THE UNIVERSITY OF MICHIGAN

INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

THERMAL STRESSES IN THICK-WALLED TUBES WITH
LAMINAR CONVECTION HEAT TRANSFER

Daniel P. Werner

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in
The University of Michigan

April, 1968

IP-818



ACKNOWLEDGMENT'S

I am sincerely grateful to Professor V. S. Arpaci, Chairman
of the doctoral committee, for his patience, invaluable suggestions,
and personal interest during this investigation. I also wish to thank
the remaining members of my doctoral committee for their advice and
suggestions.

The financial support of the experimental work by the Shell
0il Company is gratefully acknowledged, as is the financial support
provided by the Department of Mechanical Engineering and the Horace H.
Rackham School of Graduate Studies, University of Michigan.

Finally, I wish to thank my wife for her patience, encourage-

ment, and sacrifices.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS «eceeveeoee ceseseeas crseesesesnases cresesesans .o il
LIST OF FIGURES «essevevcecesossososans et esocses s cessrsonene iv
NOMENCLATURE + et eetesesseassesoasesansssasosossasesssssosssnsan vi
CHAPTER
I INTRODUCTION 4 evveevesosnasnsenesosossssaneansasnsesssoa 1
IT THEORETICAL ANALYSIS it et nveeeerasestosnsssnsssssons R
A, PFormulation v.eeeeeieinerennonencnees chesesereeaoas it
B. Solution eeeeviverencecanns C ettt et ea e . 13
1. Temperature Solution eeeiviaeiiieieniiioenonnss 13
2. Stress SOLUtIion eeeeveerernrenenreneenoansnnss 20
C. RESULDES o vvvvnenrrneenennenneneeoenneaesnsensannns 2k
IIT  EXPERIMENTAL INVESTIGATION «covuvernveenneennnesnnnsns k1
Iv DISCUSSION OF RESULTS e vvveevuvncesonunesennansesnnns 48
APPENDICES
A FORMULATION OF TEMPERATURE PROBLEM otevovevesesocsoans Lo
B APPROXIMATE TEMPERATURE FORMULATION
FOR THE ENTRANCE REGION coveevesvensococososaconanssenos 53
C EFFECT OF AXTAL CONDUCTION IN THE TUBE WALL ........ .. 56
D TABULATED VALUES FOR MODIFIED GRAETZ SOLUTION «vo.o.an 62
E THERMAL STRESS SOLUTION FOR PLANE STRAIN ccevevviovenn 69
BIBLIOGRAPHY 4ttt tvteviosonessssesssassastosessassssosssososonons 7L

iii



Figure

10

11

12

13

14

15

LIST OF FIGURES

Page
Schematic of System ..... C ettt ee ittt 5
Effect of Modified Nusselt Number on
Wall Temperature T. (R = 1) vereurereenoesonnnnoonnnnns 25
Effect of Modified Nusselt Number on
Wall Temperature IT. (R =1, Pe = 100) sevvreunrecnnnn .. 27
Effect of Modified Biot Number on Wall Temperature
(R=Ryy Ro =3, N=20) eevrrrineenneniunnnnnnnnnannn, 28
Effect of Tube Geometry on Wall Temperature
(R = RO, B=3, N=20) eouevenannsss et es et 29
Comparison of Tangential and Axial Stress I
(R=1,Ry=23,B=23,Pe=10, N=2) cevrrrreruurnnns 30
Comparison of Tangential and Axial Stress II
(R=Ry, Ry=3, B=3, Pe =10, N'=2) vevvvniionnnnn. 31
Effect of Tube Geometry on Axial Stress I
(R=Rg, B=3, Pe=10, N=2) tovvrinininionennnnnnnn 33
Effect of Tube Geometry on Axial Stress ITI
(R=Ry, B=3, Pe =10, N=2) sererenenenennnnn. vee.. 3b
Effect of Modified Nusselt Number on Axial Stress
(R=Ryy Ro=1.6, B=3, Pe = 10) toveeruuannnunonanns 35
Effect of Modified Biot Number on Axial Stress
(R=Ry, By = 1.6, Pe =10, N=1) cvvrrrnnennnennennn. 36
Effect of Peclet Number on Axial Stress
(R=Ry Ry =1.6, B=3, N=6) covvrrrrnnnnn. Ceaeans 37
Effect of Modified Nusselt Number on Axial and
Tangential Stress for Plane Strain
(R=TRgy Rog =3, B=3) teverrrenrinaneesanonocanconons 38
Effect of Tube Geometry on Axial and Tangential
Stress for Plane Strain (R =Ry, B=3, N=20) ....... 39
Effect of Modified Biot Number on Axial and
Tangential Stress for Plane Strain
(R=Rgs Ro =3, N=20) teruenrenianennrninanennennnnns Lo

iv



Figure
16

L7
18

19

20
21

22

LIST OF FIGURES (Continued)

Schematic Assembly Drawing of Test Apparatus .......

Photograph of Test Apparatus eoeeveeieiriiieeeennaenn

Experimental Temperature Data

(Z=8, R=Ry, Rg =3, B=4.8, N =18.9) «..........

Experimental Axial and Tangential Stress Data

(z=8,R=R,, Ry =3, B=U.8, N=18.9) .........
Schematic of Modified Graetz Model c.ovieeeervircnessen

Schematic of Modified Leveque Model ........ Ceeeeaen

Schematic of Physical Models Used in Determining

Effect of Axial ConducCtion eeeeeeeeeerssoseonsocnens



5 @

1

dy
Ky
kR, ke

Pe
%y

Ro

NOMENCLATURE

coefficients for modified Graetz solution
Helmholtz function

modified Biot number

coefficients for modified Graetz solution
parameter including modified Biot number

constant deformation specific heat

constant in modified Leveque solution

constant pressure specific heat of fluid

modulus of elasticity

cubical dilitation

shear modulus

heat transfer coefficient

overall heat transfer coefficient

modified Bessel function of first kind of order »
Bessel function of first kind of order v
modified Bessel function of second kind of order
thermal conductivity of solid and fluid, respectively
coefficients in particular stress solution
modified Nusselt modulus

integer

Peclet number

radial and axial heat flux, respectively
dimensionless radial coordinate

dimensionless outside radius

vi



R radial body force

R m eigenfunction

r radial coordinate

r inside radius

v, outside radius

S Laplace transform parameter

4 entropy

T tube-wall temperature

Te fluid temperature

To inlet temperature

Teo ambient temperature

T time

U average velocity

VN radial displacement

We ,WUp complimentary and particular solution for W , respectively
w internal energy

ut local fluid velocity

§7 displacement vector

w” axial displacement

We , Wp complimentary and particular solution for w~ , respectively
%, Bessel function of second kind of order -
i transverse coordinate

z dimensionless axial coordinate

Z dimensionless axial coordinate
Z axial body force
7

axial coordinate

vii



x & D> 3 »

C:Y‘ 1é% )6(?

