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USE OF COMPUTERS IN CIVIL ENGINEERING EDUCATION

ABSTRACT

The Civil Engineering Department of The University of Michigan has taken an active part
in computing work at the Unlversity with a total of seven faculty members serving as partici-
pants in the Project on the Use of Computers in Englneering Education during the past two-year
period. In addition, twenty-six civll englneering professors from other universities have
participated in Project4activities for perlods varylng from one week to a full semester.

Most undergraduate engineering students at the University are introduced to computer work
through a requlred 1ntroductory course taught by Computing Center and Mathematics Department
personnel. The Civil Engineering Department, however, has elected to lntroduce 1ts students
to computers via a departmental course, the second of the three required surveylng tourses.
Detalls of the organization of this course are included as part of this report.

Digltal and analog computer work has been assighed 1n more than 25 departmental courses
during the past year, giving students an opportunity to galn practice in the application of
computers in the solution of their englneering problems. The Civil Engineering curriculum, the
areas where computer activity has been strongest, and a sampling of opinion of faculty members
as to the effectiveness of computer usage in engineering instruction are included.

A selected set of example problems prepared by faculty Project participants is also
included. These may be considered as a supplement to the seventy-five example engineering
problems, including several related to Civil Engineering subject areas, which have been pub-

lished previously by the Project.

I. INTRODUCTION

Civil Engineering, originally named to distinguish it from military engineering, has
always covered a wide fleld of englneering practice. Civil engineers plan, design and super-
vise the construction of roads, raillroads, harbors, bulldings, tunnels, waterways, bridges,
dams, alrfields, canals, water supply and sewerage systems, and the many other facllities
necessary for public works and industrial development. They plan the conservation, utilization,
and control of water resources. They operate in the fleld of surveylng and mapping.

In recent years, digital and analog computers have become lmportant tools 1n many of
these areas. With this in mind, the Civil Englneering Department of The University of Michigan
has eagerly cooperated with the Ford Foundation Project on the Use of Computers in Engineering
Education.

Since the Project waé initiated, seven members of the Civil Ehgineering Department at
Michigan and twenty-three visiting Civil Engineering faculty members have participated in the
Project's program. In addition, other members of the faculty have become famlliar with computer
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philosophy and techniques as a result of weekly luncheon discussions and special lectures
sponsored by the Project.

It has been found that problem solving by computer methods adds to the depth, scope, and
logical understanding of many problems. It is belleved that civil engineers of the future

will profit from an introduction to computers as part of their undergraduate training.

II. THE CIVIL ENGINEERING DEPARTMENT OF THE UNIVERSITY OF MICHIGAN: FACULTY AND CURRICULA

The courses which comprise civil engineering may be divided into seven general areas:
Construction, Geodetic, Hydraulilc, Sanitary, Soil-Mechanics and Foundation, Structural, and
Transportation Engineering. These areas are referred to as technical options and represent
fields of speclalization for the civil engineer. In addition, there are a few baslc courses
dealing with legal problems, professional conduct, ethics, the sclentific method, etc., which
are common to all fields of civil englneering.

Each of the general areas is descrilbed below. Members of the faculty primarily concerned
with each fleld and specific courses are listed. Courses which are required for all civil
engineering students are indicated with plus signs; courses in which the presentation is related
to or supplemented by computers are indicated with asterisks. A more detalled description is
given for those courses involving computer applications. Course numbers are given with each
course to provide a convenient means of referring to them later. The number of semester credit

hours is given in parentheses after each course.

A. Courses Common to All Filelds of Civil Engineering

Lawrence C. Maugh, Professor of Clvil Engineering, and Acting Chairman of the Department
of Civll Engineering

+ CE400 Contracts, Specifications, Professional Conduct, and Englneering-
Legal Relationships (2)
CE500 Fundamentals of Experimental Research (2).
CE501 Legal Aspects of Engineering (3).
CE990 Civil Engineering Research (arranged).

B. Construction Engineering

The methods and techniques of modern construction; fundamental principles of construction
applicable to all types of englneering structures; business and legal principles of contracting
as applied 1in the field of construction.

Glen L. Alt, Professor of Civil Engineering (Advisor)
Frank E. Legg, Jr., Assoclate Professor of Construction Materlals

+ CE350 Concrete Mixtures (1).
CE531 Cost Analysis and Estimating (2).
CE532 Construction Methods and Equipment (3).
CE533 Estimating Practice (1).

+ Course required for all Civil Englneering students.
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Use of Computers in Civil Engineering Education

C. Geodetic Engineering

Theory and practical applications of surveying and surveying techniques; theoretical and

applied geodesy, flgure of the earth, local and extended control surveys; precise measurements

and the adjustment of obgervations; design and execution of municipal surveys, topographic

mapping projects, boundary surveys and land subdivision; industrial applications of surveying

techniques;

research in fields of instrumentation, computation, mapping and photogrammetry,

and the problems of land surveylng and route location.

Ralph

Moore Berry, Professor of Geodetic Engineering (Advisor)

Harold J. McFarlan, Assoclate Professor of Geodetic Engineering
Harold J. Welch, Assistant Professor of Geodetic Englneering

+% CE260

+% CE261

+% CE362

CE505
CE560
CE561
* CE562

* CE563

* CE564

* CE565

* CE960

Basic Surveying (3).

Use, care, and adjustment of basic surveying instruments; horizontal angle
measurement, leveling, taping; circular curves, grades and vertical parabolic
curves, profiles, earthwork; computation, significant figures, errors, desk
calculators, U. S. Public Land System.

Surveylng Computations (3).

Principles of horizontal control, unified system of geometric computations
based on rectangular coordinates and the "Intersection Solution"; logical
synthesls of computations for complicated geometrical engineering applica-
tlons; introduction, applications, and use of electronic computers; principles
of surveying astronomy, use of ephemeris and star catalog; elements of
photogrammetry.

Advanced Surveying Measurements (4).

Precise observational methods for triangulation and control levels; use of
theodolite and geodetic level, base-line measurements; electronlc distance
measurements; field assessment of errors and adjustments; astronomical
observations for precise azimuth determinations; application of precise
control to layout of engineering projects.

Boundary Surveys (3).
Photogrammetry (2).
Geodesy (3).

Geodetic Field Methods (2).

Reconnaissance for geodetic triangulation; special observing methods for
first=order horizontal and vertlcal control; Laplace stations and deflection

of the vertical; actual observations, reduction and adjustment of results in

an actual field situation. Term paper or project report required of each student.

Adjustment of Geodetlc Measurements (2).
Theory of least squares, applications to the adjustment of geddetic observa-
tions; arrangement for solution of complex adjustments on electronic computers;
actual solution of selected problems.

Special Problems in Advanced Surveying.
Specilal advanced work can be provided for those who have received credit in
Advanced Surveying Measurements (CE362).

Municipal Surveying (2).

Control surveys, methods and adjustments for use in municipal mapping and
administration, surveys for streets, utilities, property lines, tax maps,
subdivision control and development.

Geodesy and Surveylng Research.

Assigned work in geodesy, or other specilal field in surveying of interest
to the student and approved by the professor of geodesy and surveylng.

* Course involves computer applications.
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Hydraulic Engineering

The application of the fundamental principles of hydraulics and hydrology to the

a

D

veiocpment of water power, flood control, drainage, and improvement of rivers and harbors,
and other hydraulic structures. Laboratory facilities and instruction are offered for stu-
dents who wish to engage in research work in hydrology and hydraulics that will lead to
advanced degrees.
Ernest F. Brater, Professor of Hydraulic Engineering (Advisor)
Victor L. Streeter, Professor of Hydraulics
+ CEL420 Hydrology (3).
+* CEL421 Hydraulics (2).
Hydrostatic stabllity; crifices and welrs; Venturi meters; cavitation; pump
characteristics; flow 1n pipes and fittings; unsteady-uniform flow; steady-
nonuniform flow. Lecture, laboratory, and computation.
* CE522 Hydraulic Transients (2).

Introduction to water power development, including selection of type of
turblne; storage and pondage; surge in plpe lines; water hammer analysis;
digital programming of unsteady flow situations.
CREG23 Flow in Open Channels (3).
* CE524 Advanced Hydraulics (3).
Two-dimensional potential flow; the flow net; percolation and hydrostatic
uplift; side-channel spillways; boundary-layer; hydraulic similitude;
hydraulic models; stilling pools.
* OE526 Hydraulic Engineering Design (3).
eslgn of hydraullc structures such as diversion dams, head gates,
control works, silt traps, siphon spillways, slde-channel spillways,
earth canals, and other structures involving accelerated flow, backwater,
hydraulic jump, sedimentation, and erosion.
CE623 Applied Hydromechanics (2).
CE825 Seminar in Hydraulic Engineering.
CES20 Hydrological Research.
* CEQ21 Hydraulic Engineering Research.

Assigned work in hydraulic research; a wide range of matter and method
permissible.

E. Sanitary Engineering

The planning, construction, and operation of water works, sewerage and drainage systems,
water-purification plants, and works for the treatment and disposal of city sewage and industrial
wastes; improvement and regulation of natural waters for purposes of sanitation; air sanitation;
principles and standards of ventilation.

Jack A. Borchardt, Professor of Civil Englneering (Advisor)
Lloyd L. Kempe, Professor of Civil Engineering and of Chemical Engineering
Eugene A. Glysson, Associate Professor of Civil Engineering

+% CE480 Water Supply and Treatment (3).

Sources of water supply, quality and quantity requirements, design funda-
mentals of works for development, collection, purification, and distribution
of water.

+% CE481 Sewerage and Sewage Treatment (2).

Requilrements of residential and municipal sewerage systems, procedures for
the deslgn and constructlon of sewerage and sewage treatment works.
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Use of Computers in Civil Engineering Education

CE580 Microbiology (3).

CE581 Sanitary Chemistry (2-3).

CE582 Sanitary Engilneering Design (3).

CE583 Water Purification and Treatment (3).

CE5S84 Waste Water Treatment and Disposal (3).

CE585 Municipal and Industrial Sanitation (3).

CE586 Industrial Waste Treatment (2).

* CE587 Industrial Bacteriology (3).

Lectures and demonstrations to illustrate the application of microbiological
principles and techniques to industrial processes.

CE680 Microbiology II (2).

CE681 Advanced Sanitary Chemistry (3).

* CE682 Advanced Sanitary Engineering Design (3).

Functional design of sanitary engineering structures and typical plant layouts;
drafting room and field studies; preparation of design reports.

CE685 Special Problems in Sanitary Engineering I.

CE686 Specilal Problems in Sanitary Engineering II.

CE780 Public Water Supply (3).

CE880 Sanitary Engineering Seminar (1).

CE980 Sanitary Engineering Research.

F. So0il Mechanics and Foundation Engineering

Soil mechanics; evaluation of soil properties and environmental conditions in foundations
of earth-supported structures; mass stabllity in excavations and subsurface construction. Soil
englneering; use of soll characteristics and properties and soil classification in design and
construction of highways, railways, airports, and other surface facilities.

William S. Housel, Professor of Civil Engineering (Advisor)
Robert 0. Goetz, Instructor in Civil Engineering
Ulrich W. Stoll, Instructor in Civil Engineering
+ CEA445 Engineering Properties of Soil (3).
CE543 Solls in Highway Engineering (2).
CES4Y Alrport Design and Construction (3).
CE545 Foundation and Underground Construction (3).
CE546 Soll Mechanics Laboratory (1).
CE9Q46 Soil Mechanics Research.

G. Structural Engineering

The theory, design, and construction of structures, such as bridges, buildings, dams,
retaining walls, and reservoirs, involving the use of steel, reinforced concrete, and lumber;
the testing and utilization of soils in foundations and subsurface construction.

Lawrence C. Maugh, Professor of Civil Englneering, and Acting Chairman of the
Department of Civil Engineering (Advisor)

Glen V. Berg, Professor of Civil Engineering

Bruce G. Johnston, Professor of Structural Engineering

Leo M. Legatski, Professor of Civil Englneering

Robert B. Harrls, Associate Professor of Civil Englneering

Wadi S. Rumman, Assistant Professor of Civil Engineering
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+%

+ %

+%*

CE312

CE313

CE415

CE310
CE511
CE512

CE513

CE514

CEb15
CE516

CE51T
CE611

CE612
CE613

CE614

CE615
CE616
CE617
CE618

CE810
CE910

Theory of Structures (3).

Calculations of reactions, shears, and bendlng moments in simple, restrained,
and continuous beams due to fixed and moving loads; simple trusses with fixed
and moving loads; determinate frames; columns; tension members; girders;
introduction to design.

Elementary Design of Structures (3).
Design and details of simple beams, glrders, columns, and trusses. Computa-
tions, drawing work, and laboratory experiments.

Reinforced Concrete (3).

Properties of materials; stress analysls and design of reinforced concrete
structures; introduction to prestressed concrete and ultimate strength analy-
sis. Lectures, problems, and laboratory.

Structural Drafting (2).

Timber Construction (1).

Advanced Theory of Structures (3).

Stresses in subdlvided panel trusses; principle of virtual displacements and
virtual work; energy theorems; graphical methods; analysis of statically
indeterminate trusses and frames.

Design of Structures (3).
Design of reinforced concrete and steel structures. Computations and drawing.

Rigid Frame Structures (3).
Analysis of rigid frames by methods of successive approximations and slope
deflections; special problems in the design of continuous frames.
Prestressed Reinforced Concrete (2).
Advanced Design of Structures (3).

Functional design of bulldings; selection and analysis of structural elements;
reinforced concrete flat slab design; digital computer applications. Lectures
and computation laboratory.

Bridge Englneering and Design (3).

Structural Dynamics (3).
Structural vibrations. Transient and steady state response to dynamic forces.
Response beyond the elastic range. Response to nuclear explosions. Earth-
quake forces. Structural response to earthquake. The response spectrum.
Selsmic bullding codes and thelr relation to structural dynamics.

Structural Members (3).

Structural Plate Analysis (2).
Stress analysis of flat plates loaded either in theilr plane or in bending.
Numerical analysis. Applications to special problems in flat slab constructlon.

Advanced Problems in Statically Indeterminate Structures (3).

Continuous truss bents; hinged and fixed arches; rings; frames with curved
members; flexible members including suspenslon bridges; frames with semil-
rigid connections.

Analysis and Design of Folded Plates, Domes and Shells (3).

Plastic Analysis and Design of Frames (2).

Mechanlcal Methods of Stress Analysis (1).

Computer Analysls of Structures (3).

The analysis of beams, frames, trusses, and arches by high speed digital
computers. The general method of influence coefficients; matrix methods,
algorithm development, flow charts, programming. Students will solve a
sequence of problems on the high speed computer in the University
Computing Center.

Structural Englneering Seminar (1).
Structural Englneerlng Research.
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H. Trangportation Engineering

Transportation Engineering is further subdivided into Highway, Railroad and Traffic

Englneering. Highway Engineering involves the location, design, construction and maintenance

of various types of roads and streets, including materials, surveys, plans, specifications,

economics, and financing. Rallroad Engineering involves the design, construction, and

operation of railroad properties, including metropolitan terminals, statistical analysis of
operating data, freight and passenger traffic, economics, financing, administration, and

regulation. Traffic Engineering involves methods of increasing the efficiency and safety of

traffic movement; street and off-street parking; traffic surveys, geometrical design of urban
and rural highways, traffic control devices, and other means of regulating and controlling the
use of highways.

John C. Kohl, Professor of Civil Engineering and Director of the Transportation
Institute (Advisor for Traffic Engineering)
Ward K. Parr, Associate Professor of Highway Engineering
Bruce D. Greenshields, Lecturer in Transportation Englneering
Donald N. Cortright, Associate Professor of Civil Engineering (Advisor for
Highway Engineering)
Clinton L. Heimbach, Lecturer in Civil Engineering (Advisor for Railroad Engineering)
+ CE370 Transportation Engineering (3).
CE550 Highway Materials (3).
CE551 Physical Properties of Concrete Masonry (2).
CES52 Bituminous Materials and Pavements (2).
CE570 Highway Traffic (2).
CE571 Traffic Engineering (3).
CE5T72 Highway Economics (2).
CE5T3 Highway Design (3).
CE5T4 Railroad Engineering (3).
* CE575 Terminal Design (3).
Design of railroad, highway, waterways, and alrport terminals, joint terminals,
layout of the various types of yards and traffic facilities.
CE576 Economics of Rallroad Construction and Operation (2).
CE652 Advanced Bltuminous Materials and Flexible Pavement Design.
* CE6T0 Transportation Planning (3).
Analysis of supply and demand for transportation services, transport relation-
ships to land use and other elements of regional and urban planning, and
planning techniques applied to transportation problems.
CE6OT1 Advanced Highway Engineering (2).
CE672 Transportation (3).
CE6T73 Highway Transport (2).
CE6TL Industrial Transport Management (4).
CEQT0 Highway Engineering Research.
CE9T71 Transportation Engineering Research.
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A list of courses taken by Clvil Engineering students is given in the table below.
The table 1is arranged to indicate the semester in which the course 1s normally taken. Courses
in which the presentation is related to or supplemented by computers are indicated by an

asterisk (*).

LIST OF COURSES TAKEN BY CIVIL ENGINEERING STUDENTS
Total Hours
Semester Course Name and Number Hours for Semester

Analytic Geometry and Calculus I (Math 233)
General and Inorganic Chemistry (Chem 104)
1 Engineering Drawing (Engr. Graphics 101)
Freshman Composition I (English 111)
Introductory Speech (English 121)

15

Analytic Geometry and Calculus II (Math 234)
Descriptive Geometry (Engr. Graphics 102)

2 Freshman Composition II (English 112)
English Elective
General and Inorganic Chemistry (Chem 106)

15

Analytlc Geometry and Calculus III (Math 371)
Mechanics, Sound, and Heat (Physics 145)
3 Statics (Engr. Mech. 208)
Basilc Surveyilng (CE260)
Concrete Mixtures (CE350)

16

Analytic Geometry and Calculus IV (Math 372)
Electricity and Light (Physics 146)
4 Mechanics of Material (Engr. Mech. 210)
Laboratory in Mechanics «f Material (Engr. Mech. 212)
* Surveying Computationg (C£261)

17

% Advanced Surveying Me: “urements (CE362)
S Geology for Englneer:: - Geology 218)
Fluid Mechanics (Eng.: Mach. 324)

* Theory of Structures - [":13)
5 Transportation Engir:s g (CE370)

Hydrology (CEL20)

(*) Advanced Mathematics . . :sive
Elective in Humanities ..® Soclal Science

17

Dynamlcs (Engr. Mech. 343)
# Reinforced Concrete (CE415)
6 * Water Supply and Treatment (CE480)
* Hydraulics (CE421)
Englneering Propertles of Soil (CEU445)
Elective in Humanities or Social Scilence

17

Specifications and Contracts (CELQO)
* Elementary Deslgn of Structures (CE313)
7 Electrical Apparatus and Circuits éEESlS)
* Sewerage and Sewage Treatment (CE481)
English Elective
(*) Technlcal Elective

16

Thermodynamlcs and Heat Transfer (Mech. Engr. 333)
(*#) Technical Electlves
8 Modern Economlc Society (Econ. 401)
Elective 1n Humanities or Social Scilence

17

W= WP FEFWwWwPp WWPhWwWwW Pwwwww I W FEFOE FPLOWLWOTE EFOPDWE FWW
o

* Course Related to or supplemented by computers.
(*) Student may elect course related to or supplemented by computers.
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Use of Computers in Civil Engineering Education

ITI, INTRODUCTION OF CIVIL ENGINEERING STUDENTS TO THE USE OF THE COMPUTER

Surveying Computations (CE261) has been selected as the medium for introducing Civil

Engineering students to the use of the digital computer. This course is the second in a
series of three required courses in surveying and is normally taken in the second semester of
the sophomore year. |

Civil Engineering students are not required to take the one-hour course in introductory
computing techniques (Math 373) which is required of students in most of the other fields of

engineering. Surveying Computations has, therefore, been designed as an effective substitute.

A. Preparation of Input for the Computer

The first half of the semester 1s devoted to applications of analytic geometry for plane,
rectangular coordinate computations. Emphasis is placed on five basic problem types. These
types, described in detail in Example Problem No. 76, have the following names: Forward
Computation, Inverse Computation, Line-Line Intersection, Line-Circle Intersection, and
Circle-Circle Intersection.

The students are shown the recommended computing methods, supported by a mathematical
derivation, for each problem type. After studying the assignment, listening to the lecture,
and agsimilating the methods taught, each student is assigned a set of fifteen individual pro-
blems of each type. The student is instructed initially to perform the necessary calculations
for only the first five problems in each set and to prepare both the given information and the
solution on punched IBM cards.

These cards are then submitted as data to a computer program prepared specifically for
the course,called the "teaching machine program." This program, described in more detail in
Example Problem No. 76, has access to all of the given data and computes the correct results
for each of the students' problems. It compares all of the items on each of the students!
cards with the known, correct values. If any single item in any one of the five solutions is
found to be in error, the whole problem is considered incorrect. For each incorrect problem
the student 1s required to correct all of the errors, and also solve an additional problem 1n
the assignment. The orlginal five problems (with errors corrected) plus the additional pro-
blems are then submitted in a second approach to the computer. Thus, for the second approach,
the student may be required to enter from six to ten problems. The same rules apply again, for
a third and final approach to the computer. The worst possible penalty would be that on the
final approach to the computer the student would be required to present solutions to all fifteen
of the assigned problems.

If all of the problems submitted in the final approach to the computer are not correct,

the student is penalized in his grade. On the other hand, if a correct soiution 1s obtained
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to all of the problems submltted on any glven approach to the computer, the student 1s given
full credit regardless of whether success 1s achleved on the first, second or third trial.

It may be seen that the students quickly realize that it is to their advantage to obtain
the correct results for submission on the first pass through the computer. In addition to the
savings in their calculating time (on the desk calculator), by solving the first five problems
of each type correctly and finishing the assignment, it has been noticed that a friendly spirit
of rivalry generally develops between the students in which those who do not complete the assign-
ment on the first pass recelve frendly, but slightly barbed comments on thelr proficiency.

The "teaching machine" theory seems to be working quite well for these problems. The
students quickly overcome their difficulties and by the time they have finished the five problem
types, they show a marked proficiency 1in the use of trigonometric tables and the desk calcula-
tor. In order to meet the requirements for tolerance in the teaching machine program, the stu-
dents learn by experience the necessity for using significant figures properly in their
computations. For example, they are shown, by actually working problems both ways, that in an
intersection of a line and a circle, it is necessary to interpolate fractions of seconds in
order to obtain enough accuracy when the intersection angle 1s very small and the radius of the
circle is very large. These are things which cannot be easlly taught in classroom lectures but
which can be illustrated very pointedly to the student during his laboratory work.

Thils three-semester-hour course is handled with a one-hour lecture per week and two
three-hour laboratory periods per week. The first hour of each period is devoted to a lecture,
followed by two hours of actual computation. During this time, the students solve problems in
the laboratory room using desk calculators. They are encouraged to ask the instructor for help
at any time on problems involving the theory of the computations, the mechanics of the desk
calculators, the manipulation of trigonometric tables, or an explanatlon of lack of accurate
checking of their completed problems.

The "teaching machine" idea serves also to lntroduce the students to the digital computer.
They learn to use the keypunch to punch their own cards before they are actually assigned to
write a program for the digital computer. They are strongly impressed with the capabilities of
the compqter when they see how 1t 1is able to solve their problems and check them at a rate of
approximately two of thelr problems per second (on the IBM 709). They realize quite painfully
that these problems cost them sometimes as much as an hour or more of desk calculator work.
Because of thls, when they are later permitted to begin programming for the computer, they do
not have the reaction so often expressed by students who are given elementary problems, "I could

have worked the problem faster on a desk calculator."
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B. Geometric Analysis Using the Interpretive Language, AGILE

The wrlter has developed a computer program over the last several years which has recently
been named "AGILE" (Analytic Geometry Interpretive Language for Engineers). A number of small
programs to solve problems such as the five basilc types described in Example Problem No. 76, have
been combined with a reading, storing, and scheduling master program. In this way, any geometry
problem (which may consist of a number of basic problems) can be solved with one pass through
the computer.

After learning to compute the baslc problems already descrilbed, the students are taught
to recognize them when they occur in such applications as the design of a subdivision or a
highway interchange. The students are also taught to describe these problems in a logical manner,
using the AGILE language. A complete description of the AGILE language is being prepared. If

sufficient interest develops, a manual describing the language and its use will be made availlable.

C. Computer Programming

Beginning with the first Wednesday nilght of the semester, a series of three weekly lectures
of two hours each, on computer programming, is presented for the entire College of Englneering.
These lectures were presented in 1961-1962 by Mr. Brice Carnahan, Assistant Director of the
Project on Computers in Engineering Education. The lectures introduce the students to the
philosophy of computers, and speciflcally, to the MAD language. The students are not required
to attend these lectures, but are strongly urged to do so, being told that no substitute for
them will be presented in classroom lectures.

Beginning immediately after the series of night lectures, the students are assigned their
first problem which requires them to write a computer program for the course. This initial
program 1s for a forward computation (the first problem type listed in Example Problem No. 76 ),
and i1s handed to the students completely checked out and ready to run on the computer. They
are required simply to prepare cards for communlcating with the computer. They are also asked
to punch data cards for a problem which 1s given to them. The form of the data cards is slightly
different than the form in which the data are presented. In addition to the punched cards, the
students are required to submit a flow dlagram for the problem and a short discussilon of the
problem, its solution, and the method which a user must follow 1n preparing data for a run on
the computer,

By this means the students are taken over a second, short step towards computer programming
by being introduced as palnlessly as possible to the computer itself. The submission of a pro-
gram which has already been written for them may sound like a wasted step but 1t has been found
that thls is a step which, when combined with other complications, can become a very frustrating

experience to the neophyte.
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This first program is explained thoroughly to the students so that they understand what
is done by the computer as a result of each instruction in the program. Two very elementary
loops are included so that the student becomes familiar very quickly and painlessly with the
concept of iterative techniques on the computer. The students are permitted to submit this
program to the computer only once. It is felt that since everything has been handed to them
they should be graded on their ability to follow instructions.

The second computer program is for the inverse computation. In this case, they are given
a clear concept of the theory and the method of solution of the problem but are required to
make up their own instructions in MAD for the solution of the problem. Again, they are required
to submit a flow diagram, and a written report which includes an explanation of the method
necessary to use the program successfully on the computer. In the solution of this problem the
students are required to write their own Newton-Raphson iteration for the square root solution
of the distance. They are also asked to solve for the distance by using elther the sine or the
cosine of the angle which has previously been computed from the arctangent.

This gives them thelr first introduction to the use of library subroutines, the formal
part of MAD programming including the loop concept, and also gives them a chance to compare the
relative accuracy by which they can obtain the distance by two completely independent methods.

In the third program which is assigned 1n this course, the students are instructed to
write a computer program which will calculate the volume of a borrow pit. In thils problem,
the students are asked to bring in the "before" and "after" elevation readings over a grid pat-
tern which is basically rectangular. They are asked to work with these two matrices, subtracting
the "after" readings from the "before" readings to obtain a new matrix called the "excavation."
This subtraction 1s done by the use of a double loop. Following this, the computations are
performed by means of some single and double loops. This helps the student become familiar with
methods of handling large sets of subscripted varlables.

The fourth and last program 1s one which may vary conslderably from semester to semester.
It 1s designed to offer a challenge to the students. It is intentionally changed radically from
one semester to the next in order to discourage any ideas of propagating information from one
class to another. Examples of the problems which have been given previously are as follows:

) Intersection of a straight line with a spiral envelope.

) Approximate adjustment of a triangulation quadrilateral.

(3) Progressive adjustment of interlocking traverses by the Bowditch (compass) Method.
)  Crandall method of adjustment of a traverse.

At the time of this writing it 1s strongly believed that the inclusion of computer pro-
gramming 1n thls course has not detracted from the course work in any way. In fact, it is felt
that the blending image of the desk calculator, the digital computer, and surveying computation
methods, has resulted in a course which has materlally strengthened the students' understanding

in each of the three fields mentioned.
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Some of the leading exponents of computer philosophy and education feel that geometry
is one of the best vehicles for teaching computer phailosophy. The student's ability to follow
graphically and pictorially every step in his solutlcn makes it possible for him to concentrate
on the programming necessary to solve the problem. Eyv the same token, his detailed computer
solution of the problem brings him into a very intimate relationship with the problem itself.
By the time he has successfully programmed a solution, he is completely familiar with every
aspect of the problem.

It has been found that many of the students are completely apathetic to computers and
the philosophy of computation. These students manage to pass the course by literally hanging
on for dear life. Other students in the middle category passively accept the work and perform
the assignments satisfactorily but with 1little imagination. Finally, we have the group who
become quite interested in computers and their possibilities and who go beyond the call of duty,
polishing up their programs to achieve more than the assignment requires. Certainly these
students are in the minority, but it 1s encouraging to notice that thelr number seems to be
increasing. It 1s believed that this enthusiasm is growing because the work 1s passed down to
succeeding generations by those who have run into advanced problems which required computer
applications. Also, it 1s quite apparent to the students that many interviewers from industrial
firms who come to the campus are now askling about the amount of computer work students have been
exposed to. These students, especially those who are doing well in thelr other subjects (pri—

marily mathematics), are encouraged to sign up for Mathematics 473, Introduction to Digital

Computers, a comprehensive, senior-graduate level computer course.

