THE UNIVERSITY OF MICHIGAN
COMPUTING CENTER

Final Report

CONCOMP: RESEARCH IN CONVERSATIONAL USE OF COMPUTERS

F. H. Wegtervelt
Project Director

ORA Project OTLLO

under contract with:

U. S. DEPARTMENT OF DEFENSE
ADVANCED RESEARCH PROJECTS AGENCY
CONTRACT NO. DA-L9-083-0SA-3050
ARPA ORDER NO. T16-
WASHINGTON, D.C.

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

December 1970

TABLE OF CONTENTS

Page

ABSTRACT iv
1. INTRODUCTION 1
2. OSUMMARY REPORTS OF AREAS OF SPECIAL INTEREST 5
2.1 MAD/I 5

2.2 Data Concentrator 7

2.3 Audio Response 8

2.4 Computer Graphics and Computer-Aided Design 10

2.5 Data Structures 13

3. CONCILUSIONS 14
L. PUBLICATIONS OF THE CONCOMP PROJECT 15
APPENDIX A. GENESES (GEneral NEtwork SErvice System)’ A-1
APPENDIX B, . SIMUIATION OF ATRIAL FIBRILLATION B-1
APPENDIX C. MAN-COMPUTER GRAPHICAL SYSTEMS C-1
APPENDIX D, DEVELOPMENT OF SET-THEORETIC DATA STRUCTURE D-1

ili

ABSTRACT

This report describes the final research results of the CONCOMP Project:
Research in the Conversational Use of Computers, which was funded from 1965/
70. This research involved the design, development, and testing of computer
programs for graphical input of problem statements and graphical output of
results from a computer; the application of the techniques so developed to
speech synthesis, systems design research, and research in the logic of com-
puters; the study, design, implementation, and testing of systems for de-
scribing graphical operations within the format of procedure-oriented computer
programming languages. All of this work was predicated on the availability
of IBM 360/67 hardware and software. When TSS was unavailable, CONCOMP under-
took two additional tasks: (1) development of the conversational aspects of
an operating system for the central computing facilities to support effective
man-machine interaction; (2) development of an effective hardware interface

for the support of the remote terminal devices.

iv

1. INTRODUCTION

The research project on the Conversational Use of Computers, known as
CONCOMP, was initiated during 1965 to explore the wide spectrum of man-
machine interactions implied by the project title. The research was to in-
clude explorations and developments in hardware and software, central compu-
ting facilities and remote-access terminals, languages, systems programs,
and applications. The research anticipated the availability of the IBM
System/360 Model 67 hardware with its unique (within IBM systems) bus organi-
zation and Dynamic Address Translation hardware and the IBM TSS (Time-Sharing
System) operating system.

Happily, the IBM System/360 Model 67 hardware was delivered on time and
has proven itself to be as versatile and reliable as had been anticipated.
Unhappily, the IBM TTS operating system was not available on a timely basis
and, when finally available, its performance was not adequate to effectively
discharge the research objectives of CONCOMP. TSS is not a truly viable
system for a broad spectrum of interactive terminals with rapid response even
today, although TSS continues to improve steadily. In addition, there was
not (and is not yet) available any standard IBM Terminal Controller able to
accommodate a broad range of interactive terminals with widely varying char-
acteristics and performance needed for effective conversational computation.

Thus, the CONCOMP project found itself engaged in at least two research

tasks not anticipated prior to its initiation:

1. The development of the conversational aspects of an operating system

for the central computing facility needed to support any type of
effective man-machine interaction.

2. The development of an effective hardware interface for the support

of the remote terminal devices.

The first of these additional tasks, executed in cooperation with the
staff of the Computing Center at The University of Michigan, resulted in the
operating system known as MTS (Michigan Terminal System). MTS is now serving
an active user community of more than 9000 active user "sign-on" accounts
with a single unified system for both remote interactive use and for non-
interactive batch processing. A fairly typical demand peak finds 50 to 60
active terminals together with 4 to 6 batch streams operating concurrently.

The remote terminals may range from the ultimate low-cost and simplicity
of the push-button or Touch—Tong:)telephone through the numerous low-speed
alphanumeric terminals, both cathode-ray-tube and impact-printer types, and
storage-tube graphic displays to the more versatile remote graphics terminals
built around a local mini-computer. It should be observed that the facilities
developed under CONCOMP for conversational computations research have been
general enough to permit extension into many areas not encompassed by CONCOMP
by the staff of the Computing Center and other units of the University.

For example, unusually flexible remote job entry facilities and the
interaction of the Computing Center facility with remote mini-computers in a
variety of laboratory digital/analog control systems have been implemented on

the CONCOMP base.

The second of the addltional tasks resulted in the Data Concentrator,

the first of what have come to be common data communications control compu-
ters, directly interfaced to the System/360/67 multiplex channels. The early
lessons learned in the development of the Data Concentrator communications
protocol and general organization served as a part of the basic work upon
which later networks of computers such as the ARPA network and the MERIT
network have been built. It is important to observe that the flexihility of
the Data Concentrator in responding to a dynamically changing environment of
line speeds, code frames, code conversions, line controls, and device-support
requirements is still unmatched in any commercially available equipment.

In addition, CONCOMP pursued research in numerous interrelated subjects.
These efforts included languages, data structures, computer-aided design,
executive systems for local graphics terminals, applications, and broadly
 generalized graphics support. These activities produced 33 technical reports
and 36 project memoranda reporting the results of these efforts. The docto-
ral program of more than 10 students with the direct production of 4 doctoral
dissertations also derived support from the CONCOMP research.

In the balance of this final report an attempt will be made to highlight
some of the activities that comprised the totality known as CONCOMP. The
true success of CONCOMP can best be measured in the steadily expanding utili-
zation of the developed facilities by the entire University community at a
rate exceeding 20% per year. It is a generally observed phenomenon of inter-
active computing facilities with suitable mechanisms for sharing of programs
and data that such systems achieve a "critical mass" and then begin to sustain

a self-generated internal growth of new capabilities and facilities. As a

result of the cooperation between the Computing Center, CONCOMP, Systems
Engineering Laboratory, Logic of Computers Group, and the entire user com-
munity of The University of Michigan, this phenomenon has again been exper-
ienced in an unusually broad environment of users. Finally, the facilities
thus developed have been exported to more than 10 other major installations
with at least 5 of these making regular use of the MTS capabilities on a
regularly scheduled basis.

On these measures it 1s felt that the goals of CONCOMP to explore the
nature of conversational computing on a broad basis and to extend the devel-
oped concepts into new areas of computer science have been accomplished suc-

cessfully.

2. SUMMARY REPORTS OF AREAS OF SPECIAL INTEREST

2.1 MAD/I

The success of MAD (Michigan Algorithm Decoder) on the IBM 7000 series
hardware resulted in its rather wide adoption including CTSS at Project MAC.
This, in turn, led to the enquiry by CONCOMP into a new formulation, MAD/I
for the IBM System/360 hardware. Since there were available in 1965 and
1966 several reasonably fast implementations of algebraically oriented compi-
lers, it was decided that MAD/I should concentrate upon rather different fa-
cilities from those which served as a dominant guide to the design of 7090
MAD.

In particular, the questions of language extension and extensibility
were selected to receive special attention. The result, reported in CONCOMP
Project Technical Reports 7 and 32 and in CONCOMP Project Memoranda 1, 31,
and 32, has achieved the desired flexibility. The MAD/I activity was con-
ducted under Professors Arden and Galler with the services of many contri-
butors including D. L. Mills, R. J. Srodawa, A. L. Springer, B. J. Bolas,

C. ¥. Engle, and F. G. Swartz. MAD/TI has served as the language for numerous
user applications. As might be expected, only a few of these have exploited
the full range of language extensibility available to the MAD/I programmer.,

A concrete illustration of the power of the features provided in MAD/I

can be found in Memorandum 32, Sample Definitional Facility in MAD/I, by

R. Srodawa. Here the basic MAD/I language is extended, in an easily followed

example, to provide special new data types and structures and new statements

and operators intended to implement a simple graphical language.

For example, new data types 'POINT' and 'LINE' are added to the basic
MAD/I data types. Each of these data types includes several different kinds
of data values and pointers. The MAD/I definitional facilities allow the
user to define these new kinds of variables and then deal with them either
as a unified whole or as individual component parts as required in his prob-
lem solution.

In addition, the user defines new statements into MAD/I such as:

'CREATE POINT' POINT, X,Y
or
'CREATE LINE' LINE,Pl,P2
or
'CONNECT' POINT 'TO' PICTURE

In each instance, the user employs the extensibility features of MAD/I
to accomplish these extensions within the basic MAD/I facility.

The user, depending upon his need and sophistication, may deal with
MAD/I extensions at several levels. MAD/I itself is defined in itself at a
very basic level. If desired, a knowledgeable user is free to extend MAD/T
himself at this same fundamental level. There are, however, several "higher"
levels at which extensions may be accomplished more smoothly by less sophis-
ticated users. The previous examples from Memorandum 32 are such extensions.
Other intermediate levels are also illustrated in Memorandum 32 and Technical
Report 32. One such is the 'ENTER ASSEMBLER CODE' feature described in detail

in Technical Report 32.

Thls featurc is significant because it illustrates rather clearly how
two computer languages may be merged smoothly to provide the user with unu-
sual power while maintaining the controls and services of the usual higher-
level compilers. It is also significant because, while not reported in.Tech-
nical Report 32, the addition of this feature to MAD/I using the extensibili-
ty features of MAD/I required less than one men-week of programming effort
to accomplish and check out.

MAD/I has provided a valuable research vehicle for the exploration of
language extensibility. While, in retrospect, the numerous applications gen-
erated by CONCOMP might have profited greatly from the earlier availability
of the final version of MAD/I, the explorations have, in themselves, produced
new insights into computer language generation that qualify the MAD/I activi-

ty as success.

2.2 DATA CONCENTRATOR

The complete lack of adequate terminal controller hardware available for
the IBM System/3%60 hardware with the facilities needed to allow the attach-
ment of diverse remote-access terminals needed for the exploration of conver-
sational computations resulted in the design, development, fabrication, and
systems implementation of a very general data communications control computer
known as the Data Concentrator.

This work was accomplished by D. L. Mills with the assistance of many
other co-workers including J. DiGiuseppe, W. S. Gerstenberger, and V. M.

Powers. The effort included the design of both hardware and software. The

hardware designs are influencing the construction of several contemporary
machines for interconnecting major computers in the MERIT network. The soft-
ware system, known as RAMP, has been incorporated in remote graphics facili-
ties such as the DEC 338 in another portion of the CONCOMP activity and simi-
lar graphics facilities in at least two industrial applications, one in the
Ford Motor Company and another in the Whirlpool Corporation. In addition,
the RAMP system has formed the system nucleus for several laboratory control
experiments in the physical sciences and in medicine as well as the control
of an usually flexible language laboratory installation at The University of
Michigan.

The design experience has been reported in CONCOMP Project Technical
Reports 8, 19, 20 and CONCOMP Project Memoranda 5, 11, 13, 15, 16, 17, 19,

20, 24, and 34,

2.3 AUDIO RESPONSE
An outstanding example of the breadth of man-machine interfaces explored
under CONCOMP is the standard push-button or Touch-Tone<:) telephone and the
IBM 7772 Audio Response Unit. This work was executed almost entirely by
D. Smith and is reported in CONCOMP Technical Report 27. It is important to
report here some experience gained in two areas not covered in that report.
During the first months of 1970, the Touch—Tone(:>telephone and the di-
gitally synthesized speech facilities developed to support the IBM 7772 were
employed to train a totally blind student, Mr. Anthony Sutter, in the use of

MTS and the FORTRAN IV language. Mr. Sutter had only recently lost his sight

and did not yet read Braille when his training began. An ordinary push-

button telephone equipped with an auxiliary loudspeaker was provided by the
State of Michigan through Workmen's Compensation and served as Mr. Sutter's
entire medium of communication with the computer on a conversational basis.