9| )91,

o, ef

, e
Jv .2 )O—Lp
0}%,03*;0b*
T
/Eﬂ\‘

thermal coefficient of expansion
Gamma function

percentage deviation in temperature
shear strain

arbitrary end parameter

radial, axial, and tangential strain components

axial coordinate

transverse coordinate

dimensionless fluid temperature
dimensionless temperature

dimensionless temperature

dimensionless fluid temperature

transformed dimensionless fluid temperature
dimensionless fluid temperature
Boussinesqg-Papkovich displacement potential
separation parameter

eigenvalue

eigenvalue parameter

Poisson's ratio

transverse coordinate

density of solid and fluid, respectively

radial, axial, and tangential stress components, respectively

dimensicnless radial, axial, and tangential stress components,

regpectively
shear stress

dimensionless shear stress

viii



8-

dimensionless tube-wall temperature
Love-Galerkin displacement potential

Goodier displacement potential

ix



CHAPTER I

INTRODUCTION

The basic equations of heat conduction and thermoelasticity
are well known and have been in existence for a long time. However, the
number of existing three-dimensiocnal solutions appearing in the litera-
ture is very small and most of these have been published recently.
Comprehensive bibliographies have appeared recently in the texts by

(11) (3)

Nowacki, Parkus,(l3) and Boley and Weiner.
Many of the three-dimensional solutions deal with the axisym-
metric distribution of stress in cylinders. Two of major interest are

(18)

mentioned here. Youngdahl and Sternberg obtained an exact quasi-
static solution for the thermal stresses which arise in an infinitely
long elastic circular shaft when its surface temperature undergoes a
step-change over a finite band. The surface temperature over the re-
maining portion of the cylinder was held constant. The thermal stresses

(1)

in pipes were investigated by Parkus. The case of a hot liquid in
steady flow through a long tube transferring heat to the surroundings
was considered. The inside and outside heat transfer coefficient was
assumed to be large and slug flow was assumed to exist in the pipe. It
was pointed out in these investigations that the assumption of infinite
heat transfer coefficient is unrealistic but will lead to a conservative
estimate of the stresses in an actual situation. However, it is often
important that more realistic values be obtained since in many practical
cases the conservative result greatly overestimates the actual stresses.

It is therefore desirable that more realistic physics be included in the

formulation of the problem.



It is the purpose of the present investigation to consider a
more physically meaningful model to Parkus' problem. The thermal part
of the study is based on a modification of the classical Graetz problem
in convection heat transfer by including the heat capacity of the tube
wall. (For a review of earlier work on the Graetz problem see for in-

(8)

stance, Knudsen and Katz or Jakob<7)). It is assumed that heat is
transferred to the ambient through an overall heat transfer coefficient
which includes both the thermal resistance of the wall and the convec-
tive film coefficient.

The modified Graetz problem described above was studied by
Schenk and Dumore.<15) Use of the separation of variables led to an
eilgenvalue problem of the Sturm-Liouville type. Numerical results
were given for three values of the finite overall heat transfer coef-
ficient and the first three terms of the series solution were given.

The results of Schenk and Dumore are extended to include six
values of the overall heat transfer coefficient. 1In addition the series
solution is extended to practical limits using numerical computation
procedures. Since the series solution near the entrance is slowly
convergent an approximation based. on a modification of the classical

®),

Levenque problem (see for instance, Knudsen and Katz and valid
in a small region near the entrance is obtained.

For the thermal stresses associated with the problem it is
common practice to estimate these stresses by the plane strain approxi-

mation. In this study the exact axisymmetric stress state is determined

and the validity of using the plane strain approximation is investigated.
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The general thermoelastic formulation for the axisymmetric
distribution of stress in cylindrical coordinates is derived from
bagic principles. The approach used gives physical significance to
the various terms in the formulation. For steady problems the formula-
tion reduces to the uncoupled quasistatic theory.

The thermal stresses are found in terms of Goodier and Love-
Galerkin displacement potentials. On the cylindrical surfaces the
boundary conditions are satisfied exactly while at the entrance the
stresses are self-equilibriating and Saint Venant's principle applies.

Representative numerical results are given for surface
temperature and stress. Experimental verification of the analytical

results was obtained and a limited amount of data is presented.



CHAPTER IT

THEORETICAL ANALYSIS

A. Formulation

1. Thermoelastic Formulation of Axisymmetric Problem

The general axisymmetric problem is considered. The equations
of motion and thermodynamics are applied to a system. Then the compati-
bility and constitutive relations are introduced. Finally the steady
thermoelastic formulation is obtained.

Application of Newton's second law of motion to the system

shown in Figure 1 yields

. T Oe _ U
QF(M~> T o T T T R =135 (1)
203 —
77_’; o g?(r’t’) + 7 f gtb (2)

where 0y denotes the radial stress, (3 the axial stress, dp

the tangential stress, U the r-% shear stress, v the radial coor-

dinate, % the axial coordinate, 1 the time, B and 2 the radial

and axial body forces per unit volume, respectively, [ the mass density,
W the radial displacement, and w~ the axial displacement. It ig

noted that since no circumferential distortion occurs the Y-® and

#-% shear stresses are zero. Furthermore, moment of momentum requires

that T,, = Ty = T

Applying the first law of thermodynamics to the system yields

PE 40RO - 0 RS - 0D -F

’y

Y
+'§°‘g(°%%’¥) +JF§'T(PT%L{'I‘> + 5 (r0 ”%) ag(T + WL RY (3)
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where U denotes internal energy per unit mass, %V\ the radial heat

flux, and 3y the axial heat flux.

s . . oY W
Multiplication of Equations (1) and (2) by & and 5%t

J
respectively, ylelds relations expressing conservation of mechanical

energy. Subtraction of these from Equation (3) gives the following

expression for the conservation of thermal energy:

&R _ 1 3 (r _ 2% 2u Tg 2u
T = r ar( %ﬂ Dy + O 50t T 7 t
2w i atu
+ @@t + T S5t + T 23t (&)

Here the internal energy may be expressed as a function of

temperature by considering

where T denotes temperature, €, the radial strain, €Ep the circum-
ferential strain, E% the axial strain, and ¥ the Yv-% shear strain.

The total differential of WL is

= ()
dx = 31’)5’_)64,)6%,{ dT T QEr/T, €y, €5 ¥ dér

I

T (aé@j-r.e“ei)x de¢  + <2%1-5T,er,e<p ¥ efdgf (5)

In terms of the thermodynamic property relationship (which is valid

both for reversible and irreversible processes)

dn = Tda * F( 6 dér + Gdey + Gdey +TdY) (6)

where 4 denotes the entropy per unit mass. Equation (5) may be

rearranged to give
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da = Cér)é@\e%sY AT + Y-T(%Aér ’r;&@)e%)x—"%mjaer
ST G e T FF]dee +[TGE) ey, * F O2fden
[T 59)r, e, g ez T TLT:J ¥ (7)

where C e, , €p5 €z, y 18 the specific heat at constant deformation.
To eliminate the entropy from Equation (7) the definition of the

Helmholtz function, & , is required and its differential is given by
= 4 d de, +T —~ 8)
do. = { dr dé, + Oy Ep '*‘O-_z. z T dg) 4 dT (

Noting that the differentials appearing in Equation (8) are exact the

following Maxwell relations suitable for solids are obtained:

— i’g) = _l(asfr>
al’T)e,{;)ei)X f °oT é).)ew ‘ét)x

_ L@) _ 4 (.:.@)
;égp T)éy-)é.;_.,b’ = oT Ey-)éfo,ff)b/

— (aﬁ-j
af% T)é*‘)é@sb/

22

(
~ Gt =15

Finally substitution of Equation (9)into Equation (7) yields

di = CdT + Js"Y_'T(aTr> v G lder +F3[T(3F) + % Jdes

FATE) vmlaes - oT(E) + T (10)

where subscripts have been omitted but evaluation of partial derivatives

at constant deformation is implied.
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The strains are related to the displacements in the same
manner as in isothermal elasticity since purely geometrical considera-

tions are involved; the pertinent equations are as follows:

€ = 3
Ep = %
5%3%%;
Y = 5 r S (11)

Substitution of Equations (10) and (11) into Equation (4) yields the

following form of the energy equation:

oT ¢ 20y 2€ 2Tz 26#
fc 57 L %&r %_{_r + TR O FS
2T — - _ 287
t T ot ] = ¥ ffﬂ(r gr) ¥ (12)

To complete the formulation constitutive relations are

necessary to furnish a sufficient number of equations among the depen-

dent variables. The relationships given by Fourier's conduction law

and Hook's generalized stress-strain law are

e = "‘h‘g%:
-
iy = "Kgy (13)
and
€ = JEEGT- “V(O'Q *013] + BT
€o = —'E[Q-cp -v(G% +q)) + 6T
E2 = JE[U:Z.—V(CYY““%)] + 8T
y = g7 (14)



or solving for stress

O—;‘ = ZG(&Y + /—V;V- e - 1/_:’: @T\>
G = 26(€p + € — T 8T)
G = 26(€z + =7 € - 75 BT

T = &Y (15)

where R denotes the thermal conductivity, E the modulus of elasticity,

V= Poissons ratio, ( the thermal coefficient of expansion, and €

the cubical dilatation ( € = €r+€p +€2 ) .

Making use of the constitutive equations, the coupled govern-

ing equations are written in terms of temperature and displacement as

follows:

Vu - ¥ + o 2 ()T« B = &34 (16)
T s % - 2 (B +% - 5 @)
el t26(FE)TE = F R R) + G E) (18}

where € =VaV and Y ° denotes the Laplacian in cylindrical coordinates.

Various simplifications of the coupled theory are discussed by numerous

authors, e.g. Boley and Weinero(3> In most commonly encountered pro-

blems the effect of mechanical coupling and inertia is negligible.

Neglecting these effects Equations (16), (17) and (18) become

2 [+V 2 - .

Vi - &= + 75 % —z{,z,,) T*%’ =0 (19)

. e T 2 _

Vi + T 5 -2 [EB)BE + F = (20)
_ 2/, ol <

gl = + F(rr ) + (R %) (21)
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respectively, which constitute the uncoupled quasi-static theory.
Most problems are solved using this theory. For unsteady problems
the time variable then appears only as a parameter in Equations (19)
and (20) and therefore simplifies the problem considerably. For steady
problems time disappears altogether and the coupled formulation reduces
to the quasi-static formulation. The following analysis applies to
the quasi-static theory and non-thermal body forces are omitted.

By virtue of the linearity of the problem the solution of

Equations (19) and (20) can be written as the sum of two solutions

Ww = WU ¥ WUe

where the P subscript denotes a particular solution and ¢ denotes

the complimentary solution of the homogeneous equations. - A particular

(6)

solution is given by Goodier in terms of a scalar displacement

potential which is defined by

We = {ﬁ%
wp = %‘g/ (23)

The Goodier potential then satisfies the relation
i ‘
v = () 8T (2)

which is obtained by substitution of Equation (23) into Equations (19)

and (20). The complimentary solution is given by use of the third

(10)

component of either the vector displacement potential of Love ~-

(5)

Galerkin



-11-

_ XX
We = JY'?'%
3 X
Wwe = 20-v) VX~ 53 (25)
or that of Boussinesq(u)—-Papkovich(lg)
oA
Ue = %
Wwe = +0O-v) VA — 5{ (3 ) (26)

These potentials satisfy the biharmonic and harmonic equations
VEVEX =0 (27)
VA =0 (28)

respectively. Finally the stresses may be written in terms of poten-
tials by combining the particular and complimentary solutions. In

terms of Goodier and Love--Galerkin potentials the stresses are
=26 (3 VW) + Frex - )
n =6l B5 V) + Frvx - 5]
G = 26( (%ﬁ -v) + H(envic - -f)
) ]

(29)

“”‘x

’L’ — 26[ %}/ + ’;9-},‘([1—1/']\7

and in terms of Goodier and Boussinesq-~Papkovich potentials they are
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2

O G A R A

Oy ¥
= L2 -vY) T —Z—ﬁ"]
Tp 260 (+ 5¢ Ep roar
o, = 2al (?7;; - V) o+ ZU'U%?, - 75 |
o= 24l &Y+ G- 3 %‘ J (30)

2. The Temperature Problem

The following assumptions are made:
1) Axial conduction in the tube wall and fluid is neglected.
The effect of axial conduction in the wall is discussed in

(16)

Appendix C. - Schneider investigated the effect in the
fluid and showed that the effect is negligible when the
Peclet number (Reynolds number times Prandtl number) is
greater than 100. Because of the low Prandtl numbers of
liquid metals (.003—.03) axial conduction may become im-
portant for this class of fluids.

2

The physical properties are constant.

The fluid has a fully developed laminar velocity profile.

W

The fluid temperature is uniform at the entrance.

N W,

)
)
) The external convection heat transfer coefficient is constant.
)
) The ambient is isothermal.

7) The fluid is incompressible.

A schematic of the physical model is shown in Figure 20. Under
the assumptions given above the governing differential equations are

derived in Appendix A. The resulting dimensionless formulation is

given by
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%&‘CR R =0 (31)
PoCi-e) 8 = x R(RE) (32)
subject to the boundary conditions

fo,2z) = 601,2) (33a)
FP = -3 br,2) (33b)
B(r,0) = | (33¢)
20(02) = p (334)
RO = —wve0,2) (33¢)

where R and Z denote the dimensionless radial and axial coordinate,
respectively, zﬁ and € the dimensionless temperature of the wall and
fluid, respectively, Pe the Peclet number, R modified Biot number,

and N modified Nusselt number.

B. Solution

1. Temperature Solution

The temperature distribution in the tube is determined from
Equation (31) subject to the boundary conditions Equations (33a) and

(33b). The simple solution is readily obtained as

pR,2) = L1 -BLr1 8, 2) (34)

5 = —8
where B = T RIsR,
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Determination of the inside surface temperature requires solution of

the convection problem.

The solution of the convection problem is found from Equation
(32) subject to Equations (33c), (33d), and (33e). Applying the separa-

tion of variables a product solution is assumed in the form

B = £ ReE) (35)

and substituted into Equation (32). This yields the two ordinary

differential equations

d—g—\——éi—:—[)

d# (36)
fﬁ(ﬁf%) + ¥ROI"R®))R = 0 (37)

where ) 1is an arbitrary real constant of separation. Substitution
of Equation (35) into the boundary conditions, Equations (33c), (33d),

and (33e),yields

Eoy Rry = | (38a)
£ =y (380)
g—%“) = —NQRu) (38¢)

The solution of Equation (36) is well known and can be written immediately

as

Ezy = ¢ e ™ (39)

where C, is an arbitrary constant. The solution of Equation (37),

however, cannot be expressed in terms of previously tabulated functions.
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Therefore golution requires computation of the eigenfunctions and eigen-
values of the system which is of the Sturm-Liouville type.
A power series solution of Equation (37) can be written in the
form
e
R = ZO e, R” (40)
"=

where O =0 and &, , = - z%w_(a.m-,_-am_*) . The character-

2m -
istic values, AM , are then the roots of the polynomial obtained by
substitution of Equation (40) into Equation (38c). However, in practice,
only the first few roots of this polynomial can conveniently be deter-
mined.