It 1s not our intention to force the majority of ~ur students into computer technology,
but it is felt that all students should have some knowiecdge of computers and that some few stu-
dents should have a speclalized knowledge of computer programming techniques. In Surveying
Computations, 1t is possible for the students to decide which of these paths they wish to
follow. Upon completion of this course, no student will feel that a computer is a mysterious
black box which possesses magical properties. On the contrary, he will realize that it 1is most
simple for him to solve elementary problems and that it is not impossible for him to solve even

the most difficult problems by using it.



IV, SPECIFIC USES OF COMPUTERS IN VARIOUS FIELDS OF STUDY

A, Geodetic Engineering

The required courses 1n surveying are designed to give the student a realistic apprecia-
tion for the theory of measurements, application of mathematics to geometric figures, logical
analysis, and systematic computation procedures. These courses provide six of the first seven
semester hours of contact between the Civil Engineering Department and the students.

The first course, Baslc Surveying (CE200), does not lend itself to student use of com-

puters. However, the instructor assigns a unique traverse computation problem to each student
and compares hils answers to those provided by the computer. Other simllar uses are being explores

The second required course, Surveylng Computations (CE261), has been described in detail

in Part III of this report.

The terminal required course, Advanced Surveying Measurements (CE362), is taught at Camp

Davis, Jackson, Wyoming. This course is primarily one engaging in precise control surveys using
theodolites, electronic distance measuring devices and invar tapes. Although no computers are
available 1n the vicinity of the camp which can be used for the course purposes, programs have
been written which will make 1t possible to send data from camp to the Unlversity Computing
Center and receive the results back in time to use them for the purposes of the course. At the
present time these programs are primarily concerned with reducing observation data, such as
Tellurometer observations, to yleld the actual measured values from the observations. These
reductions, when performed by hand, are quite laborious. ZEven more important to the user, how-
ever, such reductions are filled with potential errors, which, because they deal with measure-
ments, cannot be checked. The use of the computer for this purpose virtually eliminates all
chance of such blunders in reductions.

Geodetic Fileld Methods (CE562) consists of unique problems which vary with the interests

of the students and the program of the department. Usually there are several applications for
computer solutions of problems which occur in this course.

Adjustment of Geodetic Measurements (CE563) depends very heavily on digital computer

applications. Problems are programmed and solved by means of the Gauss-Seldel iterative tech-
nique. Matrix inversion and other methods of solving large systems of linear equatlions are
also applled to the computer.

Special Problems in Advanced Surveylng (CES64)., Problems in this course again are quite

variable and may or may not require computer applications.

Munilcipal Surveying (CES565) consists in part of several conducted tours to various private

and municipal or governmental agencles. Oneprivate computing firm, the Bureau of Surveys of
the City of Detroit, and the Mlichigan State Highway Department were three locations visited
where computers were being used. Students observed the computers in operation and were told
by the englneers in charge exactly what applications were belng made in the specific fields of

thelr needs. -C16-
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Geodesy and Surveying Research (CE960) is another example of a course which may have

varying interests or needs. Certainly many students in the fubture who take this course will

be carrylng on extensive computer research in the field of geodetic surveying.

B. Hydraullc Engineering

During the last three years a majority of the courses offered in hydraulics and hydraulic
englneering have been completely re-examined, and now require use of the digital computer as a
part of the course work.

The required course, Hydraulics (CE421), has 1n the past offered the student an opportunity
to program one or two problems on a voluntary basis. Three or four students, out of about 40,
usually wrote programs. Beginning with the spring semester (1962), however, two programs are
required of all students: the first the determination of critical depth, normal depth, water
surface profiles, and location of a hydraulic jump in a trapezoidal channel; and the second, the
determination of the best formula for a v-notch weilr, from student data, by the method of
least squares.

The course in Hydraulic Transients (CE522), has evolved from a hydropower course, primarily

because of the great improvement in means of solving problems in unsteady flow. Problems in
surge and water hammer have been programmed, and the instructor has set up the differential
surge tank problem for class inspection. New methods for handling water hammer have been
developed by graduate students as a result of this course and the availability of the digital
computer.

The course in Advanced Hydraulics (CE524), relies heavily on the computer, and has used

it for such problems as relaxation methods for computing flow under a dam and for applications
of the momentum theory. One significant problem, the design of a side channel spillway, has
been given very thorough study, and a new method has been developed to optimize the design.
Two unknown parameters are needed: a and n in V = axn, for velocity at a cross section x
distance along the spillway for minimum total excavation. A "gradient method" is used, to
determine how a and n should be changed to move in the direction of minimum excavation.

The Hydraulic Design course (CE526), 1s bullt entirely on the use of the computer.

At present it consists of several programs relating to a project involving construction of a
gravity dam, mass diagram study of the infiow hydrograph, flood routing study, reservoir opera-
tion study for flood control, power and irrigation supply, and finally an economlc study which
determines the height of the dam to be constructed.

It is belleved that the students in the hydraulic option are much better prepared to meet
and adjust to the future demands of thelr profession as a result of their ability to think through
the logical processes required in a program. It also glves them a definlte competitive edge in

securing interesting Jjob assignments with greater growth potential.
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C. Sanitary Engineering

The digital computer is being used for network analysis in Water Supply and Treatment

(CEL80), as an optional problem which has been worked out successfully by several students.

In Sewerage and Sewage Treabtment (CE481), the design of a storm sewer system 1s at pre-

sent being worked on as an optional assignment.

In Industrial Bacteriology (CE587), a problem has been developed requiring the solution

on the computer of the MPN (Most Probable Number) equation for determining bacterial populations.

In Advanced Sanitary Engineering Design (CE682), the programming of the sewage network

analysis 1s to be described and discussed but no actual programming is anticipated. However,

the students may elect to do so if they desire.

D. Soil Mechanics and Foundation Engineering

The traditional aim of the courses in soll mechanics and foundation engineering at The
University of Michigan has been to train the student to view problems not only in terms of
mathematlical formulations but also in relation to environmental associations. Particular
emphasis has been placed on framing problems in terms of simplified basic relationships which
can be conveniently handled by slide rule or desk calculator. One observes that the conscien-~
tious student develops a "feel" for the subject in this approach which is more readily adapted to
variations in field conditions. It is desired to maintaln this emphasis on the practical
application of fundamental principles and, at the same time, to take full advantage of the
spectacular developments in computational technique with present day electronic computers.

In thls respect, the computer makes possible more exacting solutions of certain soil
mechanics problems and eliminates compromising assumptions and approximations which have
heretofore been necessary. Consequently, the soill mechanics teaching and research staff have
re-examined a number of the more important problems that require extensive computations and

have developed computer programs for the following:

1. Analysis of the plate loading tests to determine the bearing capacity of soil.
2. Determination of pressure distribution from large loaded areas.
3. Static equilibrium of sheet pile retaining walls under a variety of nonhomogeneous soil

conditions.

Additional problems under investigation include computation of settlement in granular
materials from volume-density relationships, a general solution for critical stresses under
surface loading and the reproduction of pavement profiles for a variable length of base line
reference. The solutlon of these more complex problems has not advanced to the stage where they
can be utilized in undergraduate instruction. They are, however, belng developed and used by
graduate students working on these specialized problems.

The objective in presenting the use of computers to students of soil mechanics is to
demonstrate the value of these more exacting solutions and familiarize the student with their

application to soll mechanics problems. It is felt that the real value of computer techniques
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to soil mechanics lies in the rigorous organization of the problem in a sequence of logical
steps leading from fundamental principles and realistic assumptions to a useful practical
solution. It is contemplated that the use of computers in soil mechanics will be Included

in the advanced design course.

E. Structural Engineering

Computers are used in the structures sequence both at undergraduate and graduate levels.

In Elementary Structural Design (CE313), some experiments have been carried on in the use

of the computer in simple design problems. This hag not been entirely successful, largely
because the students have too little experience in the use of the computer in earlier work.
There is not sufficient time to include programming in the course lectures.

In Theory of Structures (CE512), and Rigld Frame Structures (CE514), the computer has been

used to solve problems in truss and beam deflections, using conventional procedures. The use
of computers in these courses is still on an experimental basis.

In Structural Design (CE513), the computer 1s used regularly each semester and one com-

puter problem is assigned. In a typical semester, the students are asked to prepare section
modulus and shear connector tables for composite beams in accordance with the AISC 1962
Specifications. The problem is relatively simple but involves quite a number of logical deci-
slons that require a ﬁore complete knowledge of composite beam behavior than would the comparable
hand solution for only a few special cases. There is nothing artificial about the problem.

It 1s the type of problem that one might expect to encounter not infrequently in practice.

In Structural Dynamics (CE611), the computer is regularly used for one or two problems

each semester. Ordinarily the problems involve numerical solution of the differential equations
of motlon and constructing response spectrum curves for some given dynamic load.

In Structural Plate Analysis (CE613), one problem is assigned each semester in finding

the deflectlons of a plate by finite difference methods. The problem is taken up in class at
two levels; first the solution is obtained by hand for a coarse mesh, and later a flner mesh
solution is prepared using the computer.

Computer Analysis of Structures (CE618), is a course serving the specific purpose of

providing the background needed for using the computer efficiently in structural analysis.
Matrix methods are of special value in computer analysis of structures, so the course is built
on matrix techniques. Most of the course is devoted to formulating the theory of structures
in the language of matrices. Assigned problems include small, near-trivial problems where all
of the matrix operations are carried out by hand, and larger, non-trivial problems for which
the students program the matrix operations for the machine. The smaller problems serve the
purpose of famillarizing the student with the details of the procedures and also retaining a

physical interpretation for all of the various matrix operations.
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F. Transportation Engineering

The staff use of computers in the area of traffic and transportation is somewhat limited

at the present time, but will undoubtedly 1ncrease in the future. In CE575, Transportation

Terminal Design (highway, rall, water, and alr), and CE670, Transportation Planning, the pro-

blems, insofar as possible, are placed in a local Ann Arbor context. Both the Clty of Ann
Arbor and Washtenaw County have acquired voluminous data on local transportation, land use, and
population. Much of this data 1s avallable on punched cards so that 1t can be sorted in any
manner desired. Thus in design problems the computer is used to summarize and complle data on
specific geographic areas interconnected by transportation facilities.

There are some lterative type solutions involved in layout and design of automobile park-
ing lots and in the delineation 'of retail trade areas for shopping centers which lend themselves
quite nicely to computer application. At the present, a study 1s being made of the extent to
which 1t 1s desilrable to require the student to use the computer in solving these problems.
Transportation planning problems quite often are examined on a systems analysis baslis. While
the computer has not been used to any great extent in this fleld, there is a potential for
wildespread usage.

To summarize, the various areas in traffic and transportation courses and the extent to
which it is desirable for the student to become involved with the computer are currently being

examlned. Use at the present time, however, 1s largely experimental.

V. CONCLUSIONS

As 1in the case of every important ilnnovation, 1t will take several years to evaluate the
ultimate benefits resulting from the introduction of computers into Civil Engineering education.

At present, oplnlons of the faculty are varied, as evidenced by the following sampling of

statements.

"The Civil Engineering Department at The University of Michigan has successfully initia-
ted the use of computers into the curriculum and the faculty is gradually understanding the
value of adapting thelr work to accept and include these new techniques."

"The real benefits of using the computer come not from teaching the student how to program,
but rather from forcing him to make all of the 1og{cal declisions that are necessary to arrive at
a sultable algorithm for solving an engineering problem in a more general formulation than he
usually encounters. It 1s often sald that a good way to learn a subject is to teach it. In a
sense, the student 1s being put in a position of teaching the computer how to solve the problem
at hand. 1In order to accomplish this he must necessarily understand the problem more completely
than would be necessary for conventional hand solutlon, since all of the steps involving judge-

ment that are at hls disposal in hand methods must be analyzed and programmed when the machine
1s doing the work."
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"While 1t i1s agreed that computers are here to stay and are a valuable tool in the
civil engineering profession, we must be very careful not to sacrifice the teaching of funda-
mental engineering principles in order to teach the use of computers.”

"The method of introducing Civil Engineering students at Michigan to computer techniques
by integrating it with the teaching of surveying computations seems to be an excellent approach."
"In introducing the use of computers, it is necessary to maintaln the emphasis oh the
practical applicatlion of fundamental principles and, at the same time, to take full advantage of
the spectacular developments in computational technique with present-day electronic computers.

The real value of computer techniques lies in the rigorous organization of the problem in a
sequence of loglcal steps leading from fundamental principles and realistic assumptions to a
useful, practical solution."”

"We need to make fuller use of computers in all fields of Civil Englneering. In this
way our graduates will be much better prepared to meet and adjust to the future demands of
their profession as a result of thelr abllity to think through the logical processes requlred

to develop algorithms for the computer."

vI. EXAMPLE PROBLEMS PREPARED BY PROJECT PARTICIPANTS

Each participant prepared solutions for example problems which he felt would be useful
in courses at the undergraduate or graduate level. Nine of these problems have been selected

for inclusion in this report and are listed below.

LIST OF PROBLEMS

Number* Title Author Page

76 Use of the Computer as a Teachlng Machine H. J. Welch c23
for Plane Analytic Geometry

77 Optimum Regulation of a Reservolr for J. W. Howe C35
Power Production

78 Economical Size of Canal-Feeding Hydro- J. W. Howe c41
Power Plant

79 Most Probable Number Method for Determining L. L. Kempe cht
Bacterial Populations

80 Iteration of Sum of Principal Stresses at W. Weaver, Jr. (56
Interior Polnts of Plane Rings

81 Elastic Buckling Load for Columns of Non- K. H. Chu co7
Uniform Cross Section

82 A MAD Program for Truss Analysis K. H. Chu c82

83 Stiffness Factors for a Flat Slab Column R. B. Harris CoT

84 Vibration of Beams on Spring Supports S. S. Kuo €113

* These problems may be considered as a supplement to problems presented 1n previous publica-
tions of the Project (3, 4, 5, 6) and are numbered accordingly.
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All of these problems were solved on the digital computer using either the MAD or FORTRAN
language. These languages are described in References 1 and 2.

It should be noted that there are several other sources of example computer problems
dealing with Civil Engineering subjects. See, for example, Example Problem Numbers 8, 9, 10,
2l, 22, 23, and 27 in Reference 3; Example Problem Numbers 48, 49, and 50 in Reference 4; and
Example Problem Numbers 63 and 64 in Reference 6. A number of problems prepared by Project
participants are abstracted in the Second Annual Report of the Project (4). Some of these
(1isted above) have been included in this report. Most of the remaining problems ére available

on microfilm from the Project.
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Example Problem No. 76
USE OF THE COMPUTER AS A TEACHING MACHINE
FOR PLANE ANALYTIC GEOMETRY
by
Harold J. Welch
Department of Civil Engineering

The University of Michigan

Course: Surveying Computations Credit Hours: 2 Level: Sophomore

Statement of Problem

In learning surveylng computations, students are required to solve a number of problems
in plane, analytic geometry using a desk calculator and tables of trigonometric functlons.

The problems consist of several examples of each of five basic problem types illustrated below.

1. Forward Computation
. (X5 ¥p)
Given: Xy, Yy, Dy, (Xl,Yl)
Find: X,, Y, \1////
Ql

2. Inverse Computation
. (X5, Y5)
Given: Xl’ Yl, X2, Y2
Find: Dl’ 91
3. Line-Line Intersection
Glven: Xl’ Yl’ @1, Xg, YE’ 92
Find: X3, Y3, Dl’ D2
b, Line-Circle Intersection
Given: Xl’ Yl’ 91, XE’ Y2, D2
Find: XS’ Y3, 92, Dl
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5. Clrcle-Circle Intersection

Given: X Y D X D

10 10 Dps Xps ¥ps Dy

Find: X3, Y., © e

1’ 72

The only dif?erence between two problems of the same type is that the numerical data
are different. A computer program has been written to check the students' solutions to pro-
blems assigned in class and point out any errors. The program has been written to "penalize"
students who have incorrect solutions by assigning them additional problems. On the other
hand, students with correct solutions are "rewarded" by not being assigned additional problems.
Because of thils feature of penalties and rewards, the program which grades the student problems

has been named the "Teaching Machine Program."

Use of the Teachling Machine Program

Each student 1s given an 1dentification number and a set of basic data for each problem
type. He then uses his identification number to modify the basic data. For example, if the
student's number were 1234, selected distances and point coordinates would be changed by

4253.897
1.234

4255,131

Azimuths (line directlons) would be changed according to

290° 47! 18"
12 34
290° 59! 52"

In thls manner, all the students work essentially the same problem, but with slightly differ-
ent data and results.

When the student has solved a problem to his satisfaction, he punches both his modified
data and his computed results on IBM cards. On the first card, the station number and the
coordinates of the flrst polnt are punched. The length and azimuth of the line between the
flrst two polnts are punched on the second card. This sequence 1is repeated until all of the
problem data havebeen glven. Hence, for the Forward and Inverse Computations, each problem
requires three cards. For each Line-Line Intersectlon problem , five cards are required.

Examples of 1nput cards are shown on the next page.
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Example Problem No. 76

Col 1 3 8 18 25
655  3730.751 3636.576
Y

‘-v-'\/——\

Station Coordinates
Number
Col 26 38 42 45
1415.702 332 36 13
NS
Length Azimuth

On the first run of each type of problem, the student must work 5 problems (3 for the
Circle-Circle intersectlon). In front of the data cards, he places a card bearing his name,
class number, computing center number, and the type number of the problems which follow. For

example, a name card might be

Col 1 2 32 39
J Q STUDENT 1234 X106%7 4
v\’v—w\—\ﬂ

Student Identifica- Computing Problem
Name tion Number Center Type
Number Number

The data for each type of problem must be submitted separately, with an indlvidual name card
for the set of data for each type.

At executlon, the program first reads the current date to be used in output headings.
Following this is the class roll. Each card in this deck contains a student's name and class
number, the number of problems due and the number of the run to be made for each of the five
types of problems. Next, the five sets of basic data are read and then the first student's
data is considered.

The class roll, the sets of basic data, and each set of student data is followed by a
card having an equal sign punched in column 1. Whenever this equal sign 1s read, control is
transferred to the portion of the program which handles the type of data expected to follow.

In processing student data, the information on the student's name card i1s read and
printed 1n a heading. Then the student's class number is checked to see if it is a legal
number. The correspondlng run number 1is checked to see if the student is attempting an extra

run. Finally, the student's name 1s checked to see if it corresponds with the glven class
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number. If any of these tests fall, an appropriate comment is printed and the program searches
for the name card of the next student. If the information is all legal, control is transferred
to the section of the program which handles the type of problem given on the name card. Each

of these five sections modifies the basic data in the same manner as the student and computes

the correct solution to the problem. These results are then used by the internal function CHECK.

CHECK reads the student's data and compares it with the computed data, with a tolerance
of .003 feet on distances and coordinates and 3 seconds on azimuths. The student's data are
then printed, with asterisks flagging any incorrect values. Whenever an error occurs, é
boolean flag is set, and at the end of the problem, the value of the flag 1s returned to the
main program. If the flag has been set, the main program increments an error counter. Then
the data for the next problem (of the same type) are examined, the correct solutions are
computed, and CHECK is again called. This process continues until the required number of pro-
blems for this sequence have been considered or until an equal-sign card is read. Extra
problems are ignored and simply scanned for an equal=sign card.

At the end of the set of data, if the error counter is not equal to zero, or if too few
problems have been submitted, the number due is increased. On the next run, the student must
resubmit all the correct problems, the problems which were incorrect or missing (hopefully
corrected by this time), and an extra problem for each incorrect or missing problem. Thils new
due number is printed following the data listing. If all the problems are correct, the due
number is set to zero and a comment 1s printed.

The run number is now incremented and the program goes on to the next student's data.

After all the problem sets have been processed, the updated class roll is punched for

use in the next run and printed for the information of the instructor.

Flow Diagram

A general flow diagram of the Teaching Machine Program is shown below.
- Forward Computation

- Inverse Computation

Line-Line Intersection

- Line-Circle Intersection
- Circle-Circle Intersection

S R
Basic Data
| Class Roll 5 Sets | NEWNAM

Heading

] Name
Name Class No.
Class No. Due No.
Prob. No. Run No.

!

Qoo
U =W o+
1

Look For
SRCH Next Equal=
Sign Card

Incorrect
Class
Number

-C26-



Example Problem No. 76

No

MAD Program

Not enough problems

THRU

-1 Compute TER=
O(FROB) ERR=0 Unknown CHECK. (THRU) —
Data
Yes =
TER=1B? DUE=2*DUR
ERR+1 +ERR-I+1
No
DUE =
I=I+1 > DUE+ERR DUE.G.15) % tpuE-15
=T+
No
I.G.DUE?
Yes
-0 No
Yes
RUN=
DUE=0 UN=RUN+1

The Teaching Machine Program (which is wrltten in the MAD language) 1s listed below.

H J WELCH 217 W ENG X106W 002 050 050
H J WELCH 217 W ENG X1l06w 002 050 050

SCOMPILE MADSEXECUTESPRINT OBJECTsPUNCH OBJECT »DUMP

ROLL

ouT

NEXT3

L2

NEXTé4

L3

NEXT1

629C8001

EXECUTE SETEOFe(LAST)

EXECUTE SETERRs (SRCH)

READ FORMAT RDATEsDATEsDATELsDATE2

THROUGH ROLL9 FOR N=1s19NeGal100

READ FORMAT RD1,EQUALS»NAME(N) sNAMEL(N) yNAMEZ (NY»CN(N) s DUETIN
1) 9DUE2(N) sDUE3(N) 9DUE4(N) sDUES (N) s RUNL(N) s RUN2 (N) sRUN3 (N} » RUN

26 (NTyRUNG(N)

WHENEVER EQUALSeEe3=3%s TRANSFER TO OUT

PRINT COMMENT$4TO0O MANY STUDENTSS

EXECUTE SYSTEMs

THROUGH L sFOR J=lyisJeGe25

READ FORMAT RD$EQUALS»FROM{J)»TO(J)9FRX(J) 9FRY(J)sDTO(J)sD(J)
1sM(JTsS{J}

WHENEVER EQUALSeEe3$=$9TRANSFER TO NEXT3

PRINT COMMENT $4TO0 MUCH DATA FOR PROBLEM 13%

EXECUTE SYSTEMe

"THROUGH L2»FOR J=1s19JeGe25

READ FORMAT RD2yEQUALSsFROM2(J) sFRX2(J}sFRY2(J)sTO2(J)sTOX2(J
11970Y2(4)

WHENEVER EQUALSeEe$=%s TRANSFER TO NEXT4

READ FORMATRD39EQUALS9FROM3(J)sFRX3(J)9FRY3(J)sFD3(J)rsFM3(J)»

1FS3 IV INT3TJIT»TO3TIT s TM3TIT s TS3TIT$TOZTIT 9 TOXZ(JIT 9 TOV3(J]

WHENEVER EQUALSeEe«$=$s TRANSFER TO NEXT1

PRINT COMMENT$4TO0 MUCH DATA FOR PROBLEM 3%

EXECUTE SYSTEMe

THROUGH L4y FOR J=Is19JeGe25

READ FORMAT RD4sEQUALS9FROM4 (J)sFRX4(J)9FRYS(J)yFD4(J) 9 FM4(J)
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MAD Program, Contlnued

L4

NEXT2

L5

NEWNAM

L1

TSTRUN(1)

TSTRUN(2)

TSTRUN(3)

TSTRUN(4)

TSTRUN(5)

TSTNAM

SRCH

cl1)

BIGLP1

TEST1
RK1
THRU1

cl2)

19FSa(J) s INTL(J)sDTOL(J) s TOL(J) s TOX&(J) s TOYE(J)
WHENEVER EQUALSeEs$=$s TRANSFER TO NEXT2

PRINT COMMENTS$4TQOO MUCH DATA FOR PROBLEM 4%
EXECUTE SYSTEMs

THROUGH L5s FOR J=1lplsJeGe25

READ FORMAT RD5sEQUALSsFROMS5(J)sFRXS5(J)sFRYS5(J)9DFMS(J) e INT5(
1J)sDTO5(J) sTO5(J)sTOX5(J)»TOYS5(J)

WHENEVER EQUALSeE«$=359 TRANSFER TO NEWNAM

PRINT COMMENTS$4TOO MUCH DATA FOR PROBLEM 5%
EXECUTE SYSTEMs

ERR=0

TER=06

READ FORMAT RDNAME»EQUALS»SNAMEes s SNAME(2) 9SCNyPROB
WHENEVER EQUALSeEe$5=3s TRANSFER TO NEWNAM

PRINT FORMAT TITLEBsSNAME eeeSNAME(2)sSCNsPROByDATE»DATEL
1sDATE2

THROUGH L1ls FOR K=1lslsKeEeN

WHENEVER SCNeEeCN(K) s TRANSFER TO TSTRUN(PROB)
PRINT COMMENT $OINCORRECT CLASS NUMBERS
TRANSFER TO SRCH

WHENEVER RUN1(K)eLe4s TRANSFER TO TSTNAM

PRINT COMMENT $ORUN LIMIT EXCEEDED ON PROBLEM 1%
TRANSFER TO SRCH

WHENEVER RUNZ2(K)eLe4s TRANSFER TO TSTNAM

PRINT COMMENT $ORUN LIMIT EXCEEDED ON PROBLEM 2%
TRANSFER TO SRCH

WHENEVER RUN3(K)eLe4$TRANSFER TO TSTNAM

PRINT COMMENT $ORUN LIMIT EXCEEDED ON PROBLEM 33
TRANSFER TO SRCH

WHENEVER RUN&4(K)sLe4sTRANSFER TO TSTNAM

PRINT COMMENTSORUN LIMIT EXCEEDED ON PROBLEM 4%
TRANSFER TO SRCH

WHENEVER RUNS5(K)eLe4s TRANSFER TO TSTNAM

PRINT COMMENT$ORUN LIMIT EXCEEDED ON PROBLEM 5%
TRANSFER TO SRCH

WHENEVER NAME (K) ¢NE e SNAME ¢ OReNAMEL (K} «NE« SNAME (1) ¢ OReNAMEZ (K
1) eNEsSNAME(2)

PRINT COMMENT $0INCORRECT NAMES$

READ FORMAT SEARCHsEQUALS

WHENEVER EQUALSeE«$=$s TRANSFER TO NEWNAM
TRANSFER TO SRCH

END OF CONDITIONAL

TRANSFER TO C(PROB)

PRINT FORMAT TITLECsPROBsDUEL(K)sRUN1(K)
THROUGH BIGLP1sFOR I=1s1s1eGeDUEL(K)
STA=FROM( I)

STA(1)=TO(I)

X=FRX{I)

Y=FRY (1)

DIST=DTO(I)+SCN/1000s

D1=D (I}

M1=M(I)+SCN/100

$1=S{I)+SCN=100%(SCN/100)

SEC=3600#D1+60%*M1+51

RA=e48481368E-5%SEC

X{1)=FRX(I)=SINe (RA}#DIST

Y{1)=FRY(I)=COSe (RA}*DIST

TER=CHECK ¢ { THRU1)

WHENEVER TER

ERR=ERR+1

TER=0B

END OF CONDITIONAL

WHENEVER ERReE«O

DUEL(K)=0

PRINT FORMAT OKjsPROB

TRANSFER TO RK1

END OF CONDITIONAL

DUEL(K)=DUEL(K)+ERR

WHENEVER DUE1(K)eGel5sDUEL(K}=15

PRINT FORMAT RESMITsDUEL (K]

RUN1(K)=RUNI(K)+1

TRANSFER TO SRCH

DUEL (K)=2%DUE1(K)+1+ERR~I

TRANSFER TO TEST1

PRINT FORMAT TITLECs»PROBsDUE2(K)sRUNZ(K)
THROUGH BIGLP2sFOR I=1slsle GeDUE2(K)
STA=FROM2(1)
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MAD Program, Continued

X=FRX2(I)+SCN/1000s
Y=FRY2(I)
DX=TOX2(I}=SCN/1000e=X
DY=TOY2(I)=FRY2(I)
DIST=SQRT« (DX*¥DX+DY*DY)
SEC=ATN1le (~DX9=DY)/0448481368E-5+045
STA(1)=TO2(I)
X(1)=X+DX
Y{1)=TOY2(I)
TER=CHECKe (THRUZ2)
WHENEVER TER
ERR=ERR+1
TER=0B

BIGLP2 END OF CONDITIONAL
WHENEVER ERReEeO
DUEZ(K) =0
PRINT FORMAT OKsPROB
TRANSFER TO RK2
END OF CONDITIONAL
DUE2(K)=DUEZ2(K)+ERR