As a result of his interaction with MIS through the Audio Response Unit,
several special features were developed. For example, a means of speech
compression is now available under the control of the user to greatly accel-
erate the delivery of verbal output. To the casual listener, the rate of
speech may become so rapid as to become almost unintelligible. To the exper-
ienced listener, however, the output is still readily understood, and to the
blind programmer, the frustration of a slow "reader" is eliminated.

Other controls which permit the pronunciation (or suppression) of punc-
tuation including "blanks," permits the blind programmer to deal with all of
the intricacies of programming languages and formats. Finally, the inter—
active facilities developed under CONCOMP permit complete device-independence
of the applications programs from the terminal device. In this way, a
sighted programmer and the blind programmer may readily use the same applica-
tions.

The training sessions for Mr. Sutter were carried out on a twice-per-
week basis for approximately three months. With no prior computer experience,
Mr. Sutter was able to progress to the point that he could input, debug, and
run FORTRAN problems given him at a Tuesday session before the Thursday meet-

ing. It is also significant to note that the average hourly cost for his

entire training period came to approximately $8.42/hour. This cost included

the cost of speech synthesis on the central computing facility.

The second area to be reported here is the work by D. Smith in speech
synthesis using the IBM 7772. By developing a special package to support
this device in MTS, it was possible to extend the vocabulary of the 7772
greatly beyond the usual 1000 to 1500 words available from IBM. The exten-
sion process involves a dynamic scanning and decomposition of the alphanu-
meric strings supplied to the ARU device support routines by MIS. By recog-
nizing and combining the sounds represented by the charactef strings, many
"new" words are pronounceable without a serious degradation in speech intel-
ligibility. It is difficult, if not impcssible, to assess the size of the

"new 1"

vocabulary thus available, but it is at least an order of magnitude
larger.

In addition, facilities for the user to "tailor-make" special new words
in an interactive on-line mode of operation make some otherwise inaccessible
applications feasible. One current effort in the area of the reporting of
medical disgnoses to physicians through their office telephones has resulted

in the artificial synthesis of such terms as: HYPERTROPHY, HYPOKALEMIA, and

INFARCTION.

2.4 COMPUTER GRAPHICS AND COMPUTER-AIDED DESIGN

One of the important areas of the CONCOMP research dealt with computer
graphics and the related topics in computer-aided design. The results en-
compassed the design of facllitles at both the central computer and the

remote graphics terminals. Three different remote terminals which included

10

local mini-computers were employed. The least complex was the DEC 338 which
included a PDP-8, 12-K words of local core, and a small local disk. The next
in increasing logical power was the DEC 339 in the Systems Engineering Lab-
oratory. This terminal incorporated the same display controller as in the
338 but utilized the PDP-9 computer for local processing. The most complex
was the interconnected IBM 1800/PDP-7 with associated display controller
located in the Logic of Computers Group. This combination of remote proces-
sing power made possible very significant amounts of local picture manipula-
tion and problem solving without extensive intervention by the central com-
puter.

The systems developed for the 338 were reported in CONCOMP Project Tech-
nical Report 33 and Memoranda 2, 3, L4, 6, 9, 23, 28, 29, 30, 33, 34, 35, and
36. The systems developed for the 339 were reported in CONCOMP Project
Technical Reports 15, 23, and 24, and Memorandum 25. The systems for the
1800/PDP—7 were reported in CONCOMP Project Technical Reports 10, 11, 12,
and 31, and Memorandum 7. These systems resulted in facilities readily us-
able by numerous applications.

In particular, the area of computer-aided design in several problem
disciplines wasmade viable through these graphics facilities. In the area
of mechanical systems design, the work of Professor Chace and his students
requires special mention. The methods of treating generalized multi-freedom
constrained mechanical systems have received special recognition nationally.
This work waé reported in CONCOMP Project Technical Reports 18 and 26. The

doctoral dissertation by J. Allan reported in Technical Report 9 was another

11

design system in the mechanical design area.

In the area of queuing systems analysis, the work of the S&stems
Engineering Laboratory was reported in Technical Reports 13, 14, 21, and 23.
Systems Engineering Laboratory also developed some techniques for circuit
design and simulations reported in Technical Report 24. These graphics pro-
grams included some unusually well-adapted methods of utilizing the light-
pen for communicating the user's requirements to erase, move, create, connect,
rotate, and branch while entering the topology and parametric values for the
systems to be analyzed. The GENESES (GEneralized NEtwork SErvice System)
developed by Systems Engineering Laboratory is reported in Appendix A of
this report.

Another area of work in the simulation of cellular spaces was reported
in the dissertation of R. F. Brender (Technical Report 25). A related area
in the simulation of atrial fibrillation is reported in Appendix B of this
report.

The special development of facilities for instruction in computer gra-
phics by Herzog and Shadko reported in Technical Report 30, the versatile
digital-plotting facilities developed by Fronczak reported in Technical
Report 29, and the interactive graphical mathematics system developed for
the IBM 2250 reported in Memorandum 27 are final examples‘of the range of
topics treated. The facilities developed under CONCOMP have resulted in the
introduction of well over 500 students to the use of interactlve computer

graphics methods and techniques.

12

2.5 DATA STRUCTURFES

The ever-present problems of providing rapid, flexible access to com-
plexly interrelated data resulted in several efforts in the area of data
structures under CONCOMP. The doctoral dissertation of Mowshowitz reported
in Technical Report 1, the work of Prof. Sibley, W. Ash, and others reported
in Technical Reports 5 and 17 and Appendix C of this report, and the work of
Childs reported in Technical Reports 3 and 6 and Appendix D of this report
represent the scope of efforts expanded.

In addition, special topics such as the work by DiGiuseppe in pictorial
data-compression, and Wolf, Julyk, Dingwall, and Goodrich in CAMA (Computer-
Aided Mathematical Analysis) also dealt strongly with topics related to data
structures.

In each‘of the above cages, the theoretically derived structures have
been implemented and employed by numerous applications users in MIS. The
flexibility and versatility represented deserve greater emphasis than is pos-
sible in this brief summary. Accordingly, Appendices C and D provide greater

detail for this important area.

15

3. CONCLUSIONS

The CONCOMP effort began on The University of Michigan campus at a
critical time in the emerging development of effective interactive man-
machine conversational computing. As a direct result of the efforts of this
project, a highly effective system of conversational computing employing a
wide spectrum of interactive terminals has come into daily heavy use by an
active University community of more than 9000 users.

In addition, the results have gone far beyond the boundaries of The
University of Michigan to systems now operational literally around the world.
Installations in France, Great Britain, Canada, Australia, and New Zealand,
as well as other installations in the United States are now in possession of
facilities developed from the efforts of the Computing Center and the CONCOMP
Project. The resulting system continues to remain one of the most effective
implementations available for IBM System/360 hardware.

Considering the wide range of research topics explored in depth by nu-
merous faculty and student researchers, it is easy to understand why the full
impact of the CONCOMP Project will be realized only as time permits the frui-

tion of the concepts germinated by these efforts.

1k

4. PUBLICATIONS OF THE CONCOMP PROJECT

TECHNICAL REPORTS

1.

10.

11.

12.

Mowshowitz, A., Entropy and the Complexity of Graphs, Technical Report
1, August 1967, 120 pp. (doctoral dissertation).

Sibley, E. H., The Engineering Assistant: Design of a Symbol Manipu-
lation System, Technical Report 2, August 1967, 31 pp.

Childs, D. L., Description of a Set-Theoretic Data Structure, Technical
Report 3, March 1968, 27 pp.

Pinkerton, T. B., Program Behavior and Control in Virtual Storage
Computer Systems, Technical Report 4, April 1968 160 pp. (doctoral

dissertation).

Ash, W., and Sibley, E. H., TRAMP: A Relational Memory with an Asso-
ciative Base, Technical Report 5, May 1968, 80 pp.

Childs, D. L., Feasibility of a Set-Theoretic Data Structure: A General
Structure Based on a Reconstituted Definition of a Relation, Technical

Report 6, August 1968 40 pp.

Mills, D. L., The Syntatic Structure of MAD/I, Technical Report 7,
June 1968, 91 pp.

Mills, D. L., The Data Concentrator, Technical Report 8, May 1968,
115 pp. .

Allan, J., Man-Computer Synergism for Decision-making in the System
Design Process, Technical Report 9, June 1968, 194 pp. (doctoral dis-

sertation).

Frantz, D. R., Brender, R. F., and Foy, J. L., Jr., LOCOSS: A Multi-
programming Monitor for the DEC PDP-7, Technical Report 10, October

1968, 122 pp.

Brender, R. F., and Foy, J. L., Jr., and Schunior, T. W., Specialized
System Software for Interacting DEC PDP-7 and IBM 1800 Computers,

Technical Report 11, December 1968, 95 pp.

Brender, R. F., and Foy, J. L., Jr., Flexible High-Speed Interface
between IBM 1800 and DEC PDP-7 Computers, Technical Report 12, October

1968, 21 pp.

15

13.

1k,

15.

16.

17.

18.

19.

20.

2l.

22.

2>.

ok,

25.

Wallace, V. L., and Irani, K. B., Network Models for the Design of
Stochastic Service Systems, Technical Report 13 (also Systems Engineer-
ing Laboratory Technical Report 30), November 1968, 55 pp.

Wallace, V. L., and Irani, K. B., A System for the Solution of Simple
Stochastic Networks, Technical Report 14, April 1969, 137 pp.; also
published as Systems Engineering Laboratory Technical Report 31.

Jackson, J. H., An Executive System for a DEC 339 Computer Display
Terminal, Technical Report 15, March 1969, 7O pp.; also published
as Systems Engineering Laboratory Report SEL-32-T.

DiGiuseppe, J., A Survey of Pictorial Data-Compression Technigues,
Technical Report 16, March 1969, 60 pp.

Ash, W. L., A Compiler for an Associative Object Machine, Technical
Report 17, May 1969, 55 pp.

Chace, M. A., A Network Variational Basis for Generalized Computer Rep-
resentation of Multi-Freedom, Constrained, Mechanical Systems, Technical
Report 18, May 1969, 38 pp.

Mills, D. L., Multiprogramming in a Small-Systems Environment, Technical
Report 19, May 1969, 41 pp.

Mills, D. L., Topics in Computer Communication Systems, Technical Report
20, May 1969, 106 pp.

Wallace, V. L., On the Representation of Markovian Systems by Network
Models, Technical Report 21, December 1969, 112 pp.; also published as
Systems Engineering Technical Report L2.

Randall, S., Uppal, N,, McClain, G., and Blinn, J., Implementation of the
Queue Analyzer System (QAS) on the IBM 360/67, May 1970, 152 pp.

Jackson, J. H., SEIMA: A Conversational System for the Graphical Speci-
fication of Markovian Queueing Networks, October 1969, 76 pp.

Blinn, J., Systems Engineering Laboratory Circuit-Drawing Program, Tech-
nical Report 24, July 1970, 24 pp.; also published as Systems Engineer-
ing Laboratory Technical Report uT.

Brender, R. F., A Programming System for the Simulation of Cellular
Spaces, Technical Report 25, January 1970, 160 pp. (doctoral disserta-
tion).

16

6.

Chace, M. A., and Korybalski, M. K., Computer Graphics in the Dynamic
Analysis of Mechanical Networks, Technical Report 26, February 1970,

50 pp.

