-—-) j+l
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PRELIMINARIES
i1}
J-1
1 51+l Replace h by min(h, Zij)
i-1 Replace Zig by Zij'h
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STEP 1.

PRELIMS

Set h = min(aj,ai)

151+l .Ni@sizn?)

Yes oy by a;-h
Bj by Bj-h

Replace Xij by Xij+h

o J+1 No Is j=m? Ve Yes K—_—|Is izjn?

AN

|
i 51+l

Step 2 L____J

No
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STEP 2.
Yy
Set h =0
i1
F Y
<}; 4 =01 Yes
No
Set)'i—O Set?’i:]l
Set h = 1
f
GSi=n?}'N'Q_’i—>i+l -
Gsh:O?}Yes <
No
J -1
1 )
(ISBJ=O? des
Set 83 =0 Set 53 =2

b’

Step 7



S

J -1

i1
Set h =1

J -3+l

No
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STEP 3.

Yes

N
] k 5 kel -i@s
JYes
ITs1=n7 }—258
No
1 i+ Set 85 = 1
)

“(Isj:m? )

Step k4
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STEP L,

| |
Replace h by min(h,xiji "y -1

Yes

Replace h by min(h,ﬁqk)

|

Replace qu by qu—h;

aPl,by a@lih

il

;

Is Yij = 17

No

J - 3+l

k — k+1

—

Replace x h

by x +
Py P34

Replace x by x -h
Pi41%4 Pi+194

i-1+1
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STEP 5.

Set h=0
-1
1 : -
(sy=22 )1 s s o{1e 7 -2
Yes Yes
Set h = 235 Replace h by min(h,zij)
J -+l L J
No \ Yes :
Is j=m? ) i i+l )
Yes
i-51
Yes ]
Is 7, =2 % Replace u; by w;-h=1 j -1 Replace z; 5 by zy jth
No :
i i+l Yes [/ . No ] .
Is j=m? "l J - J+l
Replace vj by Vj+h il - Replace Zij by Zij”h
J - J+1 Yes [/ No
SetBJ.:O Isi=n? i i+l




STEP 6.
i-51
J -1
iy
Set Y1 =0
No
Is i =n2? i-51+1
Yes
J =g+l

il
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151
J-1

STEP 7.

{

{

Replace zij by z4

J

+ Us + V.

1

J

!

N
Gsi:n?>_o_’i—>i+l
Yes
(s j=m2 o jn
Yes i51
i-51
s
Replace Q; b ZF x
P 10V by g *i
Gsi=n? Nooly L1l
Yes
jJ-1
[ 1
Replace aj by Z§=l X4 3
N
CISj:ln?)_o‘j-a,ﬂl

Yes
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