TESTZ2 WHENEVER DUEZ2(K)eGel59sDUE2(K)=15
PRINT FORMAT RESMITsDUE2(K)
RK2 RUN2(K)=RUN2(K}+1
TRANSFER TO SRCH
THRUZ2 DUE2(K)=DUE2(K)*2+1+ERR=~1
TRANSFER TO TEST2
C(3) PRINT FORMAT TITLECsPROBsDUE3(K)sRUN3(K)

THROUGH BIGLP3s FOR I=1s1sleGeDUE3(K)
STA=FROM3 (1)
STA(1)=INT3(1)
STA(2)=T03(1I)
X=FRX3(1)
Y=FRY3 (1)
X(2)=TOX3(1]
Y{2)=TOY3(I)
D1=FD3({1)
D2=TD3(1)
M1=FM3(I)+SCN/100
M2=TM3(1)+SCN/100
S1=FS3(I)+SCN-100%({SCN/100)
S$2=TS3(1)+SCN~-100%(SCN/100)
SEC=3600%D1+60%M1+5S1
SEC(1)=3600#D2+60%M2+52
RA=448481368E~5%SEC
RB=448481368E~5%SEC(1)
SA==SIN«(RA)
SB==SINes (RB)
CA==CO0S«(RA)
CB==C0Se (RB)
DX=X(2)=X
DY=Y(2)=Y
DA=(DX*CB-DY*SB) /SINe (RA=RB}
X(1)=X+DA#*SA
Y{1)=Y+DA*CA
DB=(DY=DA*CA)/CB
DIST=DA
DIST(1)=DB
TER=CHECKs (THRU3)
WHENEVER TER
ERR=ERR+1
TER=08B

BIGLP3 END OF CONDITIONAL
WHENEVER ERReEeQ
DUE3 (K} =0
PRINT FORMAT OK sPROB
TRANSFER TO RK3
END OF CONDITIONAL
DUE3(K)=DUE3(K)+ERR
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TEST3 WHENEVER DUE3(K)eGa15sDUE3(K)=15
PRINT FORMAT RESMITsDUE3(K)
RK3 RUN3(K)=RUN3(K)+1
TRANSFER TO SRCH
THRU3 DUE3(K)=2*DUE3(K)+1+ERR~1
TRANSFER TO TEST3
Cl4) PRINT FORMAT TITLECyPROBsDUE&(K) sRUN& (K )

THROUGH BIGLP4s FOR I=191914GeDUE4L(K)
STA=FROM4 (1)
STA(1)=INT4(])
STA(2)=T04(1)
X=FRX4(1)
Y=FRY4(1)
X(2)=TOX4 (1)
Y(2)=TOY4(1)
D1=FD4(1)
M1=FM&4(1)+SCN/100
S1=FS4(1)+SCN=100%(SCN/100}
SEC=3600%D1+60¥M1+51
WHENEVER DTO4(I}aLeOs
DIST(1)=DTO4(I)=SCN/1000s
OTHERWISE
DIST(1)=DTO4(I)+SCN/1000Vs
END OF CONDITIONAL
DX=X(2)-X
DY=Y(2)=Y
RA=¢48481368E-5%SEC
SA==~SINs (RA)
CA==C0Se(RA)
Q=DX*SA+DY*CA
H=DX*CA=DY#*SA
F=SQRTe(DIST(1)*DIST(1)=H¥H)
WHENEVER (DX*DX+DY*¥DY=DIST(1)*DIST{1))eLee0eOReDIST({1)eLes0
DIST=Q+F
OTHERWISE
DIST=Q=-F
END OF CONDITIONAL
X(1)=X+SA*DIST
Y(1)=Y+CA*DIST
RB=ATNL1e (X(1)=X{2)sY(1)=Y(2))
SEC(1)=RB/e484B1368E~5+e5
TER=CHECK e { THRU4)
WHENEVER TER
ERR=ERR+1
TER=08

BIGLP4 END OF CONDITIONAL
WHENEVER ERReEe0
DUE4(K)=0
PRINT FORMAT OK sPROB
TRANSFER TO RK&4
END OF CONDITIONAL
DUE4 (K)=DUE&(K)+ERR

TEST4 WHENEVER DUE4(K)eGe159DUE4(K)=15
PRINT FORMAT RESMITsDUE4(K)
RK4& RUN&4 (K)=RUN4 (K} +1
TRANSFER TO SRCH
THRU4 DUE&4(K)=2*DUE4(K)+1+ERR=~]
TRANSFER TO TEST4
cis) PRINT FORMAT TITLEC»PROBsDUE5(K)sRUNS(K)

THROUGH BIGLPS5s FOR I=191s1eGeDUES(K)
STA=FROM5 ( 1}

STA(1)=INT5(I)

STA(2)=TO5(1)

X=FRX5(1}

Y=FRY5(1)

X(2)=TOX5(1)

Y(2)=TOY5(1)

DIST=DFM5(I)+SCN/1000s
DIST(1)=DTO5(1)+SCN/1000e

DX=X(2)-X

DY=Y(2)=Y

DC=5QRTs (DX*DX+DY*DY)
F={(DC*¥DC+DIST*DIST=DIST(1)*DIST(1))/(2¢%*DC})
H=SQRTe (DIST#DIST=F*F}

5$3=DX/DC

C3=DY/DC

X(1)=X+F*S$3=H*(C3

Y{1)=Y+F*C3+H*53

RA=ZATNLe (X=X{1)sY=Y(1))
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RB=ATNL1e (X(1)=X(2)sY(1)=Y(2))
SA==SINe (RA)
SB==SINe(RB)
CA==C0S« (RA)
CB==C0Se (RB)
SEC=RA/448481368E~5+45
SEC(1)=RB/«48481368E=5+45
TER=CHECK« (THRU5)
WHENEVER TER
ERR=ERR+1
TER=08

BIGLPS END OF CONDITIONAL
WHENEVER ERReEWO
DUES (K)=0
PRINT FORMAT OK »PROB
TRANSFER TO RK5
END OF CONDITIONAL
DUES(K)}=DUES (K)}+ERR

TEST5 WHENEVER DUES5(K)eGel59DUES(K)=15
PRINT FORMAT RESMITsDUES(K)

RK5 RUNS (K)=RUN5 (K)+1
TRANSFER TO SRCH

THRUS DUES(K)=2#DUES(K)+1+ERR=I
TRANSFER TO TESTS

LAST PRINT FORMAT PDATEsDATEsDATE1sDATEZ2

THROUGH DONEs FOR I=1slyleEeN

PRINT FORMAT PR1sNAME(1)sNAMEL (I)sNAME2(1)sCN(1)sDUEL(I}sDUE2
1(1)sDUE3(1)sDUE4(T)sDUES(I)sRUNL(I)sRUN2(T)sRUN3(I)sRUNG(I)s
2RUNS (1)

DONE PUNCH FORMAT PCHsNAME (1) sNAMEL (1) 9NAME2(1)9CN(1)sDUEL(I)DUE2
1(1)sDUE3(1)sDUE4(I)sDUES(T)9RUNLI(I)yRUN2(I)sRUN3(I)sRUN&(I]).
2RUN5 (1)

EXECUTE SYSTEMa

INTERNAL FUNCTION (HERE)
STATEMENT LABEL HERE
BOOLEAN FLAG

ENTRY TO CHECKe

CK=0

FLAG=08

NWCD READ FORMAT NEWCADSEQUALSsST(1)sST(3)sST(5)
WHENEVER EQUALSeEe$=%s TRANSFER TO HERE
WHENEVER ST(1)eEeSTA(CK)

ST(2)=$ $
OTHERWISE
ST(2)=5%%%$
FLAG=1B
END OF CONDITIONAL
WHENEVER¢ABS e (FST(3)=X(CK))eGe+003
ST(4)=5%%%$
FLAG=18
OTHERWISE
ST(4)=$ $
END OF CONDITIONAL
WHENEVER ¢ABSs (FST(5)=Y(CK))eGes003
ST(6)=5%%*%$
FLAG=1B

OTHERWISE

ST(6)=% $
END OF CONDITIONAL
PRINT FORMAT OUT2sST(l)eeeST(6)
WHENEVER CKeEelsANDsPROBeLe3sTRANSFER TO FINI

WHENEVER CKeLEal

READ FORMAT NEXCADsEQUALS»ST(7)9ST(9)eeeST(11)
WHENEVER EQUALS+Ee$=%s TRANSFER TO HERE
WHENEVER #ABSe(FST(7)=DIST(CK))eGes003
ST(8)=3%x%$
FLAG=18B
OTHERWISE
ST(8)=% $
END OF CONDITIONAL
BIGSEC=3600%ST(9)+60%ST(10)+ST(11)
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WHENEVER ¢ ABS e (SEC(CK)=BIGSEC) ¢Ge3

ST(12)=$%¥*3

FLAG=1B

OTHERWISE

sT(12)=$ §$

END OF CONDITIONAL

PRINT FORMAT OUT3sST(7)eeeST(12)

CK=CK+1

TRANSFER TO NWCD

END OF CONDITIONAL

FINI FUNCTION RETURN FLAG

END OF FUNCTION

EQUIVALENCE (FST»ST)

BOOLEAN TER

BOOLEAN CHECKas

INTEGER ST sDATEsDATELsN»EQUALSsNAMEyNAME1sNAME2,CNsDUE3sDUE4)
1DUES sRUN3 » RUN4 sRUNS 9 J s FROM3 s FD3 s FM3 9 FS3 9 INT39TD4 s TM39 7535703,
2FROM& s FD4 s FM&4 s FShs INT4 s TO4 s FROMS » INTS»T05 s ERR 9 SNAME » SCN 9 PROB
3K9STA»I1sD1sD2sM1sM23S19S29SECHCK9STBIGSEC

INTEGER DUELsDUE2sRUNLsRUN2sFROMsTOsDsM»SsFROM29TO29DATE
DIMENSION NAME(100)sNAMEL(100)sNAME2(100)9CN(100)9DUE3(1 )9D
1UE4(100) »DUE5(100) sRUN3(100) sRUN&(100)sRUN5(100) s FROM3(25) »FR
2X3(25) s FRY3(25) sFD3(25) oFM3(25)9FS3(25) 9 INT3(25)sTD3(25)
3TM3(25)sT53(25)9T03(25) »TOX3(25)»TOY3(25) s FROM4 (25) sFRX4(25)
4FRY4(25) s FD4(25) sFS4(25) 9 FM4(25) 9 INT4(25) 9DT04(25) 9TO4(25) s
STOX4(25) s TOY4(25) s FROMS5 (25) 9FRX5(25) sFRY5(25) 9DFM5(25) 9 INT5(2
65)sDT05(25)sT05(25) s TOX5(25) »TOYS5(25) s SNAME(2) 9STA(2)sX(2) s
7Y(2) sDIST(1)sSEC(1)9ST(12)»FST(12)
8sDUEL(100)»DUE2(100) sRUN1(100) sRUNZ2(10U)

DIMENSION FROM(25)sTO(25) sFRX(25)sFRY(25)sDTO(25)9D(25)sM(25)
195025 FROM2(25) sFRX2(25) sFRY2(25)»T02(25) #TOX2(25)»TOY2(25)
VECTOR VALUES RDATE=$3C6%$

VECTOR VALUES TITLEC=$13H-INTERSECTIONI3s16s26H PROBLEMS DUE
1 FOR RUN NOsI3//%$

VECTOR VALUES PR1=S1H »52093C6956 91495491016  *$

VECTOR VALUES RDNAME=3C1s3C65155514s11%85

VECTOR VALUES TITLEB=$1A15593C65559149559 THPROBLEMI395592C6%$
VECTOR VALUES SEARCH=$C1¥$

VECTOR VALUES OK=$1H0S5,45HYOU HAVE DONE ALL THE PROBLEMS FOR
1 ASSIGNMENT 1I4s13H  CORRECTLYe/45HOSEE YOUR INSTRUCTOR FOR
2FURTHER ASSIGNMENTSs#$

VECTOR VALUES RESMIT=$1HOS5555HYOU HAVE AT LEAST ONE ERROR (I
INDICATED BY ASTERISKS)e /34HUCORRECT THE DATA AND RESUBMIT T
2HEI4920H  PROBLEMS NOW DUEe*$

VECTOR VALUES PCH=$S193C69155125913%$

VECTOR VALUES RD=$C1s21493F10e35559313%$

VECTOR VALUES RD1=$C133C63155125913%$

VECTOR VALUES RD2=$ClsZ(1592F10e3)*$

VECTOR VALUES RD3=$C1s1342F.e3515921392159213,1592F943%$
VECTOR VALUES RD4=SC131392F94391592139129F10e351692F943%$
VECTOR VALUES RD5=$C1s1393F9435169FL0e391692F943%%

VECTOR VALUES NEXCAD=$C1s525sF9e39169213%$

VECTOR VALUES NEWCAD=$Cls14»2F10e3%$

VECTOR VALUES OUT2=51H S5,14C39F10e35C39F1003,C3%8

VECTOR VALUES OUT3=$1H S37sF10Ue39C391592139C3 3

VECTOR VALUES PDATE=$1H1»S19s65H PLANE GEOMETRY TEACHING
IMACHINE MODEL 3-=62 PROGRAM 9C8 3C6//520512HSTUDENT NAME,
558, 12HCLASS NUMBERsS3s58HDUE1 DUE2 DUE3 DUE4 DUE5 RUNL
3RUN2 RUN3 RUN4 RUNS5//#$

END OF PROGRAM

$ DATA
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Example Problem No. 76

The followlng 1s an abbreviated set of data which might be submitted to the Teaching

Machilne Program.

The class roll has been shortened to four names.

Basic data for only one

problem type are shown and only two sets of student's results are shown.

3DATA
MAY 17s 1962
D J PIKE 4116 3 3 3 3 3 1
J A FOX 1949 3 3 3 3 3 1
H W ANDRES 1144 3 3 3 3 3 1
S H HAMMOND 2703 3 3 3 3 3 1
147 89 5000,000 5000000 25324897
148 254 45694374 44304280 157016
161 162 32284603 44584202 934000
233 234 33254440 43884835 1014180
168 227 39114262 45334392 1086887
167 228 38034726 45054241 1034256
234 161 32344698 43444077 1146208
99 26 48964323 49574408 18754690
85 29 45114209 45524191 21654140
18 15 43034953 49844691 JUEe 394
19 20 37846575 45394076 18Ce284
21 16 51104979 47324670 289e450
45 41 44824951 46204752 899568
36 44 35394884 45896095 5436067
46 1 45424456 4538eUG2 65Ue158
H W ANDRES 1144 TCO3A 1
147 50004000 50004000
2556 41 341
89 50806946 47584145
148 45694374 44304280
158416V 346
254 46074258 4276799
161 32284603 44584202
94 e lbh 267
162 33224630 44626996
D J PIKE 4118 TOCc3P 1
147 50004000 50004000
2584 15 341
89 5079782 45744630
148 45694374 443064280
161e134 346
254 46064930 42736504
161 32284603 44586202
976113 267
162 33254638 44626216

i

29

01

08

59

31
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The Computer as a Teaching Machine

Computer Output

The following is the computer output which corresponds to the data shown in the

previous section.

__ H W _ANDRES oo Ll4a o pROBLEM 1 o MAY 17, 1962
 INTERSECTION 1 3 PROALEMS LUE FOR RUN NO. 1 .
147 5000.000 5000, 000
o ] 255,041 341 29 43
89 5080.946 4758.145
148 4569.374 4430.280 N 1
158.160 346 1 4% This is returned
254 4607.558 421641799 > to first student.
161 3228.603 4458.202
o L o D4.lb4 267 8 19 i
162 3322.630 4462.996%%%
YOU HAVE AT LEAST ONE ERRUR (INDICATED RY ASTERISKS). T
CORRECT THE DATA AND RESUBMIT THE 4  PROBLEMS NUW DUE. /
D J PIKE 4118 PROBLEM 1 MAY 17, 1962 )
" INTERSECTION 1 3 PROBLEMS DUE FOR RUN NO. 1 -
147 5060.000 5000. 0600 R
. ]
. : ) o . 258.015 341 59 17 | _ This is returned
89 5079.782 4574.630%%% P to second student
148 4569.374  4430.280 _., uaent.
161.134 346 31 19
254 4606.930 4273.584 D
161 3228.603 4458.202
. ... 9T.118 267 37 53
162 3325.638 4462.216
" YOU HAVE AT LEAST ONE ERROR (INDICATED BY ASTERISKS). )
CORRECT [HE DATA AND RESUBMIT THE 4 PROBLEMS NOW DUE.
This summary is printed for use by the 1lnstructor:
_INVERSE COMPUTATION TEACHING MACHINE MODEL 3-62 PROGRAM 9C8 = MAY 17, 1962
_STUDENT NAME  CLASS NUMBER = DUEL DUE2 DUE3  DUE4 DUES RUNL_RUNZ RUN3_ RUN4 RUNS
LD J PIKE 4118 4 3 3 3 3 2 1 1 1 1
J A FOX 1949 3 3 3 3 3 1 1 1 1 1
HoW ANDRES o Ll44 4 3 3 3 3 2 L l S S
S H HAMMOND 2703 3 3 3 3 3 1 1 1 1 1
S N o > B e e
Number due on next run Run number of next run
for each problem type. ‘for each problem type.: e

This 1s the updated class roll which 1s used as input on the next run:

v oJ Plko 4116 4 3 3 > 3> 2z 1 1 1 1

J A FOx 194y 3 3 3 3 3 1 1 1 1 1

H W ANDRES li44 ¢ 3 3 3 3 2 1 1 1 1

S H HAMMONOD 2763 3 3 3 3 3 1 11 L
Critlque

A complete dlscussion of the effectiveness of the use of the Teaching Machine Program is
glven in the section "Introduction of Civil Engineering Students to the Use of the Computer,"

in the first part of this report. c3h



Example Problem No. 77
OPTIMUM REGULATION OF A RESERVOIR FOR POWER PRODUCTION

by
J. W. Howe
Department of Mechanics and Hydraulics

State University of Iowa

Course: Water Power Engineering II Credit Hours: 1-3 Level: Graduate

Statement of the Problem

It 1s desired to determine the best way of operating the turbines at a reservoir in
order to produce the most power in the period studied. The following physical relations are
assumed:

Reservoir volume = (Y)3'5/4 (acre feet)

Spillway discharge = 120,000 h3/2 (acre feet/month)

Turbine discharge = 12,000 Hl/2 (acre feet/month)

Tailwater discharge = 21,000 232 (acre feet/month)

Reservoir spillway level at Y = 63 feet

Reservoir inflows: 12, 16, 90, 210, 47, 44, 27, 19, 45, 64, 31, 30, 10, 50, 199,

137, 59, 231, 307, 239, 75, 50, 34, 34 (thousand acre feet/month)

Determine the average power output per year if the turbines are shut down for various

percentages of time when the upstream water level is below spilllway level.

Solution

A cross-sectional diagram of the reservoir is shown below to illustrate the nomenclature.

Jy

YMAX




Optimum Regulation of a Reservoir for Power Production

Initial levels Y1l and Z1 at beginning of month,
Final levels YAV and Z2 at end of month.
VOLYAV = YAVS*?

voLo = 633°7

voLyI = y13+2

QSTOR = (VOLYAV-VOLYL) /4

YAV = (YMAX + YMIN)/2 = level at end of month

AVHD = (YI + YAV)/2

STORAGE EQUATION:

INFLOW - QSTOR = OUTFLOW = QSPLWY + QTURB = QTW

INFLOW = Q(I) = QTW + QSTOR = QTOT (1)

Initial values of YMIN and YMAX of 20 and 68 feet are assumed and YAV determined.
Using YAV in determining terms of Eq. (1), if 1000 Q(I) > QTOT, Y should be increased. This
is accomplished by letting YAV replace YMIN. In the opposite situation, YAV becomes YMAX,
In 15 iterations YAV is within a few thousandths of the value 1t must have to satisfy Eq. (1).
It is assumed that the monthly discharge through the turbines or over the splllway can be
secured by using the average of the initial and final water levels.

In the case of a month having some spilllway discharge in the month but not during the
entire month, due to rising or falling water levels, the spillway discharge for a full month
1ls multiplied by:

(VOLYAV - VOLO)/(VOLYAV - VOLYI) for a rising stage and by

(VOLYI - VOLO)/(VOLYL - VOLYAV) for a falling stage

Zl-{—ZE)>< 0.746x0.80 % 43560
2 8,81k 3600

Zl+Z2)

Power production/month = QTURB (AVHD - 5

= 0.82 QIURB (AVHD -

List of Symbols

Q(I) Monthly flow, thousands of acre feet/month
Y1l Upstream depth at beginning of month, feet
Y2 Upstream depth at end of month, feet

Z1 Downstream depth at beginning of month, feet
z2 Downstream depth at end of month, feet

YMIN Minimum upstream depth at end of month, feet
YMAX Maximum upstream depth at end of month, feet
YAV Average upstream depth at end of month, feet
AVHD Average upstream depth during month, feet
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st of Symbols, Continued

'URB
>TOR

SPLWY

(1)
TPOWN
JLT

Monthly flow through turbine, acre feet/month
Volume change in storage in one month, acre feet
Monthly spillway discharge, acre feet/month
Monthly outflow, acre feet/month

Monthly power output, KWH/month

Annual power output, KWH/year

Fraction of time turbines are operated when upstream water level is below
spillway level, dimensionless

Llow Diagram

{EADING

Yize3 4 EXECUTE ZERO or
Q) +er Q24) |—=|at)-Qad) Zhr 264 | ) (121, ), TR24 ,@
TOTPOW:=0 UM () Cm(4)

D~

s
YMIN=20 YAV = YMIN +‘{NW( R e VOLYAV = YAV R -
: COUNT=I, |, COUNT ! 2 aTuRD = 12000\[AvHD ~ZLI22 | lwoig = ¢3%F asToR - OLYAV-vOLY
YMAK: 68 HOz YI+ YAV 2 voLyi = i >* 4
AVRD = Xt ¥ YAV B
2

@{YAV > 63 )F(AvHD > ¢3 ) asriwy =i200004wo -»ﬂ%lz)’/l]—><3>—)l;\'b/smﬂw¥* waa—>@

F'
F %
- YAV-€3Y'2 veLYav-veLO
> lasriwy = 120000 (A ) VLYo VBT >
\
—__ T WY Vi-¢3 Y vour'i - voLo >
(AVHD>¢3 ) QSTLVY=120 000 (-T VOL Y1-VOLYAV >
F

Q5L YY =0 —)-|iTURB= QTURB X MULT -

D—)a QT0T= QTW+Q5TOR

AXE €Y, 64,684 63
Nz 5%, 58,60, &/

2/
XMAX =~ YAV Z2 =B%\:)LO% 3>

NMIN = YAV !
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Flow Diagram, Continued

I=YAY
—-1P1i)= 0, 820-QTURB(AVHD ~ ﬂi‘z—z) —— Y 21707 POW = TOTPAW + P(1) —)Q

21=Z2
SUMIK) = Sum(e)e] feum): COME+1
(] Nl
MULT
AN PBwWN
a ANPOWN = TOT POYY = 12 SUr(rfimie)
24 lcura(t) s Coma(a

MAD Program and Data

Jo We HOWE S164A 005 010 000 STOREG
Je We HOWE S164A 005 010 000 STOREG
SCOMPILE MADIEXECUTE s DUMP

R

ROPTIMUM REGULATION OF A POWER DEVELOPMENT AT A RESERVOIR
RASSUMED RELATIONSHIPSs VOLUMNE OF RESERVOIR=Y.Pe345/4s
RQTW=221000%#Z2ePe145+QTURB=12000%SQRTe(H) s
RQASPLWY=120000%(Y=63)ePeleSy POWER2Q#H#4820 XKWH/MO
RQUANTITIES IN ACRE FEET/MOe¢ SPILLWAY CREST AT Y=63FT,
R

DIMENSION Q(24)s SUM{4)sCUMLSL) sP(24)

INTEGER QsCOUNTsI9JsKeSUMsCUM

PRINT COMMENT S$1s

READ FORMAT DATA9Q(1l)eeeQ@(24)

VECTOR VALUES DATA=S(1216)#s

PRINT FORMAT ECHOsQ(1)seeQ(24)

VECTOR VALUES ECHO=$1H 818%*$

THROUGH OMEGAs FOR MULT=les=els MULTelLee2

Yi=63

2122464

22=3,

TOTPOW=0

EXECUTE ZEROe (SUM(1)eeeSUMI4)sCUM(1)e0eCUM(A})
THROUGH ALPHAs FOR I=slslsleGe24

YMIN=20

YMAX=68¢ ’

THROUGH BETAsFOR COUNT=1s1s COUNT4Ge1S
YAV={YMIN+YMAX) /24

AVHD=(Y1+YAV) /2,

QTURB=12000+#SQRTe (AVHD=(Z1422)/24)}
VOLYAVaYAVePe3e5

VOLO=634ePe3e5

VOLY1=Y14Pe30e5

QSTOR=({VOLYAV=VOLY1)} /4

WHENEVER YAVeGEs 63

WHENEVER AVHDeGe 636

QSPLWY=1200004%# (AVHD=634) ePsle5

OTHERWISE
QSPLWY=1200006%#({{YAV=63¢)/26)ePele5#(VOLYAV~VOLO} 7{VOLYAY~
ivoLyl)

END OF CONDITIONAL

QTW=QSPLWY+QTURB

OTHERWISE

WHENEVER AVHDe+Ga63

QSPLWY=R120000e#({{Y1=63¢)/26)ePalaS*{VOLY1=VOLO)/¢{VOLY1=VOLYAY
1)

QTW=QSPLWY+QTURB

OTHERWISE

QSPLWY=0

QTURB=QTURB#*MULT

QTW=QTURB

END OF CONDITIONAL

END OF CONDITIONAL

QTOT=QTW+QSTOR

WHENEVER 1000%Q(1)eGeQTOT

YMIN=YAV

OTHERWISE

_038_
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MAD Program and Data, Continued

YMAX=YAV
END OF CONDITIONAL

BETA 22=(QTW/210004)ePes667
PRINT FORMAT CHECK9YAV»QTURB sQSPLWYQTOT
VECTOR VALUES CHECK=$1H09F104253F10,0%$
VECTOR VALUES HWMAX(1)=654964059644963
VECTOR VALUES HWMIN{1)=5649584¢36049616
THROUGH ADD» FOR K=21919KeGed
WHENEVER YAV eGEoHWMAXI(K)
SUM(K)=SUM(K)+1
OR WHENEVER YAVJLEsHWMIN(K)
CUM(K)=CUM(K)+1

ADD END OF CONDITIONAL
P{1)=QTURB*(AVHD=(Z21+22)/2¢)%4820
YizYAV
21=22

ALPHA TOTPOW=TOTPOW+P (1)
ANPOWN=TOTPOW% 12,4 /24,

T

OMEGA PRINT FORMAT POWRsMULT s ANPOWNSSUM(1)aeeSUM{4) sCUM(1)eeeCUM(4)

VECTOR VALUES POWR=31HO»6H MULT=sF542912H
117TH MONTHS ABOVE 65s13/19H MONTHS ABOVE
217TH MONTHS ABOVE 64913/17TH MONTHS ABOVE
317H MONTHS BELOW 56913/17H MONTHS BELOW
417TH MONTHS BELOW 609I3/17H MONTHS BELOW

END OF PROGRAM

$ DATA

ANNUAL KWH sF1lel/
64e5413/

63913/

58913/

61913%9%

012 016 090 210 047 044 027 019 045 064 031 030
010 050 199 137 059 231 307 239 075 050 034 034

Computer OQutput

12 16 90 210 47 44 27
45 64 31 30 10 50 199
59 231 307 239 75 50 34
Yav QTURB GSPLWY  QToT

59491 92015 0 11997

56468 89510 0 15981

56476 88262 0 90001

61681 90324 0 209970

60405 91600 0 47029

58408 90126 0 44001

55418 88189 0 26972

51053 85512 0 18985

49412 82963 0 45002

47490 81411 0 64014

44407 79182 0 31008

39449 75318 0 30002

30428 68527 0 9993

27621 61909 0 49998

45420 70035 0 199002

-C39-
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Optimum Regulation of a Reservolr for Power Production

Computer Output, Continued

49040 80462 0 137016
ATe04 81526 0 59005
56435 84306 0 231023
68 odh 1118 14785 307008
63498 93039 159229 239057
62042 92167 26110 74969
60481 91934 0 49989
58446 90875 0 34027
58494 88643 0 34014

MULT= 1,00 ANNUAL KWH 4241529640
MONTHS ABOVE 65 0

MONTHS ABOVE 64¢5 O

MONTHS ABOVE 64 1

MONTHS ABOVE 63 2

MONTHS BELOW 56 12

MONTHS BELOW 58 15

MONTHS BELOW 60 18

MONTHS BELOW 61 20

Discugsion of Results

Only two years (24 months) of data were used which required 2.2 and 0.4 minutes, res-
pectlvely, of execution and compiling time. Because of space limltations, the printed output
from the computer 1s shown for only one percentage of turbine operation (i.e., the case of
full-time turbine operation). The results indlcate the deslirability of decreasing the range
of turbine operation examined and increasing the number of months studied. Elght years of
record could be studied in five minutes of machine time with this modification.