27. ©Smith, D., The Audio Response Units User's Guide, Technical Report 27,
July 1970.
28. DiGiuseppe, J. L., Gerstenberger, W. 8., and Mills, D. L., Data Concen-
trator User's Guide, Technical Report 28, April 1970, 88 pp.
29. Fronczak, E., Digital Plotting System, Technical Report 29, August 1970,
45 pp.
530. Shadko, F., and Herzog, B., DRAWL [0: A Computer Graphics Language,
Technical Report 30, August 1970, 145 pp.
1. Brender, R. F., et al., DEC PDP-7/IBM 1800 High-Speed Interface, Techni-
cal Report 31, August 1970, 135 pp.
32. Bolas, B., Springer, A., and Srodawa, R., The MAD/I Manual, Technical
Report %2, August 1970, 198 pp.
33. Wagman, Richard, The DF (Display File) Routines User's Guide, Technical
Report 33, December 1970, 8 pp. + appendices.
MEMORANDA
1. Galler, B., MAD/I: Preliminary Draft, November 1966, 20 pp.
2. Lundstrom, S., Comparative Evaluation of Digital Equipment Corporation's
340 and 330 Display Controls, June 1966, 17 pp.
3. Lundstrom, S., DEC 338 Light Pen Sense Indicator, November 1966, 7 pp.
L. TLundstrom, S., PDP8-103A Dataphone Interface, November .1966, 7 pp.
5. Mills, D., RAMP: A PDP-8 Multiprogramming System for Real-Time Device
Control, May 1967, 24 pp.
6. Frantz, D., PDP-8/338 Executive System, June 1967, 35 pp.
7. Brender, R., Use of DDT with "Interrupts On" Programs, July 1967, 9 pp.
8. ZLundstrom, S., and Callan, D., PDP-8 Simulator, July 1967, 27 pp.

17

10.

11.

12.

13.

1k,

15.

16.

17.

18.

19.

20.

1.

22.

23.

oh.

5.

Lundstrom, ., Engineering Design Report: FPDP-8/CRO1B Card Reader
Interface, Memorandum 9, August 1967, 8 pp.

Lundstrom, S., Engineering Design Report: PDP-7/Modified 338 Display
Interface, Memorandum 10, August 1967, 23 pp.

Mills, D., I/0 Extensions to RAMP, Memorandum 11, October 1967, 32 pp.

Powers, V. M., PDP-8 Assembler, Memorandum 12, November 1967, 13 pp.

Mills, D., System 360 Interface Engineering Report, Memorandum 13,
March 1968, 166 pp.

Burkhalter, K., DEXEMBLER, Memorandum 1L, February 1968, 13 pp.

Wood, D. E., A 201A Data Communication Adaptor for the PDP-8, Memorandum
15, February 1968, 134 pp.

Burkhalter, K., PDP-8 to 103A Dataphone and/or Online Teletype Inter-
face, Memorandum 16, April 1968, 20 pp.

Mills, D. L., and Powers, V. M., PDP-8 Program Relocation: Concepts
and Facilities, Memorandum 17, February 1968, 22 pp.

Pinkerton, T. B., The MTS Data Collection Facility, Memorandum 18,
June 1968, 13 pp.

Burkhalter, D. E., A Cyclic Check Computer for Error Detection, Memoran-
dum 19, May 1968, 33 pp.

Powers, V. M., Mills, D. L., and Laurance, N., An Assembly Language
System for DEC Minicomputers, Memorandum 20, May 1969, 64 pp.

Powers, V. M., Portaterm Software, Memorandum 21, March 1969, 20 pp.

McCreery, D. R., The Electrowriter as a Computer 1/0 Device, Memorandum
22, March 1969, LO pp.

Cocanower, A. B., The DF Routines User's Guide, Memorandum 23, May 1969,
5 pp. + appendices.

Mills, D. L., RAMP Architecture in a Utility Calculator System, Memoran-
dum 24, May 1969, 24 pp.

Jackson, J. H., and Blinn, J. F., Modifications to the SEI Fxecutive
System, Memorandum 25, February 1970, 8 pp.

18

26.

7.

28.

29.

30.

31.

J2.

53.

3l

35.

%6.

Guskin, J., and Dingwall, T., The Discrete, Logical Design, Simulator
System, Memorandum 26, August 1970.

MOMS: Michigan's Own Mathematical System, R. Taylor, ed., Memorandum
27, March 1970, 190 pp.

Goodrich, Mrs. S. D., CAMA: Define-Problem Command, Memorandum 28,
June 1970, 31 pp.

Julyk, L., Wolf, L. W., The CAMA Data Structure, Memorandum 29, August
1970, 100 pp.

Julyk, L., The CAMA Operating System, Memorandum 30, August 1970,
100 pp.

Springer, A., Defaults and Block Structure in the MAD/I Language, Memo-
randum 31, August 1970, 45 pp.

Srodawa, R., Sample Definitional Facility in MAD/I, Memorandum 32,
August 1970, 65 pp.

Wolf, L. W., CAMA (Computer-aided Mathematical Analysis): A General
Description, Memorandum 3%, August 1970, 30 pp.

Gerstenberger, W.S., and Taylor, R. W., Graphics RAMP User's Manual,
Memorandum 34, August 1970, 50 pp.

Dingwall, T., Julyk, L., and Wolf, L. W., The CAMA Macro Processor,
Memorandum 35, August 1970, 31 pp.

Dingwall, T. J., Julyk, L. J., and Wolf, L. W., The CAMA Interpreter,
Memorandum 36, August 1970, 18 pp.

19

APPENDIX A

GENESES (GEneral NEtwork SErvice System)

A-1

TABLE OF CONTENTS

INTRODUCTION
REMOTE TERMINAL PROGRAMMING CONSIDERATTIONS

QUEUEING NETWORKS

3.1 Queuve Analyzer System
3,2 SEIMA

ELECTRICAL NETWORKS
4.1 SEICIR

DOCUMENTATION

A-18
A-19

A-22

GENESES

(GEneral NEtwork SErvice System)

1. 0 Introduction

The proliferation of programs which facilitate solution of
substantial technical problems through the conversational use of
computers is inevitable. Each class of problems, and each approach
to their solution, is likely to call for a specific graphical program-
ming system with specially tailored inputs, outputs, procedures,
and data structures. Evidence of this truth is easily found. The
communication between man and computer must be both personal
and specific if the conversation is to be effective. Thus, the pro-
liferation of languages and systems is a natural byproduct of the
very same factors which make the conversational mode useful.

In the case of the System Engineer, the problem classes which
could benefit from designing conversational programming systems
are especially numerous because the System Engineer must inevitably
deal with problems involving large numbers of entities and open,
poorly defined questions. In his case, however, a very high
proportion of these problem classes are described by him graphi-
cally by means of network models: electrical networks, flow-graphs,
control-system block diagrams, queueing networks, switching networks,

decision trees, computer programs, etc. On the other hand, the things

A-3

he does with these networks are also diverse: reliability analysis,
optimization, performance analysis, experimentation with adaptive
controls, simulation, etc.

The piecemeal programming of each of these classes of problems
and approaches to their solution using conventional techniques and
software aids is extremely burdensome, and must be avoided. What
is needed are new general purpose service systems which make the
task of solving such problems as easy as possible for the qualified
practitioner of the art who is not also a sophisticated programmer.

The result of the research undertaken here is twofold. First,
a framework (both theoretical and practical) within which various
network models may be described graphically and analyzed, in a
conversational manner, was developed. Second, two systems - one
for analyzing queueing networks (stochastic service networks) and
the other for analyzing electrical networks - were implemented in
order to illustrate the practicality and the generality of the approach
taken. |

Certain philosophic points of view have governed our work.

First, it is assumed that when substantial technical work is
involved, one must highly value speed of response and efficiency.
The limits of computer capability will frequently be approached,
and all unnecessary delay or problem restriction will seriously
interfere with the effectiveness of cooperation between the user and

the computer.

A=L

In both of the systems implemented a user interacts directly
with a satellite computer-display combination (a DEC 339) to describe
topographically the network in question and to obtain displays of per-
tinent results. This computer-display combination in turn interacts
with a central computer (an IBM 360/67) which contains a mathematical
description of the network and which computes results from this mathe-
matical description. This configuration provides a large, fast com-
puter for the involved computation of network analysis or solution,
permits rapid response to a user's demands through use of a small
satellite computer, and requires only a relatively narrow bandwidth
line joining the two facilities.

Second, the data structure of individual technical entities,
particularly when they are relations or functions, will often need to
be specifically tailored to known characteristics of the function.
Sometimes a function is representable by an algorithm, sometimes
by a matrix or regular array, sometimes by rings or lists.

Finally, the individual user must be able to use a very specialized
and individualized notation in both picture language and control language.
To be forced to use an unfamiliar notation for a familiar problem, or
to use a powerful and general notation for a very specialized subclass
of problems will again seriously impede cooperation between man and

computer.

The following sections outline the achievements of this research.
Section 2.0 discusses the philosophy and implementation of the execu-
tive system for the remote terminal. The decisions made here were
instrumental in creating an atmosphere conducive to effective man-
machine communication for interactive design problems. Two such
problems were considered and fully implemented, and are described
in subsequential sections. Section 3.0 discusses the factors considered
in designing the system for the analysis of queueing networks. Sections
3.1 and 3. 2 describe the software systems developed for the analysis
of these networks for the remote terminal and the central computer,
respectively., Certain factors considered in the design of a system
for the analysis of electrical networks and some details of the remote
terminal software system are described in Section 4.0 and 4.1,

respectively. Finally, documentation efforts are listed in Section 5. 0.

2.0 Remote Terminal Programming Considerations

In order to use the DEC 339 as a terminal to the IBM 360/67,
a decision about the division of labor between the two machines had

to be made. Generally, there were two alternatives:

(1) The DEC 339 could be programmed to accept display

data from the IBM 360/67 and to encode inputs from

the user to be sent back to this machine. All appli-

cation programs would then be resident in the IBM

360/617.

(2) Application programs could be written so that they

reside partly in the DEC 339 and partly in the IBM

360/617.
The first of these alternatives would provide for easy preparation
of application programs, since programming in assembly language
would be required only initially to interface the two machines. All
application programs could then be written in high-level languages
for the IBM 360/67. However, the limited data link between the
two machines would degrade response time if this scheme were used.
Consequently, the second alternative was selected, with the DEC
339 performing all display-related functions and the IBM 360/67
performing only the large-scale computations of analysis and
solution. Display data is not transmitted between the two machines
during normal operation, and response time suffers less from data
link limitation.

The price that was paid for this type of operation is that the

DEC 339 has to be programmed in assembly language for each
application. However, attempting to reprogram all input/output
devices for each application is impractical. Consequently, a

small operating system was needed to handle input/output devices

A-T

on this machine. Furthermore, since this machine is dedicated to
the tasks of communicating with the user and with the IBM 360/67,
much CPU time is available in the terminal. Some of this CPU
time can be used to establish a multiprogramming environment in
the terminal to permit more éfficient use of input/output devices.
An operating system, called the "SEL Executive System"
[3], was written for the DEC 339 both to establish a multiprogram-
ming environment and to support input/output devices. In order
to take advantage of the sophistication of the display control,
provision for maintaining highly structured display files is in¢luded
in the system. (Since any modification of these display files requires
synthronization with display control activity, their maintenance is
intimately associated with input/output activity and is therefore
properly a system function.) The form of these display files was
chosen to utilize practically every display control instruction and
is well suited to the complete representation of network diagram
topologies. It is also applicable to many other two-dimensional

display applications.

3.0 Queueing Networks [1], [2], [4]

It is frequently desirable to design stochastic service systems
which cannot be adequately analyzed by normal queueing theoretic

models. Such systems consist, in the most usual instances, of

numerous waiting lines (or "queucs'), servers, and controlling

A-8

or directing stations which determine the discipline of task flow
through the system. These systems are often realistic repre-
sentations, for high-traffic design purposes, of behavior in diverse
fields such as plant management, telephone switching, air traific
control, electronic warfare, logistics, and computer system
specification and control.

