I. INTRODUCTION

The need for more accurate microstrip circuit simulations
has become apparent with the recent interest in millimeter-wave
and near millimeter-wave frequencies. The development of more
accurate microstrip discontinuity models is very important in
improving high frequency circuit simulations. In most
applications, the circuits are enclosed in a shielding cavity as
shown in Figure 1. This caviﬁy_may be considered as a section of
a waveguide terminated at both ends. The presence of the
shielding cavity affects the performance of the circuit (shielding
effects) and has to be taken into consideration.

It has been shown [l] - [2] that one condition where
shielding effects are significant is when the frequency approaches
the cut-off frequency of the waveguide's dominant mode. In most
cases, microstrip circuits including active devices are printed on
multilayer structures which consist of a combination of dielectric
and semi-conducting materials. The existance of these conducting
layers can affect the characteristicts of the loaded cavity and,
therefore, of the printed circuits. As it has been pointed out by
many authors [3] - [5], the propagation characteristics of
higher-order shielded-microstrip modes are very similar to those
of the shielding cavity. Consequently, a good understanding of
how microstrip modes propagate may be gained by just studying the
dielectric-slab loaded waveguide.

In this report we consider the case of a single

semi-conducting layer with a dopping density Np which varies from



1014 to 1016 and we study the effect of this variation on the
cutoff frequencies of the waveguide modes. Conclusions drawn from
this study show a very interesting behavior in the propagation
characteristics of the modes and may be extended to the case of

the shielded microstrip.

II. THEORETICAL FORMULATION

Figure 1 in Appendix I shows a basic description of the
loaded waveguide. The modes excited in this structure are LSE and
LSM and their characteristic equations which may be derived by

applying the transverse resonance condition [6] are shown below:
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The eigenvalues ky; and ky, are given by
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In equation (7), e is the charge of an electron and Np is the

doping density of the material. For the case a perfect dielectric
layer, cut-off is defined by k,=0. However, when tand is different
than zero, the cut-off condition is modified to the following

Re (k,) =0 (8)

This condition imposed on equations (3), (4) can give:
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By substracting equation (9) from (10) we can derive a relation

between ky; and kyo which does not include the eigenvalue k, and

the attenuation constant at cut-off a,:
2 2 2 - 4 -
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The solution of the sets ((1), (11)) or ((2),(11l)) can be performed

only numerically and results in infinite many but descrete



eigenvalue pairs (kyi, ky2)pm which vary with © and n. The

frequency which satisfies (8) for a given pair (kyi, kyg2)pn and ky =

nt/b is the cut-off frequency of the mn mode. This procedure is

rather complicated and requires extensive computation. To avoid

this shortcoming the cut-off condition is modified to

k =20 (12)
Equation (12) together with (3) and (4) transforms the

characteristic equation into a complex equation for ® resulting in
complex cut-off frequencies. The real part of this cut-off
frequency will be exactly equal to the one that condition (8)
would give. However, the imaginary part which, in general, is
about an order of magnitude smaller than the real, compensates for
the neglected attenuation at cut-off and is disregarded. The
results derived during this study are based on the second

condition.

III. NUMERICAL SOLUTION

Numerical solution of the characteristic equation was
achieved with Muller's Method [7] which is iterative in nature and
requires a good initial guess for fast convergence. Furthermore,
when solving for cut-off frequencies there may be a number of
solutions to the characteristic equation in a relatively narrow
frequency space. To overcome this problem, a method was developed

to track a given mode through increasting doping densities. That
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is, the solution for the cut-off for a given mode is determined

first for no losses where zeros are spread further apart and this

solution is used as the initial guess as the tand is slightly
increased. The numerical solution for the lossless case proved to
be much more simple than the lossy one. The characteristic

equation was solved with the bistatic method [7].

IV. RESULTS AND CONCLUSION

The results derived using the technique described above are
plotted in figures (1) - (34) and are for the waveguide geometries
of Table 1 in Appendix II. From these results it can be concluded
that the effect of the conductivity in the dielectric layer can be
tremendous. In some cases, as the doping density increases from
1014 to 1016 there seems to be a switching of dominant modes. That

is, higher order modes tend to exhibit a lower cut-off than the
mode which was dominant at lower Np resulting in much lower cut-off

frequencies. 1In addition, for other geometries, increasing
conductivity seems to have an opposite effect.

Presently, we are trying to investigate the effect of the
presence of semi-conducting materials on the modes of a shielded

microstrip printed on single, as well as multi-layer substrates.



APPENDIX I

Computation of the cut-off frequencies for the case of a

non-conducting layer:

| Region II
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For LSM, LSE k, is set to zero to determine the cut-off frequency.

The dominant LSM mode corresponds to TEg; .. ky = /b

The dominant LSE mode corresponds to TE .. k, A 0.0



Determining the next higher order mode:

LSM: Interation begins assuming a lower bound which was the
cut-off frequency for the dominant mode.