Instead of using the power series method of solution a more
direct numerical procedure was used in the actual numerical computations.
The differential equation, Equation (37), was integrated numerically
using the Runga-Kutta method. Eigenvalues were determined with a suc-
cessive approximation procedure. - After integration over the domain for
a trial value of ), appropriate values of ®R@) and %ﬁ%(D were
substituted into the boundary condition, Equation (38c). For the correct
value of M., Equation (38c) becomes an identity. The eigenfunction was
determined by a final Runga-Kutta integration using the appropriate
eigenvalue.

Having determined the eigenfunctions and eigenvalues the

general solution of the convection problem may be written as

O(rR,2) = 5 A, R,y & ¢ (¥1)

The HA\ are constants to be determined in such a way that the remaining
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non-separable boundary condition is satisfied. Substituting Equation
(41) into Equation (38a), multiplying through by R(1-R*) R, and

integrating the resulting expression from O to 1 yields

|
P A LY. SPY
~ ,fol R(1-RY) R d R

(42)

It is noted that the <R”\ are orthogonal with respect to the weighting
function R (I1-R*) on the interval O to 1 . Successive application
of Simpson's rule is then used to evaluate numerically the integrals
appearing in Equation (42). Finally the temperature of the fluid at

the inside wall is given by

o -Mm T
C1,2Y = T B, & (43)
m=0
i s
where Baw = A R O and M = R

Values of the eigenvalues, A, , eigenfunctions at the wall,
GlMO) , and coefficients, HM, and 3, , are tabulated in Appendix D
for N = 20, 17, 6, 2, 1, and 0.5. It was found feasible to carry the
computations as far as the first 20 terms of the series. All computa-
tions were performed on an IBM 7090 computer.

Comparison of the numerical results was made with those of

(15)

Schenk and Dumore for the first three terms of the series. Good
agreement was found for the eigenvalues and eigenfunctions while some
of the coefficients showed minor discrepencies. It is noted that the

nomenclature in their paper is related to the notation used here by

Bw =22 and Nd = 2N .,
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Solutions obtained by separation of variables and Fourier
series are "large time'" solutions and thus slowly convergent for "small
time'". Therefore an asymptotic solution valid at the entrance is ob-
tained.

Based on the physical model shown in Figure 21 the governing
differential equations are derived in Appendix B. The resulting dimen-

sionless formulation is given by

"B~
155 = o (1)
subject to
Bly,0) =0 (45a)

H(e0,2) =0 (45b)

o s
-3—-3;(0’%) = N[ 40,Z) -/ ] (b5¢)

where -©- denotes the dimensionless fluid temperature, Y and Z the
dimensionless transverse and axial coordinates, respectively, and N a
modified Nusselt number.

A solution may readily be obtained by the use of Laplace trans-
forms. Taking the Laplace transform of Equations (44) and (45) with
respect to the dimensionless axial coordinate 2 yields

+n —_—
A A R (16)

subject to the boundary conditions

H(ec,s) =0 (47a)
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(0 = N [Blos) -1 (470)

=F

where S 1s the transform parameter and @(?\53 the transformed
temperature.
The solution of Equation (46), noting that L I,(x)—w

X+ 2

may be written as

%_'(«3)5) = ij/i/z Kys(l?zsh‘j/z/z> (+8)

which satisfies Equation (47a). The functions I,(%) and K, (x) are
the modified Bessel functions of the first and second kind, respectively,
of order v and argument X . The éonstant A is found by substitu-

tion of Equation (48) into Equation (47b) and is given by

C, '
/q = S’/‘o( | CLS—I/3> » ()-L9)
where ' 3¥3 P(73) 3 * 3" P(%) )

and ['(x) denotes the Gamma function of argument X
Having obtained a solution of the transformed formulation
the transformed wall temperature is obtained by taking the limit of

Equation (48) as y approaches zero. The result is

_ C .
T (0,8) = S¥E([+c3 %) (50)

where C = N,/F(l/"
3% (%)
Since a solution which is rapidly convergent in the entrance
region is desired, a "small Z " solution is obtained by noting that

large values of the transform parameter & correspond to small values

of Z . Consequently, the expansion of the transformed solution into
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a series of ascending powers of $é@ and subsequent term-by-term in-
version gives a solution useful for small values of Z (see for instance,
Arpaci(l))o In the above, f(s) is a function of $§ whose form is
determined by the particular form of the solution under study.

Before proceeding recall that the sum of a geometric series
is given by

\ = | + ?G) + $?s)+ Ce

IBED ;0 Hel< (51)
_|/ .
Choosing F(s) = -8 ® and substituting into Equation (51) yields
| - - .
(reemy = | = (esTh) 4 (esTAY . (52)

Substitution of Equation (52) into Equation (50) and rearrangement of

terms then produces

— - -

Bos) =c(s —¢s + OV -G )  (53)

Referring to published tables of Laplace transform pairs the transformed
solution can now be inverted term-by-term. The wall temperature is

therefore given by

co m=l - L \M
B0, z) = » D (c2%) (54)

Referring the wall temperature to T, instead of T, , Equation (54)

may be rearranged to give

@ ~” - W\ (
¢ (0,2) = | + > Lb (ij) (55)
m=] r'(‘+ "'3')
were _9_* — _l:_?:@-—

To" Too
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2. Stress Solution

A particular solution is found using Goodiers thermoelastic
displacement potential by examination of the particular form of the
temperature expression. Once the particular solution is found a Bi-
harmonic Love-Galerkin function is obtained.

For convenience the exact temperature distribution in the

wall is written here as

—Mn T

PRy = (1= BLR) i B. & (56)
M=0

By inspection of Equation (56) one can construct a particular solution

to Equation (24). It can thus be verified by direct substitution that

Yoo = Ma (11— BLiR) € ™F (57)

is a particular solution of Equation (24), where W, 1s the Goodier

potential corresponding to the n-th term of Equation (56) and

= () &(T-Te) . u :
Mm = (=~ AT BA1 . By adding all of the particular solutions

of the form Equation (57) one obtains

Yy = - BLig) 2 M., €% (58)

One can obtalin a solution of the biharmonic equation by writ-
ing Equation (27) as a system of two second order partial differential

equations given by

vik = 4+ (592.)
\VARE (59D)

\
S

Y.
where + 1is an intermediate function. (see for instance, Arpaci( >)
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e‘*’»‘{fh z

Using separation of variables and noting that ﬁ&wt =@ the

Z2-b

solution of Equation (59b) being well known is written immediately as
— [ Jo(MxR) THn T *
o (R,2) = <>’(, (Mo R)> c (60)
where J, and Y, are the ordinary Bessel functions of the first and
second kind, respectively, of zero order and M, is the separation
parameter which was defined in the temperature solution. - Substitution
of Equation (60) into Equation (59a) yields

2 — Jo (4 R) Mt 5
VX <Y0(A«R)> < (o)

Since the right hand side of Equation (61) is composed of product terms
a convenient form of the Love--Galerkin function can be written as
X, = <\:/TD E/UMR) , R, T (an R > e_’”"”% (62)
o (UnR) , RV, (uaR)
This relation was chosen because R 3.(444«@3) Q—'““ﬁ'L are known to be
R Yi(MnR)
biharmonic functions.