The results revealed an unexpected advantage to an operation involving considerable
drafting of the reservolr even at substantial reductions of head since such operation

produced the greatest amount of energy conversion.

Critique

This problem has been used 1n a second course in Water Power Engineering but, because of
the complexity of numerical work,full solutlons have not been required previously. Since the
computer makes a trial and error solutlon for the upstream and downstream water levels feasible,

the problem can now be fully solved and will be assigned to students 1in the future.
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Example Problem No. 78
ECONOMICAL SIZE OF CANAL FEEDING HYDRO-POWER PLANT
by
J. W. Howe
Department of Mechanics and Hydraulics

State Unlversity of Iowa

Course: Water Power Engineering Credit Hours: 3 Level: Senior and Graduate

Statement of the Problem

A canal having 1:2 slide slopes is to feed a hydrospower plant. It is to have best
hydraulic efficlency (R = D/E) when carrying the mean discharge of 1500 cubic feet per second,
but capaclty for the maximum discharge of 2000 cubic feet per second with a 2-feet freeboard.
Excavation is limited to 60 per cent of the maximum depth with the excavated material forming
berms on either side to provide the upper portion of the cross~section. Transverse slope of
the ground is assumed to be zero but any longitudinal slope of the canal is possible by slight
divergence from a contour. The following data are glven: Canal roughness coefflcient,

n = 0.025; excavatlon cost, $2.00/cubic yard; annual charge for malntenance, interest, and
taxes, 10 per cent; cost of power, $0.006/KWH; operation schedule, 16 hours/day, 300 days/year.
Slopes varying from 0.00020 to 0.00046 are to be used. Determine the dimensions of the cross-

gsectlion for which the annual cost 1s least.

Solutlon

A diagram of a typlcal canal cross-section 1s shown below to illustrate the ilmportant

dimensions.
2
A=BXY+ 2Y
2
< _ _ BXY + oY _X
: ' R=&P=g5THooXT " 2
B=0.4722 x¥Y

For a serles of slopes varying from 0.00020 to ©.00046 by 0,00002 increments, the Manning
formula is solved by a trial and error process. Since the channel 1s to have best hydraulilc
efficlency at mean discharge (R = Y/2):

By the Mannlng formula

Q= 52 4 5%/3 512

1.5 (Bxy + 2x?)%/3 {12

Q =
N (B + h.h7ee x v)9/3
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Economical Size of Canal Feeding Hydro-Power Plant

Substituting B = 0.4722Y

5/3
oo L5 (0.4702 ¥° 4 2y2)5/3 JL/2 _ (2.472 ¥°)
N (0.47227 + 4.h720v)?/3 (4,94 v)2/3
_ (o N 3/8 _ _ 0.4722 (9 N)3/8
Y = 37T B=0.U722 ¥ = VAL
1.375 S 1.375 8

Hence, there is a particular bottom width for each slope which satisfies the condition R = Y/2
for the mean discharge.

The required depth for maximum discharge at each slope and corresponding bottom width
are next found by trial and error starting with given minimum and maximum values of Y and

using their mean as the depth. After 11 iterations the mean should have the correct value.
(B x YAV + 2 x (vav)2] 5/3 /2
(B + 4.4722 vav)%/3

- L5
QMAX = =

(QUax x N)/1.5 x s1/2

I, =

R = [Bx YAV + 2(vav)?] /3 /(B + b.hre2 vav)?/3
Whenever L > R Whenever L R
YMIN = YAV YMAX = YAV

Depth = 0.6 X (Final value of YMAX + 2)
Annual excavation cost/foot length = C X INT X (Vol. of Exc. =

C X INT X [B x 0.6 DEPTH + 2(0.6 DEPTH) ]

P 0.746
QMEAN X S X H X D X mx 1

1]

Ann. Cost of Power loss/foot length

i

QUEAN X S X H X D X ‘I£7§

Total Annual Cost = Annual charge for Excavation plus Annual Cost of Power ILoss

List of Symbols

QMEAN average discharge rate, ft3/sec

QMAX maximum discharge rate, ft3/sec

A cross-sectlonal area, ft2

R hydraulic radilus, ft

N roughness coefflclent n in Manning formula

S glope of bottom in direction of flow, dimensionless
B bottom wldth of channel, ft

YMIN lowest depth of water, ft

YAV mean depth of water, ft
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Example Problem No. 78

List of Symbols, Continued

YMAX

DEPTH

INT

P

H

D
ANCSXC
ANCSPR

ANCOST

highest depth of water, £t
total depth of canal with 2-ft freeboard

cost of excavation, $/yd3

annual fixed charges (interest, taxes, maintenance), dimensionless

value of power, cents/KWH
hours of operation/day, hrs
days of operation/yr, days
annual cost of canal, $/yr
annual cost of power lost, $/yr

total annual cost, $/yr

Flow Diagram

HEADING |

TRIALS Y/W___‘fMu\w(MM(_> FENE® 2y 5%
J=1, 1, il z R~(G(‘)"YM r2-YhV’) °

@.>

QIVIEAN GMAX)
e | [WEINT |,
INT, P,H,D,S() 5(14 P4, D, T=1,1, :
o G g S0

B

3
L4722 (aMEAN < N)

(.375(5(r)) %ie

YMiN = |

Tlymac < 1€

L= (@MAaX A N)

T (Bt 44722 xYAV) T3

YMIN = YAV

YMAK = YAV

CanTxB(0) . L DEPTHG) +.72 (DEPTHAY)')
27 e

DEPTH (1) = YMAX+2 | ANCSAC =

_ - MeANgsglr)xHxDAP
ANCSPR V475

)~

S(1) s S(14)
B() - B(14)
> > DEPTH(Y): - DEPTH(
ANCOS T = ANC ACE) ¢ ANcsPR ANCoACL)-- ANCSACL14)
ANCS P R(1)ee - ANCSPR(14)
IANCO 80) e ANCESTL4,
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Economical Size of Canal Feeding Hydro-Power Plant

MAD Program and Data

Jo We HOWE S164A 001 005 000
Jeo We HOWE S164A 001 005 000
$ COMPILE MADy» EXECUTEs DUMPy PRINT OBJECT

TRIALS

SLOPES

$ DATA
15004

000020
+ 00034

R

RCANAL IN EARTH WITH 1/2SIDE SLOPESs MANNING ROUGHNESS Ns BEST
RHYDRAYLIC RADIUS (0Qe4722%Y FOR QMEAN)»QMEAN AND QMAX IN CFSe
REXCAVATED DEPTH 0s6(YMAX+2)e COST OF EXCAVATION C $/CUYD»
RFIXED CHARGE INTs POWER COST P CENTS/KWHs OPERATION H HOURS/
RDAYs D DAYS/YRe ANY SLOPE AVAILABLE BY DIVERGENCE FROM
RCONTOURs TRANSVERSE SLOPE ASSUMED ZEROe

R

DIMENSION S(14)sB(14)9sANCSXC(14) sANCSPR(14)sANCOST(14)
1DEPTH(14)

INTEGER 1sJ

PRINT COMMENT $1s

READ FORMAT DATAsQMEAN»QMAXsNsCoINToPoHID#S(1)aeeS(14)
VECTOR VALUES DATA=$2F10409F10e¢393FB84292F840/(T7F1045)%$
PRINT FORMAT ECHO»QMEANsQMAXsNsCoINTsPsHoD9S(1)00eS(14)
VECTOR VALUES ECHO = $1H 2F10409F10e393F86292F8,0/

1 (1HO7F10e5) %S

THROUGH SLOPESSFOR I=zlsleleGelé

BlI)=esT722%(QMEAN®N) ¢Poe3T75/(14375%#S(1)esPeel875)

YMIN=11,

YMAX=18

THROUGH TRIALSIFOR J=lslsJeGell

YAV={YMIN4YMAX) /2,

La({QMAX®N) /(1¢52SQRTe(S{I)})

RE(B(I)SYAV+2¥YAVRYAV) aPe1e667/(B(1)+4e4T22%YAV) 4P o667
WHENEVER LeGeR

YMIN=YAV

OTHERWISE

YMAX=YAY

END OF CONDITIONAL

DEPTH{1)=YMAX4+2
ANCSXC(TI)=CRINT#(B(1)%46%DEPTH(1)+e72%DEPTH( 1) #DEPTH(I))/27
ANCSPR(T)=QMEAN#S( 1) #H*D*P /1475
ANCOST(I)=ANCSXC(I}+ANCSPRI(I)

PRINT COMMENT $4$

PRINT FORMAT RESLTS9S(1)eeeS(14)9B{1)eeeB(14)9DEPTH(1)eesDEPT
1H(14) sANCSXC(1)see ANCSXC(14) 9ANCSPR{1) e oo ANCSPR(14)9ANCOST(1)
2¢0sANCOST(14)

VECTOR VALUES RESLTS = $1H 7F10e5/1HO07F10e5/(1H0TF10e2) %S
END OF PROGRAM

2000, 0025 2400 s10 +60 16 300

+00022 00024 200026 ¢ 00028 +00030 +00032
+00036 400038 « 00040 000042 e 00044 + 00046

—chl-
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Example Problem No. 78

Computer Output

1500 2000 0025 2400 «10 ¢60 16 300
+00020 00022 400024 +00026 + 00028 +00030 +00032 Input Data
«00034 «00036 «00038 +00040 ¢+ 00042 ¢ 00044 ¢ 00046
¢ 00020 ¢00022 200024 « 00026 ¢ 00028 «00030 ¢ 00032
Slopes
+00034 «00036 400038 +00040 400042 +00044 «00046
6660 6048 6438 6628 6420 612 6404
Bottom
5,98 5491 5485 5480 5¢74 5469 5065 Widths
17474 17446 17.21 16499 16478 16459 16642
Depths
16425 16410 15496 15483 15470 15,58 15047
20
20 2413 2407 2401 1496 1492 1.88 Annual Cost
1484 1481 1.77 le74 1472 1469 1066 of Canal
«59 064 «70 o 76 082 «88 094 Annual Cost of
1,00 1405 le11 1e17 1423 129 1435 Fower Lost
2479 2477 277 2478 2478 2480 2482 Total
2,84 2486 2489 2492 2495 2498 3401 Annual Cost
L

Digscussion of Results

A plot is shown below of the total annual cost as a function of the canal slope. It is

seen that a minimum cost of $2.77 occurs for a slope of 0.00023.

$3.00 A”//

& ///’
0
8 2.9 e
2 2.8
2

2.70

0.0002 0.0003 0.0004
CANAL SLOPE

The problem involves 0.3 minutes of compiling time and 0.7 minutes total time.

Critique
This 1s a problem regularly given to students in a Water Power course. Without the use
of the computer, the students can obtain a satisfactory but laborious solution using special

tables. Plotting of computed results is usually necessary for interpolation between points.
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Economical Size of Canal Feeding Hydro-Power Plant

The use of the computer for obtaining a trial and error solution replaces the tables, makes
1t feasible to compute many more points and affords an easy way to secure solutions for

different original data with little additional work.

The problem, though short, illustrates the advantage of the computer approach to an other-

wlse laborious problem and provides a good exercise for students who are learning to program.
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Example Problem No. 79
MOST PROBABLE NUMBER METHOD FOR DETERMINING BACTERIAL POPULATIONS
by
L. L. Kempe
Sanitary Engineering

The University of Michigan

Course: Industrial Bacteriology Credit hours: 3 Level: Senior or
Graduate

Statement of Problem

Write a MAD program that will solve, using the Newton-Raphson method, the MPN (Most
Probable Number) equation. The input of the program will be N, a4 Nys Py The output

should be X, the most probable number of bacteria, and P, the probability associated with X.

Solution
The MPN equation is based on the extinction dilution method for finding the number of
(1,2)

viable bacteria in a solution. The development of the MPN equation is well documented

and will only be reviewed here.
Assuming a negative exponential probability of growth, the probability of bacteria
1 aH

growing in n tubes of culture medium innoculated with milliliters of a solution contain-

ing X bacteria per mililiter is

n!

STOaTT (1 - e-aX)p (e-aX)n-p

If several different dilutions are used, the probability of having Py tubes show growth

out of a total of ny tubes innoculated with ai ml. each is

n Py NPy
. (—(—fi. =N (l—e_aiX > (e_aix> (1)

This gives an expression for the probability of ny out of Py tubes showing growth when the
solution contains X bacteria per ml, Now an expression will be found for the most probable X
given a set of 845 Dys Py To do this, it is noted that if P (the probability) is a maximum,

then 1n P will also be a maximum. Taking the natural logarithm of (1)

ny
-a,X
ln P = 1n : - (n-p;)a,X + p, 1n (1-e” 31 ﬂ. (2)
i= 1 [ <r ‘ nl pl > + e -

Thus



Method for Determining Bacterial Populations

which is an implicit equation in X and gives the most probable number (MPN) of bacteria per
ml. of a solution used in an extinction dilution,

The approach to the problem solution is to use the Newton-Raphson method to find the X
that satisfies the MPN equation. Then, given this X, the probability associated with it is
calculated using equation (2). The probability will give a measure of the reliability of the
experiment. A low probability would say that the experimental results were not reliable.

Several extra features were incorporated in the solution. These include the ability
to do a single calculation or a table of calculations. An automatic estimation of the initial
value of X 1s also included. Any number of dilutions from 3 to 9 may be used for input data.
The output format is automatically adjusted to the number of dilutions.

This program 1s much more elegant than required, but illustrates the power of a reasonably

short computer program. Further information is included as remarks in the program.

List of Symbols

Problem Notation Program
N number of different dilutions used NBR
ay number of ml. used for innoculation A(T)
ny total number of tubesinnoculated N(I)
Py number of tubes innoculated which show growth P(I)
X most probable number of bacteria X
P(%) probability associated with X PPER

Important additional variables:

G = MPN function
_ dG
GP = =
DELX = AX
Flow Diagram
/ READ

CHECK, HOW
NBR, RAT , Al
PIlY) ... PT(Q)

NIty ... NT(9)

AL3) = ALvRAT |

A(L) ... A(LBR)

PRINT

Al .o
AlBBEY
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Flow Diagram (continued)

SPRA Y

\(
CHECK = TARL RET= | PICY FQ0...pCNBR) __y Plaen - N
PLkEY) - e

NG UN SR

N ¢

FLOAT
RET=0 | — NKI)-» N(T)
PIT) - p(I)

GENERATE

L INITIAL \ SoLvE
Plket) >0 w § T Al (rm -
@ G VUESS For ) - eI x N\l)) —@
N ¥ BY NEwton - RAPHSON
Plkey): m_;@
PRINT

- NLTY PG ...

@,4 PPER = ‘oo.ExP§Z[]}M(,,m - AN
AD - (NT) - PLE)) v x +QM(|—Q'A“)")] x
peer

O

MAD Program and Data

SCOMPILE MADSPRINT OBJECTsPUNCH OBJECTsEXECUTESDUMP MPN OO0l
R

RPROGRAM FOR DETERMINING BACTERIAL POPULATION
RUSING THE MPN EQUATION
R

R

RCODED BY WeJe SANDERS 4/3/762

R

R

R

R THIS PROGRAM USES A METHOD DEVELOPED BY HALVORSON AND
RZIEGLER (Je BACTe9255101-121(1933)) AND PROGRAMMED FOR THE
RIBM 650 BY NORMAN AND KEMPE (BIOTECHNOLOGY AND BIOENGINEERING
RII=2+157-163(1960))e IT INVOLVES THE COMPUTATION OF THE
RMOST PROBABLE NUMBER OF VIABLE BACTERIA IN A SAMPLE OF
RMATERIAL. INPUT DATA ARE THE RESULTS OF AN EXTINCTION
RDILUTION EXPERIMENT AND ARE ARRANGED AS FOLLOWS

R

R

RCARD TYPE I

R

R coL VAR

R

R 1=4 CHECK

R 57 HOW

R 8-10 NBR

R 11-14 RAT

R 15-22 Al

R 23924 P(1) 25926 Pl2) eee 39940 P(9)
R 41942 N(1) 43044 N(2) eee 57958 N(9)
R

R

RCARD TYPE 1l

R

R

R 1-8 All) 9~16 Al2) eee 65-72 AtL9)
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MAD Program and Data (Continued)

R
R
R
RMOST NOTATION FOLLOWS THAT OF HALVORSON AND Z1EGLERe

NBR = NUMBER OF DILUTIONS

N(I) = NUMBER OF SAMPLES OF VOLUME A(1) MLe(I=lpeeesNBR)

P(I) = NUMBER OF FAILURES OUT OF N{I) TRIALSes FAILURE
MEANS GROWTH IN TUBES

OV DVRDXTXD

RTHERE ARE TWO METHODS OF TMPUT OF THE All)s THEY DEPEND

RUPON THE SETTING OF THE VARIABLE HOWe

R

RHOW = REG

THIS OPTION 1S USED WHEM A REGULAR DILUTION RATIO

(EeGes DECIMAL) IS USEDe IT 1S OMLY NECESSARY TO PROVIDE
THE FOLLOWING ADDITIONAL DATA

Al = A(l)
RAT = DILUTION RATIO

THE FORMULA AlI} = A1®RATePe(i-1) IS THEN USED TO
COMPUTE THME A(I)e CARD TYPE II IS NOT NEEDED.

HOW = VAR
THIS OPTION IS USED WHEN THERE IS NO REGULAR DILUTION
RATIOe VARIABLES Al AND RAT ARE IGNORED AND AN
ADDITIONAL CARD OF TYPE Il IS REQUIREDe

DOV ODODODOVTN DD OR

RTHERE IS ALSO THE OPTION OF DOING A SINGLE CALCULATION OR THE
RPRINTING OF A TABLE OF CALCULATIONSe THIS DEPENDS UPON THE
RSETTING OF THE VARIABLE CHECKe

R

RCHECK = {BLANKS)

R A SINGLE CALCULATION IS MADE USING THE VALUES OF N(I)
R AND P(1) ON THE CARD.

R

RCHECK = TABL

A TABLE 1S PRINTEDs ONMLY P(1) 1S READe THIS IS TAKEN
AS THE UPPER LIMIT FOR ALL OF THE N{(1) AND P(1}es ALL
FOLLOWING NUMBERS ON THE CARD ARE IGNORED.

g:n:azs::z:x

ESTRICTIONS ON VARIABLES
NBR MUST BE AN INTEGER BETWEEN 3 AND 9
N(I) AND P(I) ARE INTEGERS
Als RATs AND THE A(I) MUST BE FLOATING POINT.
(IF THERE IS DIFFICULTY IN OBTAINING A SOLUTIONS
THE A(I) SHOULD BE RESCALED TO A VALUE CLOSER TO 1.,0)

SAMPLE INPUT CARDS ARE

DDV DVOOND

VAR 3 8 87 8 88
Rle ol «01

R

RTABLRES 3 o1 1. 8

_C5o_
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MAD Program and Data (continued)

START

OMEGA

R

R

R

RTHE OUTPUT OF THE PROGRAM CONSISTS OF A LISTING OF THE INPUT
RVARIABLES PLUS THE VARIABLES X AND Pe THE VARIABLE X IS THE
RMOST PROBABLE NUMBER OF BACTERIA PER MLe OF THE

RSOLUTION. P IS THE PERCENTAGE PROBABILITY THAT THE
RCOMBINATION OF THE N(I) AND P(I} WOULD HAVE RESULTED IF X
RWERE THE TRUE NUMBER OF BACTERIAs

R

R
RIT SHOULD BE NOTED THAT ALL CALCULATIONS THAT YIELD A P
zLESS THAN «01 ARE SUPPRESSED WHEN A TABLE IS PRINTED.
R
R

DIMENSION A(10)+P(10)sPI(10)sN(10)sNI(10)

INTEGER CHECK»s HOWs NBRIPIsIsNI»COUNTIRETHKEY

BOOLEAN ZEROSsTABL
VECTOR VALUES BCD(3)=536$95488595608598725+5848$,3965+5108$
EXECUTE SETERRe (START)

R
RREAD IN CARD TYPE I
R

READ FORMAT INs CHECKs HOWs NBReRATSALePI{1)seeesPI(9)sNI(1)
leeeN1(9)
VECTOR VALUES IN=$C43C35139F4e30FB8e69181283
R
RCHECK NBR
R
WHENEVER NBReLe3sORsNBReGe9
PRINT COMMENTS4NBR MOT IN RANGES
TRANSFER TO START
R
RREGULAR DILUTION RATIO
R

OR WHENEVER HOWeEeSREGS

THROUGH OMEGAs FOR I=l»191eGeNBR

Al1)=A1%RATePs(I~1)

PRINT FORMAT REGeNBR»A1»RAT

VECTOR VALUES REG=$20H&NUMBER OF GROUPS 1S013y9He All) ISy
1F8e492H ¢/18HODILUTION RATIO ISsF6eée2H o%$
R
RVARIABLE DILUTIONS
R

OR WHENEVER HOWeEsSVARS

R
RREAD IN CARD TYPE II
R
READ FORMAT IN1sA{1l)eeeA(NBR)
VECTOR VALUES IN1=$9F8.2%$S
PRINT FORMAT VARsA(1)eesA(NBR)
VECTOR VALUES VAR=$2H4A$5399E1243%%
OTHERWISE
PRINT COMMENTS4INPUT ERRORS
EXECUTE SYSTEMe
END OF CONDITIORAL
R
RPOSITION OUTPUT FORMAT
R
SLIDE(2)=BCD(NBR)
OUT(2)=BCD(NBR)
PRINT FORMAT SLIDE
VECTOR VALUES SLIDE=$1H /1H++59sS +1HX25695HP O/0%S
R
RSINGLE CALCULATION
R
WHENEVER CHECKeEoS $
TABL=0B
RET=0
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Method for Determining Bacterial Populations

MAD Program and Data (continued)

R
RFLOAT N(I) AND P(1)
R
THROUGH PSI+FOR I=1s1l9 LeGaNBR
N(T)sNItE)
PSt P(I¥=PI(1)
PRINT FORMAT NOUTsNI(lleseNI(NBR)

VECTOR VALUES NOUT=$2H NsS5S3+9{17+55)%$
TRANSFER TO GRIND

R
RTABLE
R
OR WHENEVER CHECK+EeSTABLS
TABL=18B
RET=1
P =PIl
EXECUTE SPRAYe(PsN{1)eeeN(NBR)sP{1)essP(NBR))
PRINT FORMAT NOUTsPI(1)
PRINT COMMENTSOS
R
ECALCULATION OF P(1}

START(1) THROUGH CHISFOR KEY=NBRo~1sKEYelLol
P{KEY)=P{KEY)=1s

R
RALL P(I} = Os leEe FINISHED
R

WHENEVER ZEROS« (PsNBR)sANDeP (2)eEs0seANDeP (1) 4EeDe
1TRANSPER TO START
WHENEVER P(KEY)eGEeOo
R
RFIX P{I) FOR PRINTING
R
THROUGH. PHISsFOR I=1s1s14GeNBR
PH1 PI{I¥I=P{1)
TRANSFER TO GRIND
END OF CONDITIONAL
CH1 P(KEY)=P
OTHERWISE
PRINT COMMENTS4INPUT ERRORS
EXECUTE SYSTEMe
END OF CONDITIONAL

R
RCALCULATION OF INITIAL GUESS FOR X
R
GRIND THROUGH UPSe FOR I=192191eGeNBR
WHENEVER P(1)¢6e0ssANDeP(I)eLeN(])
X={ACNBR/2+1)#PLE¥)ISIN(TI*ALTS)
TRANSFER TO TAU

uPs END OF CONDITIONAL
X=5¢
TAY DELX=1le
R

RNEWTON=RAPHSON SOLUTION FOR X
R

THROUGH ALPHAs FOR COUNT=151sCOUNTeGe5040ReoABS¢DELXeL¢40005
G=0,

GP=0s

THROUGH BETAs FOR I=1s1s1eGeNBR

EXPON=1os~EXPs (=A(1)%X])

GsGH+ALI I (P(1)/EXPON=N(T))

BETA GP=GP=A(I)}*A(1)#P(1)%(1e~EXPON)/{EXPON*EXPON)

DELX=G/GP
RX-X-DELX
RISOLUTION UNSTABLE FOR X LESS THAN 0}
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Example Problem No. 79

MAD Program and Data (Continued)

R
ALPHA WHENEVER XolLeOssX=40000001
R
RITERATION LIMIT EXCEEDED WITHOUT REDUCING DELX TO LESS THAN
Re 0005

R

WHENEVER COUNT«G450

PRINT FORMAT CMPTBLsPI(1)eesPI(NBR)

PRINT FORMAT XCED

VECTOR VALUES XCED=$1H +5113913HITER EXCEEDED»*S
TRANSFER TO START{RET)

END OF CONDITIONAL
R
RCOMPUTATION OF P
R

LOGEP=0,

THROUGH GAMMAs FOR I=191914GeNBR

GAMMA LOGEP=LOGEP+ELOGs (BINOMe (N L)sP (1) )~A(I)R(IN(T)=P{ 1)) %X

14P (1) #ELOGe { Le~EXPe (~A{I)%X)})

PPER=1004*EXPe+ (LOGEP)

WHENEVER PPERsLs601sANDeTABLsTRANSFER TO START(RET)
PRINT FORMAT CMPTBLSPI(1)eesPI(NBR)

VECTOR VALUES CMPTBL=$1H /2H+P353+9(17955)%$
R
RPRINT ANSWERS

R

PRINT FORMAT OUT#XsPPER

VECTOR VALUES OUT=$1H »S54+S sE10e39F 74229
TRANSFER TO START{(RET)

END OF PROGRAM

SCOMPILE MADsPRINT OBJECTsPUNCH OBJECT ZEROSO001
R
RPROGRAM FOR CHECKING TO SEE IF P(2)sesesP(NBR) ARE ZERO
R
R
R

EXTERNAL FUNCTION (PsNBR)
INTEGER IsNBR
ENTRY TO ZEROS.
THROUGH ALPHA)FOR I=2s1s1eGaNBR
ALPHA WHENEVER P(I%eGe0esFUNCTION RETURN 0B
FUNCTION RETURN 18
END OF FUNCTION
END OF PROGRAM
$COMPILE MADsPRINT OBJECT#PUNCH OBJUECT BINOMOO1
R

RPROGRAM FOR COMPUTING THE BINOMIAL COEFFICIENT
R
R

R
EXTERNAL FUNCTION (UPsDWN)
ENTRY TO BINOM.

FACT=1s

THROUGH ALPHAy FOR TOP=DWN+lsslesTOPsGeUP
ALPHA FACT=FACT*TOP

THROUGH BETA» FOR BOT=2491e9B0TeGe (UP=DWN)
BETA FACT=FACT/BOT

FUNCTION RETURN FACT
END OF FUNCTION

END OF PROGRAM

$DATA

VAR 3 8 87 8 88
le ol +01
TABLREG 3 #1 1. 3
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Method for Determining Bacterial Populations

Computer Output

A ¢100E 01 1¢000E-01 14000E=-02
N 8 8 8 X P 0/0
P 8 8 7 0208E 03 39,27

NUMBER OF GROUPS IS 3¢ A(1) IS 140000
DILUTION RATIO 1S 1000 o

N 3 X P 0/0
P 3 3 2 o110E 03 44444
P 3 3 1 0462E 02 42477
P 3 3 0 0240E 02 36459
P 3 2 3 0292E 02 024
P 3 2 2 ¢215E 02 2047
L 3 2 1 o149E 02 12451
P 3 2 0 ¢933E 01 32.82
P 3 1 3 e159E 02 003
P 3 1 2 #¢115E 02 065
P 3 1 1 e TASE 01 6¢58
P 3 1 0 o427E 01 3743
P 3 0 2 ¢636E 01 s16
P 3 0 1 +«385E O1 3610
P 2 3 1 +360E 01 002
p 2 3 0 +286E 01 022
P 2 2 1 e276E 01 17
P 2 2 0 0211E 01 2432
P 2 1 2 0268E 01 002
P 2 1 1 ¢205E 01 63
P 2 1 0 ¢147E 01 11496
P 2 0 2 ¢199E 01 002
P 2 0 1 ¢143E 01 1412
P 2 0 0 ¢918E 00 31,93
P 1 3 0 ¢157E 01 003
P 1 2 1 e 194E 01 03
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Example Problem No. 79

Computer Output (continued)

v ©® © © © ®©® vV

Discussion

1 2
1 1
1 1
1 0
1 0
0 2
0 1
0 1
of Results

The output shown above was designed to be 1llustrative

© O

e114E
*112E
*736E
e723E
¢357E
+619E
s611E
+305E

01
01
00
a0
00
00
00
00

more than three tubes would be used in each dilution group.

Compiling time for the program was 1.1 minutes.

took 0.5 minutes.

Critique

This problem is very appropriate for student solution.