Improved techniques for the design of such systems are greatly
needed. For example, a design problem of this type which has not
yet been adequately resolved is at the heart of a current crisis in the
development of executive systems for demand-paged, multiprogrammed,
time-shared computer systems. Problems of this type are also found
frequently in the course of selecting the equipment and executive control
strategies which permit a modern large-scale computer system to
serve a specific environment. These problems have, in the past,
required painstaking study and could not be answered generally
enough to be treated routinely. Increasingly, as the ""computer
utility'" concept gains acceptance, these '"queueing' problems will
assume a more and more dominant position as the source of computer
system inefficiency.

Similar needs for improved techniques are found everywhere that
high-traffic problems occur. This is the natural result of the trend
of every technology toward ever larger and more complex systems,

with ever greater levels of traffic. New techniques should permit a

A-9

more routine design of individual systems and strategies for specific
environments.

One of the major hopes for significant improvement of design
capabilities using queueing models lies in the so-called "conversational"
computer techniques, whereby the calculating power of a computer can
be closely coupled to the creative power of a design engineer. If a
designer can freely pose alternative models to a compﬁter and get
immediate evaluation of various performance criteria, he may then
generate enough insight (via cut-and-try procedures) to guess a near-
optimal design for a system far too large or tightly interrelated to be
treated by conventional optimization techniques.

However, the uge of conventional techniques for the analysis
and design of stochastic service systems requires development of a
problem-oriented programming system which is specifically tailored
to the demands of conversation. The input language must be terse,
the calculations must be fast and reproducible, the variety of models
available must be broad, and the results should be in a graphic,
insight-provoking form.

The most promising approach to developing such a system is
to use graphic displays for the man-computer communication, and to
use recursive numerical methods applied to Markovian models for the
analysis. Graphical input to the computer in the form of queueing

network diagrams provides an ideally compact medium for description

A-10

of problems, while an output in the form of graphs provides a
suitably insight-provoking form for results.

The recursive techniques provide fast calculations with
excellent accuracy (hence reproducibility) of the calculated results.
They also can be applied to a wide variety of models. This variety
of models is considerably broader than is feasible with closed form
analysis, but not as general as the slower, less accurate simulation
methods. The detail available in numerically solvable models is
also midway between that available using closed form analysis and
simulation methods.

There are three basic operations involved in a programming
system to serve these goals. They are:

1) the servicing of the graphic operations,

2) the translation of the diagram to the form required

for (Markov chain) input to the solution system,

3) the solution of the Markov chain.

The second of these is a process which, to our knowledge, has not

been previously attempted, and has no obvious solution.

3.1 Queue Analyzer System

A graphical, problem-oriented system has been developed by
means of which solutions to simple stochastic networks can be
obtained rapidly enough to facilitate conversational use. The

problem descriptions are constructed in network diagram form on

A-11

a remote DEC 339 graphic console under a software system called
SELMA (Systems Engineering Laboratory's Markovian Analyzer).
Simultaneously, information concerning the constructidn is sent via
dataphone to a time-shared IBM 360/67, which prepares the solutions.
The stochastic networks which can be solved are restricted to systems
which can be modeled by a continuous-time finite Markov chain, and
are solved by numerical solution of the Kolmogorov equilibrium
equations.

The central 360/67 programs and data structures which accept
graphical descriptions of Markovian queueing networks and which
return solutions to these networks to the remote system according
to requested specifications are referred to as the Queue Analyzer
System (QAS). Because the data required by the anélysis program
is in a very different form from that describing a network (which is
in terms of blocks and connections), a translator, called the network
compiler, is required. After the network has been compiled, QAS
analyzes the resulting structure for the equilibrium state probabilities
and finally it calculates from these probabilities thé specific results
requested by the console user.

QAS consists of five sets of routines: supervisory and support
routines, generation phase routines, compilation phase routines,
result phase routines, and documentation phase routines. The super-

visory and support routines include: (1) those routines which interact

A-12

with SELMA to interpret commands received from the DEC 339 and
dispatch them to the proper phase routine, to request information

from the DEC 339, etc. and (2) those routines which are used in
general by all the various phases to manage free core for the various
data structures to perform set manipulations on certain data structure,
to provide error checking and debugging facilities, etc. The generation
phase routines create the data structures representing the stochastic
service networks which are described by commands received from
SELMA. The compilation phase routines are divided into two groups.
The first of these groups operates upon the data structures created

by the generation phase routines and reduces (i.e., compiles) these
structures to a form more suitable for use.by the second group. The
second of these groups, operating on the outcome of the compilation,
computes a vector of the steady state probabilities for all the states
which the stochastic network may assume. This group also creates

a data structure representing the multi-dimensional cartesian product
state space for the model, along with information which allows mapping
from this state space into a linear index for referencing the steady
state probability vector. The result phase routines compute and
format requested results for display as graphs or printed tables by

the remote system, SELMA. Finally routines in the documentation
phase save and retrieve QAS data structures and corresponding SELMA

display structures for partially or completely solved networks.

The details of these phase programs and the operations per-
formed by them are documented in the report, '"An Implementation
of the Queue Analyzer System (QAS) on the IBM 360/67" [5].

In order to reduce some of the QAS system programming
problems to manageable portions, certain limitations of capability
were accepted. These limitations are chiefly ones which limit the
meaning which can be assigned to network symbols, and the manner
in which the symbols can be related. The current system can treat
networks consisting wholly of queues, exponential servers, infinite
sources, infinite sinks, random branches and merges, and priority
branches and merges. While many other symbols can also be
treated in this system, treating all meaningful symbols is by no
means a simple task. However, considerable thought was given
during the implementation of this system to making the definition
of new symbol a relatively easy task, and networks which can be
treated in the current system constitute a significant class of
models having considerable variety and power.

The current system is rather limited in the kinds of results
that can be displayed. Depending upon the user request, the
probability density function for the entire model, or for a single
element can be computed and displayed as graphs or printed tables.

Additional subroutines to compute expected values, marginal

A-1k

probability functions, etc. could easily be implemented. However,
a universally acceptable set of results satisfying the majority of
users is difficult, if not impossible, to define. Perhaps a facility
whereby a user supplied routine is used to compute results would be
the most viable alternative. An interesting possibility would be a
post-processing system which, using the QAS documentation file,
would generate via the Calcomp plotting system a hard copy of the
network diagram and plots of useful results.

One of the most crucial improvements which this system
requires is a provision which permits compilation of networks with
element parameters treated as variables. With such a provision,
the operation of compilation will be expanded into three operations:
compilation, evaluation, and calculation. The first operation com-
piles the network in terms of algebraic expressions of model para-
meters. The second operation evaluates the algebraic expressions
after the parameter values are supplied. Then, when a user is
exploring a single model with many values of the parameters, the
compilation is performed only once, and the evaluation and calcu-
lations are performed for each set of parameter values. Currently,
changing a parameter values necessitates a recompilation.

The organization of the QAS system is imposed by the calling
system, SELMA, which in turn is ultimately subject to the desires

of a user. Such an organization imposes a minimum constraint upon

A-15

the thought sequence of the user. The implementation of QAS and
SELMA has demonstrated the feasibility and the usefulness of such
a programming system for the conversational design of stochastic
service systems using a graphical display for both specifying the
stochastic network and evaluating it. The advantages of this
approach in terms of speed, precision, and ease of design have

been demonstrated.

3.2 SELMA

In order to provide an interactive means of analyzing Markovian
queueing networks, SELMA (Systems Engineering Laboratory's
Markovian Analyzer) [6] was developed for the DEC 339 graphic ter-
minz;l. This programn accepts a network diagram from the user and
transmits the information which is required to solve the network via
dataphone to QAS (Queue Analyzer System) on the IBM 360/67. QAS
then analyzes the network and transmits back to SELMA the results
of solution. SELMA then either displays these results graphically
or types tables of the results, depending on the user's specification.

In designing the SELMA/QAS system, the major hardware
limitation was the bandwidth (2000 baud) of the 201A dataphone which
connects the DEC 339 and the IBM 360/67. If reasonable response
times were to be achieved, the information which is tfansmitted

between the two machines had to be minimized. Since the DEC 339

A-16

has considerable computing capability, it was decided to perform
all graphical operations at the terminal so that picture information
does not have to be transmitted in either direction between the ter-
minal and the central computer. Hence, the only information which
is sent from the terminal to the central computer is that which is
required to describe the topology of the network and par ameter
values, and the only information which is returned from the central
computer is a set of values to be plotted or typed.

In order to avoid transmitting a large amount of information
to the central computer just after the user requests solution, changes
in the topology of the network and in parameter values are transmit-
ted to QAS as they occur. In this way, the entire network is described
to QAS at the time that the user requests solution, and the only delay
in obtaining the solution is that which is produced by solving the
network and returning the results. However, one graphical input
from the user can pro‘duce considerable information to be transmitted
to QAS. If changes in the network were tobe transmitted to QAS as they
occurred, the transmission of information to describe the effect of
one input could delay response to subsequent inputs. To avoid this
problem, a multiprogramming environment is needed in the terminal
to allow SELMA to transmit to QAS information which results from

one input while responding to subsequent user inputs. In order to

A-17

provide this multiprogramming environment, an executive system
[3] was developed for the DEC 339.

Not only was an attempt made to minimize the dataphone
traffic between the two computers, but an attempt was also made
to make communication between the user and the terminal as natural
to the user as possible. In particular, a technique for interpreting
motions of the light pen has been incorporated into SELMA. Generally,
whenever the user refers to some part of the diagram with the light
pen, a program is scheduled to interpret subsequent motion of the
light pen in order to determine what action is to be taken by the
program. For example, the user deletes an element symbol by
aiming the light pen at it and then stroking vertically across it.
He moves the symbol by aiming the light pen at it and then moving
away from it. All other operations which are involved in modifying
the diagram, with the exception of creating symbols and assigning
parameter values, are initiated by recognizing similar motions of
the light pen. In this way, the relatively awkward use of push

buttons and light buttons is avoided for most operations.

4.0 Electrical Networks

In order to illustrate the generality of the techniques employed
in developing a system for the analysis of queueing networks, we

wanted to implement a second network analysis system. Since the

A-18

central computer software required for the actual analysis of a
network is highly dependent upon the type of the network (i.e.,
since it is not easily generalized), we decided to implement a
system for which the analysis software already existed.

Already in use in the Systems Engineering Laboratory was a
program called CIRAN, which analyzes electronic circuit networks
and generates frequency response and time response tables (suitable
for plotting). This, then, suggested the very attractive proposal
of altering SELMA to draw electronic networks (instead of queueing
networks), communicate the network topology to CIRAN, (instead
of QAS), and plot the resultant tables as graphs. The result of this
effort is SELCIR; Systems Engineering Laboratory Circuit-Drawing

Program [17].

4.1 SELCIR

The main design criterion in SELCIR, as in SELMA, was to
make the drawing process as quick and natural as possible. Thus,
the basic drawing procedure, utilizing thresholding to choose between
graphical operations, was adopted with little modification. However,
the differences between the semantic interpretations of the two types
of networks necessitated some new programming.

The first obvious change was to allow electronic network ele-

‘ments in SELCIR to be rotated, unlike those in SELMA. For simplicity

A-19

and economy of storage, the elements rotate in 90’ increments only.
This action was originally triggered by a light button but later a new
threshold pattern was devised to react to circular motions of the
light pen around the element to be rotated. A similar pattern was
later installed in SE LMA to distinguish between random and priority
branches.