Another approach to determining X 1s to assume a separable
solution of the form X (R1) = FR) €% and substitute into Equation
(61). The complimentary solutions of this equation are J, (4~R) and
Yo (4mR) and a particular solution may be obtained by variation of para-
meters. However, it is expedient to return to Equation (2} and proceed
from there.

A solution of the biharmonic equation in terms of four arbitrary

constants Qa, ba., ®m, and ds 1s written in the form

XM = ‘:Q—ij(/b\«ﬁ3 + bMYo(ﬁMR) + Ca RJ;(MMRB "'dmR%(/'fMK)l G—MM% (63>
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where the m subscript refers to the mth term corresponding to the

particular solution. Summing over all terms one obtains

> ,
[am@amﬂ + b, Y (umR) * Rmy R, (May R) +dmRXum®1 e (64)

y:

B
sV

The stresses are obtained by substitution of Equations (58)

and (64) into Equation (29). - After expanding and combining terms the

stresses in dimensionless form are given by

¥ _ S A + = -
dr = MZD{UCMMR)" Air]B —I)B,,\ & Dol atnr)

- /tﬁ :]\ ("“""2)] - Eﬂ«{Yo(MmR> - /1-4J4:R >/I (Mm&)l

(65a)

* em L (1=27) Do lamp) = MR Dy (4mR) )
$dam U (=27 Vo (tmR) = MmR Y (Mm R) ) } G_M*
Gf ==§;{?([¢my ~4ir1B +1)Ba
= aa MT[TR Jlun)] = ba l %LRX(M«R”
t el Doturd] +dm Lo (ad) ) €777
G = Z){ e (Tolamad)  * b [ (s R
+ m L RT (mR) = 2(2-V) Joltimp)]
e 8 Lim® N ) = 22 Yotanpd ]} €777 (65¢)
T = :ZO{ [«—%z] Bo * Qa3 ()] + by [V (s ]
— Cm [ ttmR Joltmr) + 20-7) Ty (4R )
i E (654)

— doy LR W Ctn®) + 20 (amed 1] €

(65Db)
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where the general dimensionless stress 1s related to the actual stress

* a :
by T = 53 oTay (2E) 7 0 ©being the actual stress.

=V

Since the surfaces are free of externally applied forces or

restraints, the boundary conditions are

0 C1,2d =0
Oy (Ro,2) = 0
T (1,2 =0
T (R,2) =0 (66)

The stresses at Z=(0 are self-equilibriating and Saint Venant's
principle applies; for Z-sm all stresses vanish. Finally substitu-

tion of Equations (65a) and (65d) into Equation (66) yields the following

four equations in the four unknown coefficients:

1) = Dl ) am = Dt
T htay ) b+ L 00 Tl = 3 (D]
_ [ 8
+ L (-0 ), () = Mo ) Jdm = wr *]BM (67a)
—[U«:UME() - tgolimm] e T [ yo(m&p‘) - Afeay.(u«ﬁoﬂ b,\q
+1 - 3, (RS = Adm Ry St (i) ) A + LG Y ()
—MMROX (,MMEo)]dM = ‘_{[O}L_}wl + /ZV}RU.]_B- *l} B. (67b)
[ Jl (MM) ] (CUP + [ Y (/4'\«3 _J b’v\

-[ A :’o LAM\ = L("") Jl (»ﬁm) ] Can

B
= Yo Cany +2( 1PN (um) ) b = ~ % Bm (67¢)



2=

[3. (Mmfzo_}&m + [ y| lﬂmﬁa)] b

_[MMRo _\]o(MMRJ + Z,(\"V') J\ (/"("1&0)] £

\col

-

“Ctn R Yo ltmRY + 2 (D) Y (s R B =~ 20, B (674)

The unknown coefficients may be determined by application of Cramers
rule and the theory of determinants. However, standard matrix methods

of evaluation were used in the actual numerical computations.

C. Results

Representative numerical results are given in the form of
graphs and the effect of the wvarious parameters is illustrated. The
parameters appearing in the solution are Pe , the Peclet number (Reynolds
number times Prandtl number), N , a modified Nusselt number, B , a
modified Biot number, and R, , the ratio of outside to inside tube
radius.

The natural parameter in the temperature solution is the
dimensionless distance %% which is the inverse of the Graetz number.
The Peclet number appearing in this parameter may vary from a high of
approximately lO7 for viscous oils to a low of zero. However, be-
cause of the assumptions used in the formulation the solution is useful
for Peclet numbers down to approximately 10.

The temperature distribution at the inside wall of the tube
is shown in Figure 2 and the effect of modified Nusselt number is
illustrated. Values of N may vary from O to @ . The limiting case
of N = 0 corresponds to an insulated wall and N = @ corresponds to

a constant wall temperature. In this figure as in succeeding ones the
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set of curves for small %%‘ was obtained from the approximate solution
and the set for large f%t was obtained from the exact solution. 1In
Figure 3 the inside wall temperature is plotted as a function of the
dimensionless axial distance, Z , for the same values of N .

The Biot number is a measure of the relative importance of the
internal thermal resistance of the wall and the external film resistance.
As the Biot number increases the relative importance of the thermal
resistance of the wall also increases. Values of the Biot number may
range from O to . Figure 4 illustrates the effect of B on outside
wall temperature.

Finally the effect of the wall thickness ratio on outside wall
temperature is shown in Figure 5. The temperature drop across the wall
increases as R, increases.

The maximum curvature of the axial temperature profile occurs
near the entrance of the tube. Thus the main effect of the axial curva-
ture on the stresses is also confined to this region. In the stress
results which follow the plane strain solution is plotted along with the
exact solution for reasons of comparison.

In Figures 6 and 7 the axial and tangential stresses at the
surface are compared. The stresses behave in a similar manner and the
axial stress at the outside surface deviates most from the plain strain
case. Therefore, only the effect of the various parameters on the axial
stress at R = Rp 1s shown in the following results. The radial and
shear stresses along the coordinate directions are generally much smaller

than the maximum axial and tangential stresses and are not given.
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The effect of tube geometry is shown in Figures 8 and 9.
As the ratio of outside to inside radius increases the axial effect
increases at constant dimensionless distance. Figure 10 shows the
stress behavior for various values of the modified Nusselt number. In
the limiting cases of N =0 and N = QJ the thermal stresses are zero
(neglecting end effects) since the tube wall temperature is uniform.
Therefore maximum stresses are obtained for intermediate values of N.
Figure 11 shows the effect of Biot number on the stresses. For B =0
the radial gradient is zero and the stresses are the result of the axial
gradient. The axial effect decreases as B increagses. Finally the
influence of the Peclet number is illustrated in Figure 12.

In the plane strain solution the axial variation is carried
as a parameter. Thus the plane strain stresses vary as the temperature
varies. TFigures 13, 14, and 15 illustrate the behavior of the plane
strain solution and show the effect of modified Nusselt number, geometry,
and modified Biot number, respectively. The plane strain solution is
given in Appendix E.