063
*18
6045
062
39420
016
05
3436

rather than useful. In practice

Computing the results shown above

It gives the student an opportunity

to become familiar with numerical solution of complex equations as well as an opportunity to

become familiar with the use of the MPN equation.

Solution of the MPN equation by hand 1s

extremely tedious, so that the tables prepared by the instructor's program will be useful

in later work.
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Example Problem No. 80
ITERATION OF SUM OF PRINCIPAL STRESSES
AT INTERIOR POINTS OF PLANE RINGS
by
William Weaver, Jr.
Department of Civil Engineering

Stanford University

Course: Experimental Stress Analysis Credit Hours: 3 Level: Graduate

Statement of the Problem

Write a computer program which will evaluate the sum of principal stresses at
interior points of plane rings for which the boundary stresses are known from photo-
elastic analysis. The recommended procedure is to iterate the Laplace difference
equation applied to an x-y grid network of approximately square elements obtained by
the conformal transformation of the R-theta polar network using the relationships:

x = 1n (R)

i

y = theta

The program should be flexible enough to accommodate a whole ring or any seg-
ment of a ring for which the stresses on the radial boundaries are known to be equal
by symmetry. Divide the central angle of the polar network into 50 increments. Make
the elements of the transformed rectangular grid as nearly square as possible. The
number of radial increments will depend upon the ratio of the outer and the inner
radii of the ring.

Limit the number of storage locations required by the grid to about 3,000.
Iterate the sum of principal stresses to within 3 decimal point accuracy. Limit the

number of iteration cycles to 50.

Solution
The Laplace difference equation for the sum of principal stresses at a lattice

polnt O and its four neighboring points 1, 2, 3, 4 (see Fig. 1) may be written:

S3—SO i SO—Sl SB'SO ) SO_SM
AX AX Ay Ay
3 L " 2 & - 0 (1)
Axl + Ax3 Ayg + Ayu
2 2
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For the present problem let Axq = Ax3 = PAy, = PAY ),

Solving for Sy in equation (1),
2

1
So = —EE;EII;— (5] + S3) + EYE%IIF_ (S, + 8y) (2)

in which, S

Il

Sum of principal stresses at a point

D Ratio of x-intervals to y-intervals.

Equation (2) may be used for the iterative evaluation of S at the lattice points
of the transformed grid.

In the photoelastic analysis of plane rings the principal stresses at the inner
and outer edges are determined experimentally at even intervals of the central angle.
A practical minimum interval is 5°, or 7T/36 radians.

By conformal transformation:

x=1n (R); v =26
Let Ay = A6 = 7 /36. Define M as the number of angular increments, i.e., increments
in the y-direction. M 1is given by

total angle of ring

M = A6

Thus, for a full ring and A6 = 5°, M = 360°/5° = 72 . For a quarter ring
M = 90°/5° = 18.
In order to obtain an exactly square grid, the number of subdivisions in the

radlal direction must be:

. Xy %o In(Ry)-1n(Ry) _ §§-1n(R a)
1 /36 T /36 T N 0
in which,
RO = Inner radius of ring.
RN = QOuter radius of ring.
Xq = Transformed inner radius.
Xy = Transformed outer radius.

In general, Nl will not be an integer, but an approximately square grid may be
obtalned by computing the actual number of intervals N used in the radial direction

as the next higher integer value of Nl'
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Iteration of Sum of Principal Stresses

6
N = %—ln(RN/RO):I (3)
Rounded up
The dimensionless ratio, p, may be computed from:
N
_oAx 1 36
Ay = § - an 1n(BRy/Ro) (4)
Radii of interior network circles are determined by the relationship:
(x,) (x~+JAx) in(R,/R.) . .
Ry=e 3o e 0T (e N ONIN SRR N (5)

in which, Rj = Radius of jth network circle.

J = Radial index.

Assuming that a storage space of about 3,000 locations is available for the
M x (N+1) matrix of lattice points required for the soluticn,
M X (N+1) € 3000. (6)
For a full ring the maximum value of M is 3600/50 = 72, and the value of N 1is
given by substitution of equation (3) into equation (6).

72 { Fé ln(RN/RO)] + 1¢£ 3000 (7)

i Rounded up
Equation (7) yields the maximum values of N and the corresponding ratio of radii.

(M) pax = %15 (By/Ry)pax® 35.0
The minimum non-trivial values for these parameters correspond to a network of
only two intervals in the radial directilon.
(N)min = 2 <RN/RO)mi1'1’:j 1.19
Figures 2 and 3 show the polar and transformed lattic networks for a quarter
ring having RN/RO =4, M =18, and N = 16. This configuration, accompanied by a set
of hypothetical boundary stresses, constltutes the first of two trial problems submitted
to the computer. The second problem, for which no figure is gilven, consists of a
quarter ring having RN/RO =4/3, M= 18, and N = 4,
The first row of the transformed grid may be omitted because the stresses must

be the same as in the last row.
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Flow Diagram

>

PRESET T < INDEX(1)
I=0,li -m-‘tNoEx(x)-_I @ — > INNER(T)
R6,RN,6UTER(L) I>m ) — 1 BUTER(T)
... @UTER(M) f
36.p (RN - 36.5 (RN
Ni=3fn (R P==2 (R £T
" £ 0 RN
@-_) < NL 41 Ré TN . Ré FZZPIFI R(J):ReeFNﬂ‘R9>
N= FL= ;72—
2.(P*+1.)
7 7 S(1,9) = INNER(I) ITER
Iz1,! J=gl - (FI/FN)INNER(T) _,@_,SWEEP <0 SWEEP = SWEEP+1
M’ TN -QUTER(1) COUNT = O

TEMP =F1(S(1,3-1)+5(1,T+1) — F lst1 702
+Fa(s(~,J)+s(a,J» —(15(.)-Temel<o00)-—{S(1.7)=Temp

!

COUNT=COUNT+1

®

® ©

TEMP =
€ £ F
I=zz2 JT=1,1 Fe(S(1,7-1) —>(]s(1,J)-Temp{<o,00i)—>S(I,J)=TEMP
I>M)-/r) J)N)-]) +S(I,J+1)) l ( T ( )
+F2(S(1-1,d) ! 1
+SCL+1,T)

COUNT = COUNT + {

TEMP =F4(S(M,J-1) +S(H,T+1)) ‘ - £ =
+F2(S(-1,9)+3 (1,7)) —_)G 2 : i <a.c@——>s(M,J) —

i ]

COUNT = COUNT+L

®

R(0)...R(NJ, M, N, _®

S(10)...s(M,N)
SWEEP , COUNT,
™M (N-—;)

/

Speclal Output Form when N < 10:

,M,N,R(o),,,R(N) mosx(r)
INDEX(0),..INDEX(N) s(z,6)...5(I,N)
" .

INNERélg = Boundary stress at inner edge.

OUTER(I) = Boundary stress at outer edge.

Fl = Welghting factor from first term in equation (2).
F2 = Welghting factor from second term in equation (2).
FJ = J expressed as a floating point number.

FN = N expressed as a floating point number.
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Iteration of Sum of Principal Stresses

MAD Program

We WEAVER DO46N 005 005 000
We WEAVER DO46N 005 005 000
$COMPILE MADs EXECUTE

R

RTHIS PROGRAM IS INTENDED FOR USE IN EVALUATING THE
RSUM OF PRINCIPAL STRESSES AT INTERIOR POINTS OF
RPLANE RINGS ANALYZED EXPERIMENTALLY BY THE

RMETHOD OF PHOTOELASTICITY. THE PROCEDURE CONSISTS OF
RTHE ITERATION OF THE LAPLACE DIFFERENCE EQUATION
RAPPLIED TO AN X~Y GRID NETWORK OF APPROXIMATELY
RSQUARE ELEMENTS OBTAINED BY THE CONFORMAL
RTRANSFORMATION OF THE R-THETA NETWORK USING

RTHE RELATIONSHIPS

R X=LN(R)

R Y=THETA

RTHE PROGRAM IS APPLICABLE FOR A WHOLE RING OR

RANY SEGMENT THEREOFsTHE RADIAL BOUNDARIES OF

RWHICH LIE MIDWAY BETWEEN ADJACENT RADII OF SYMMETRYs
RTHE CENTRAL ANGLE IS DIVIDED INTO FIVE DEGREE
RINCREMENTS#RESULTING IN M=72 INCREMENTS FOR A
RFULL RINGs»M=36 INCREMENTS FOR A HALF RINGyM=18
RFOR A THIRD RING9ETCe THE NUMBER OF RADIAL INCRE-
RMENTS DEPENDS UPON THE RATIC OF THE OUTER AND THE
RINNER RADII OF THE RINGe IN ORDER TO LIMIT THE NUMBER
ROF STORAGE LOCATIONS REQUIRED BY THE GRID TO ABOUT
R3s000s THE MAXIMUM RATIO OF RADII PERMITTED Is 35,
RTHE MINIMUM NON-TRIVIAL RATIO IS 1419
RTHE CALCULATIONS ARE CARRIED TO 3 DECIMAL PLACE ACCURACY
ROR 50 ITERATION CYCLESs WHICHEVER OCCURS FIRST.

R

PRINT FORMAT TITLE

VECTOR VALUES TITLE=$1H1929HITERATION OF SUM OF PRINCIPAL/
11HO942HSTRESSES AT INTERIOR POINTS OF PLANE RINGS*$

R
RREAD AND ECHO CHECK DATA
R
START READ FORMAT DATA1sMs INNER(1)eeeINNER(M)
READ FORMAT DATA2sROsRNsOUTER(1)eeoQUTERI(M)
VECTOR VALUES DATA1=312+51895F1043/(7F1063)%*$
VECTOR VALUES DATA2=3$2F10.495F10s3/(7F10e3) %%
THROUGH PRESETs FOR I=0s1s1eGeM
PRESET INDEX(I)=1
PRINT FORMAT DDATAl
PUNCH FORMAT DDATAl
VECTOR VALUES DDATAI=$1HO9S594HDATAsS15s5HINDEX»S5s5HINNER S5

135HOUTER*$
THROUGH ALPHAy FOR I=131s1eGeM

ALPHA PRINT FORMAT DDATA2s INDEX(I)sINNER(I)sOQUTER(I)
THROUGH ALPHAls FOR I=1slsleGeM

ALPHA1 PUNCH FORMAT DDATA2s INDEX(1)sINNER(I)sOQUTER(I)

VECTOR VALUES DDATA2=%1H #S2791292F1043%$%

R

RCOMPUTE ITERATION FACTORS

R
N1=(364/3014159)%ELOGe (RN/RO)
N=N1+1
Pz(36e*ELOGe (RN/RO))/(3414159%N)
Flzle/{2.%(P¥P+14))
F2=P#P%F]

R
RCOMPUTE INTERMEDIATE RADII
R(USING FLOATING POINT NF=N AND JF=J)

R
NF=N
THROUGH BETAs FOR J=z0s19JeGeN
JF=J
BETA R{J)=ROXEXPe ( (JF/NF)*ELOGe (RN/RO))
R

RSET STARTING VALUES FOR S USING LINEAR APPROXIMATION
RTO ESTIMATE INTERIOR VALUES BASED ON BOUNDARY VALUES.
R(USING FLOATING POINT NF=N AND JF=J)
R

DIMS(2)=N+1

THROUGH GAMMAs FOR I=lslsleGeM

THROUGH GAMMAs FOR J=0slsJeGeN

JF=J
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MAD Program, Continued

GAMMA

ITER

DELTA

EPSIL

2ETA

QUIT

ANS2

ETA

S(IsJ)=INNER(I)=(JF/NF)*(INNER(I)=QUTER(I)}}

R

RINITIALIZE COUNTERS FOR NOs OF CYCLES AND ACCURACY
R

SWEEP=0

R

RITERATE FIRST ROWsUSING VALUES FROM FIRSTsLASTsAND
RSECOND ROWSe

R

SWEEP=SWEEP+1

COUNT=0

THROUGH DELTAs FOR J=lsleJeGe(N~1)
TEMP=F1%#(S{19J=1)+S(1eJ+1))+F2¥(S(MsJ)+S5(29J))
WHENEVER«ABS e (S(19J)=TEMP ) oL 0001 sCOUNT=COUNT+1
S(1sJ)=TEMP

R

RITERATE INTERMEDIATE ROWS

R
THROUGH EPSILs FOR I=2s191eGe(M=1)
THROUGH EPSILs FOR J=ls1l9JeGe{N=1)
TEMP=F1%(S{1sJ=1)+S{IsJ+1))+F2R(S(I=19J)+S(I+1sJ})
WHENEVER«ABSe{S(IsJ)=TEMP ) eL 404001 sCOUNT=COUNT+1
S{IsJ)=TEMP

R

RITERATE LAST ROWsUSING VALUES FROM FIRSTs+LASToAND NEXT-

RTO-LAST ROWS.

R

THROUGH ZETAs FOR J=1lslsJeGe(N-1)
TEMP=F 1% (S(MsJ=1)+S(MsJ+1) ) +F2¥(S(M=15J)+S(190J})
WHENEVER«ABSe (S(MsJ)=TEMP ) ¢Le0+001 sCOUNT=COUNT+1

S(MsJ)=TEMP

R

RTEST FOR NO+OF CYCLES AND ACCURACY
R

WHENEVER SWEEPeGE«50sTRANSFER TO QUIT
WHENEVER COUNTeLas (M%(N=1))sTRANSFER TO ITER
WHENEVER NeLo10
TRANSFER TO ANS2
OTHERWISE
R
ROUTPUT FORM FOR N GREATER THAN OR EQUAL TO 10,
R

PRINT FORMAT FORM1sR(0)eeeR(N)

VECTOR VALUES FORM1=$1HOs11HVALUES OF R/(TF1044)%3%

PRINT FORMAT FORM1AsMsN

VECTOR VALUES FORM1A=$1HOs15HITERATED VALUES9S1092HM=512+510,
12HN=s12//%$

PRINT FORMAT FORM1B9sS(190)eeeS(MsN)

VECTOR VALUES FORM1B=$(7F1043)*$%

PRINT FORMAT FORM1CsSWEEP s COUNT sM* (N~1)

VECTOR VALUES FORM1C=$1HO»14HNOe OF CYCLES=9511412/1H0923HNO
1 OF ACCURATE VALUES=¢14/1H0923HNOe OF ITERATED VALUES=914%$%

END OF CONDITIONAL

TRANSFER TO START
R
RSPECIAL OUTPUT FORM FOR N LESS THAN 10.

R

PRINT FORMAT FORM2sMsNsR(O)eeeRI(N}

VECTOR VALUES FORM2=$1HO»15HITERATED VALUES9S1092HM=512s510
12HN=912/1HO0953s6HVALUES /1HO+S5592H0F sS792HR=953910F10.4%*$

PRINT FORMAT FORM2As INDEX(O)eee INDEX(N}

VECTOR VALUES FORM2A=31H0 9S4 95HTHETA»S3 9 THINDICES»
15691199110%8%

THROUGH ETAs FOR I=19191eGeM

PRINT FORMAT FORM2BsS5*INDEX(1) s INDEX(I)sS(140)eeeS(IsN)

VECTOR VALUES FORM2B=$S591395791295S391UF1043%g

PRINT FORMAT FORM2CsSWEEP s COUNT sM¥* (N=1)

VECTOR VALUES FORM2C=%$1HOs14HNQe OF CYCLES=9S5S11412/1H0»
123HNOs OF ACCURATE VALUES=+14/1H0923HNOs OF ITERATED VALUES=
214%%

TRANSFER TO START

INTEGER MsNslsJsSWEEP» COUNT » INDEX

DIMENSION INNER(72)sOUTER(72)sINDEX(72)9sR(42)

DIMENSION S(3000yDIMS)

VECTOR VALUES DIMS=23s1942

END OF PROGRAM
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Data
$DATA
18
1711 2641
2641 1711
15000 60000
-8005 -8985
-8985 -8005
18
1711 2641
2641 1711
45000 60000
-8005 -8985
~-8985 -8005
Computer Output
DATA
VALUES OF R
15000 146358
247510 3,0000
540454 545020
ITERATED VALUES
~5+000 ~3,075
~24365 —-24584
-1.988 -0e471
~1e852 =1961
-3.108 -34098
-leb642 -1e545
-24620 -24883
-26994 ~24¢697
=1+691 -24001
-34836 -4,063
-04307 -0e717
-3.089 ~-3e¢484
-64896 le711
-1e¢799 ~26266
=54318 -64031
Oe079 =~0e566
=3,4840 -44425
34416 24202
-24213 -24785
-74¢103 -8e241
-0e233 ~0e936
-44730 ~5e491
24653 1¢549
~-24800 -34420
-84628 ~10.000
-0,931 -1e577
-54487 -64354
le214 06376
=34351 =34955
-94625 24641
~14692 ~2e222
-54790 -6¢653
-06285 -0e812

Iteration of Sum of Principal Stresses

=5000
3416
613
3000
=9625
-6896
=5000
3416
613
3000
-9625
-6896

INDEX

V-4 WUEWN -

le7838
362715
640000

M=18
~24290
-24790

34,000
=24142
-24899
-14556
-3,119
-04457
=24325
~44278
-lellé
-3.882

04945
-2,730
'6-909
~1le154
~54068

1,210
~34363
~94625
-1e583
~64357

0,618
~44068

34,800
-24190
~T+358
-04355
~44604

1,652
=24746
-T7¢696
=14308

-3222 -1800
3800 4000
-457 -1800

7 -2697

-9900 ~10000

-5002 -2697

-3222 -1800
3800 4000
~-457 -1800

7 =-2697

~-9900 -10000

-5002 -2697

INNER OUTER
-54000 3,000
=-36222 04007
-1.800 ~2e697
-04457 -54002
06613 -64896
16711 =84005
24641 ~84985
34416 ~94625
3,800 -94900
44000 =-10,000
34800 ~94900
3e416 ~9e625
24641 -84985
1e711 ~84005
0613 -650896
-0e457 ~54002
-1.800 ~24697
-36222 04007
149453 241213
35676 348905
N=16
-1.982 -14920
-2¢953 ~34034
~34222 ~24498
=-20362 ~-2595
=2¢404 ~-1leb64
-14666 =14851
-34304 -34412
-04725 -0,933
=2e654 -24979
~44543 -54002
-14507 ~14901
~-44290 -44727
0.288 «0,293
-3,197 ~34674
-84005 24641
-1e706 ~-2¢238
~54799 ~64659
04370 -04363
=3,966 ~4eb614
3,800 24529
~-24196 ~24798
~76360 -84533
-0,188 ~0e905
-4eT767 -54544
24530 le463
-24791 ~36401
-84532 ~94900
-~1.013 -1ls621
-54323 ~6el142
06812 0,087
=34275 =34825
~8+985 le711
~14783 -2¢249

-c62-

=457
3800
~3222
=5002
-9900
7

-457
3800
-3222
~5002
-9900

243133
402426

~1,999
-2,977
-2,049
-24816

0,007
-2,085
=3.411
~1,153
=3,290

0,613
~2,297
-54234
-0,824
“4,174

14649
—24762
~T7,699
-1,022
-54332

le461
=34407
=9,900
~1ls564
—64425

04557
-4,038

30416
-24202
~7.098
=-04556
—4e411

0.948
-24712

613
3416

-6896
-9625

613
3416

~6896
~-9625

205227
406266

-24160
~2.688
-1.860
-24998
~14800
-2¢348
-3.271
-1+4406
-34578
04132
-24693
~54897
~-14321
~44713
0,807
-3,291
~-84985
~14632
-64149
0e554
~4e 044
44000
-2.188
-Te443
-00230
~4o724
24204
-24773
-84239
~lel42
-54056
0¢294
-34178



Example Problem No. 80

Computer Output, Continued

~3e657 -4¢158 -44700 -54308 -64024 ~64905 ~84005
Oebl3 0e135 -04302 -04708 ~14102 =1,494 ~le886
~-24280 ~264675 ~34071 ~3¢467 ~34866 -44276 ~44716
-50227 -50893 -6.896 -0.457 -00722 -09928 ‘1.146
~1¢397 =14680 ~14987 -2¢310 ~20639 ~24964 -34275
=34564 -34824 =44054 =44272 —44540 -54002 ~1800
=1e640 =1e542 =14551 ~14660 -1e4843 =-2,076 -2e337
~2¢609 ~24872 =3.108 =34294 =34403 ~34404 -34267
-24991 ~24697 ~34222 ~24497 -2e047 ~14858 =1e849
~1e957 =24137 -24357 -24590 -24811 ~-2,993 -34103
-3¢09%4 -24896 ~24402 ~1le&62 0007
NOe OF CYCLES= 50

NOe OF ACCURATE VALUES= 211

NOe OF ITERATED VALUES= 270

DATA INDEX INNER OUTER

1 -54000 34000

2 -34222 04007

3 -14800 —2.697

4 =-0e457 -54002

5 0.613 -60896

6 le711 ~-84005

7 2¢64] -84985

8 34416 -94625

9 34800 -94900

10 44000 ~104000

11 34800 -94900

12 3e416 ~94625

13 24641 ~84¢985

14 le711 -84005

15 0613 -64896

16 -0e457 ~54002

17 -14800 -20697

18 ~34222 04007

ITERATED VALUES M=18 N= &4
VALUES
OF R= 445000 448356 51962 55836 640000
THETA INDICES 0 1 2 3 4
5 1 ~54000 ~-26999 ~1le644 -0,018 34000
1o 2 =3e¢222 -2e524 -1e845 -14042 06007
15 3 ~14800 -24023 -2¢226 ~24430 -24697
20 4 -04457 =1e551 -24607 -3e4723 -54002
25 5 0.613 -1.132 —2.901 ‘40775 ‘6.896
30 6 1,711 -0e675 -3,039 -5.463 -84005
35 7 24641 ~0e248 -34092 -5.974 ~84985
40 8 3416 Oell4 ~3,086 ~64297 -94625
48 9 34800 0e326 ~34064 -6e0447 -94900
50 10 44000 Oetls -34050 ~6e493 ~104000
55 11 3,800 0e326 =34064 -6ehal -94900
60 12 3e416 0.113 -34086 -64297 ~-9¢625
65 13 24641 -04248 -34092 ~54974 -84985
10 14 le711 ~0e674 ~34039 ~54462 -84005
75 15 06613 -14130 -24899 ~44774 -64896
80 16 ~0e457 -1e549 ~-24606 -3,722 ~54002
85 17 -14800 -24022 -24225 -24429 -24697
90 18 ~-30222 -2e524 -le844 ~1e4042 04007
NOe OF CYCLES= 11

NOe OF ACCURATE VALUES= 54

NOe OF ITERATED VALUES= 54
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Iteration of Sum of Principal Stresses

Discussion of Results

The first problem submitted to the computer involved 270 i1terations in each
cycle. After 50 cycles, 211, (or about 78%)of the values were accurate to three
decimal places. Because N was large, values of R and S were printed sequentially
according to the general format labeled QUIT.

The second problem involved 54 iterations in each cycle, and all values were
accurate to three decimal places after 11 cycles. Because N was, 1n this case, less
than 10, values of R and S were printed in rows and columns corresponding to Figure 3,

according to the special format labeled ANS2.

Critique
Thls problem is very well suited for digital computation. The analysis of plane
rings 1s a recurring problem in photoelastic experiments, and the iteration of the sum

of principal stresses at interior points is an essential, though tedious, step in the

total analysis. The fineness of the lattice network is not significantly limited

by the storage space of a computer of reasonable size. A more important factor in
limiting fineness 1s the practical difficulty of measuring boundary stresses accurately
at the inner edges of plane rings for small increments of the central angle. Incre-

ments of 5° are therefore used as a practical minimum in establishing the lattice

network.

X

A 4

1 AX'I N 0 AXS z'\3
1) \' 7 A\
Ay2
2
oD
3
Figure 1.

Lattice Point O and 1ts Four Neighboring Points 1,2,3,4
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4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

13

14

15

16

17

18

4 5 6 7 8 9 10 11 12 13 14 15

Flgure 3.
Transformed Quarter Ring

RN/RO =4 M=18 N =16
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Example Problem No., 81
ELASTIC BUCKLING LOAD FOR COLUMNS OF NON-UNIFORM CROSS SFZTION
by
K. H. Chu
Civil Engineering Department

Illinois Institute of Technology

Course: Advanced Structural Theory and Design Credit hours: 3 Level: Seniors

or First Year
Graduates

Statement of the Problem

The differential equation for elastic buckling of a column as shown below is

as follows:

‘L-~—~%—«-E~—P— —X
| L !

~
ly

2

ay _ M - . B _ _ _pxy

ax® E*IA EXTA EXTO*T (1

where X is the coordinate along the longitudinal axis of the column, Y is the
deflection of the column, M is the bending moment, P is the axial load, E is the
modulus of elasticity, IA 1s the moment of inertia of the cross-section about the
Z axis normal to the XY plane at the point under consideration, IO is the same
at a certain reference polnt and I = IA/IO,

The buckling load, PCR, is defined as the smallest value of P which will
satisfy the above equation with appropriate boundary conditions. The value of

PCR 1is to be determined by an iterative procedure using a digital computer.

Solution

Equation (1) is analogous to the following equation

B = (2)

where W is the distributed load on a beam whose longitudinal axis coincides

with the X axis and M' 1s the bending moment due to W. W 1s positive when 1t
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Elastic Buckling Load for Columns of Non-Uniform Crogs Section

is acting upward. M' is positive when it causes compression in the upper fiber
Qf a beam,
If YQ is a solution of Eq. (1), then using 1% as elastic weight W, the

bending moment obtained will be equal to
1= - ¥Q
M' = YR = - T *AX*¥dX + A¥X + B (3)
where M' is renamed as YR and A and B are arbitrary constants determined by the

boundary conditions.

But, from Eq. (1)

PCR
YQ =Em— * YR (Ll-a)
Therefore YQ _ PCR
IR “E¥T0- (4b)
Y
or PCR = g ¥E*IO (4e)

The procedure of obtaining the buckling load then is as follows: The
column length L is divided into N equal spacings¥* of length A . Assume an initial
set of deflectionsYO(J) for each point at X=J* A . Let I(J) be the I at the

same point. Then take - Yg g as the distributed elastic weight W at the point

X=J%¥)\ . Obtain the bending moment Y(J) at each of the equally spaced points. If
the ratio )
o~
¥o(J) _ ¢ for 0 <IN (5)
Y(J)

where C 1s a constant (within a tolerable 1limit) then
PCR = C*E¥IO (6)
If not, then take thel§(J)'S as the new values for ?b(J)'S and repeat the
procedure. Note that the real deflection Y(J) due to P=1 is given by the

following equation:

~ o d

v(g) = B - Hd) (for P = 1) (7)

* Spacings do not have to be equal, but computations will be simpler if equal
spacing is used.
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The problem is essentially an elgenvalue problem and it can be proved
mathematically that the procedure will always converge to the eigenvalue which
corresponds to the smallest value of P i.e. PCR.

Newmark (reference 1) has shown that the numerical integration of
equations (1) and (2) can be facilitated by the following method. If W is a
distributed load, then we may pass a parabola through three points of W, say
W(1), w(2) and W(3), which are equally spaced at a distance A and convert the

distributed load to concentrated loads by the formulas as shown below.

w3

33—
+
e
SN +
g
NELE

cwW(l) = [7*w(1) + 6%¥(2) - W(}ﬂ * %ﬁ (8a)
ci(z) = [u(1) + 10%i(2) + w(z)j « B (8b)
ci(3) = [rwi(s) « ei(2) -w()] o+ X (80)

The shear and moment due to a system of concentrated loads at equally
spaced polnts can be easily obtained without further comment.
The solution to the problem consists of writing a program using the above procedure
which will determine the elastic buckling load of a column with simply supported
ends and wilth either uniform or non-uniform cross-section. For columns of non-
uniform cross-sections, the cross-sections may be varying continuously or discontinuously
with steps occurring at any of the equally spaced points along the column. If
the discontinuity occurs between two of the nelghboring equally spaced points,
the column will be treated as if the cross-section varles continuously between
these two points.
It should be noted that the solution technique, with slight modification,
can be applied to a cantilever column with one end free and the other end fixed.

For example, the cantilever column and the simply supported column as shown below

willl each have the same buckling load.
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Elastic Buckling Load for Columns of Non-Uniform Cross Section

=7 a

L !
N
P~ — . B F
- ! - (b)
P S PR BN _[
1

The following suggestions may be helpful in programming the solution. Let us

define the following guantities:

¥(g) - L0 i@ (9)
12¥70(Y) i LQ*?o(%) i R IE) i NZ¥0(F)
CPCR = N = =~ = o mgC T o (10) *
E*I0*Y () ¥(3) A*KY(5) KY(7)
s 18)) (11)
(CPCR)*KS?'(%)

Let "EPS" be a preassigned tolerance value. Then the condition for con-

~
stancy of the ratio ?8 J) (Eq. (5)) may be restated as follows:
[T - 1] < EPS anda T >0 for all N-1 points)

with 0 <J< N ) (12)

The formula for the critical load (Eq. (6)) may be rewritten into the
following form

PCR = (CPCR)* E_*g_o_ (13)

L

If the number of points satisfying the above condition (Eq. (12)) is Q,
then 1f @ <N - 1, we shall take the KY's as the new values of YO's and repeat
the process. In order to prevent the machine from doing an endless number of itera-
tions, a maximum number of cycles should be specified.