Connection lines in SELCIR represent a much more general
case than those in SELMA, a fact that eventually required a fairly
sophisticated program for connection manipulation in order to operate
satisfactorily. The first difficulty encountered came from the fact
that elements can have either vertical or horizontal orientation.
This necessitated allowing connection lines to connect to eleraents
in both horizontal and vertical directions. In the case of SELMA
all elements are horizontal and all connection lines terminate with
a horizontal line. Termination of connection lines is triggered by a
light pen hit on the end of an element. Since the aperature of the
light pen is large, this light pen hit can occur when the endpoint of a
connection line in the process of being drawn is still half an inch away
from the element. The program must then draw in the rest of the
connection line to terminate at the element, making decisions as
to what horizontal and/or vertical segments to insert. Initial

attempts to do this with a fairly simple algorithm continually

A-20

resulted in the programs adjusting lines into aesthetically undesirable
forms. The scheme finally used has to examine the orientations of the
elements involved and the existence of other connection lines at the
connection points. While somewhat more involved, this scheme
consistently produces good looking connections.

Another complication in the handling of connection lines arose
for the delete operation. In SELMA, the semantic constraints on a
connection force it to be treated as an indivisible entity; if any
electronic circuit simply represents a wire, it seems reasonable to
be able to delete only one branch at a time. When a branch is deleted
the structure is also scanned to separate elements which are no longer
connected and to merge connection lines which no longer branch. This
necessitates a somewhat more sophisticated data structure to treat
each branch line as a separate entity. The end result is a very
pleasing connection operation which allows the user to draw con-
nections and rub-out parts of them much as if he was drawing lines
on paper.

The final added feature in SELCIR is in the results request for
the analysis program. CIRAN can produce many more different types
of output than QAS, requiring a more elaborate results frame. The
scheme used allows the user to specify the graph he wishes by

choosing the x and y axis labels and their modifiers from light

A-21

buttons. A set of interlocks prevents the choice of unavailable com-
binations of entries. The axis labels are set up so that the user can
request a graph, make changes to the circuit to which the graph
applies, and request another graph without respecifying the coor-
dinate axes labels.

The programs SELMA and SELCIR have diverged somewhat
in data structure, but these differences reflect differences in the

network interpretation and the analysis program.

5.0 Documentation

A number of reports and a 16~mm film have been produced to
document the results of this research. A bibliographical listing of

these items is given here.

1. Wallace, V. L., and K. B. Irani, Network Models for the
Conversational Design of Stochastic Service Systems, Technical
Report 30, Systems Engineering Laboratory, Department of
Electrical Engineering, University of Michigan, Ann Arbor,
1968; also Technical Report 13, Concomp Project, Computing
Center, University of Michigan, Ann Arbor, 1968.

2. Irani, K. B., and V. L. Wallace, A System for the Solution of
Simple Stochastic Networks, Systems Engineering Laboratory
Technical Report 31, Concomp Project Report 14, 1969.

3. Jackson, James H., An Executive System for a DEC 339
Computer Display Terminal, Systems Engineering Laboratory
Technical Report 32, Concomp Project Report 15, 1968.

4, Wallace, V. L., On the Representation of Markovian Systems
by Network Models, Systems Engineering Laboratory Technical
Report 42, Concomp Project Report 21, 1969.

5. Randall, L. S, et al.,An Implementation of the Queue Analyzer
System (QAS) on the IBM 360/67, Systems Engineering Laboratory
Technical Report 43, Concomp Project Report 22, 1969.

A-22

6. Jackson, James H., SELMA: A Conversational System for the
Graphical Specification of Markovian Queueing Networks, Systems
Engineering Laboratory Report 45, Concomp Project Report 24,
1969.

7. Blinn, James, Systems Engineering Laboratory Circuit Drawing
Program, Systems Engineering Laboratory Report 47, Concomp
Project Report 24, 1969.

8. Irani, K. B.,et al, SELMA/QAS, 16-mm movie, Systems Engineering
Laboratory, Department of Electrical Engineering, University of
Michigan, Ann Arbor, 1970,

A-23

APPENDIX B

SIMUIATION OF ATRIAL FIBRILIATION

larry K. Flanigan

Henry H. Swain
John Foy

Fibrillation is a condition in which the electrical activity of cardiac
muscle is uncoordinated, giving an appearance of multiple wavelets moving
in random patterns. Since the muscle electrical activity is responsible for
the contraction of the muscle, this loss of electrical synchrony .results in
an uncoordinated muscular contraction which fails to move blood effectively
through the organism. In the case of ventricular fibrillation, this loss of
effective pumping is fatal; for atrial fibrillation, however, normal gravity
blood flow from the atria to the ventricles is sufficient to maintain normal
activities. The conditions which lead to the initiation and termination of
fibrillation have been studied for some time, as have the properties of the
heart muscle which presumably allow it to support such unsynchronized acti-
vity once initiated. Despite these many studies, however, the exact causes
of fibrillation at the cellular level, and the cellular-level mechanisms for
sustaining fibrillation, are still highly speculative. The basic problem
is that fibrillation is a function of a network of cells (i.e., a tissue),
not of an individual cell; hence, the underlying mechanisms are related not
only to individual cell behavior but also to the interconnection patterns of
cells and to the manner in which cells affect one another. To investigate
this problem, a cellular model of cardiac muscle has been devised, and a
program to simulate this model has been written to run under MIS on the
System/360.

The cellular model is based on a set of mathematical-logical equations

which provide a description of a cardiac cell, together with a set of rules

B-3

which provide the local and global network structure and neighborhood rela-
tions. This model was originally developed to simulate A-V node tissues (1)
but has since been adapted to atrial tissues. The simulation program is
written in FORTRAN IV, together with a few System/360 Assembler Language
routines, and it has been devised to run in a time-sharing system in which a
user is in direct communication with the program at all times. To this end
much of the decision-making was not coded, but was left to the terminal user
to be done in an on-going interaction with the simulator. To aid in this
control process, an internal command language has been devised which is
interrupt-driven from the user's terminal. Among the more important functions
provided are the following:

1. Complete control over several forms of output and its

frequency, including various data generation mechanisms
for later batch processing;

2. Dynamic control over cell types and network structure;

3. A save/restore capability allowing multiple simulation

runs from a given network status;

4., Dynamic control over input stimulation patterns to the network.
Several other less important, but convenient, functions have also been inclu-
ded in the command language.

The current model uses a two-dimensional network of approximately 500

cells in the simulation; a maximum network of 625 cells may be obtained with

the current program. The use of a two-dimensional network, rather than one

of three-dimensions, saves computer time and is not unreasonable in view of
the thinness of atrial walls. In order for the user to make decisions during
a simulation run he must have available a great deal of information, such

that he may know at each instant the current network status. Since hard copy
output is too slow for this purpose, the simulator uses the DEC 338 display
to present a "picture" of the network. This, together with certain statistics

"see" the network status

produced on an attached teletype, allows the user to
at all times. The display is a two-dimensional representation of the model
network, showing for each cell its current state; this display is accomplished
through the DF Routines (2) provided in MTS. As a simulation proceeds, the
cell state changes give an effective picture, via the display, of activity
waves moving through the model network. Through the internal command language
the display may be turned on and off, the frequency of displays may be varied,
and the specific cell states to be displayed may be controlled. Currently,
all interaction through the display via light pen intefrupts will be added.
While the use §f the display is at a rather primitive level in this work, as
far as programming techniques are concerned, it is an absolute essential in
the simulator to provide meaningful information in a reasonable format at a
rate which allows economic interaction. In addition, the.display output is
immediately understood by physiologists without their having to interpret
pages of dats or statistical results of experiments.

Initial tests on the model were highly satisfactory and reproduced, in

part, the results obtained by Moe (3) using a simpler model. Currently, the

B-5

model is being used in a series of tests designed to investigatevcritical fi-
brillation freguencies as reported by Swain and Valley (4). The early tests
in this series substantiate the existence in the model of such frequencies.
Ultimately, it is hoped that information may be obtained as to the important
cellular parameters which are critically involved in initiating and termina-
ting fibrillation. Once these parameters are identified, a series of tests
will be devised to test various hypotheses concerned with the use of certain
drugs to prevent or control fibrillation, and to determine how in the model
such drugs produce théir known effects. If successful, these model tests
should produce hypotheses about the manner in which cellular behavior supports

fibrillatory behavior in cardiac tissue.

REFERENCES

1. Flanigan, L. K. and Swain, H. H., "Computer Simulation of A-V Nodal
Conduction," The University of Michigan Medical Center Journal, Vol. 33,
No. 4, 1967, pp. 23L-241.

2. Cocanower, A. B., The DF Routines User's Guide, Memorandum 25, CONCOMP
Project, Computing Center, University of Michigan, Ann Arbor, May 1969.

%. Moe, G. K., Rheinboldt, W. C., and Abildskov, J. A., "A Computer Model of
Atrial Fibrillation," Am. Heart Journal, 67:200, 196k.

L. Swain, H., and Valley, S. L., "Critical Fibrillation Frequency," The
University of Michigan Medical Center Journal, 1970, in press.

APPENDIX C

MAN-COMPUTER GRAPHICAL SYSTEMS

William Ash
Robert W. Taylor
Fdgar H. Sibley

C-1

TABLE OF CONTENTS

Page
LIST OF FIGURES C- 3
1. INTRODUCTION c-5
2. A TAXONOMY OF PROBLEM-SOIVING GENERALITY IN GRAPHIC SYSTEMS C- 7
2.1 Introduction C- 17
2,2 The Taxonomy c- 8
2.3 Conclusions and Comments C-20

3, CONSEQUENCES AND IMPLICATIONS OF AN ASSOCIATIVE-
MEMORY DATA STRUCTURE C-2%

L. TRAMP

C
4.1 The Associative Package C
L.2 Tlogical Inference Package C-h3
4.3 TImplementation of Inference C
4.3.1 Algorithm for passing TRAMP relational

language C-L8

5. THE TRAMP/RAMP GRAPHICS SYSTEM Cc-52
5.1 The TRAMP Graphics Program at the 360 C-55

5.2 The Graphic Macros C-AT

5.3 Comments on the TRAMP/RAMP System C-71

6. GRAPHIC IANGUAGE CONSTRUCTION OF GRAPHIC PROCEDURES C-"715
6.1 The Problem in Detail C-76

6.2 A Simple Example C-89

6.3 Further Investigations in This Area C-93%
REFERENCES C-95

Cc-2

Figure
C-1.
c-2.
C-3.
C-k.
C-5.
C-6.

C-T.

C-%a.
C-9b.
C-%c.

C-10.

C-11la.

C-11b.

C~-12.

C-13.

C-1k,

LIST OF FIGURES

Level O problem solving.
Level 1 problem solving.
Ievel 2 problem solving.
Ievel 3% problem solving.
Level 4 problem solving.
Level 5 problem solving.

Path of display file generator through a semilattice
data structure.

Point connectivity: Definition in an associative
structure.

Construct inputs.

Construction phase.

Four output possibilities.

Arbitrary cireles and imposing constraints.
Inputs for "parallel line."

The construction "parallel line."

The intline procedure.

Construct "thing."

Iist of contents of output file.

C-3

Page

C-11
C-13
C-15
C-1T7

c-18

c-66

C-Th

C-19

C-91

C-92

1. INTRODUCTION

This report summarizes a research effort which explored advanced tech-
niques in man-computer graphical systems. The work was done under the CONCOMP
Project starting in late 1966. Personnel involved, at various times, were
Dr. E. H. Sibley, W. L. Ash, D. G. Gordon, Captain R. McDonald, and R. W.
Taylor. MaJjor portions of the results have been published elsewvhere (1-6).
This report serves the dual purposes of providing more detail than the above
references, and of providing a coherent framework in which to present the
results.

The work started with the development of the TRAMP system, which oper-
ates under the Michigan Terminal System, MI'S. TRAMP is a simulated associa-
tive memory system with a deductive capability. It is embedded in the UMIST*
language, which has served as an elegant host. This effort was undertaken
as the first step in the research because of our convictions that associative
memory schemes would be vital in any advanced graphic system. Our results
and the presence of assoclative memory systems at other installations,

e.g., Lincoln Iaboratories, give evidence regarding the validity of this as-
sumption.