In the numerical computations the number of terms required
for convergence of the series solutions varied. Computation was terminated
when the last term of the series added was less than .05 percent of the
sum. For the exact solution the number of terms required increased as
é; decreased and all 20 terms available were used for %% of the order
of 5000. The exact number of terms used varied with N , the larger
values of N requiring more terms for a given ‘%; . For the approximate
solution more terms were required as %z_ increased and up to 50 terms

of the series were used.
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CHAPTER III

EXPERIMENTAL INVESTIGATION

A parallel flow tube and shell heat exchanger was constructed
and experimental values of temperature and strain on the outside surface
of the tube were obtained.

Hot and cold tap water was supplied to the tube and shell
side of the heat exchanger, respectively. For the lower flow rates
the hot water was supplied to the test section from a head tank.

A type 321 seamless stainless steel tube with .750 inch 0O.D.
and .250 inch wall thickness was used as the test pipe. Two and one
half feet of the tube extended upstream of the heat exchanger and
served as the velocity development section. - A schematic assembly
drawing of the heat exchanger is shown in Figure 16. Figure 17 is a
photograph of the test apparatus. At the upstream end of the heat ex-
changer the header chamber was silver soldered to the pipe. On the
downstream side a sliding o-ring seal allowed free axial motion of the
tube relative to the shellu Copper tubing with one inch I.D. and be-
ginning 3/16 inches from the plastic insulator was used for the shell,
giving a clearance of 1/8 inches in the annulus.

Temperature sensors and strain gages were mounted on the
outside surface of the tube with high temperature cement and were in-
stalled at the axial locations indicated in Figurel6. The temperature
sensors were of the nickel foil type (STG-50, Micro-Measurements, Inc.)
and the strain gages were of the self temperature compensating foil type

(MA-09-062AA-120, Micro-Measurements, Inc.).  Lead wires of 30 gauge

~L1-
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Figure 17. Photograph of Test Apparatus.
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stranded copper, vinyl insulated cable were soldered to tabs cemented

to the tube. Jumper wires formed from one strand of the lead wires

were then soldered to the sensor and gage tabs. The lead wires were
brought outside of the heat exchanger through two 16-wire Conax fittings
mounted in the header chamber.

Because the installation was to be immersed in water the
temperature sensors and strain gages had to be water proofed. Unfortun-
ately application of a water-proofing compound insulates the surface
to heat transfer and thus severe restrictions were placed on the choice
of available materials. It was found that a coating of red Glyptal enamel
over a coating of clear Glyptal varnish baked at the recommended tempera-
ture was satisfactory. In addition a thin coating of a rubber sealant
was applied. to the solder connections. The overall thickness of the
water-proof coating and gage was less than .005 inches.

The temperature sensors were connected to an LST resistance
network (LST-100-120, Vishay Instruments, Inc.). When used with an
LST network the sensor-network circuit is equivalent to a half-bridge
circuit with 120 ohm active and dummy. arms. The output was measured
on a model BAM-1 (Ellis Assoc.) bridge amplifier and meter.

The strain gages were wired into half-bridge circuits consist-
ing of an active and a dummy gage. Dummy gages of the self temperature
compensating foil type were mounted on a stainless steel plate and
imbedded in vermiculite insulation to eliminate thermal effects due to
convective currents in the air. Using the 3 wire method of wiring to
eliminate thermal effects due to temperature variations in the lead

wires the half-bridges were connected to a multi-channel switching and
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balancing unit (Baldwin-Lima-Hamilton Corp.). The output was measured
on a model BAM-1C (Ellis Assoc.) bridge amplifier and meter with which
a sensitivity of 1 microinch per inch per division was obtainable.

At the beginning of the test series both the temperature
sensors and strain gages were calibrated.

The inlet fluld temperatures were measured with 30 gauge
copper-constantan thermocouples and a portable precision potentiometer
(Model 8662, ILeeds and Northrup Co.) was used to measure the E.M.F.

The mass flow rate was determined from measurements of mass
and time obtained by use of a weigh tank and stopwatch.

Data were obtained for Reynolds numbers ranging from approxi-
mately 400 to 50,000 with points in the laminar, transition, and turbu-
lent flow regimes. The Prandtl number was approximately equal to 3
for all runs. Figure 18 shows the variation of outside surface tempera-
ture with Peclet number at 2=8 . It was found that the experimentally
obtained temperatures were higher than predicted. The observed shift
is attributed to the insulating effect of the sensor and water-proof
coating. -The experimental values of axial and tangential stress at
Z =8 are shown in Figure 19. Natural convection effects apparently
have influenced the results for the low laminar flow rates.

The uncertainty in the temperature measurement was less than
+ 0.5°F and in the strain measurement less than + 2 microin/in for
the highest sensitivity used. Empirical correlations given by Kreith(9)

were used to compute the heat transfer coefficient to the ambient.
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CHAPTER IV

DISCUSSION OF RESULTS

Examination of the stress results shows that the behavior
of the axisymmetric and plane strain stresses is qualitatively similar.
The effect of the axial temperature gradient is confined to a region
near the end of the tube where the grédient is largest. At axial dis-
tances greater than three outside tube radii, approximately, the plane
strain solution may be used to obtain the stresses since the difference
between the exact and plane strain result is small. Closer to the
entrance the influence of the gradient may be important, depending on
the values of the parameters.

It is noted that the axial temperature gradient decreases as
the Peclet number increases, holding the other parameters constant.
Since the asymptotic temperature solution is a large Peclet number
solution for dimensionless distance of order one, the resulting stresses

deviate little from the plane strain solution.

48



APPENDIX A

FORMULATION OF TEMPERATURE PROBLEM

A schematic of the physical model is given in Figure 20. The
governing differential equations are obtained by applying the first law
of thermodynamics to a system for the tube wall and to a control volume
for the fluid. Under the assumptions made in Chapter II the governing

equations are

r 2T
5

I
S
¥

T+

N - - AT |
fFC*u*(Y) = Tr ar“ ar‘a> (a-2)

ki

subject to the following boundary conditions

Ty, 3) = Telry3) (4-32)
-k ‘3‘;(“’9’3 = hitin,e - Twol (4-3p)
Te (r,0) = T (-3e)
%zrf(o,w = p (A-3¢)
b EOD = FlTin g - o] (32)

where r and ¥ denote the radial and axial coordinate, respectively,

Y, the inside radius, Y, the outside radius, T the wall temperature,
Ts the fluid temperature, T, the ambient temperature, T, the inlet
temperature, iP the fluid mass density, Cp the fluid specific heat,
uﬁ(r) the fluid velocity, R and Ry the thermal conductivity of the

wall and fluid, respectively, K the heat transfer coefficient to

—M9-
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— l >
ambient, and h = 1/Yo[ ﬁp + ‘E/én -E] the overall heat transfer
coefficient.
The fully developed velocity distribution in laminar flow 1s

given by
ey = 2001- )] (A-k)

where ) denotes the average velocity. Substitution of Equation (A-4)

into Equation (A-2) yields

2f:C UL - () 59%: = ‘)ﬁj 37 (r %) (-5)

Finally, rearrangement of the formulation into dimensionless form gives

2 (R a8y = (4-6)
B(i-r) & = & 5(R%E) (A-T)
subject to
¢(JJ7:) = B(/, %) (A-8a)
gﬁ:(Ra,%) = - £ ¢, (A-8b)
E(r,0) = | (A-8¢)
2£(0.2) = (-84 )
28008 = —Now,) (4-8e)

where the dimensionless variables and parameters are defined by
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— Re
N CT + (85) i

is the well known Peclet number (Reynolds number times

The parameter Pg

Prandtl number) based on diameter, B

- _ hr
, T < Twm,BEX
Iﬁ_:Ic_q P —_ zri.Uf'PCf
To P J e K'F‘
Ve
Iy

N is a modified Nusselt number.