Moreover, in order to prevent the value of ?b's from becoming very large after

many lterations, we may take the new ?b's in terms of the maximum value of Y0

\

* Note that N 1s the number of divisions and "integer division" is assumed
for evaluating the quantity N
e
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~
or some value of YO which is close to the maximum, say the ?O at a point near
the midpoint (J = g) of the column. In other words, we shall deflne a new

variable YO, such that

YO(J) = ZO 1%) for initial values (1ba)
Y0(5)
YO(J) = §X£%l for subsequent iterations (14p)
KY(@)
In Eq. (14b) " N
KY(J) N )
KY(J) = = KY(3) = TN (15)
70(3) e ¥0(3)

The KY's are obtained by taking

YO

J
- 5= W(J) (16)
EW(J) = C—W)éﬂ (17)
and
Ky(J) = %& where M!' is the bending moment (18)
caused by EW(J)

From the definitions of Y0 and KY, we have

N ~ N ~ ~
vof)  Yo(z) /Tod)  Tod)
= = (19)
N ~ N v N =N
Ky (%) k(3 / Yo(z) KY ()
Therefore, the formulas for CPCR and T may be rewritten as follows
Ne*y0 (%)
CPCR = ———p— (20)
KY(@)
2*
- N YO(J - (21)
(CPCR)*KY(E)
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Elastic Buckling Load for Columns of Non-Uniform Cross Section

If the moment of inertia variles discontinuously at any of the equally
spaced polnts, then one way of solving the problem is as follows: Let the number
of points with a step change in moment of i1nertia be M, For M >0, we will have two

sets of index numbers for the division points as shown below.

r ¥ T
M= 2 l I : ! ! ! | 1 ]
' — Mt
1| Dummy Index S ? % J 1 } } L { I ! M
2 |Index NO. Set (1)| O / 2 3 4 5 6 7 & 9 /0
T T T T A
3|srpocs) o | | 3 | | 1 7 1 1
4]yo Yor0) Yol) YOR) YO3) Yol Yols) YO) YO(1) Yo8) YOH) Youo)
5|IndexNoset@| 0 ¢ 2z 34 5 & 7 89 0 i1 /2
6 |STPP(S) -/ Y
abs 103 12 106jr@) 16 16) X(7) 16 100) 1() 102
8|yt yI(0) Y)_Yi@) Yiglrie) Y/(S) ey v i) Yito) Yy Yii2)
vy t t
q |Iryal valves | yp Yo(i) Yo(z) Yor3lyee) ras) Yo(b) yan) voglyod) Yoro) |
i ' r
/0 ;’;’;g;’sf;‘,’;}’ f,,ow Yo0) Yoty Yo@ Yo3)Yo3) Yo(4) Yo(s) Yols) YOr}a8) Yota) yolro) .
f t ; t t +— + ' t
1| Jarves OF Y1 e Yo Yo Yo(2) YOBJIOE) o) Yors) Yos) YOl vor7) Yold) Yo(9) Yo(o)

The index number set (1) will have one number for each division point while
the index number set (2) will have two numbers at each step. The I's are stored
according to the index number set (2). (See line 7 of the figure.) At each step
in I, the index number in set (1) of the point with the step is stored in the
vector* "STPO", (The two ends are also considered as steps.) For example, the
index number 3 will be 1n the location for STPO(1l). (See line 3 of the figure.)

The values of YO(J) are first stored in the vector Y1(J) with J correspond-
ing to the index number set (1). (See line 9 of the figure.) Then the wtep numbers,
each corresponding to the index number in set (2) on the left side of a step,
are computed and stor®d in the vector "STPP". For example, the index number 8 will
be in the location STPP(2). (See line 6 of the figure.) Then starting from the
right end, the value of Y1(J) 1s put into the location of Y1(J+1) until the index
number of STPP(1) is reached. (See line 10 of the figure.) The process is then

repeated until STPP(2) is reached and so on until STPP(M). (See line 11 of the figure.)

* The "vector" 1s a linear array of numbers as defined in modern algebra
and used 1in computer language.
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Next, the concentrated elastic weights (EW) at the ends are computed. Then
the elastic weights at two neighboring points at each step and the elastic welghts
between the steps are computed. Then the two concentrated elastic weights
at the two neighboring points of each step are combined into one value and the values
EW(J) are moved back to the locations with index number set (1). The procedure is
similar to the one for Y1(J) described above but in reverse.

With the elastic welghts known, the procedure will be the same as that for

columns of continuously varying moment of inertia,

Table of Symbols

In the following, the definitions of the varlables which have been intro-
duced previously and will be used in the program are recapltulated. Some new
variables needed for the programming are also defilned.

N number of divisions
M number of division points with step change in moment of inertia
EPS an assigned tolerance value

STPO(0)...STPO(M + 1) Index numbers of points with steps corresponding to
index number Set (1). The two end points are also
considered as steps.

I(0)...I(M + N) The ratio of the actual moment of inertia (IA) about
an axis normal to the plane of bending to the moment
of iInertia at a reference point (I0). The I's carry
the index numbers of Set (1) for continuous variation
and they carry the index number of Set (2) for dis-
continuous variation at the division points.

YO(0)...YO(N) The ratio of the initial deflection at a point ?o(J)
to the same at a reference point near the center of
the span YO(N). The YO's initially read in are
assumed. For subsequent iterations, YO(J) = EXL%;
KY(=

The YO's carry the index numbers of Set (1). 2

STPP(0)...STPP(M + 1) Index numbers of the steps, each corresponding to
the index number in Set (25 on the left side of a

step.
Y1(0)...Y1(M + N) Y0's carrying the index numbers of Set (2).
EW(O)...EW(M + N) Concentrated elastlic weights due to the distri-
buted elastic load - Y(J) with division length A as
IéJE

a unit, These elastic weights carry the index
numbers of Set (2).

EWNN refers to the set of elastic weights EW(O)...EW(M + N).
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EW(0)...EW(N) Similar to the weights in the set EWNN except that
the weights carry index numbers of Set (1). The two
weights at each stepping point of the Set EWNN have
been combined into one.

EW refers to the set of elastic weight EW(0)...EW(N).
RL, RR respectively left and right reactions due to EW
SW shear due to EW
2 N
*YO (2
vo(3)

KY{(0)...KY(N) deflections with as a unit. They are equal to the

E*IO

bending moments (with division length A as a unit) due to the
concentrated elastic welghts EW.

NZxvo(Y)

CPCR = — N
KY(§)

1))
(CPCR)*KY(%)

CYL = number of cycles of iterations
The data to be read in are as follows:
N, M, EPS
STPO(0)...STPO(M + 1)
I(0)...I(M + N)
Y0(0)...YO(N) (assumed)
The data read in should be printed out immediately as an echo check.
The output should be as follows:
CYL the final number of iteration when convergence is obtained.
CPCR the coefficient of the critical load.
The critical load is understood as given by Eq. 13

E*I0
L2

PCR = (CPCR)*

Where E 1s the modulus of elasticity, IO is the moment of inertia at a reference
point and L is the length of the column as defined previously.
In order to check the results by manual computations, the following inter-
mediate steps shall be printed out for each iteration:
Y1(0)...Y1(N + M)
EWNN mwgog...Eng + M)

EW EW(0).. . EW(N)|
KY(0)...KY(N)
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Flow Diagram

Example Problem No.

81

/READ N, M, EPS

Yo(o0) -

STPO(0)...
I(@ ... I(N+M)

«« YO(N)

STPO(M+1)

PRINT N, M, EPS

STPO(O) - . . STPO(M+1)
T(O) ¢+« T(N+M)
Y0(0)---YO(N)

L2 ‘
Y1(7)=You) Q STPP(S)= STPO(S) +5 — | @ e
° $=0, 1, 5.G.(M+) PE) ) S=1,1 5.6.M
Ls2 PRIN = _[2xYI(0) , exY/() _Yi(2)
7= N#5-l, =1 Yl YD 16Dt vi ©... e Eweo) o Ry - e fza _@
Y.L STPP(S — YI(N+M _ _[z2evicng) 6*YI(NN—I)‘_Y/L(NN—2)]
o) () EW(NN) [r(/wv) I T TNE2) /o4
_ _r7xYI(U+) | exYI(U+2)  YI(U+3)
o EW(U+! -
@__5TPP(M+/) L3 U=sTPPCS) WA=~ “Figty * " 1ewra) . T T3 o4
=NN $=1,1,5.G6.M EW(u) = —[IXYIW) , xYiu-1) _ Y/(U~z)]/
(V) I(U-1) I(v-2)) /%4
OL,526M U=STPP(S) J:LIJ-fg,l — EWE) = - YI(J—I)+ /0_*Y/(J') Y!(T+1) J/ oy
=0,1,5.6, Ul =STPP(S+I) J.G.(u1-1) I(7-1) I(J)  I@+D) 3’@
U= 57PP(57>_~J EW(U)= 4 EW=)
-5 Ewu)+Ew(u+) 7= 02, 1 -
1/ WrtEwwe) J. G (NN-5+1) = EwQ)
_ _[7*xY0() , exYO(U!) _ Yo(2)
Ew(o) = ) T Im Ty ) /o4 L5 e
Ew(N) = - [ZXY0W) , exYon-1) _ Yo(N-2)] /. J=1,1,7.G.(N-1)
I(N) IWN-)  I(N-2).
—_[YOUI-1) , 10%Y0(T) YL_)J/ @ @ RR=0 RR =
D il S e M (SR D) J’O ”G” RR - EWT o 0
L L8 .
- 7 _ SwW(T+l)=
) W PTERT N g L RL—RL—EW{J)@— SWQ=RL |l 7= 0. 1 d
G 7.6.0-1] SWEHEWED
@ L9 KY(T+D) = CPCR=
KY(@©)=0 TF=0,/, N/
- KYT)+SwT+l) N#*N*YO(N/2)
J.G.(N=)) YD)
Lio IT-11.L EPS
509\ pxvo@ ) WA ey W Ve
‘;G‘(N-,) ~_KY(@)*CPCR| \.AND. T.G. 0. B Q=@+ Q-EN-1) -

Yo(r)=
kY(7)
KY(N/2)




Elastic Buckling Load for Columns of Non-Uniform Cross Section

MAD Program
KUANG=HAN CHU DO28N 001 010 000
KUANG=-HAN CHU DO28N 001 010 000

SCOMPILE MADs EXECUTE

R ELASTIC BUCKLING LOAD FOR COLUMNS

R OF NON-UNIFORM CROSS SECTION

DIMENSION YO(50)51(100)+EW(100)sSW(50)sKY(50),

1 STPO(50)9STPP(100)»Y1(100)

INTEGER NsJsCYLsQsMINN»SsUSULsSTPOSTPP

. START READ FORMAT DATAlsNsMsEPS
VECTOR VALUES DATA1=$2145F745%$
READ FORMAT DATA29STPO(0)essSTPO(M+1)
VECTOR VALUES DATA2=3(1814)*$
READ FORMAT DATA331(0)esel{N+M)
VECTOR VALUES DATA3=3(8F9.3)%$
READ FORMAT DATA43Y0(0)eseYO(N)
VECTOR VALUES DATA4=$(8F9.3)*$
PRINT FORMAT ECHOlsNsMsEPS
VECTOR VALUES ECHO1=$1H19S993HN =9149S393HM =,13954s
1 4HEPS=sF6e4*3
PRINT FORMAT ECHO2sSTPO(0)eesSTPO(M+1)
VECTOR VALUES ECHO2=$1HO»S9+8HSTEPS AT/(S51091215)*$
PRINT FORMAT ECHO391(0)esel(N+M)
VECTOR VALUES ECHO3=$1HO09S9s10HRELATIVE I/{S10s 6F10e3)%$
PRINT FORMAT ECHO4sYO(O)eeeYO(N)
VECTOR VALUES ECHO4=$1HO9S992HYO/{S10s 6F1043) #$

CyL=1l
Al WHENEVER MeE«OsTRANSFER TO A2
THROUGH L1sFOR J=1l9lsJeGeN
L1 Y1{J)=YO(J)
THROUGH L23FOR S=0919SeGeM+1
L2 STPP(S)=STPO(S)+5=1

THROUGH LS2sFOR S=1s1sSeGeM

THROUGH LS2sFOR J=N+S=ls=1sJeLoSTPP(S)
Ls2 Y1(J+1)=Y1(J)

PRINT FORMAT CHECK1sY1(0)eeeY1(N+M)

VECTOR VALUES CHECK1=$1HOsS992HY1/(S10s 6F1043)%$

NN=N+M

EW(O0)==(T7%Y1(0)/1(0)+6%Y1(1)/1(1)=Y1(2)/1(2))/24

EW(NN)==(7*Y1(NN)/I(NN)

1 +6*YL(NN-1)/I(NN=1)=Y1{NN=2)/1(NN=2))/24

STPP (M+1)=NN

THROUGH L33FOR S=1351354GeM

UsSTPP(S)

EW(U+1)==(7T#YL(U+1)/1(U+1)

1 +6%Y1(U+2)/1(U+2)=Y1(U+3)/1(U+3))/24
L3 EW(U)==(7#Y1(U)/1(U)

1 +6¥Y1(U=-1)/1(U=1)=Y1(U=2)/1(U~2))/24

THROUGH LS3sFOR 5=0915SeGeM

U=STPP(S)

Ul=STPP(S+1)

THROUGH LS3sFOR J=U+2919JeGe (Ul=1)
LS3 EW(J) =~ (Y1(J=1)/1(J=1)+10%Y1(J)/1(J)+YL(J+1)/1(I+1))/12

PRINT FORMAT CHECK2sEW(0)aseEW(NN)

VECTOR VELUES CHECK2=$1H0»S934HEWNN/(S10» 6F10+3)%S

THROUGH L4sFOR S=1515SeGeM

U=STPP(S)=S+1

EW(U)=EW(U)+EW(U+1)

THROUGH L4sFOR J=U+2+19JeGe (NN=S+1)
L4 EW(J=1)=EW(J)

PRINT FORMAT CHECK3sEW(0)eseEW(N)

VECTOR VALUES CHECK3=$1HO9»S9»2HEW/(S10s 6F1043)%$

TRANSFER TO A3
A2 EW(O)==(T#Y0(O0)/1(0)+6%YO(1)/1(1)=Y0(2)/1(2))/24

EW(N)==(T*YO(N) /T (N)+6*YO(N=1) /I (N=1)=YO(N=2) /1 (N=2)) /24

THROUGH L5s FOR JxlslsJeGe (N=1)

L5 EW(J)==(YO(J=1)/T(J=1)+10%YO(J)/T(JI+YO(U+1)/1(U+1))/12
A3 RR=0

THROUGH L69FOR J=09l9JeGeN
Lé RR=RR=EW(J)*J/N

RL==RR

THROUGH L79FOR J=0sl9JeGeN
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MAD Program, Continued

L7

L8

L9

Llo

L11

A4

Data

$DATA
0

3

2
le
Qe
6

25
49
Oe
Y]

o2
le
Qs
9

RL=RL-EW(J)

SW{0)=RL

THROUGH L8sFOR JUz0919JeGe(N=1)
SW(J+1)=SW(J)+EW(J)

KY{0)=0 .

THROUGH L9sFOR JU=0s19JeGe({N=1)
KY(J+1)=KY(J)+SW(J+1)

PRINT FORMAT CHECK4sKY{O)eesKY(N)

VECTOR VALUES CHECK4=$1H03S5992HKY/(S10s 6F1043)#$
Q=0

CPCR = N®EN*YO([N/2)/KY(N/2)

THROUGH L10sFOR J=1919JeGe(N=-1)
T=NEN®¥YO(J) /(KY{J)*CPCR)

WHENEVER (eABSe (T=1)sLeEPS)sANDe(ToGe00s)sQ=Q+]
WHENEVER QeEe (N-1)

TRANSFER TO A4

OTHERWISE

CYL=CYL+1

END OF CONDITIONAL

WHENEVER CYLeGe20

PRINT FORMAT NGD

VECTOR VALUES NGD=$1HO03S9+10HYO NO GOOD*$
TRANSFER TO START

OTHERWISE

THROUGH L119FOR J=1s19JeGeN
YO(J)=KY(J)/KYIN/2)

TRANSFER TO Al

END OF CONDITIONAL

PRINT FORMAT CYNsCYL

VECTOR VALUES CYN=$1HO0»S9+15HNOe OF CYCLES =9 l4%$
PRINT FORMAT CRLsCPCR

VECTOR VALUES CRL=$1H0sS59s15HCOEFFe OF PCR =yF7,2%*$

TRANSFER TO START
END OF PROGRAM

¢+ 005
7 10
o2 o2 2 1. le le
o2 o2 o2 o2
b o6 o8 9 le 9
ok Q.
¢« 005
¢36 049 ¢ 64 81 le «81
«36 25
oh Y o8 9 le o9
04 O‘
¢ 005
¢2 o2 02 10 ll 1‘
o2 02 o2 o2
o4 6 8 9 e 95 le
8 o6 oh Ce
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Elastlc Buckling Load for Columns of Non-Uniform Cross Section

Computer Output

N= 10 M= 2 EPS=0.0050

STEPS AT
0 3 7 10
RELATIVE [
06200 00200 06200 06200 1,000 1.000
1000 1.000 1.000 04200 04200 0200
04200
YO
0,000 04400 04600 04800 04900 1,000
064900 0.800 04600 04400 0,000
Yl
04000 04400 04600 04800 0,800 0900
1000 0.900 04800 0,800 0,600 04400
0000
EWNN
~0e375 ~14917 ~34000 -1.833 =04417 -04900
-04983 ~Q4900 -00417 -1.833 -34000 -14917
~-0e375
EW
~0e375 ~1e917 -3,000 -2¢250 ~04900 -04983
~04900 ~24250 -34000 -1e917 -04375
KY
04000 8.558 154200 184842 204233 206725
200233 18,842 15,200 84558 0,000
Yl
0000 0e4l3 06733 04909 0.909 04976
1.000 0e976 06909 04909 04733 0e413
04000
EWNN
~0e363 -24026 =-34607 ~-24157 -0,468 -0.973
=0¢996 -04973 -0+468 -24157 -34607 ~24026
-0e363
EW
~0e363 ~24026 -34607 -2e624 -0,973 -04996
~0e4973 ~24624 -34607 -24026 -04363
KY
0000 9728 17.429 21e524 224995 230493
224995 214524 174429 94728 04000
Yl
04000 Oe4ls 0e742 04916 04916 06979
1000 04979 04916 06916 06742 Oetlé
0000
EWNN
-0¢363 2034 -3.646 -24177 -04470 ~04975
-0e996 -04975 =0e470 ~24177 ~34646 ~24034
~0e363
Ew
=0e363 ~24034 -34646 ~2e647 =-06975 ~-04996
-0e975 =24647 ~34646 -24034 ~04363
KY
04000 9.801 17.568 214689 23,162 23.661
234162 21,689 17.568 94801 04000

NOe OF CYCLES = 3
COEFFes OF PCR = 4023
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Computer Output, Continued

N = 10 M= 0 EPS=0.0050

STEPS AT
0 10
RELATIVE 1
04250 04360 04490 04640 0,810 1,000
04810 04640 04490 04360 0,250
YO
04000 04400 04600 04800 0,900 1000
0900 04800 04600 04400 0,000
KY
04000 5,104 9.180 12,039 13,662 140171
134662 12,039 9180 5104 0,000
KY
04000 5257 94570 12.587 14,289 144804
14,289 12,587 96570 54257 0,000
KY
04000 50243 94555 124574 14,277 144793
144277 12574 94555 50243 0,000
NOs OF CYCLES = 3
COEFFe OF PCR = 6676

N = 12 M= 0 EPS=040050

STEPS AT
0 12
RELATIVE 1
04200 0.200 04200 04200 1,000 1,000
1,000 1,000 1,000 04200 0,200 04200
04200
YO
04000 04400 04600 06800V 0,900 06950
1,000 0,950 04900 04800 0,600 04400
04000
KY

0.000 11,183 204450 264717 29,325 30,771
314267 30,771 294325 266717 20,450 11.183

04000

KY
0,000 114604 214445 284056 30,756 326236
324735 324236 30,756 284056 21,445 11.604
0,000

KY

04000 114610 214470 284095 304799 32,280
324778 32.280 304799 284095 21,470 11.610
04000

NOe OF CYCLES = 3
COEFFe OF PCR = 4439
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Elastic Buckling Load for Columns of Non-Uniform Cross Section

Digscussion of Results

Three example problems are shown., The first example 1s a column shown below

which is the same as shown in the previous figure. With 10 division points and

values of EPS and YO as shown in the program, the procedure converges in 3 cycles

and gives the answer of (CPCR) = 4.23. The coefficient given by exact solution of

the differential equation 1s 4.22 (see reference 2).

: I=02
=/0 I S |
.

0 / 2 3 4« 5 6 7 § 9 /o

The second example is for a column &as shown below. The coefficient determined

by the numerical method is 6.76, as compared with the value 6.72 which is interpolated

from a table given in reference 3.

The third example for the column shown below is the same as the first, except
that 1t uses 12 divisions and any discontinuity of moment of inertia between two
neighboring division points is ignored and the column is treated as if it were a

column with moment of inertia varying continuously. The value of (CPCR) obtained

is 4.39 as compared with the true value 4.22.

. L , Tl =02
EZZI::I::Z: ' I=1.0 , [ S S S S |
N [ | ' v g

L 1 i o
c / 2 3 4 5 6 7 8 9 Jo 11 12

It should be noted that although the examples shown are for columns with
moment of inertia varying symmetrically with respect to the mid-point of the
column, the program is perfectly general and is applicable to columns with

moment of 1nertia varying unsymmetrically.
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Example Problem No. 81

Critique
The program is a natural one for the computer since the computer is most
sultable for any iterative procedure which requires us to do the same computa-

tion process over and over again.

References
1. N. M. Newmark, 'Numerical Procedure for Computing Deflections Moments
and Buckling Loads, ASCE Transactions ,1943.
2. S. Timoshenko, Theory of Elastic Stability.
J. S. Timoshenko & J. M. Lessels, Applied Elasticity.
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Example Problem No. 82

A MAD PROGRAM FOR TRUSS ANALYSIS

by

K. H. Chu

Civil Engineering Department

Illinols Institute of Technology

Course: Structural Theory Credit hours: 3 Level: Junior

Statement of the Problem

The problem 1is to write a program which will determine stresses in members
of trusses where the method of joints is applicable. The problem is of repetitive
type which is well adapted for computers. Also it is of fundamental importance
because if 1t is used as a subroutine, then a series of problems in truss analysis
can be solved easily; for example, influence lines for trusses, deflection of
truss by virtual work, stresses in indeterminate trusses, etec.
The method of joints is chosen instead of setting up a matrix and solving a
system of simultaneous equations because there will be too many zero elements in
the matrix. (The number of simultaneous equations the computer can solve by elimination is
usually limited, say to 30.) Therefore, there is a need to develop a program which will
not only conserve storage space but also will do the problem as we do it manually,
i.e., the machine would select the Jjolnt to be solved and proceed to a joint which

can be solved next.

Solution
Let us consider the truss shown on the next page. We will number the Jjoints
and members in any fashion and set up an arbitrary but convenient coordinate

system,

-C82-



The data to be read in are as follows:

N the total number of joints

M the total number of members

EPS1 a small number to guard against the case ID' 2~ 0 (explained later)

JT(1)...JT(N) index number of the joints

JX(1)...JX(N :
JYglg...JYgNg X and Y coordinates of the joints

FXO(lg...FXOEN the X and Y components of the force acting on each joint. Positive
FYO(1)...FYO(N) if the component is in the positive direction of the coordinate
axis, zero 1if there is none.

)
UNMB(1)...UNMB(N) the number of members meeting at each joint. Their stresses
are unknowns to be determined. For example, in the figure, the

value of UNMB(3) will be equal to 5.

MB(1)...MB(M the index number of the members and the corresponding index
IN(1)...JIN(M number of the joints at the ends of each member. It does not
JF(1)...JF(M matter which end is referred to as the near joint (JN) and which

end is referred to as the far joint (JF). For example, in the figure
the value of MB(15) will be 15 and the values of JN(155 and
JF(15) may be 5 and 7 respectively or 7 and 5 respectively.
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A MAD Program for Truss Analysis

So far as reactions are concerned, we need to read in the following data:

JRO The joint number where the reaction of unknown magnitude and direction is
applied. For example in the figure the value of JRO is 5.

R1 This value is equal to 1., The purpose of reading in this number is for
extending the program to the case of finding reactions along 3 given lines
of applications. The reactions will be identified as FR(R1), FR(R2),
FR(R3) with R1l, R2, R3 being equal to 1, 2, 3 respectively. For the sample
problem under consideration, it serves no useful purpose except to identify
the reaction with given line of application as FR(R1l) or FR(1).

JR1 The joint number where the reactlon of given line of application is applied.
For example, in the figure the value of JR1 is 6.

IXR1l, LYR1, LR1 These are the numbers which specify the given line of application
in the following way. The line of action is assumed to be a
vector directed away from the joint and length of the vector
(LR1) may be taken as unity or any other value. The X and Y
components of this vector are denoted as LXR1 and LYR1
respectively.

In order that we understand the correlation of the various data which have
been read in, a concrete example is shown below. This is the same truss as shown
earlier except that the dimensions and loadings are specified and the origin of the
coordinate axes is at joint 1 and the X axils coincides with the lower chord, The
data for JT, JX, JY, FXO, FYO and UNMB are given in Table 1, and the data for MB, JN
and JF are given in Table 2. The data for the reactions are given in Table 3. In

the tables, there are many items which have not been defined. They will be explained

later.

A RIRI) = FXRI
FRRI)

Having read in all the data, the first step 1s to compute the following

quantities:

LYy(l)...LY(M respectively the components of the vector of length L which 1s

L(1) ...L(M) directed from the joint (JN) toward the Jjoint (JF). The
computed values of LX, LY, and L for the members of the truss
shown are glven in Table 2.

LX%I;...LX&M% where L's are the length of the members and LX and LY are
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Next we shall compute the reactions with the definition of terms as follows:

SFX, SFY, SMO are respectively the sum of the X components of the external
forces, the sum of the Y components of the external forces and
the sum of moments of the external forces about the joint (JRO).

FR(R1) is the force of the reaction of known line of action at the
Joint (JR1). It will be positive if it is directed away from
the Jjolnt. This quantity is denoted as a subscripted variable
with the intention of writing a subroutine (or external function)
for computing 3 reactions with given lines of action. The
method of section is a possible application of this subroutine.

FXR1, FYR1 are respectively the X and Y components of FR(R1). The signs of
FXR1l and FYR1 are positive if they are in the positive directions
of the coordinate axes.

FXO(JR1), FYO(JR1) The external forces acting on the joint (JR1) must be
modified to include the reactlon components just computed.

FXRO, FYRO are values at the joint (JRO) corresponding to those as
FXO(JRO), FYO(JRO) defined for the joint (JR1).

The answers for the values of FR(R1), FXR1l, FYR1, FXRO, FYRO for the example

shown are given in Table 3. The values of FX0O, FYO at joints 5 and 6 after the

reactions have been computed are as shown by the circled values in lines 7 and 8
of Table 1.
Table 1 Table 3

LinelDummy Index I | 7 | 2 13 14| 5167|189 Dqtq Answers
/ JT(I) /1213415617819 JRo | 5 | FRR)| 50.
2 JX(I) 0. 130.|60.|70.17201/20.| 90.| 60.| 30. TR/ 6 | FXRI | 50.
3 I (I) o lo oo a|6ol40|40|40. LXR|| 100 |FYRI a,
4 FXO(T) 0.0 10.lo|l0o]|0|o|o0.] o LYRI | 000 |FXR0O -50,
5 FYo(I) -10.{-/0.{-/0.|-/1C| O.| 0. | 0.1 O.| O LR] | 700 |FYRO| 40,
6 UNMB(T) 213|513 [3|2|5|3|«4

7_|Affersohing FXO | 0. | o. | 0.] 0. [F50)%50) 0. 0. o.

8 e reactions| FYQ |-/0.-10.|-/0.|70.[rd0X 0] 0. 0.] .