TRAMP has proven useful in other applications besides the graphical one

reported here. It forms the main data storage and retrieval mechanism for

¥UMIST is a local dialect of the TRAC T-6L language, and was implemented
at The University of Michigan with the cooperation of Mr, C. N. Mooers,
creator of the TRAC T-64 language.

Cc-5

the CONCOMP accounting program which was used for all budgeting and accounting
on the Project. Also, TRAMP was used extensively in a doctoral dissertation
on automated engineering design (7). Finally, TRAMP will serve as the basis
for further work in a new approach to question-answering systems.

This report concentrates on aspects of generalized computer graphics and
presents thoughts about the state of the art in this area. Section 2 pre-
sents a taxonomy of generality in existing computer graphics systems. This
taxomony serves as background for questions and conclusions in later sections.
Section) compares and contrasts ring structures and associative structures.
Ring structures are widely used in the computer graphics community, yet there
has been little questioning of their appropriateness or their shortcomings.
This section attempts to do that and to point out some advantages of the as-
sociative approach. Section L4 reviews TRAMP in enough detail for the reader
to get a flavor of the language and its capabilities. Section 5 documents
the TRAMP/RAMP graphic system, which served as the primary vehicle for our
graphics research, and comments about this approach to graphics research.
Finally, Section 6 presents a detailed example of the kind of exercise which
can be carried out in the TRAMP/RAMP system. Also included are comments
about the problems which these exercises raise and some suggestions about

further work along these lines.

2. A TAXONOMY OF PROBLEM-SOLVING GENERALITY IN GRAPHIC SYSTEMS*

2.1 INTRODUCTION

This appendix presents a framework through which various graphics systems
can be compared and contrasted. As is true of any classification, it is of
interest to the extent that it clearly delineates important features of the
various classes., If features other than those treated by the taxonomy are of
more concern, then other means of comparison must be found. But in the areas
where the taxonomy applies, it can provide a measure of order and structure
where none existed before. It can thus be of aid in visualizing the scope
of certain existing graphic systems, and also point out the difficult and
unsolved areas of the field, which should be approached carefully when new
systems are being designed.

The primary dimension under consideration in this’taxonomy is capability
for problem-solving over a range of problems. Thus system A will rank higher
on the scale than System B if A has the potential for.solving a wider range
of problems than B.

Certainly there exist other dimensions on which systems could be compared.
Sophistication of approach to a given problem is one possible measure. Others
which could be of interest at various times are efficiency, modularity, trans-
portability, extensibility, and device-independence. It would certainly aid

the graphics community to have complete classifications along all of these

*This appendix is based, in part, on a presentation given by EHS at the
1970 SJcCcC.

dimensions, for then one could study the more advanced systems along which-
ever dimensions were of interest. Moreover, new systems could hopefully in-
corporate the best feafures of all dimensions. Such an extensive classifica-
tion scheme has been undertaken in the data base system area (8), and a simi-
lar effort in graphics would undoubtedly aid the user population in under-
standing the field. But such work is well beyond the scope of a single
author and is certainly not being attempted here. Rather, it is felt that
the generality dimension can serve as a starting point for other classifica-
tions, and also can serve immediste purposes with respect to estimating the
problems likely to be encountered in undertaking a new system.

It is also worth noting that although the taxonomy will be presented in
terms of discrete levels, it is more realistic to assume that this dimension
is continuous. Thus the classifications presented here do not necessarily
have clearly distinguishable boundaries. The examples are provided in an
attempt to make the taxonomy understandable. The inclusion of two or more

systems in the same class does not imply precisely equal generality.

2.2 THE TAXONOMY

This section presents the taxonomy. The reader should note that, for the
most part, the capabilities of a system at level 1 encompass those of all
lower (numeric) levels. Thus a subset relationship is implied.

The first level of problem-solving generality is illustrated in Figure
C-1. It is designated as "level O problem solving" because systems of this

sort solve almost no problems at all. Only the most trivial kinds of

C=8

LEVEL '0' PROBLEM SOLVING

OUTPUT OUTPUT
DEVICE PROCEDURE

/ f

USER

]

INPUT INPUT
DEVICE PROCEDURE

Examples: Tabulating Machines
Q - scopes
Storage Tube Displays

Figure C-1

c-9

processing are within the capabilities of a level O system.

The system, of course, involves a user who generates data which is
entered through some sort of input device. The device is supported by a
device support routine, which will be called the input procedure. Control
theﬁ passes to the device support routine for the output device—the output
procedure—then to the output device and the user. Note that nothing in the
way of a general-purpose computation facility is implied in the passage from
the input to the output procedure. If these procedures reside in a powerful
computer system, this power is not used. The only transformations allowed
are those of format conversion and rearrangement. More typically, however,
the input and output procedures will reside in a processor of limited power.
The examples are drawn from this environment. Tabulating machines, aipha-
numeric terminals, and storage-tube displays functioning as stand-alone units
are all examples of this level of processing.

The obvious next step is to augment the level O capabilities with a pro-
gram running on a computer. This is shown in Figure C-2. The restriction is
that the program serves a relatively special purpose. By this we mean that
while the program may be especially good at solving the problem for which it
was designed, it is of no use in solving problems in a different area. Cer-
tainly the vast majority of programs in existence today are of this special-
purpose variety. Two examples, which have received publicity in the graphics
community (and elsewhere), are the Electronic Circuit Analysis Program (ECAP)

and the Numerically Controlled Tool Programs, which produce paper tapes to

drive automated milling machines, To the extent that a problem is well

C-10

LEVEL '1' PROBLEM SOLVING

USER

OUTPUT ¢ OUTPUT
DEVICE PROCEDURE
/ I \
SPECIAL
PURPOSE
PROGRAM
INPUT INPUT
DEVICE PROCEDURE

Examples: ECAP
N/C Tool Programs

Figure C~2

C-11

defined, well understood, and relatively stable over time, that problem is a
candidate for solution via a special purpose program. Economic considera-
tions will probably be the final determinant in the construction of such a
program.

The next level of problem solving generality, illustrated in Figure C-3,
is a natural progression from level 1 problem solving capabilities. Here, a
family of special purpose programs is involved in the problem solution.
These programs communicate with each other through a common data structure.
When one observes that the family of special purpose programs might be run-
ning paraliel on a time-sharing system, each possibly serving‘a different
user, the power of this level begins to be revealed. Level 2 problem solving
is clearly more general than level l--the class of solvable problems will in
some sense be the union of the set of problems solved by the family of par-
ticipating programs. The price paid for this generality is embedded in the
data base sharing facility. Because each participating program must adhere
to the structure and conventions of the data structure provided, it is a
practical certainty that some programs will be forced to use a structure and/
or algorithm which is not the most efficient for that single problem. Over-
head costs will also result from the fact that the volume of data maintained
in the data base will be the union of that data necessary to solve the prob-
lems attacked by the family of programs. It is unlikely that a given user
will need all of these dats and/or programs all of the time. Yet it will be

hard to predict the requirements of the family of programs over the entire

user population. Thus, unless techniques for dynamic restructuring of the

Cc-12

LEVEL 2" PROBLEM SOLVING

USER

OUTPUT | | OUTPUT
DEVICE PROCEDURE
DATA le— SPECIAL
PURPOSE
STRUCTURE | PROGRAM
INPUT . INPUT
DEVICE PROCEDURE

Exomples: Data Base Management

Graphics -in- Industry

Flgure C~3

C-13

data base can be developed, the various users will be forced to share the
overhead costs. Finally, it is worth noting that as the family of programs
grows over time, it is likely that each new program will be more and more
difficult to incorporate into the total system. This results from the fact
that various flexibilities will have been precluded by previous decisions
regarding other programs in the family. This further points out the need
for data base restructuring capabilities. The examples shown suggest that
these problems are being attacked, both by the graphics community and the
data base management community. Close cooperation between these two groups
will be a necessity for the next few years.

Level 3 problem solving (Figure C-4) represents the beginning of a dif-
ferent approach to general problem solving systems. Instead of providing a
family of programs, each of which solves a specific user problem, the system
provides less specific capabilities which form the basis of a solution for a
number of problems. The user's job then becomes one of specifying to the
system, along with the data, the proper combination of these basic elements.
The more sophisticated of these systems also provide capabilities by which
the system itself can discover the proper combinations. Probably the best
known example of this approach is the SKETCHPAD system developed by Ivan
Sutherland., Here the basic capabilities, aside from those of drawing objects
on the screen, were various geometric "constraints"—make parallel, fix
length, etc.—along with a solution procedure which carried out constraint
commands from the user. The basic capabilities were sufficiently general so

that Coons' five problems could all be solved by SKETCHPAD. The SKETCHPAD

C-1k

LEVEL '3’ PROBLEM SOLVING

OUTPUT
DEVICE

OUTPUT
PROCEDURE

USER

7

DATA
STRUCTURE

INPUT
DEVICE

INPUT
PROCEDURE

- OF

APPLICATION

OF

CONSTRAINTS

STATEMENT

CONSTRAINTS
ON
SOLUTION

Examples: SKETCHPAD

Figure C-L4

C-15

data structure, in contradistinetion to those on level 2, did not have to be
altered upon addition of a new capability in the problem solving family.
However, this new capability did have the restriction that it be compatible
with the overall solution procedure, which was general enough for a certain
class of problems, but not totally general. (For further discussion of
SKETCHPAD see Reference 5.)

Thus in a further move toward generality, an attempt must be made to
generalize the solution procedures as well as the basic operators, be they
geometric (as were Sutherland's for the most part) or not. Before discus~
sing an approach to the total problem we wish to mention an intermediate ap-
proach. This is designated level L4 problem solving (Figure C-5). The prin-
cipal example is the AFED system (14). It might be argued that AED is a
system for building systems and thus is a meta-system for any of the levels
discussed here. This is certainly true and, when viewed in this way, AED
does not fit into the subset-superset progression we have been developing.
On the other hand, AED contains a number of generalized packages and techni-
ques which are oriented toward the generalized approach of level 3 and beyond.
Its capabilities for generality thus make it worth mentioning in this context.
However, because in practice a user must expend substantial effort in the
production of moduies which comprise the problem solving machinery, AED can-
not be considered as completely generalized.

What then is an approach to a very generalized level-5 system (Figure
C-6)? As can be seen, it has all the capabilities for user interaction in a

drawing mode as has the lower-level system.

C-16

G-0 3IBTI

a3V aidwox3

yasn

NOILDT
H3ilddV NO 0S
3104 ONV
ITY SINIVEISNOD 3una3o0ud |, | 301A30
W31808d 34N10NYLS
40 v1vQ
INIPHISNOD
. 3N03D0Yd 30130
SEIRE R RN 1ndin0 ™1 1nd1no
SAYT NEISAS \\

ONIATOS W3I1804d b, TIAT

C-17

LEVEL 'S' PROBLEM SOLVING

USER

" SYSTEM LAWS,
outut || outeur RULES, ETC.
DEVICE PROCEDURE

/ CONSTRAINT

paTA f~— “or ||
STRUCTWRE | | proaLEM
SOLVER
weur L weur [) STATEMENT 1 1 ppopiem |
DEVICE PROCEDURE ANALYZER
CONSTRAINTS
ON N
SOLUTION
Examples: ?
Figure C-6

C-18

In addition, it has problem solving machinery of a generalized sort. 1In
other words, the problem solving machinery is in the same spirit as that of
SKETCHPAD. But in addition, the System Laws and Rules are specifiable arbi-
trarily by the user. Thus the problem solving machinery must be able to cope
with a variety of situations involving arbitrary picture semantics. It is
our belief that such a system would, for all practical purposes, be indis-
tinguishable from a sophisticated artificial intelligence system. Our
thoughts as to how one might approach the building of such a system are out-
lined in Reference 5. Briefly, we view the system as having a generalized
parsing facility in order to analyze user statements of the problem. We also
see the necessity for a Problem Analyzer and Rule Applier which restricts
the domain of possible environments depending on prior constraints and other
environmental statements. Finally, we see the necessity for a generalized
problem solving mechanism which takes the restricted environment and attempts
to find a problem solution, which is also defined by the Problem Analyzer,
within the environment. Notice that in contradistinction to the AED approach,
the user need only specify the applicable System Laws and Rules. There would
be no necessity, in a truly general system, for laborious construction of
problem solving packages.