is a modified Biot modulus, and



APPENDIX B

APPROXTIMATE TEMPERATURE FORMULATION FOR THE ENTRANCE REGION

A schematic of the physical model is shown in Figure 21. The
assumptions applying to the formulation are:
1) The physical properties are constant.
2) The velocity gradient in the fluid is constant and equal
to the velocity gradient at the wall of a circular tube
with hydrodynamically developed laminar flow.
3) Axial conduction.is negligible.
4) The heat transfer coefficient to the ambient is constant.
5) The fluid is incompressible.
The governing equation is found by applying the first law of thermodynamics

to a fluid control volume and is given by

ec ) 3 = ke 5 (B-1)
subject to

TR(E D) = T (B-2a)

Te(@y7) = To (B-2b)

ke 308 = hIT0,3) - Tw ) (3-2¢)

where ¥ and Y denote the transverse and longitudinal coordinate,
respectively, Tp the fluid temperature, To the undisturbed fluid

temperature, T the ambient temperature, h +the overall heat transfer

coefficient defined in Appendix A, ¢ the mass density, Cp the
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*
specific heat, Kk, the thermal conductivity, and W (E) the local
fluid velocity.

The velocity distribution is

W) = & & (B-3)

where U 1is the average velocity in the tube and

Vi the inside radius.
Substitution of Equation (B—3) into Equation (B-1) yields

4G U 2T¢  __ D Te

Finally, rearrangement of the formulation into dimensionless
form gives

%3‘% = %z‘ﬁ (8-5)
subject to
Bly,0) =0 (B-6a)
B, 2) =0 (B-6b)
22(0,2) = N{g(0,37) -] (B-6c)
where
19-=2r:;:% ) %‘;’% )§=‘Fi:2]$e.) (B-7)
Ro= HEEE = =

Lve (%) o )

and Pe and N are the Peclet number and modified Nusselt number de-

fined previously in Appendix A.



APPENDIX C

EFFECT OF AXTIAL CONDUCTION IN THE TUBE WALL

The effect is studied in the end section of a flat plate for
two cases as shown in Figure 22. 1In case 1, which was solved by Arpaci,(g)
an exponential axial temperature disﬁribution is maintained on one bound-
ary while the other boundary is maintained at zero temperature. In case
2 both boundaries have the same exponentially decreasing temperature
distribution. The axial effect at the end is shown as ¥ in Figure 22,
Using the variational procedure the temperature profile in

the wall for case 1 is assumed to be

8
6, = 718 — 4y7q (1-7) X(%) (c-1)

where © 1s the dimensionless wall temperature, »7 and ¢ the

|
dimensionless transverse and axial coordinate, respectively, A4 a
constant, E{(E;) an unknown function of & to be determined, and ¥
is a parameter which satisfies Y < ﬁ;. This restriction on ¥ is
required in order that the approximate profile does not violate the
physics and is determined by the end conditions, e.g. end fittings

on pipe.

The variational formulation is given by
I . 5 2z
28 =2_9'> _
50&, kv T 5n4) $8idy dE = O (c-2)

Substitution of Equation (C-1) into Equation (C-2) and integration over

the interval O - 1 of ,7 yields

@ v -u /Y
j L#xe f - HXE - HXO]SXde=0  (e3)
-56-~
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Figure 22, gSchematic of Physical Models Used in

Determining Effect of Axial Conduction.
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Upon equating the integrand to zero and rearranging one finds

..,q{;

/Y z
X' — X =g M e (c-b)
where the boundary conditions are
X (&) = |, X(x) = 0 (c-5)

J

The solution of Equation (C-4) peing elementary is written immediately

as

J U= -4 _ FQ
X = By < + sz(m—m) Je (c-6)

Finally, substitution of Equation (C-6) into Equation (C-1) yields

NIy -W’Q
764 “,7O~7)[+X € ° ;Mt/@( )1 (e-7)

1

B

For case 2 the temperature profile is assumed to be

6.= e % - 4% 7 (1-7) X () (c-8)

where the previous restriction on ¥ is not required. Following the
same procedure as for case 1 but omitting the intermediate details one

obtains

~M ~ e = IW .
.= € : —”(<I"7()[4'?{e " C/f"-ﬁo)( ;>1 (€-9)

Numerical results for = 7% are tabulated in Tables 1C and
2C for case 1 and case 2, resPectively; where ©, and @, denote the
temperature including axial conduction, fﬁ* and Eﬁf denote the tempera-
ture neglecting axial conduction, and A, and A, denote the percent

deviation of the temperature including axial conduction from the
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temperature neglecting axial conduction. The values M4 = 00269,
0.400, and 0.680 correspond to the wall temperature solution for N = 1,
2, and 20, respectively, when 2= /0 . A typical value of =‘7%
was used in the calculations.

Examination of the results shows that the effect of axial
conduction in the end region due to end conditions decays rapidly and
is small at & =2 . The effect due to the imposed axial gradient on
the surface produces a constant percentage deviation from the solution
neglecting axial conduction when g =2 4 . The magnitude of this devia-
tion increases with 4 since the axial gradient increases with 4
However, for significant stresses beyond & =7 the value of 4 must
be less than 1, approximately. Therefore, it is concluded that the

effect of axial conduction is small for & > 2 and may be neglected.



APPENDIX D
TABULATED VALUES OF THE EIGENVALUES,

EIGENFUNCTIONS AT THE WALL, AND COEFFICIENTS
FOR THE MODIFIED GRAETZ SOLUTION
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TABLE 1D

EIGENVALUES, EIGENFUNCTIONS AT THE WALL,

AND COEFFICIENTS FOR N = 20

“ A m Qm R (1) B om
0 2.6069 1.4573 .OL Ok 0.0719
1 6.5099 .7628 -.0632 .0k82
2 | 10.450 .5382 .0712 .0383
3 | 14.403 L217 -.0768 .0324
L | 18.363 .3489 .0808 .0282
5 | 22,328 .2985 -.0840 .0251
6 | 26.297 2612 .0865 ,0226
7 | 30.269 ..2323 -.0885 .0206
8 | 3h.24k .2093 .0901 .0189
9 | 38.220 .190k -,0915 LOLTh

10 | 42.198 LLTHT .0926 ,0162

11 | 46.178 .1613 -.0936 .0151

12 | 50.159 .1408 .0943 Noxt'Sk

13 | shk.1k2 .1397 -.0950 .0133

14 | 58.125 .1309 .0955 .0125

15 | 62.109 .1231 -.0959 .0118

16 | 66.094 .1161 .0963 .0112

17 | 70.080 .1099 - .0966 .0106

18 | 74.067 1042 .0968 .0101

19 | 78.054 .0991 -.0970 .0096




6L

TABLE 2D

EIGENVALUES, EIGENFUNCTIONS AT THE WALL,

AND COEFFICIENTS FOR N = 17

m Am A m Rm(1) 3
0 2.5905 1.4538 .0578 0840
1 6.4826 27549 | -.073k 055k
2 10.415 5290 .0822 .0k35
3 14.363 L4121 | -.0881 .0363
b 18.319 3392 .0923 .0313
5 22,281 .2887 | -.0955 .0276
6 26,247 .2516 .0979 ,0246
7 30.217 2229 | -.0998 .0222
8 34,189 .2000 .1012 .0203
9 | 38,164 1814 | -.1024 | .0186