9 | After |UNMB| © 5131312 15[3[(®
|10 sohing the | FXO_| 0. t750) o.| 0 |-50/#50] O.] 0. F150)

I_|first Joint| FYO |~/0.Flood-10.]-/0.]#40] ©.] ©.] 0. kioog

Table 2

Line|DymmyIndexT | / [ 2|3 4|5 6|78 9 |sol/]s2/ (3 /4|5

/ MB(T) 112|314 ]l5] 67|81 97041273174 /5

2 ING) /2134|516 7|8/9|2|3|3/ 3|45

3 JF(T) 2|13 45|67 8191/7192{918, 71717

4 Lx(7) 30.|30.|30.|30.| 0. |-30.|-30|-30.|-30.| 0.]|-30} 0. | 30| o.|-30.

5 LY(JT) o0 | olo. |0 |60F20.| 0| 0 -40|+40|+40/+40| 40.| 40.| 40.

6 L(T) 30.130.130.|30.160. 3606 30.|30.150.]|40.| 50.140.| 50.| 40| 50.

7 J15(7) ] /

5 (e e ix ) 130 750

9 |egs, for7T(Y| LY (T)| O. r40%

10 IAffer __.7_N(7) 9999, ;999)

I1_| soling |TFQ) ¥999] 9999)

|12 | rhe first |FX(T)|0.04 A 1750

13 | jyoint |FY(J)|-750 /000

14 F (7) 1750 250
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A MAD Program for Truss Analysis

Next we shall compute the stresses in the members. We shall use the following

symbols:

JT(I) is the index number of the joint to be solved as 1ldentified by
the dummy index I.

MS(1), MS(2) are the index numbers of the two members meeting at JT(1).

F(MS(1)), F(MS(2)) are the two forces in the members to be solved. They are

positive if they are directed away from the joint JT(I).

JTS(MS(1)), JTS(MS(2)) both store the value of JT(I) in order that in the
output, we know the forces in the members MS(1) and
MS(2) are the results of the solution of that
particular joint.

FXEMS 1;%, FY Msélgg are the components of the forces acting on JT(I)

FX(MS(2)), FY(M3(2 in the members MS(1l) and MS(2). They are positive
if they are along the positive direction of the
coordinate axes.

IS(1), 1s(2) are respectively the joint numbers of the other ends

of the members M3(1l) and MS(2) which meet at the
Joint JT(I).

FX0(IS 13;, FYO IS§1 g The external forces FXO, FYO acting on the joints
FXO(IS(2)), FYO(IS(2 IS(1) and IS(2) shall be revised in order to include

the components FX(MS(1)), FY(MS(1)), etc. as known

forces. It should be noted that the signs of

FX(MS(1)), FY(MS(1)), etc. should be reversed since

they are originally considered as applied at the

other ends of the members (i.e. at the joint JT(I)).

The joint equations can be written very easily. In writing the joint
equations, 1t should be noted that the joint under consideration JT(I) is taken
as the near joint (JN). The forces are acting on the joint JT(I) and shall be
consldered as positive when they are directed away from the joint JT(I). We
should also guard against the case where the denominator of the Jjoint equation
is nearly equal to zero. This is really the case when the Joint 1s unstable.
The remaining problem is how the machine can tell which Joint is to be
)

solved first and which to be solved next. The following suggestions may be
helpful. Have the machine examine a list of UNMB. If there is a Joint with
UNMB=2, the index number I of the joint JT(I) is picked up. First look into the
list for JN. If at the index number J, the value of JN(J) 1s equal to JT(I), then
the index number J is picked up and stored in the location MS(1). Notice that this
number J identifies the member MB(J) (See Table 1) which is renamed as MS(1),
since this 1s the first member to be solved for at the joint under consideration.
Then, in order to prevent the number in JN(J) and JF(J) from being picked up in future

examination of the 1list, we change the values of JN(J) and JF(J) into some unreason-

able number, say 9999,
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Then look further down the list of JN. If we find that at another value of
J (say J'), JIN(J') is equal to JT(I), then we store J' in MS(2) and the value
of JF(J') of the number MB(J') in IS(2). Also we change the values of IN(JY)
and JF(J') into 999,

If we examine the list of JN and find either none of the values or only
one of the values is equal %o JT(I), then we must examine the list of JF to
find either both of the members MS(1l) and MS(2) or only the member MS(2). The
procedure is similar to the one described above with the following exceptions.
Suppose that we find the value of JT(I) in the location of JF(J). We should
store the value of JN(J) in the location of IS and we should reverse the signs
of the values LX(MB(J)) and LY(MB(J)). The sign change is necessary because
the joint equation is written for the joint JT(I) which is considered as the
near joint (JN). Since we find the value of JT(I) in the 1list of far joints
(JF), the vector which represents the positive direction of the member MB(J)
must be reversed. (Note that the value of JT(I) is identical with the index
number I and the value of MB(J) is identical with the index number J.)

Having found the two members meeting at the Joint JT(I) ready to be solved,
we end the search. We may set up a counter P to see whether P reaches the
value of 2, Also we would like to update the number in the list of UNMB for
the two memobers meeting at JT(I). The value of UNMB(I) corresponding to the
Jjoint solved JT(I) should be reduced by 2. Each of the two values of UNMB
corresponding to the far ends of the 2 members solved as identified by the
Joint numbers corresponding to IS(1) and IS(2) shall be reduced by 1.

After going through the above procedure of searching and updating, we can
go through the following steps: (1) Applying the Jjoint equations to find tﬁe
forces in the two members MS(1) and MS(2), (2) Obtaining the components of these
forces, and (3) Modifying the forces applied at the Joints at the far end of the
member to include the components obtained as known forces.

As a concrete example of the above procedure, we examine the list of UNMB
in Table 1 and find that UNMB=2 at I=1, Thus JT(1l) is the Jjoint to be solved.
Next we examine the list for JN in Table 2 and find that JN(J)=JT(I)=I=1 at
J=l. Thus we have MS(1)=1, noting that MS(1) really represents the member

MB(1). We set IS(1)=JF(1)=2 and change the values of JN(1) and JF(1) to 9999,
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A MAD Program for Truss Analysis

Looking further down the list of JN, we do not find any value egual to JT(I)=I=1.
When we look into the list of JF, we find JF(J)=JT(I)=I=1 at J=9. Thus
MS(2)=MB(9)=9. We set IS(2)=JN(9)=9 and change the values JN(9) and JF(9) to
9999 (See Table 2, lines 10 and 11), Since the number JT(1) is found in the 1list
of JF, we change the signs of LX(9) and LY(9) (See lines 8 and 9 in Table 2).

We will stop the search since we have already found the two members to be
solved. We then reduce the value of UNMB(JT(1)) by 2 and the values of
UNMB(IS(1)) and UNMB(IS(2)) each by 1 (See circled numbers in line 9 of Table 1),
Since the joint solved is JT(1), the values of JTS(1l) and JTS(9) for the
members MB(1) and MB(9) respectively are equal to JT(1)=1. (See line 7 of Table 2).

The forces F(MS(1)) and F(MS(2)) are then determined by applylng the Joint
equations to the joint JT(1). (See line 14 of Table 2.) Their components with
respect to the joint JT(1) are then determined. (See lines 12 and 13 of Table 2.)
The forces FXO and FYO applied at joints IS(1l) and IS(2) are then modified by
adding the force components of MS(1l) and MS(2) with sign reversed to the external
forces acting at these joints. (See lines 10 and 11 in Table 1),

After the first joint has been solved, we re-examine the list of UNMB
(1ine 9 of Table 1) and repeat the whole procedure. We shall stop the process
when all stresses in all the M members are solved. Since after each application
of the joint equation, the total number of unknowns is reduced by 2, we may set
up a counter, say Q, which will be increased by 2 after each cycle., Since M
may be either even or odd, finally we may have (M-Q) equal to O or 1. If 1t is
equal to zero, the stresses in all the members have been determined. If it 1is
equal to 1, we shall find the remaining member using a procedure similar to the
one described previously. The force in the remaining member can easily‘be
determined., It should be noticed, however, that in order to maintain accuracy,
the force should be determined from the component with absolute value larger than
the other,

We would 1like to print out the data as originally read in. They are:
Jt, JX, JY, FX0, FYO, UNMB, MB, JN, JF, JRO, Rl, JR1, LXR1l, LYR1 and LR1l. The
answers to be printed out are: FR(R1l), FXR1l, FYR1, FXRO, FYRO, FXO(JRO), FYO(JRO),

FX0(JR1), FYO(JR1l), IX, LY, L, JIS, FX, FY and F.
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With the detailed instructions as gilven above, the programming becomes
more or less straight forward. From statement labeled "Start" to the statement
Jjust preceding the through loop L3, the data are read in and printed out in the

specific form as stated in the instructions.

The values of LX, LY and L are computed in the loop L3. The fifteen statements
following the statement SFX=0 are essentially for determining the reactions. The
following quantities are computed: SFX, SFY, SMO, FR(R1), FXR1l, FYRl, FXO(JR1),

FYO(JR1), FXRO, FYRO, FXO(JRO) and FYO(JRO). The formula for SMO may be written in

the following form:
N .
SMO = = {[JX(I)-JX(JROH *FY0(1)- [Y(I)-J¥(JRO)] *FXO(I)} (1)
I=1
With computer language, in a THROUGH loop for I, the equation for SMO becomes
SMO = SMO + BXKI)—JX(JROH *FYO(I)- [ﬁY(I)—JY(JRoﬂ *¥FXO(1I) (1a)
The formula for FR(R1l) is written in the following form:

FR(R1) = SMO*LR1 (2)
[OY(JRI)-JY(JRO)] *LXRI- [JX(JRI)-JX(JRO]] ¥LYR1

The searching for the members to be solved and updating various items by
the procedure as described in the instructions are performed from twenty-seven

statements after and including the statement labeled C3.

The joint equations are solved and the quantities F(MS(1)), FX(MS(1)),

FY(MS(1)), FXO(IS(1)), FYO(IS(1)), F(MS(2)), FX(MS(2)), FY(MS(2)), FX0(IS(2)),

and FYO(IS(2)) are computed from the statement (D = ...) to the statement
(FYO(IS(2)) = ...). The joint equations are written in the following form: |
' _rxo(g7(1)) * LEMS(2)) | myo(gr(r)) » LEIB(2
L(Ms(2)) L(Ms(2)) (3)
F(M3(1)) = : ‘
D
LY(MS(1 LX(MS(1
FXO(JT(I * - FYO(JT(I * ;
vns(2)) - PO * HEH (72(1)) » XS0 "
D
where

p - LX(MS(1)) * LY(MS(2)) = LY(MS(1)) * LX(MS(2)
L(MS(1)) * L(MsS(2)) L(MS(1)) * L(MS(2)

~—p—
—
Ul
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A MAD Program for Truss Analysls

The counter Q reglsters the number of members already solved. If only one

member is left to be solved, (M-Q)

loop LL4.

1, the joint with UNMB=1 is searched out by the

The member to be solved is searched out by the loops LL5 and LLO.

The force in the member 1s found by the statement starting from the statement

labeled C6 to the statement END OF CONDITIONAL Just before the statement

labeled C4.

The rest of the statements are for printing out the answers.

Flow Diagram

/' READ N, M, EPS1

JT(I)...J'T(N)

TX() - e« TX(N)

IYW ... TY(N)
FX0(1)+ - « FXO(N)
FYO()--- FYO(N)
UNMB(1). . « UNMB(N)
MB(1)...MB (M)
INM. .. TN (M)
JFM - - T (M)

Print

Y (1)

FT(I)  « « TTIN)
TIX(I) e o+ TX(N)

FXO(I) + - - FXO(N)
FYO(I). . FYO(N)
UNMB(I). . .UNMB(N)

+««JY(N)

Print

JTD .. .JT(I+4)
TX(T) - o e TX(I+4)

TY(X)« . TY(I+4) @
FXOD .« . FXO(I+4)

EYOWm) -+« EYO(I+4)
UNMB (I).-. UNMB(I+4)

pPrint

MB(T).. .MB(T+4)
TN(T)e . JIN(T+4)

B Read JRO
R, TRI, LXRI,LYRI LRI

Print JRO

SFX=u
@——SFY=O
S5MOo=0

JRI LXRY LYRI,LR(

N7 SFX=SFX+ FXu(I)
I=L1.IGN SFY=SFY+FYo(I)
L see £

FYO(TRO) =

FXRO = ~(SFX+ FXRI
@_FYRO = ~(SFY 4 FYRI)
FXO(TRO) = FXO(JROQ)+FXRO

q.

(/q) in text forSMo

LX(T)=TX(TF()) = TX(TNTI)

LY(T)=TY(IFT)) = TY(TN)) (L 3> @
L(T)=[LX@)% LX(T) + LY(T)%LY(T)

See £4.(2) in text for FR(RI)

FXRI = FR(RI)%LXRI/LR]
FYRI= FR(RI) *LYRI/LRI @
FXO(IRI) = FXO(TR1) + FXRI

FYO(TRI) = FYO(IRI) + FYR|

FYO(JRO)+FYRO

-C90-
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Example Problem No. 82

Flow Diagram, Continued

P=p+]
I5(P) = IN(T) LX(D)==LX(T)

P=P+/
IS(P)=JF(T)

MS(P)=7 MSPI=T [ y(r)=~ L)

IN(T)=9999 IN(T)=999g

JF(7)=9999 TF(T)=9999
UNMB(TT(I))= or £ See E9.(3) inText for F(MS(D)|  |See £9.(4) in fext for F(MS(2))

<: )~ ummBET)-2 eet9(5) inl(pj< = FOISI)*LX(MS() | _ F(MS(2)) % LX(M5(2)) -@
e _r(su))»= rext por D [DI<EPS] FX(M5(1)) el Fx(rse)=EEDL 2 L
UNMB (Z5(1))-] FYM(1)= FLW__SZDA%)YL/‘LSM FYMS(2) = E(MS2)% LY (M5(2))
UNMB(1S(2))= Frosay= P Fxozs@y=  LOBE)
Jrg,:gg((lf)smf)gé) Fy FRO(IS(1)) = FX(MS(1) FXO(IS(2))- FX(MS(2))
= 0(Is))= fYO(IS(Z))=

TTS(M5@)=TT(1) FYO(IS() - FY(MS() FYO(IS(2))~FY(MS(2))

FXff)i -FXo(r) {FY(D)).6EN F F7)= FX(T)%L(3)
FYT)= 'FYO(I) FX(T)| | - T(-U—
TTS(T)=ITT(I)

LX(T) = -IX(T) T
o [___... _ FY7)»L(T)
LY(7)=~LY(7) F(7)= o)
E
MB(@3)---MB(J+4) MB() ... MB(M)
G- BB
LY ). LY (7+4 (J)e .o
L(}}n. .. L(I+4)) A3 L(T) - e L(M)
ITSCT) - - TTS(T+4) TT75(T) .- TTS(M)
EX(T) «- - FX(T+4) FX(T):«« FX(M)
FY(7)... FY(7+4) FY(T).-« FY(M)
PO G AR
MAD Program
KUANG=HAN CHU DO 28N 001 003 000
KUANG=HAN CHU DO 28N 001 003 000

$COMPILE MADs» EXECUTE
R A MAD PROGRAM FOR TRUSS ANALYSIS
DIMENSION JT(50)sFXO(50)9FYO(50)sUNMB(50)eJX(50)9JY(50)
DIMENSION MB(100)sJN(100)sJF(100)sLX(100)sLY(100)sL(100)
DIMENSION JTS(100)sFX(100)sFY(100)sF(1V0)2IS(2)9MS(2)sFR(3)
INTEGER JTsUNMBsJUNsJFsMBsJTSeISsMSsPsQs 19 JsMINyJROIJR1IR1
START READ FORMAT DATAlsNsMsEPS1
VECTOR VALUES DATA1=232149F8¢5#%%
READ FORMAT DATA29JT(l)eeeJT(N)
VECTOR VALUES DATA2=$(1814)%$
READ FORMAT DATA34JX(1l)eeeJX(N)
VECTOR VALUES DATA3=$(8F9.3)%$
READ FORMAT DATA4sJY(1l)eeeJY(N)
VECTOR VALUES DATA4=3(8F9+3)%#%
READ FORMAT DATAS54FXO0(1)eesFXO(N)
VECTOR VALUES DATA5=3(8F9+2)#*$
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A MAD Program for Truss Analysils

MAD Program, Continued

Ll

Al

L2

A2

READ FORMAT DATAG6sFYO(1l)eesFYO(N)
VECTOR VALUES DATA6=$(8F942)%8$
READ FORMAT DATA7sUNMB(1)eeeUNMB(N}
VECTOR VALUES DATA7=$(1814)*$
READ FORMAT DATA11sMB(1l)eeeMB(M)
VECTOR VALUES DATAl1=3(1814)%$
READ FORMAT DATA129JUN(1)eseeJN(M)
VECTOR VALUES DATA12=$(1814)*$%
READ FORMAT DATA13sJF(l)seeJF (M)
VECTOR VALUES DATA13=5(1814)%%
PRINT FORMAT ECHOlsNsMsEPSI

VECTOR VALUES ECHO1=$1H19S57916HNOs OF JOINTS = ,12+54s
1 17HNOs OF MEMBERS = 3139559 THEPS]1 = 4F8e¢5/%%

WHENEVER NeGe5

THROUGH L1sFCR =1y 591eGeN

WHENEVER (1+4)eGEeN

TRANSFER TO Al

OTHERWISE

PRINT FORMAT ECHO29JT{I)eeeJT(}+4)

VECTOR VALUES ECHO2=$1H0sST92HJT»S2s 5110/%$
PRINT FORMAT ECHO3sJX{I}eeeJX{1+4)

VECTOR VALUES ECHO3=$S892HJXsS59 5F10e¢3/%$
PRINT FORMAT ECHO&4sJY(I)eaedY(1+4)

VECTOR VALUES ECHO4=$5892HJY 9559 5F1043/%$
PRINT FORMAT ECHO5sFXO(I)eeeFXO(I+4)

VECTOR VALUES ECHO5=$5893HFX09549 5F10e2/%3%
PRINT FORMAT ECHO69FYO(I)eesFYO(I+4)

VECTOR VALUES ECHO6=3SB8s3HFYO9S4s 5F10e2/%$
PRINT FORMAT ECHO7sUNMB(I1)eesUNMB(I+4)
VECTOR VALUES ECHO7=$58s4HUNMBy 5110/%%

END OF CONDITIONAL

OTHERWISE

I=1

END OF CONDITIONAL

PRINT FORMAT EECHO2s JT{I)eseJT(N)

VECTOR VALUES EECHO2=$5892HJT9S52s 5110/%%
PRINT FORMAT EECHO3sJX({1)esaJX(N)

VECTOR VALUES EECHO3=$5892HJX9S5s 5F10e3/%%
PRINT FORMAT EECHO4sJY{(1)eeeJY (N}

VECTOR VALUES EECHO4=3$S5892HJY+S59 5F10e3/%$
PRINT FORMAT EECHO59FXO(I)eseFXO(N)

VECTOR VALUES EECH052$5893HFX0sS54y 5F10.2/%%
PRINT FORMAT EECHO6sFYO(I1)eeeFYO(N)

VECTOR VALUES EECHO6=35893HFY0»S4y 5F10e2/%%
PRINT FORMAT EECHOT7sUNMB(1)eeeUNMBIN)
VECTOR VALUES EECHO7=$S894HUNMBs 5110/%3%
WHENEVER MeGe5

THROUGH L2sFOR J=1s 5sJeGeM

WHENEVER (J+4) e¢GEsM

TRANSFER TO A2

OTHERWISE

PRINT FORMAT ECHO11sMB{(J)eeeMB(J+4)

VECTOR VALUES ECHO11=31H0sS7s2HMB9S2y 5110/%%
PRINT FORMAT ECHO12sJUN(J)eesJIN(J+4)

VECTOR VALUES ECH012=$5892HJUNsS2s 5110/%$
PRINT FORMAT ECHO13sJF(J)eseJF(J+4)

VECTOR VALUES ECHO13=$58s2HJF952y 5110/%3%
END OF CONDITIONAL

OTHERWISE

J=1

END OF CONDITIONAL

PRINT FORMAT EECO11sMB(J)eeeMB(M)

VECTOR VALUES EECO11=$1H0»S792HMBsS2y 5110/%$
PRINT FORMAT EECO129JN(J)eeeJIN(M)

VECTOR VALUES EECO12=$58s2HJUN»S2y 5110/%%
PRINT FORMAT EECO139JF(J)eeeJF(M)

VECTOR VALUES EECO13=$S892HJF»S2y 5110/%%
READ FORMAT RO»JRO

VECTOR VALUES RO=$14%$

READ FORMAT RA»R1sJR1sLXR1sLYR1sLR1

VECTOR VALUES RA=$1495291493F10e5%5

PRINT FORMAT RRO#JRO

VECTOR VALUES RRO=$S894HJRO s13/%$
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Example Problem No. 82

MAD Program, Continued

L3

LN1

Cc3
LL1
Cl

LL2

LL3
c2

PRINT FORMAT RR1sJR1sLXR1sLYR1sLR1

VECTOR VALUES RR1=$S894HJR]1 »13/S894HLXR19S3sF10e3s
1 S595HLYR1 sF10e43eS595HLR1  »sF1043/%%

THROUGH L3sFOR J=1slsJeGeM
LX{J)=IX(JF(JY)=dX(IN(J))

LY(J)=JY(IF(J)I=JY(JIN(J))

L{J)Y=SQRTe (LX(J)%LX(I)+LY(J)HLY{J})

SFX=0

SFY=0

SMO=0

THROUGH LN1sFOR I=1s1s14GeN

SFX=SFX+FX0(1)

SFY=SFY+FYO(I)

SMO=SMO+ (JX(T)=UX(JRO) ) *FYO(I)~(JY(I)=JY(JRO)})*%FXO(1)}
FR{IR1)=SMO*LR1/{(JY(JUR1)=JY(JRO))*LXR1L
1 ={IX(JR1)=JX(JRO))*LYR1)

FXR1=FR{R1)*LXR1/LR1

FYR1=FR(R1)*LYR1/LR1

FXO(JR1)=FXO(JR1)+FXR1

FYO(JR1)=FYO(JR1)+FYR1

FXRO==(SFX+FXR1)

FYRO=-(SFY+FYR1)

FXO({JRO)=FXO(JRO)+FXRO

FYO(JRO)=FYO({JRO)+FYRO

PRINT FORMAT ANS4sR1sFR(R1)9FXR19FYR1sFXROsFYRO
VECTOR VALUES ANS4=31HOsSTs3HFR(91291H) 9S19F104295594HFXR1
1 S19F104295594HFYR19S19F1042/5S894HFXR09S39F10,295594HFYRO9»S1
2F1042/%$%

PRINT FORMAT ANS59JROsFXO(JRO)sJROSFYO(JRO)

1 JR1sFXO(JRL1)9sJR1FYO(JURL)

VECTOR VALUES ANS5=3S894HFXO(91291H)9F10e629S394HFYO(s1291H)
1F1062/S8s4HFX0(91291H) 9F10e295394HFYO(91291H)3F10e2%$
Q=0

THROUGH LL1sFORI=191914GeN

WHENEVER UNMB(I)eEe29 TRANSFER TO C1

P=0

THROUGH LL29FOR J=1913JeGeM

WHENEVER UN(J)eEeJdT(I)

P=P+1

IS(P)=JUF(J)

MS(P)=J

JN(J)=9999

JF(J)=9999

WHENEVER PeEe29TRANSFER TO C2

END OF CONDITIONAL

THROUGH LL39FOR J=1919JeGeM

WHENEVER JUF(J)eEeJTI(I)

P=P+1

IS(P)=UN(J)

MS(P)=J

JN(J)=9999

JF(J)=9999

LX(J)==LX(J)

LY(J)==LY(J)

WHENEVER PeE«2sTRANSFER TO C2

END OF CONDITIONAL

UNMB(JT(I))=UNMB(JT(I))=2
UNMB(IS(1))=UNMB(IS(1))=-1
UNMB(IS(2))=UNMB(IS(2))=1

JTSIMS(1))=JT(1])

JTSIMS(2))=JT(I)
D=LX(MS(1))%LY(MS(2))/(L(MS{1))%L(MS(2)))

1 =LY(MS(1))*LX(MS(2))/7(L(MS(1))®L(MS(2)})
WHENEVER o¢ABSe(D)elLeEPS1

PRINT FORMAT UNSTBL

VECTOR VALUES UNSTBL=%S8922HTHIS TRUSS IS UNSTABLE®S
TRANSFER TO START

END OF CONDITIONAL
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MAD Program, Continued

FIMS(1))=(=FXOUJT(I})*LY(MS{2))/L(MS(2))
1 +FYOUJT(I)1%LX{MS(2))/L(MS(2)))/D
FX{MS(1))=F(MS(1))*LX{MS({1))/L(MS(1))
FY{MS(1)3=F(MS(1))*LY(MS(1))/L(MS(1))
FXO(IS{(1))=FXOlIS(1))=FX{MS(1)}
FYO(IS{1))=FYO(IS(1))=FY{MS(1)}
FIMSL2))=(FXO(JT(I) I *LY(MS(1))/L(MS(1))
1 =FYQ(JT(I)}*LX(MS(1))/L(MS(1)))/D
FX(MS(2))=F(MS{2) ) %#LX(MS(2))/L(MS(2))
FY(MS(2))=F(MS(2))*LY(MS(2))/L{MS(2))
FXO(IS(2))=FXO(IS(2))-FX{MS(2))
FYO(IS{2))=FYOUIS(2))=FY{MS(2))

Q=Q+2

WHENEVER (M=Q)eGels TRANSFER TO C3
WHENEVER (M=Q)}eE+Os TRANSFER TO C4
THROUGH LL4sFOR Ial91s1eGeN

LL4 WHENEVER UNMB(1)eEelsTRANSFER TO C5
c5 THROUGH LL59FOR J=l9leJeGeM
LLS5 WHENEVER JN(J)eEeJT(1)sTRANSFER TO C6

THROUGH LL6sFOR J=1ls1lsJeGeM
WHENEVER JF(J)eEedT(1)

LX(J)==LX{(J)
LY(J)==LY(J)
TRANSFER TO Cé
LLé END OF CONDITIONAL
cé FX(J)==FXO(1}

FY(J)==FYO(I)}
JTS{J)=JT(I)
WHENEVER ¢ABSe(FY(J})eGEeeABSe (FX({J))
FIJ)=FY(J)eL{J)/LY(J)
OTHERWISE
FIII=FX{JY*#L(J)/LX(J)
END OF CONDITIONAL

Cé WHENEVER MeGe5
THROUGH L4sFOR J=ly 59JeGeM
WHENEVER (J+4)eGEM
TRANSFER TO A3
OTHERWISE
PRINT FOPMAT ECHOl11sMB(J)eeeMB(J+4)
PRINT FORMAT ANSlsLX(J)eoelX(JU+4)
VECTOR VALUES ANS1=$S8s2HLX9S59 5F1043/*%
PRINT FORMAT ANS29LY(J)eeelY(J+4)
VECTOR VALUES ANS2=2$S8s2HLY 9559 5F1043/%%
PRINT FORMAT ANS3sL(J)esel (J+4)
VECTOR VALUES ANS3=$S8s1HL 9569 5F1043/%%
PRINT FORMAT ANS119JTS(J)eeeJTS{J+4)
VECTOR VALUES ANS11=$S893HJTSsS1s 5110/%%
PRINT FORMAT ANS129FX(J)eseFX{J+4)
VECTOR VALUES ANS12=$S892HFX9S59 5F10,2/*%
PRINT FORMAT ANS133FY(J)eseFY(J+4)
VECTOR VALUES ANS13=$S892HFY 9559 5F1042/%%
PRINT FORMAT ANS149sF(J)eeeF(J+4)
VECTOR VALUES ANS14=$S891HF 956y S5F10.2/2%

L& END OF CONDITIONAL
OTHERWISE
J=]1
END OF CONDITIONAL
A3 PRINT FORMAT EECO119MB(J)eeeMBI(M)

PRINT FORMAT AANS1sLX(J)eselLX(M)

VECTOR VALUES AANS1=$S5S892HLXsS5s 5F1043/%%
PRINT FORMAT AANS2sLY(J)sesLY(M)

VECTOR VALUES AANS2=$5892HLYsS59 5F10e3/*$
PRINT FORMAT AANS3sL(J)esel (M)

VECTOR VALUES AANS3=$S891HL9S6s 5F1043%%
PRINT FORMAT AANS119JTS(J)eseJTS(M)

VECTOR VALUES AANS11=$5893HJTSsS1ly 5110/%3
PRINT FORMAT AANS129FX(J)eseFX(M)

VECTOR VALUES AANS12=%$5892HFXsS59 5F10e2/%%
PRINT FORMAT AANS139FY{(J)eseFY(M)

VECTOR VALUES AANS13=$5892HFYsS59 5F10e2/#%%
PRINT FORMAT AANS149F(J)eeeF (M)

VECTOR VALUES AANS14=3$S891HF 9569 5F1042%$
TRANSFER TO START

END OF PROGRAM
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A MAD Program for Truss Analysis

Critique

In the writer's opinion, the program is well suited for instructive pur-
poses. The problem can be separated into three parts. In the first part, the
students can be asked to write a program (or draw a flow diagram) for computing
the lengths and components of the length vector of the members. In the second
part, the students can be asked to write a program for computing the reactions
and modifying the external forces at the joints where the reactions are applied.
There are also possibilities of writing the program for computing length or
reactions or both as an external function.* The students may be asked to write
a program for computing three reactions along three given lines of action and
applied at three different joints of the truss.* This program, if it is written
as an external function, may be applicable to trusses which can be solved only
by method of sections.*

Then the students can be asked to write a program for computing two unknown
forces 1n members meeting at a joint using the method of joints and modifying
the external forces applying at the joint at the other ends of the members. The
process of searching for the joint to be solved and updating the various items
involved is a rather complicated procedure. Detailed instructions as given in
the text seem to be necessary. However, this complicated procedure is very
instructive since it dramatically illustrates the computer's ability to handle
problems which are essentially logical rather than computational. Often a human
being is scarcely aware of the logical detail which is involved where he solves

a problem manually.