The taxonomy does not depend strictly on the existence of these three
separately defined boxes. We would be willing to call any system which deals
with arbitrary picture semantics a level-5 system. We do not know of any

such system.

C-19

2.3 CONCLUSIONS AND COMMENTS

Having presented the taxonomy, it is appropriate to draw several con-
clusions from it and make some comments about it. Such conclusions are, to
a certain extent, independent of the taxonomy itself.

First, because level 5 is considered the most general type of problem
solving system, the authors do not wish to imply, and it is probably a mistake
to infer, that state-of-the-art (graphic) systems should attempt to problem
solve at this level. The authors believe that the construction of such a
system is beyond the state-of-the-art. Thus, it is not likely that any useful
results will be forthcoming from the generalized approach for many years.

It is also worth noting that level 5 problem solving will, in its most
advanced state, always be grappling with problems that are not well under-
stood. As soon as a problem is well understood, it is likely that a more spe-
cialized approach to the problem solution, possibly using the tools of level
4, will be the more pfactical way of proceeding. In other words, the extran-
eous generality can be discarded in the interests of, for example, efficiency,
once the problem is well understood. Because the generality is discarded, the
system which deals with the problem will not be a level 5 system.

The authors feel that research in generalized graphic systems is currently
at two levels. Most of the practically oriented research is at level 2, i.e.,
producing systems in which dissimilar programs (possibly in rather different
programming languages) can access a common data base. The problems in this

ares should not be underestimated. Many basic computer science questions con-

cerning the nature of data and file structures and interfaces with an

C-20

operating system form the heart of this problem. On the other hand, the re-
solution of these questions will yield immediate benefits, both in this type
of system and elsewhere.

There is also some existing research at level 3. The on-line mathemati-
cal systems tend to provide a set of routines for solving a fairly wide class
of problems in mathematics. Results are frequently presented graphically.
Often input statements, which are usually from a keyboard, may refer to
results on the screen via some pointing device. Mathematical systems form
an excellent area for such generalized facilities. The range of applicable
problems is wide, yet the field is obviously well formalized and oriented
toward algorithmic treatments. Intensive study of such systems may well
yield the most significant advances on this level of problem solving.

Another comment is: To what extent is this taxonomy independent of
graphics? There are several aspects to this question. In many ways, the
taxonomy does not depend on graphical communication at all. Problem solving
which delivers answers from input data need not, in a sense, be concerned
with such incidentals as input and output formats and presentation methods.
On the other hand, graphics is a very natural means of communication for man,
and it has striking potential when coupled with a sophisticated problem
solver. If the machine could ever be a level 5 problem solver, then remark-
able results would ensue. But a sophisticated problem solver on a lower
level can also benefit markedly when graphical I/0 is incorporated. The
recognition of this fact has caused a certain muddling of the two areas.

Sophisticated problem solving (often in the area of computer-aided design)

C-21

and graphics are treated as a relatively inseparable pair. There is nothing
inherently wrong with this coupling, but it is important not to confuse the
problem-solving-oriented parts of such systems with the graphical I/0 por-
tions. To do so is to complicate two already difficult areas. On the other
hand, capabilities in problem solving affect the graphic communication as-
pects and vice versa. Although the two areas are separable, the interrela-
tionships must be recognized and incorporated into the design.

Finally, although this paper has concentrated on classifying levels of
generality in problem solving and has tended to ignore I/O features and
techniques, there is a need for detailed description and classification of
the various I/O techniques used in graphics systems. Such a classification,
to be rigorous, would probably have to draw heavily on statistical human
factors data, much of which is nonexistent (but see Reference 12). Neverthe-

less work along these lines would be of great value.

Cc-22

3. CONSEQUENCES AND IMPLICATIONS OF AN ASSOCIATIVE MEMORY DATA STRUCTURE

It has been widely recognized for several years that the data structure
plays a key role in graphic systems. By data structure we mean that portion
of the system which serves as the chief source of operands for other portions,
and which also contains representations of relations between operands and any
rules governing the processing of those operands. The data structure gives
meaning to the shapes created on the CRT. TIts existence is the difference
between "intelligent geometry" and "unintelligent geometry," to quote one author
(13). Notice that nothing has been said in this definition about how the vari-
ous operands, relations, and rules are represented in computer storage. Methods
of doing this will be called "storage structure,' and clearly data structure
needs to be mapped to "storage structure" before processing begins. This
mapping will not be discussed here. Rather, emphasis will be placed mostly on
the data structure aspects of graphics processing.

Sutherland (9) was the first to show that complex ring data structures were
sufficient to handle the meanings of pictures for the various constraint prob-
lems which his system could solve. Later work on the CORAL ring structures
(14) can be considered a refinement of Sutherland's original approach. Others
have followed the ring structure approach (15), and it is probably fair to say
that rings, with nodes having various internal structures, are the most common
method of implementing graphics systems data structures at the present time.

In the interest of clarity and precision, the following (complicated) defi-

nition of a ring data structure is offered.

Cc-23

Definition 1. A ring data structure is an octuple

<N, R, D, 8, p, T, 0, B>
where
(i) N is a finite set of Nodes
(ii) R is a finite set of Rings
(iii) D is a finite set of data types
(iv) & is a mapping
6:N->2D-¢
such that & 1s a total function
(v) p is a mapping
o:N » X o)
such that p is a total function
(vi) 7 is a mapping
T:N > 2R -0
such that (i) T is a total function

(ii) V<a, b>et, <c, d>ep

(vii) n is a mapping
n:N > N
the detailed restricﬁions of which will be
described below.
(viii) B is a mapping
B:R ~» 2N -9

such that B is a total function

C-2k

Thus every node has associated with it a non-null set of data types which are
said to be the components of that node.* We also make the restriction that
N ND = ¢ so that an allowable data type of a node cannot be a node. Each
node is allowed to be on some set of rings, which is specified by the p mapping.
Each node is on a set of rings specified by the T mapping. We further see
that
(1) each node is on at least one ring (from iv);
(ii) each ring contains at least one node, which will be called
its header (from viii);
(iii) the set of rings that a node is on is a subset of the set of
rings that that node is allowed to be on (vi.ii). This subset,
thus T, probably changes with time.

Finally, the mapping 7 specified which nodes are directly connected.

(This too is subject to change over time.)
The restriction on n is as follows

(i) For all n € N, there exists a natural number k such that

n < nk(n)

and for all i, 1 <1 <A\ E.misN and a ring reR such that

2, nisonr = mi isonr

3 nU {mi} = Range (B/r), the range of B is restricted

to r as the domain element.

¥In practice, the components would be data values of these data types,
but we need not be concerned with that here since this aspect of the pro-
cessing will not be of great concern. & is included merely to point out
that the nodes themselves have further structure.

C-25

Which, said in words, requires that it be possible to start a node n on a
ring r and, by composing the n mapping, reach all members of the ring r with
a new member of r being reached at every step., Further, one must arrive back
at the original node n after k steps.

The typical way of realizing this definition (with perhaps minor altera-
tions) is to define blocks of storage which can contain both the data compo-
nents of a node and places for indicating the set of rings which that node is
on. Further, it is often the case that the storage allocated will be large
enough to hold the set of allowable rings for that node. The techniques of
this realization are common, and will not be discussed here, except to note
that the space used for indicating ring membership typically contains one or
more pointers to other members of the ring.

A final comment regarding rings is: Why does the ring data structure
exist? Certainly the complexity of the definition indicates that it might be
a hard data structure to use. The reasons are, of course, largely historical.
Ring storage structures were shown to be sufficient to deal with Storage Struc-
ture problems. Thus one way of proceeding was to find a data structure lan-
guage which could be mapped to a ring storage structure. This was done (15, 16),
but the resulting languages have tended to reflect most of the associated
storage structure complexity.

Various people have questioned the universal applicability of a ring or-

ganization.* Their objections fall into several categories:

*It should be noted that the matrix methods for curve and surface genera-
tion are not necessarily different organizations. Typlcally, a node in one
of these ring structures will contain a matrix, which is subsequently used for
line/surface generation.

c-26

Ring data structures are difficult to use. The languages

are typically very procedural and require a thorough knowledge

of the accompanying storage structure. Thus data structure
manipulation is at best tedious. Worse than that, the complex
manipulations necessary lead to a variety of errors and thus
raise the cost of graphic systems. Finally, since the storage
structure of various nodes in a ring data structure is not
uniform, the accessing language 1s more difficult that necessary,
both to learn and to implement.

The meaning of the various fields of a ring element is usually
bound at compile time. As a practical matter, the structure of
the ring elements tends to be bound much earlier than this—
structures designed early in the life of a system tend not to

be changed very often, and only the existence of rather sophis-
ticated compilers allows any change at all. Reasons why one might
want the ability to delay binding later than compile time will be
given below.

The ratio of pointer to non-pointer data tends to be excessive.
While this multitude of pointers usually allows quick access to a

variety of data (a necessity if the graphics system is to be inter-

active), it is also true that the deletion and/or insertion of nodes

into an existing structure can cause severe overhead costs.

Tdealists might hope that there would be a technique for avoiding

these high costs with only a small penalty in increased accessing

c-27

time. Dreamers.on a smaller scale might hope that there would
be a way of choosing from a range of values in an access/overhead
tradeoff.

These objections led to an investigation of an associative structure as a
possible alternative for the data structure of a graphic system. By associa-
tive structure we mean software simulation of an associative memory, where
data is accessed by value rather than be name. Detailed investigations into
this approach have been reported elsewhere (1, 2, 17-19). A summary of salient
features will be presented here for completeness.

Once again we offer a definition

Definition 2: An associative data structure is a quintuple
<A, 0, V, 0, B>
where
(i) A is a set of Attributes
(ii) 0 is a set of Objects
(iii) V is a set of Values
(iv) o is a mapping
a: 0> A
(v) B is a mapping
B:0->YV

Thus we have a set of objects which have attributes and values associated

with them. Notice that there are no restrictions on o and B. Thus they need

not be totally defined over all objects, nor need they be functions.

c-28

Since there are only Attributes, Objects, and Values, any accessing of
such a data structure can use only elements of these sets. This has led de-
signers of associative data structure access languages to think in terms of

"associative processors."

content addressability and

The essential feature of an associative processor is that it has, in the
conventional sense, no explicit addresses or access paths. Reference to storage
is made by specifying all or any part of an associative cell, and all cells
which match this field(s) are referenced. The conventional computer store may
be thought of as a special (degenerate) case of an associative memory, in that
the association is between the physical address and its contents. However,
reference can be made only by specifying the address—one cannot ask directly
for all cells which are zero. The true associative memory is accessed by
specifying any of the N participants in the association.