Two possibilities are tested:

(1) M=20, N 2
(i.e., ky 27t/b)

(ii) M =1, N =1
(i.e., ky = ©/b)

whichever case yields the lowest f, is taken as the next
higher mode.

LSE: Similar to the above, using instead the following two cases:

(i.e., ky 0.0)

(ii) M =1, N 1
(i.e., ky = 1t/b)

Iteration for dominant mode solution:
(Lossless dielectric)

LSM: A lower bound is determined by the following:

F = c/zb A TE,, cut-off for air-filled WG.
01

with c the velocity of light in free space.

F,. = —— A TE_ cut-off for completely filled WG.

01

Fd is used as the lower bound.
01

LSE: Similar to the above, using

F = c¢/Z2a A TE. cut-off for air-filled WG.



APPENDIX II

Group A Plots

Symbol definition: Symbol Mode

LSM1

* LSM2

A LSEl

+ LSE2

TIABLE 1
Waveqguide Parameters: Substrate Parameters

1 .305 .305 .15 3.0
2 .305 .305 .08 3.0
3 .305 .305 .025 3.0
4 .305 .305 .025 12.0
5 .305 .305 .025 16.0
6 .25 .305 .08 3.0
7 .25 .305 .08 12.0
8 .25 .305 .08 16.0
9 .305 .25 .08 3.0
10 .305 .25 .08 12.0
11 .305 .25 .08 16.0




GROUP A

"Cut-off frequencies vs. tand for LSE and LSM modes"
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Comments

In this group there are two plots which served as a motivation for
generating the plots of groups C-F.

These plots demonstrate the interchange of the mode order (Figure

B.1l) and the sensitivity of Muller's method to initial guesses
(%5, Xj3-1r Xj-2) (Figure B.2).
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Type of Mode = LSM
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Qbservations:

e It is obvious that there are two LSM modes very close together.

e As tand increases, one can see that the original 2nd order mode
has moved to become the dominant.
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Fquation for Epsr=0.9305

e
et e ——
N

e —

S

S m—

T

e —

S

——

e

e —

e

S——

S

S

——

S ——

————
e ——
T
>
T —
\‘;‘g

. !
i %I,’

T
|

S

T ——
e

e e—

S

S

S

S
o
N
RS
S—

S am————

e —
e —
S
S

e ——
———

|

tl

e ——

“",”/‘/ ) (] ‘

“ m‘wwm

S

e————

—
\

—

=

i s



Fgquation for Epsr=0.9405
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Fgquation for tand = 0.5




=0.0

F.quation for Epsr




FEquation for Epsr=1.0

23.4
F—real



{and

Fquation for Epsr=1.0




Equation for bkpsr=2.0




Equation for Epsr=2.5




Specs:
Type of Mode = LSE

ky = 0.0

a = 0.305"

b = 0.305"

€. = 16.0

h = 0.025"
Qbservations:

e At first glance, one might sense a problem with these plots.
The specs are nearly the same with those of Group A, #5 which
shows no mode crossover. Yet it is clear from these plots that
the dominant LSE mode is replaced as tand is increased.

e The difference between this curve and the corresponding one in
Group A is in ky.
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Equation for tand=0.005 (LSE

W
Al
\

V“
’ ”" VR
\\\\‘W“ "0’0’0’03;4,',,;‘_&:: R

i :
\ | ““"0’0’0"::'0';{{“‘3

)
\\\\\\\

(A
(X
Wy

(5
“ “" "’
' (A
Wl AR

7 ARy
"IZ{({R\\&S\ o

\

X

D)
IR s
() TR o,
B A

“\ “ X0
) (A
it
“."o:'lff"{\\ TR
/\
//
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Equation for tand=0.05 (LSE
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Equation for tand=0.1 (LSE)
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Equation for tand=1.0
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Fquation for tand=2.0
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Specs:
Type of Mode = LSE

ky = ®/b

a = 0.305"

b = 0.305"

g, = 16.0

h = 0.025"
Observations:

e Following the progression of these plots, it is clear that there
is a mode which remains nearly fixed for increasing tand. This
would be the LSE, mode which appears in #5 from Group A. It

also appears that another higher order mode is cutting across.
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Equation for tand=0.1 (LSE)
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Equation for tand=1.0 (LSE)
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Equation for tand=1.5 (LSE)




Equation for tand=2.0 (LSE)




Specs:
Type of mode = LSM

ky = ®/b

a = 0.305"

b = 0.305"

h = 0.025"

g, = 12.0
Qbservations:

e By changing €. from 16.0 to 12.0 we can observe much greater

stability in the relationship between LSM; and LSM,. Note,

however, that a higher order mode is still seen to be moving to
the dominant position.
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Equation for tand=0.5 (LSM)
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Equation for tand=1.0 (LSM)
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Equation for tand=15 (LSM)




Equation for tand=2.0 (LSM)
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