* Due to lack of time, these problems have not been worked out by the writer.
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Example Problem No. 83
STIFFNESS FACTORS FOR A FLAT SLAB COLUMN

by
Robert B. Harris
Department of Civil Engineering

The University of Michigan

Course: Advanced Design of Structures Credit hours: 3 Level: Graduate

Statement of Problem

Estimate the slab thickness, drop panel thickness, and the column diameter
for a typical panel in your flat slab structure. Use the ACI methods for this
approximation.

Using these results along with the story height, study the effect of column
capital size upon the stiffness coefficients of the column and the carry-over

factors.

Program your solution for the digital computer using the MAD language.

Solution

Stiffness coefficients for members with variable cross sections may be found
by expressing the relationship between unit end moments appllied to a member and the
rotations of the end tangents. If the ends are defined by a and b respectively,
and any end moments Mab and Mba are applied simultaneously, the rotation of the end

tangents Qa and Qb must be, according to reference 1:

2 = MapPa1 - MpaPasn

e + M

b = MapPp1 T MpaPpo

Bal and sbl are the angle changes due to a unit moment applied to end a and Ba2
and Bb? are the angle changes due to a unit moment applied at end b. By the reciprocal
theorem,angle 5bl is equal to Ba2'

Solving the above equations for Ma and M

b ba'
Pr2 Pr1
Ve =& %2 ¥ & %
B B
M =_RBlg ,Talg

ba = A Ta A b
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Stiffness Factors for a Flat Slab Column

in which

A= BalﬁbE - (Bbl)g

If T is the minimum moment of inertia then K = %% and:

o. ~Par o P P
1 SRR 2 TRK G 3 T KK

The following sketch defines lengths used.

|

iy

Nt

HC

The following sketch shows the conjugate beams loaded with the appropriate

M . .
T diagrams from which the values of Bal’ Sbl, and Bb2 can be found.

Y o*
BRI ©n* A
)
"
&Y
o Y| TF Y
, £
Ry Y
1 Y
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Example Problem No. 83

Assuming circular elements in the capital, the moment of inertia varies as

the fourth power of the diameter; therefore

4 I 4
(H-q) o D (H-) . D
Tn) ~ o8 0 Ty © oot

In order to control the accuracy of the solution a variable was introduced called

DEL which represents the size of increment AY. This was assigned the value of 0.2
in the sample program. This was particularly necessary since rectilinear integra-

tion was used.

The following summation equations are the result of the application of the
conjugate beam method and the letters appearing in brackets below the various

terms are the letters used in the program for that quantity.

n = H-Q n = H-T 5
L Yy
PEIBAL = E Yi AY + D = ay
(DY)
n=tl n = (B-04Y)
] ||
| I ] |
Al A B
= B-Q n = HT
; A L (B-Y) Y,
FEIBBL = E (H-Y) Y, AY +D -
f L e
D = -AE- n = (B-0+3)
I | | ||
| 1 [
Bl G K
n = B-Q n = H-T " Y)2
H%I8B2 = N (8 - 1rn)‘2 AY + D! % n
L_AY AY (DY)
n = %{ n = (H-Q+7%)
l | L | |
| | |
B2 E F
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Stiffness Factors for a Flat Slab Column

letting X = H°EI, then Al = 1}2}.
_ Bl
PBL = 1=
_ B2
pB2 = =
2 [(a)(m2) - TT9 U
A = BEIFBZ - BBI- = ) -
X X
where U = (Al1)(B2) - BI°
2
i _ (a)x® X Al
Coefficient at bottom, C1 = SRG =X 5
X _ HEL _ 3
R=7EL -
i
Hence C. = @
3 l = U
5
Coefficient at top, oy = ki

Flow Diagram

For the carry-over factors the coefficient C, 1s needed.
o . B
2 U
Bl
Carry over - top to bottom = B3
Carry over - bottom to top = %
Print Read HC =0 Through
Title Data BACK
D,T,H For C = D,1.,HC.E.H/2
Calculate A=0 Through
© HC, Q E=0 SUMA ®)
G=0 For ¥ = .1,.2,¥.G.(H-Q)
DEL = 0,2
7
. Calculate SUMA DY =0 Through
A, E, G B=0 SuMB
F=0 For Y = (H~-Q+.05),.1,Y.G.(H~T)
K=0
DEL = 0,1
Calculate Calculate —{ Calculate
@—1oy, B, F, K Al, Bl, B2, U cgor  [—®
CTOP
COBT
COTB

Print
¢, b, HC, T, H,
CTOP, CBOT, COTB, COBT
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Example Problem No. 83

MAD Program and Data

Re Be HARRIS S164E 003 020 000
Re Be HARRIS S164E 003 020 000
$COMPILE MAD, EXECUTE

START

SUMA

SyMs

BACK

SDATA

10
140

R
R PROGRAM FOR STIFFNESS COEFFICIENTS FOR A COLUMN WITH 90 DE
1GREE CAPITALS

R
PRINT FORMAT TITLE
R
R HEADINGS
R

VECTOR VALUES TITLE=$1H19523526HCOLUMN STIFFNESS STuUDY
1 //526919H90 DEGREE CAPITAL ///5593HCAP»S393HCOL 954 93HCAP
253 94HSLAB»S593HCOL 9S493HTOP 9S653HBOT 9559 5HCARRY 9S4 s SHCARRY/
35594HDIAM 9 S294HDIAMS2 9 SHDEPTHS29y5SHTHICK 9529 6HLENGTH 952
45HCOEFF 9S4 95HCOEFF 9539 THTOP~BOT 9529 7HBOT=-TOP*g
R
R INPUT
R

READ FORMAT DATAs Ds Ty H

VECTOR VALUES DATA = $3F1043%$

HC = 0

THROUGH BACKs FOR C = DslesHCoEeH/2

HC = C/2 - D/2

Q =T + HC

R
R INTEGRATING STRAIGHT LINE PORTION
R

A = 040

E = 0.0

G = 040

DEL = 0.2

THROUGH SUMAs FOR Y = e19e29YeGe(H=Q)
A = A +{YePo2)*DEL

E = E +((H=Y)ePe2)*DEL

G = G +{(H-Y)*Y)*%DEL

R

R INTEGRATING CURVED PORTION

R

DY = 0.0

B = 0.0

F = 0.0

K = 040

DEL = 0,1

THROUGH SUMBs FOR Y = (H~Q+e05)92419YeGe (H=T)
DY = DY + D + 2¥(C-D)*(Q=H+Y)/HC

B = B +(DePed)*DEL*Y4Pe2/DYePe4

F =2 F +{DePe)*¥DEL¥(H=Y)oPe2/DYePo4
K % K +{DePe4 ) *DEL¥(H-Y)*Y/DYosPo&
R
R STIFFNESS FACTORS AND OUTPUT
R

Al = A+8

Bl = 6+K

B2 = E+F

U = A1*¥B2-BlePe2

CBOT = Al*HePe3/U

CTOP = B2*HePe3/U

COBT = B1/Al

COTB = B1/8B2

PRINT FORMAT COEFFs C» D» HCs ToHs CTOPsCBOT»COTBCOBT
VECTOR VALUES COEFF = $FBels4FTelsdFPeb¥$

TRANSFER TO START

END OF PROGRAM

04000 1040
1000 1040
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Stiffness Factors for a Flat Slab Column

Computer Output

CAP  COL CAP  SLAB coL QP 8OT CARRY CARRY
_____ DIAM DIAM DEPTH THICK LENGTH COEFF _ COEFF  TOP-BOT ©OT-TOP
1.0 1.0 .U .C 10.0 4.0012 4.0012 .5002 .5002
2.0 1.0 .5 .0 10.0 _ 4.6159 _ 4.1473 __  .4985 __ .5548
3.0 1.0 1.0 .0 16.0  5.9587  4.4210 .4878 .6575
4.0 1.0 1.5 .0 10.0  7.1344  4.6274 4765 L7346
5.0 1.0 2.0 .0 10.0  9.4565  4.9705 .4538 .8634
6.0 1.0 2.5 L0 1U.0 11.5%429  5.2332  .4359  .96l6
7.0 1.0 3.0 .0 10.0 15.7811 5S.6761 L4056 1.1278
8.0 1.0 3.5 .0 10.0 19.7202 6.0218 .3838  1.2568
9.0 1.0 4,0 .0 16.0 28.0289 6.6153 .3492 1.4796
10.0 1.C 4.5 .0 10.0 36.1126  7.0907 .3253 1.6568
11.0 1.0 5.6 .0 10.0 54.0806 7.9271 .2889 1.97G7
I _ COLuMN _ STIFFNESS  STUDY o
o 90 DEGREE CAP1TAL L N o
T CaP  COL CAP SLAB oL TuP BOT  CARRY CARRY
DIAM OIAM GEPTH THICK LENGTH COEFF  CUEFF  TOP-BOT _#37-TOP
1.0 1.0 .G 1.0 10.C0 6.0930  4.4461 L4866 L6669
2.0 1.0 . .5 1.0 10.0  7.1344  4.6274 4765 1346
3.0 1.0 1.0 1.0 1U.0  9.4565  4.9705 .4538 L8634
4.0 1.0 1.5 1.0 10.0 11.5429  5.2332 L4359 L9616
5.0 1.0 2.0 1.0 10.0 15.7811 5.6761 4056 1.1278
6.0 1.0 2.5 1.0 10.0 19.7202  6.0218 .3838 1.2568
7.0 1.0 3.0 1.0 10.0 28.0289  6.6153 23492 1.4796
8.0 1.0 3.5 1.0 10.0 36.1126 _ 7.0907 _ .3253 _1.6568
9.0 1.0 4.0 1.0 106.0 54.0806 7.9271 .2889 1.9707
10.0 1.0 4.5 1.0 10.0 72,7273 8.6220  .2643  2.2293
"11.0 1.0 5.0 1.0 10.0 117.4918  9.8889 L2276 2.7045

Discussion of Results

.90 DEGREE__CAPITAL

. COLUMN  STIFFNESS  STUbDY

Capital diameter, column diameter, capital depth, slab thickness, and column

length must all be put in using the same units. In the sample these are all in

feet and are printed out with the results for checking. The program limits the

capital depth to one-half the column length and increments by one-half a length unit.
Coefficients obtained give an accuracy of four significant figures. This
accuracy may be improved by making the integration increments smaller in the SUMA

and SUMB iterations.
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Example Problem No. 83

Critique

This problem was selected as representative of the use of the computer in making
repetitive computations which would take considerable time to do longhand. In a sense,
the problem is synthetic. If, however, such information were available with the detail
obtained, it would materially help in preliminary design and checking of flat slab
construction.

The problem was designed to serve as an introduction to the use of a more com-
plicated program prepared by the instructor, the use of which would allow the student
to make adjustments in columns, slabs, drop panels, and capitals, and exercise the
broadest Jjudgement in design.

As an introduction, the student reaction was quite good and little difficulty
was experienced in programming. About one week and a half (3 laboratory periods)
were used in this activity, but actual results were not turned in for some time after
this since mechanical delays with the Computing Center prolonged the submission date.

This problem served the purpose for which it was intended and in addition firmed
up in the students' minds the effectiveness of the column capital in flat slab con-

struction.

Reference

1. Maugh, L. C. ®Statically Indeterminate Structures, page 133.
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Example Problem No. 84
VIBRATION OF BEAMS ON SPRING SUPPORTS
by
Shan S. Kuo
Department of Civil Engineering

Yale Unilversity

Course: Structural Dynamics Credit Hours: 2 Level: Senilor, Graduate

Statement of the Problem

Write a computer program to determine the natural frequencies and the modal

shapes for a beam on spring supports as shown in Figure 1. The beam 1s idealized

5 4 3 2 1
0 I\ D,
k k
h \ h . h h
£ = Un

Figure 1. Beam on sprilng supports

as a multi-mass system. Fach of the two end masses 1s taken as one half of an interior
mass, and the sum of all masses 1s equal to the total mass of beam m. In order to

study the effect of spring constant k, we take a)R/'a)H as a parameter where

Q)R J2k/m = "rigid body'" frequency

wz\/EI/ml, = fundamental frequency of simply supported beam

1]

W'y

The program should be so written that any number of lumped masses can be handled.

Solution

We are concerned with the following matrix equation:
- x = AKX
w
where

F = flexibility matrix due to the spring action and the beam actilon

M = mass matrix, a diagonal matrix
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X
0

I

displacement of lumped mass

frequency

Il

It should be noted that the matrix FM is not symmetrical; therefore,

Jacobl's method cannot be applied to this case directly. The following is a general

procedure for solving this problem using a digital computer.

(a) Formulate the flexibility matrix F. It is considered here as the sum of three
action matrices, one from the beam action and the other two from the spring
action. In connection with the beam action matrix, we take

5 kh 7t Wg.2

TET T o(pe1)3 @y

where n = number of interior masses, or number of total masses -2.

(b) Formulate the mass matrix M.

(¢) Formulate the matrix Ml/2 FMl/2

(d) Make use of the Jacobi's method to find the eigenvalues and the eigenvectors
of the matrix found in the step c.

(e) The natural frequencies are then equal to (eigenvalues)—l/2

(f) The true eigenvectors are equal to M_l/g times the computed eigenvectors.

The steps (a) and (b) are incorporated in the subroutine "INPUT", whereas the

steps (c¢) through (f) are carried out by the subroutine "RITE".
Flow Diagram

757 BETA = 48.7 CaLL || SR
L /Zeaq/ N=N, SPAN= . 2
=NF/RST, g WRWH(T, D //’ " "
data NLAST / N+/ X '_"_”“( £ )) INpUT || RITE

(span )?

EN=N EI=71 XX(T+1)=EL XX (N+2)=Span]
= D = |—af - — ) 'S
Npz=N+2 wpl=14l] |AA(D=EI XX (1) =0. "@
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Vibration of Beams on Spring Supports

Flow Diagram, Continued

15 Ipl= — F | compute
J\T:/}N Iz+1 AD IJ e £9. (8)

T

Compute

( See program

FLEX from
&9. (A)

VECTCOR
®

Jpi=
@—b >t (T+1, J#1)
I+ = FLEX % BETA

L/.fh?')j) ‘

D
I+1

VECTOR

é{;

FLEX(

@—> =(span

/ spAn

z,7)
+(~€D)

TEMP(Z,T)
=FET-/)x

($pan )2 .

SPAN$2 ()~ £3)

REX(Z,]) =

OO
N\ I=/,Np

zas FLEX (Z7)
z T=1,~npR ~TEmpCZz, )
+VECioR(1,5)

K=N+2
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Example Problem No. 84

Flow Diagram, Continued

4of 40/
=/, K =/,k

Temp (1,7)
=0,

TeMP(Z,T)
= Jenass (3.7)
[VECTGIZ] = [FLEX] = Y402
—
<:>~,Uwﬂhwﬂ enAl[v ecroR) Z=LK

S=EIGN

TEMP(Z,Z)

__ 1
" TemMP(z, T)

[rerelvec]
(ZE:}+>—v[%~wsﬂ

150 REX(T,T)
[
Z=/K “JFExz, T)

FORTRAN Programs and Data

DOO3N 9
DOO3N 9

SHAN S, KUO (YALE UNIV)
SHAN S, KUO (YALE UNIV)
$COMPILE FORTRANs EXECUTE

C
C VIBRATION OF BEAMS ON SPRING SUPPORTS
C

004
004

027
027

DIMENSION FLEX(595)9ZMASS(595) sTEMP{595)sVECTOR(595)

1 XX{5)sAA(5) sWRWH(5)
COMMON NsSPANSBETA
C

C NFIRST IS THE FIRST N AND NLAST IS THE LAST N

C

READ INPUT TAPE 79129 NFIRSTsNLAST s NRWRWH

12 FORMAT(312)

READ INPUT TAPE 7sl4s (WRWH(I1)sI1=1sNRWRWH)

14 FORMAT(6F643)
DO 471 N=NFIRSTsNLAST
SPAN=N+1
DO 471 J=1s»NRWRWH

BETA=48¢70455%WRWH(J) #*WRWH(J) / (SPAN*SPAN%SPAN)

WRITE OUTPUT TAPE 69223 sWRWH(J)
WRITE OUTPUT TAPE 59223 sWRWH{J)

223 FORMAT(67HIVIBRATION OF BEAM ON SPRING SUPPORTSe A PROBLEM OF SHOC
1K ISOLATION/64HORIGID BODY FREQUENCY / FUNDAMENTAL FREQe OF HINGED

2=-HINGED BEAM=F542)

CALL INPUT(FLEX#ZMASS»VECTORITEMPsXX9AA}

CALL RITE (FLEX9ZMASSsVECTORsTEMP)
471 CONTINUE
-Cl07-
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Vibration of Beams on Spring Supports

FORTRAN Programs and Data, Continued

SCOMPILE FORTRAN

C
<
<

(a¥a¥a]

C
C
C

2N aXa) [aXaXa]

[aNa¥a)

INPUT MATRICES SHAN Se KUO T7/29/61 8/5/61

SUBROUTINE INPUT (FLEXsZMASSeVECTORSTEMPsXXsAA)

DIMENSION FLEX(5+5)9ZMASS{595) sVECTOR(595)sXX(5)sAA(5)9sTEMP(595)
COMMON NsSPANsBETA

EN=N

NM1=N-1

NP1=N+1

NP2=N+2

N2=N%®2

FORM THE INFLUENCE MATRIXs Il AND JJ FOR MASS NUMBERING

DO 16 I=1sN
Er=1
Ipl=1+1
XX{IPl})=£E1
16 AA(1)=EI
XX (NP2)=SPAN
XX{1)=0e
DO 15 II=1sN
DO 15 JJ=1sN
IPl=1i+l
IF(XX(IP1)=AA(JJ)) 17917918
17 BB=SPAN-AA(JJ)
FLEX(IIoJJ)=(BB/(6e%SPAN})®(XX{IP1)*XX(IP1)*XX{IP1)
1 ~—(SPAN*SPAN—BB*BB)*XX(IP1))}*(=1e)
GO TO 15
18 BB=SPAN-AA(JJ)

FLEX(II9JJ)2=(BB/(6e*SPAN) ) * (XX (IPL)%XX(IP1)*XX{IP1)

1 =(SPAN®SPAN~-BB*BB)*XX(1P1)

2 ~(SPAN¥(XX(IP1)=AA{JUN)R(XX(IPL1)=AA(JJ)I®(XX(IP1)=AA(JJ))/BB))
15 CONTINUE

SHIFT FLEX MATRIX DUE TO BEAM ACTIONe BORROW VECTOR

DO 201 I=1sNP2
DO 201 J=1sNP2
201 VECTOR(I»J)=0.
DO 202 I=1sN
Ipl=1+1
DO 202 J=1sN
JPl=aJ+l
202 VECTOR(IP1sJP1)=(FLEX(IsJ)}*BETA
WRITE OUTPUT TAPE 6s 777s BETA
WRITE OUTPUT TAPE 59 777s BETA
777 FORMAT(THOBETA =F643)

FLEX IS NOW ONE OF THE 3 MATRICES TO FORM THE FINAL MATRIX FLEX

DO 203 I=1sNP2
Er=1
DO 203 J=1sNP2
203 FLEX(IsJ)=(SPAN+1le~EIl)/SPAN

BORROW TEMPs ONE OF THE 3 MATRICES TO FORM THE FINAL FLEX MATRIX

DO 204 I=1sNP2
El=]
DO 204 J=1sNP2
EJ=J
204 TEMP (I9J)=(EJ=1e)*(SPAN+2e*(1e=EI))/(SPAN*SPAN)

HAPPY FINAL FLEX
DO 205 I=19sNP2

DO 205 J=1sNP2
205 FLEX(I#J)=FLEX(I9J)=TEMP(IsJ)+VECTOR(I9J)
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Example Problem No. 84

FORTRAN Programs and Data, Continued

C
C
C

FORM MASS MATRIX

DO 114 II=19NP2
DO 114 JJ=19sNP2
IF(II=~JJ) 11291119112

111 ZMASS(IIsJJ)=1e/(EN+1s)
GO TO 114

112 ZMASS(I19JJ)=0.

114 CONTINUE
ZMASS(191)=045%ZMASS(191)
ZMASS{NP2sNP2)=0e5%ZMASS(NP2sNP2)
RETURN

SCOMPILE FORTRAN

C
C
C

[aNa¥e! [aRaNaXa! [a¥a¥a!

NON

[a N

WRITE OUTPUT SHAN Se KUO 7/29/61

SUBROUTINE RITE(FLEXsZMASSsVECTORSTEMP)
DIMENSION FLEX(595)9ZMASS(595) s TEMP(595)sVECTOR(595)
COMMON Ns»SPANSBETA
K=N+2
DO 157 1=14K
WRITE QUTPUT TAPE 5915891 (FLEX(IsJ)s J=19K)

157 WRITE OUTPUT TAPE 6915819 (FLEX(IsJ)s J=19K)

158 FORMAT(23H FLEXIBILITY MATRIX ROWI3/(1H 5F10e5))
DO 701 I=14K
WRITE OUTPUT TAPE 5371191 ¢(ZMASS(I9J)sJ=1sK)

701 WRITE OUTPUT TAPE 6971191 9(ZMASS(I9J)sJd=leK)

711 FORMAT(16H MASS MATRIX ROWI3/(1H 5F9¢5))

FORM TEMP MATRIX = SQe RTe OF MASS MATRIX

DO 401 I=1sK
DO 401 JU=1sK
IF(I-J) 41244119412
IN THE UNIV. OF MICHIGAN USE SQRT NOT SQRTF
411 TEMP(IsJ)=SQRT (ZMASS(Is1))
GO TO 401
412 TEMP(IsJ)=0.
401 CONTINUE

FORM H MATRIX = TEMP TIMES FLEX TIMES TEMP
STORE FLEX TIMES TEMP INTO VECTOR ( TEMPORARY USE)

CALL MATMPY(FLEXsKsKsTEMP K2 VECTOR)

CALL MATMPY(TEMPsKsKsVECTORsKFLEX)

DO 402 1=1sK

WRITE OQUTPUT TAPE 55403519 (FLEX(IsJ)sJ=1yK)
402 WRITE OUTPUT TAPE 6940319 (FLEX(I9J)sJd=1,yK)
403 FORMAT(13H H MATRIX ROWI3/(1H 5F10e5))

EIGN IS A SUBROUTINE AVAILABLE IN THE UNIVERSITY OF MICHIGAN CeCe

S=EIGN(FLEXsKs1sVECTOR(1s1)sF)
IF (S=1e5) 13413514

13 WRITE OUTPUT TAPE 641245

12 FORMAT(15HOBAD RETURN S =F1046)
Go 1O 777

14 IF(S=245) 15915916

15 WRITE OUTPUT TAPE 6s11sF

11 FORMAT(15HOSCALE FACTOR =F1046)

GET TRUE VECTORS

16 DO 404 I=14K
404 TEMP(191)=1e/(TEMP(Iy1))

USE MASS AS A TEMPORARY STORAGE

CALL MATMPY(TEMPsKsKsVECTORIK »ZMASS)

DO 405 I=14K

WRITE OUTPUT TAPE 54406918 (ZMASS{I9J)sJ=19K)
405 WRITE OUTPUT TAPE 6940691s(ZMASS(T9J)sJmlsK)
406 FORMAT(16H TRUE VECTOR ROWI3/(1H 5F10e5))
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Vibration of Beams on Spring Supports

FORTRAN Programs and Data, Continued

C

C TRANSFORM THE EIGENVALUES TO FREQUENCIES
C

DO 150 I=1,K
150 FLEX{IsI)=SQRT (le/FLEX{(Isl))
DO 177 I=1sK
WRITE OUTPUT TAPE 5517891 sFLEX(I»1)
177 WRITE OUTPUT TAPE 6917841 4FLEX(IsI)
178 FORMAT(28H FREQUENCY IN SQe RTe OF K/MI6/(1H F30e6))

777 RETURN
C
C MATRIX MULTIPLICATION
C .
SUBROUTINE MATMPY(AsNsMsBsLsC)
DIMENSION A(555)9B(5+5)9C(555)
DO 75 I=1sN
DO 75 J=lsL
C(I’J’=00
DO 75 K=1sM
75 C(IeJ)=ClIsJ)+A{1sK)I%B(KsJ)
RETURN
$ DATA
030302
0e5 4o

Computer Qutput

VIEBRATION OF BERM 0N SPRIMG SUPPORTS. A PROELEM OF SHOCK ISOLATION
RIGIOD EDDY FREGUEMCY ~ FUMDARMENTHL FREQ. 0OF HINGED-HIMNGED EERM= 0.50

BETH = 0.120
FLEMIBILITY MATRIX ROW 1

1.00000 0.75000 0. S00200 D.25000 0.
FLEXIBILITY MATRIX ROW 2

[.75000 0.767LY u]
FLESIBILITY MATE
. S0000

57440 G.438598 0. 25000

C.G7440 0.30000

FLEXIBILITY MATRI: 4
. 25000 0.4 0.57440 0.7E76Y 0. 75000
FLEXIBILITY MATR 1T
o, 0.2500C 0. 50000 G. 75000 1. 60000
MASS MATRIX ROW 1
0.12500 0. 0. U. 0.
MASS MATRIAX ROW 2
a. : 0.z25000 0. 0. 0.
S5 MATRIN ROW 3
N Q. 0.25000 0. [
MASE MATRIX ROW 4
0. a, 0. 0.250C0 O,
MASS MATRIW ROW 5
0. o, . 0. 0,12500
H MATRIX ROW 1
0,12500 0.13258 0,02839 0.04419 .

H MATRIX ROW 2
.13258 019192 G, 15850 G.121350
H MATRIX ROW 3
0,08239 0. 15860 0. 182842 O.16860
H MATRIX ROW 4
(0, 04419 g.
H MATRIX ROW 5
0 0.0441% 0.02839 0.13258 0. 12500

TRUE VECTOR
1.60933
TRUE VECTOR
0.83266
TRUE VECTOR
-G.00000  -0.00000 0.99402 1.1004%5 1.24199
TRUE VECTOR ROW 4
~G.83966  -1.13797 0,16622 1.062312 -0.96208
TRUE VECTOR ROW 3
—-1,60933 1.18745  -1.71250 0.0339¢ 0.38978

-1.71250 G.833%6 0. 58978

0. 16522 1.02312  -0.26Z208

4




Example Problem No. 8.4

Computer Output, Continued

FREGUENCY IN 5Q. RT. OF KsM 1
- L 2.292843 . __ e
FREQUENCY IN S@. RT. OF Ks/M 2
[ e 13.833160 e
FREGUENCY IN SQ. RT. OF K-M 3
5.9215954
FREQUENCY IN S@. RT. OF KsM 4
S S 1.294014 __
FREQUENCY IN SQ. RT. OF K-M 5
- o8- 1 £ & = <Y S e
__VIBRATION QOF BEAW 0OM SPRING SUPPOETS. B FPROBLEM (F SHOCK ISOLATION .

. BETH =12.\7G . ______
FLEXIBILITY MATRIX ROW i
feee--21.00000  0.73000.__0.50000 __ 0.25000 0
FLEXIBILITY MATRIX ROW 2
0, 75000 2.75710  11.661448 7.47775 0.2s5000
FLEXIBILITY MATRIX ROW 3

________ 0.50000 _1t1.65146__16,.73485 _11.G6146 0.50000 e
FLEXIBILITY MATRIX ROW 4
e 0, 25000 7.47775 _11.66146  9.3510 ___0.F5000 S
FLEXIBILITY MRTRIX ROW 5
0, 0.2500n0 0.50000 0.75000 1.00000
MASS MATRIX ROW 1
oo 2125000 0. SSSNINY | IR 1 PO vl — -
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Vibration of Beams on Spring Supports

Discussion of Results

The natural frequencies are equal to the computed values times the square root
of k/m. The modal shapes are normalized in the subroutine BIGN according to the

following relation:

n+2 ¢ o
2 om,. 2..7 =m j=1, 2,...,n+2
i=1 94
Figure 2 shows the computed normal modes for two different QBR/»H values.
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Figure 2. Normal modes and frequencies
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VII.

Example Problem No. 84

Critique

A problem of this type is of great importance in the design of underground
structures to isclate shock loads. Many textbooks on vibration do not mention
Jacobl's method. With the advent of high speed digital computers, this method
becomes very important. Its algorithm is simple and all the elgenvalues and eigen-
vectors are computed at the same time. Further extensions of this problem include
the computation of bending moment matrix, shear matrix, reaction coefficients, and

the moment-time relation for a given shock function.
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