10 L2,141 .1658 .1033 Noikal
11 46.120 .1526 | -.1040 .0159
12 50,100 21413 1046 .0148
13 54,082 .1315 | -.1050 .0138
1h 58.065 .1229 .1054 .0129
15 62.049 ,1153 | -.1056 ,0122
16 66.033 .1085 .1057 .0115
17 70.019 1024 | -.1058 .0108
18 74,006 .0970 .1059 .0103
19 | 77.993 .0920 | -.1059 0097
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TABLE 3D

EIGENVALUES, EIGENFUNCTIONS AT THE WALL,

AND COEFFICIENTS FOR, N = 6

“ Am A o R | Ba,
0 2.k072 1.4092 | .1530 2157
1 6.2036 -.6589 | -.1767 116k
2 10.087 L4262 | 1835 .0782
3 14.006 -.3112 | -.1849 .0575
L] 17.945 2428 | .1840 .Oll7
5 21.897 -.1975 | -.1822 0360
6 25,857 1655 | .1799 .0298
7 29.824 ~ 1417 [ -.177h .0251
8 33,796 o123k | L1749 .0216
9 | 37.772 -.1089 | -.172k4 .0188

10 41.751 .0972 | L1700 0165

11 45,732 -,0876 | -.1676 L0147

12 Lg,716 0795 | .1654 .0132

13 53,701 -.,0727 | -.1632 .0119

1h 57.687 L0668 | 1611 .0108

15 61.675 -, 0617 | -.1592 .0098

16 65,664 L0573 | .1573 .0090

17 69.653 -.0534% | -.1554 .0083

18 73,644 .0500 | .1537 0077

19 77.635 -.0469 | -.1520 .0071
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TABLE 4D

EIGENVALUES, EIGENFUNCTIONS AT THE WALL,

AND COEFFICIENTS FOR N = 2.

m Am Am R (1) B s
0 2.,0000 1.2961 .3679 L4768
1 5.7439 - b7l -.3328 .1488
2 9.6451 2467 3027 LOTLT
3 13.590 -.1635 -.2807 .04 59
L 17.555 1194 .2640 .0315
5 21.530 -.0926 | -.2506 | ..0232
6 25.511 0748 .2396 ,0179
7 29.496 -.0623 -.2304 .0143
8 33.484 .0530 . .222l .0118
9 37.474 -.0459 -.2155 .0099

10 41.465 L0403 .2093 .0084

11 45,458 -.0358 -.2039 .0073

12 Lo.h51 .0321 .1989 . 006k

13 53.446 -.0291 -, 194k .0057

14 57 Lkl .0265 .1903 .0050

15 61.437 -.0243 -.1866 0045

16 65.433 L0224 .1831 .00k1

17 69.429 -.0207 -.1799 .0037

18 73.426 .0193 .1769 .003k4

19 77.423 -.0180 -.17%0 .0031




TABLE 5D
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EIGENVALUES, EIGENFUNCTIONS AT THE WALL,

AND COEFFICIENTS FOR N = 1

m Am A CMO) By
0 1.6413 1.2013 .5497 .6603
1 5.4783 -.2929 4079 .1195
2 9.4360 L1467 .348h 0511
3 13.415 -.0930 .3133 .0291
L 17.403 0663 .2892 .0192
5 21.394 -.0506 2711 .0137
6 25,388 - OLOl .2569 010k
T 29,383 -.0333 2453 .0082
8 33.379 ,0282 .2355 .0066
9 37.376 -.0243 2272 .0055

10 41.373 0212 | ..2199 0047

11 45,371 =.0188 .2135 .004%0

12 L9.369 .0168 2077 .0035

13 53.367 -.0152 .2026 .0031

1h 57 .366 .0138 .1979 .0027

15 61.364 -.0126 1937 0024

16 65.363 .0116 .1897 .0022

17 69.362 -.0107 .1861 .0020

18 73.361 .0100 .1828 ,0018

19 77 .360 -.0093 .1796 L0017




TABLE 6D
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EIGENVALUES, EIGENFUNCTIONS AT THE WALL,

AND COEFFICIENTS FOR N = 0.5

m Am Am R0 B
0 1.2716 1.1204 .7169 10.8032
1 5.2951 -.1710 4509 L0771
2 9.3063 .0802 .3725 ,0299
3 13.312 -. 0496 3299 016k
L 17.316 .0349 .3018 .0105
5 21.318 - 026k .2813 00Tk
6 25.320 .0210 .2655 .0056
7 29,321 -.0172 L2527 Nololhit
8 33.322 0145 .2k20 .0035
9 37.323 -.0125 .2329 .0029

10 41.324 .0109 ,2251 .0025

11 L5,324 -.0096 ,2182 .0021

12 49.325 .0086 .2121 .0018

13 53.325 -.0077 .2066 .0016

1k 57.326 .0070 2017 001k

15 61.326 - .006k4 .1971 .0013

16 65.326 0059 .1930 .0011

17 69.327 -.0055 .1892 .0010

18 73.327 .0051 .1857 .0009

19 77.327 - . 0047 .1824 .0009




APPENDIX E

THERMAL STRESS SOLUTION FOR PLANE STRAIN

For the circular cylindrical geometry the plane strain
analysis gives the stress distribution produced by radially distri-
buted but axially and circumferentially uniform temperature distribu=-
tions. However, it has been demonstrated that for "sufficiently smooth"
temperature variations in the axial direction the one dimensional
approximation will yield accurate results. (See for instance, Boley and

(3))

Weiner ‘The axisymmetric temperature expression is used in the plane
strain solution and the axial dependence is carried as a parameter.
Because the plane strain solution for thermal stresses in
circular cylinders is well known and can be found in most text books
(3)

on thermal stresses, e.g. Boley and Weiner, the solution is given

without further discussion as

- Rs R

(rr* — _éz_[ E:'_: j; $CR,2) RIR — Sl P(R,2)RdR ] (D-1)
s EO

N, = L] S e rde + [ ok — grpet]  (0-2)

When the end faces are free of external constraints the axial stress

can be written in terms of G}ﬂc and G¢* and is given by

o= & o+ F (D-3)

The shear stresses along coordinate directions are zero.

The wall temperature distribution is represented by

$r, 3y = (11— B Lyr) 9@ (D-4)
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where <g(2) is an arbitrary function of Z . Substitution of

Equation (D-4) into Equation (D-1) and (D-2) yields

Q_:‘__ ﬂi’) fl\{ ['Ro -

[ - a G raa - 2000)) ]

and

O_(o* _?'_f) {

7’+

Re—1

B (% RE Ak, —ﬁ[a}—n])}

(4R ~ B( 4R ure -0 0]

+[ 1 (r>-1] - B (4 RAR - ,},—[R‘-ll)} '{I—E,&R}R‘]

When considering the exact temperature solution

3 (2)

——

«© -—
Z B,\,\ Q 4(41'27

m=0

and for the entrance region approximation

%(z)

——

A N

Y (e z”)”

m=l

M5

(D-5)

(D-6)
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