The following example demonstrates why an associative processor can effec-
tively be employed as an application of content addressability. Suppose we
wish to know the phone number of Clark Kent. It is simple to leook it up in
the local phone book. It is, however, quite a different matter to find out
whose number is T6L-6148 (using the same directory). An associative processor
would find both tasks equal. In this example, the "association" is between
a subscriber's name and his phone number. In translating this to a two-place
relation, "phone number of" could be the relation, and using the < R,x,y>
format we would say: < Phone number of > <Clark Kent> is <KR 9-8765>. This

is a type of associativity wherein we may now directly reference this triple

by any of its content-addressable components or combination thereof. If we

C-29

use only the first component, phone number, in a search, what will be refer-
enced is the entire book. If we specify two components: phone number and
T6L-6148, then we are referencing directly all associations containing those
two components, viz., the associations containing the name(s) of the person(s)
having the phone number 764-6148,

The general strategy used to effect the simulation of an associative pro-
cessor and an approximation to content addressability is that of hash-~coding.
For those unfamiliar with the term, hash-coding is simply a technique whereby
an arithmetic transformation is applied to an external name to generate an
internal address. Hash-coding by itself provides a restricted but significant
approximation to content addressability, but hashing alone does not provide

any kind of associativity and there is always the problem of "collision,"

i.e.,
when two distinct names hash to the same internal address: X # Y; H(X) = H(Y).
Hashing partitions the space of names into equivalence classes. Hopefully,

each class has only one element, but two or more names may be equivalent under
this partition.*
Feldman (17) was the first to use the terminology.
A(0) = v
<Attribute> of <Object> equals <Value >

and other systems (1, 18) have adopted it. Thus the Associative Triple is

<A,0,V>. Each of the three components is a non-empty set. To the data

structure this is an ordered triple, but no interpretation or meaning is

¥Even restricting names to four characters of the English alphabet, a one-
to-one transformation would require a table with 456,976 entries to guarantee
no collisions.

C-30

attached to the ordering, and all three are treated equally, giving none a
priority. By appropriately designating the three components as being constant
or variable, we can ask eight "questions" of the data structure. Again using

Feldman's notation, with a slight re-ordering, they are

FO A(0) =V
Fl A(0) =x
F2 A(x) =V
F3 A(x) =y
FL x (0) =V
F5 x (0) =y
F6 x (y) =V
F7 x(y) =z

where [A,0,V] represent constants, and [x,y,z] are variables. Question F7
is not a question at all but a request for a dump of the associative memory.
Question FO simply asks: '"Does A (0) = V?" and the answer in, for example,
TRAMP, is a kind of truth value. In the case where A, O, and V are all single-
tons, the truth value is a straightforward 1 or O denoting whether or not the
specified association can be verified by the data. The interpretation is
slightly ambiguous, however, when one or more of the three sets has cardinality
greater than one. To illustrate, assuming that the association

ENDS (11) = pl;p2

has been stored, these five questions have the following truth values:

(1) ENDS (L1) = P3 0
(2) ENDS (L1) = Pl 1
(3) ENDS (L1) = P1;P3 9

C-21

Questions 1 and 2 are clearly false and true, respectively, but question 3 is
partially false. An interpretation, which seems natural, and the one adopted

by TRAMP (Section 4), gives the truth values as shown, namely:

if ALL associations implied by the question are
resident in memory, or derivable therefrom, the
value is "1"

if none, the value is "O"

if some, but not all, the value returned is "¢"

Questions F1-F6 simply ask the system to "fill in the blank(s)," i.e., to
replace the variable with the set that is the answer to the question. For
example, Question F1 asks for the set of all Vs that A (0) equals. Question
F3 asks for the sets of all Os and Vs that have a first component "A." Because
of the recursive nature of many systems, questions F1-F6 may be nested in any
way, to any desired depth. One may ask: "How many fingers on a hand?"; "What
figures are pointed to by the arrows in Window Q?"; "How old are the fathers

of the wives of Mary's brothers?"; or any questions composed in any way compat-
ible with the stored data, nested to any level.

It is interesting to explore how well the objections to ring structures
are overcome by an associative approach. The first objection, that ring data
structures are difficult to access, was based on the procedurelity of the
access languages and the detailed storage structure knowledge necessary to use
them. On both of these counts, the authors contend that the associstive struc-
ture largely solves the problems. By specifying the properties that the acces-

sed data must have, the programmer is in a sense only stating requirements,

C-32

with no notion of how to go about fulfilling those requirements. These re-
quirements are the minimal amount of information which any data retrieval
system must know. In this way, the programmer is freed from tedious consider-
ations of how to get the data. The programmer proceeds with fewer errors of
the data retrieval kind. The code that is written is more oriented toward

the intended application. Moreover, at no point is storage structure a con-
sideration.

The second objection was that the meaning of ring structure elements and
their sub-elements was bound at compile time at the latest, and tended to re-
main as it was originally designed throughout the course of the program's life.
To show how an associative system answers this objection, some background is
necessary.

The separation of data structure and storage structure has been recognized
as a valid concept since about 1964, when D'Imperio proposed it (20). Since
that time, people in the area of large, shared, data-base systems have accepted
the concept, and systems have appeared which separate the two concepts (8).
Unlike the data-base community, the graphics community has not clearly made
the separation of these two concepts. When explaining the data structure in
his program, a member of the computer graphics community will spend most of
his time detailing the various pointer and datum fields which make up his
storage structure. One must usually infer the data structure from such a
presentation.

The entanglement of these two areas has a number of undesirable consequences.

First, communication between workers is difficult. Data structure concepts get

C-33

lost in a morass of implementational details. Second, even a person who is
thoroughly familiar with an implementation may not be able to see patterns in-
herent in the data structure. The ability to recognize these patterns might
suggest a rather different storage structure—one that was more efficient
and/or,more easily extensible and/or less prone to errors, etc. The final,
and perhaps in the long term, most undesirable consequence is the fact that

as the system grows to encompass a famlly of users sharing common parts of

the data, it becomes impossible to serve their needs without requiring abso-
lute adherence to a standard storage structure and ring accessing language.
Such adherence may make their job awkward or impossible, since it is likely
that the structure of their problems is not understood by the storage structure
designer, whose decisions directly influence the access language.

Returning to objection two—early binding of ring structures—it is ap-
parent that to achieve a capability for delayed binding of any structure, data
structure considerations must be separated from storage structure censid-
erations. Such is the case because a programmer, even in an interpretive
system, will be writing in a source language which is not dynamic in the
time-frame of seconds. Thus one cannot hope that a user will dynamically
change his view of the data he is processing. One can hope, however, that a
system could dynamically change the storage structure used to implement that
data structure. But to be able to change the storage structure, it must be
independent of the source language data sﬁructure.

Two questions thus remain. First, is it desirable to be able to dynami-

cally change storage structures? Second, how are assoclative structures a

C-3k

step toward this goal and thus better than rings with respect to binding time?
In answer to the first question, two examples of desirable properties
of a graphics system are offered. It has often been stated that if one were
designing, say, an amplifier using a graphic system, it would be desirable to
be able to examine the electrical properties of the design, then the thermal
properties. One would hope that it would not be necessary to carry the over-
head of thermal information when doing electrical problems, and vice-versa.
Clearly both kinds of properties are represented in the storage structure of
the total problem (which is some place in secondary storage.) Thus we are

talking about changing a storage structure when the loading process is under-

way.* A similar need arises when a number of users are sharing a large data
base—one, say, with a FORTRAN program (for engineering analysis) and another
with a COBOL program (for cost and inventory analysis). Since the storage
structures expected by these two languages are different (consider FORTRAN's
column major order for arrays), the ability to change storage structures is
once again called for. Naturally, aspects of both examples could be combined.
The point is that both of these examples have been postulated as being in the
future of graphics systems. Their existence depends on such transformations.
Finally, to what extent do associative memory systems deal with these
problems? Certainly they are not solved. The transformation of storage
structure to storage structure remains very much a research problem. There

is also the problem of how to parse data structure statements so that they can

*Dynamic loaders open up several possibilities, which will not be dis-
cussed here.

C-35

be interpreted in terms of an existing (target) storage structure. But asso-
ciative methods have séparated many aspects of data structure and accessing
from their implementafion. Thus one can begin to think about how to change
storage structures and process intermediate stages without the complications
arising from a lack of separation. The correspondence of ring data structures
and ring storage structures makes these changes more difficulf, if not im-
possible.

The third objection raised against ring structures is their typically
high ratio of pointer to non-pointer data. Obviously this need not neces-
sarily be the case. Since the number of pointers in a block reflects the
number of relationships (rings) in which the block directly participates,
one could postulate various ring structures where only a few relationships
were of. interest, hence the ratio of pointer to non-pointer data could be
kept low. In current computer graphic systems, however, it is a fact that
many relationships are defined for a given element. Thus space for many rela-
tionships is allocated in a typical block (whether or not it is used). In
many cases the ratio of pointer to non-pointer data is at least 2 to 1. It
should also be noted, as has been implied above, that with a ring structure
the set of allowable relationships in which a node participates tends to be
fixed at compile time. There are ways of avoiding this difficulty,* of course,

but the methods for doing it are typically counter to the ability to access

*Methods such as .getting another block and associating it via pointers
to the original block. This may be done arbitrarily many times; thus the
objection can be overcome via this mechanism.

C-36

with a high-level access language, since such languages depend on allocated
fields for various relationships.

Another consequence of the multitude of pointers in graphics ring struc-
tures is the extensive "bookkeeping" necessary when certain relationships are
no longer valid. The deletion of a point, for instance, can cause extensive
processing if the rule holds that the deletion of a point deletes all lines
which end on that point (and perhaps even all other entities which depend
on the deleted lines, ete.).

Turning now to the advantages of associative structures, we will see thét
they can offer various tradeoffs that are unavailable with ring structures.
Methods which can differ with associative data structures are not without their
own disadvantages, but the designer is at least given some ability to pick
his tradeoffs according to his problems. It should be emphasized that all of
the features to be described are not implemented in all associative systems.
The discussion below is more concerned with possibilities for associative
structures.

What then are some of the ways that associative structures can save
pointers and yet retain the same capabilities for retrieval as ring structures?
The first advantage of associative structures is the comparative ease
with which one can exploit the traditional space-time tradeoff. Suppose that

the "connected to" relation were of interest. With a ring structure, one
would typically have a ring such that given an element, one would "run around
the ring" to find the set of all elements which were connected to the given

element. With associative structures, there are a number of possibilities.

c-37

Given an element X, one could store
CONNECTEDTOL(X) = Y
for each element Y that is so connected. This represents the equivalent of
the ring approach. But one could route in the TRAMP system (1,2) something
like*
CONNECTEDTOL(X,Y) = TYPE(X).EQ.'LINE'.A. TYPE(Y).EQ.'LINE'
.A.(ENDPOINTS(X yNWND POINTS! Y)
.N. "NULL".A.X.NE.Y
CONNECTEDTOL IS SYMMETRIC
which would find the set of all lines connected to a given line X. Similar
definitions could be written for other kinds of entities. The points are
several:

(1) At no point is storage used to represent the connectedness of the
various graphical entities. All that is stored is the definition
of how to find the required set.

(2) The price paid for this space saving is extra time in retrieval.
Several probes of the associative memory must be made, and the
resulting sets intersected, etc. However, it should be noted that
the definition can be compiled when defined (6) so that the re-
trieval time is not excessive.

(3) Changes in the set of lines connected to X do not cause extensive

bookkeeping. The definition CONNECTEDTOL still holds. Subsequent

* The examples are presented in a simplified syntax in the interest of
clarity. The true syntax will become evident in Section L.

c-38

invocations of the definition will cause the added (deleted)
lines to be included (excluded) because their inclusion in
the endpoint relation will have been adjusted.

Thus it i1s clear that one can trade the space for storing relations and
the time necessary for keeping them valid against time necessary to perform
several probes of the associative memory and to carry out the resulting set
operations. Furthermore, various degrees of this tradeoff are achievable by
storing more results explicitly, thus enabling more concise definitions. For
example, if the following relation were stored explicitly:

for each X, Y, 3

ENDPOINTC(X) N ENDPOINTS(Y).NE. 'NULL'
store
SHAREPOINT(X) = Y
then the connected to definition becomes
CONNECTEDTOL(X,Y) = TYPE(X) .EQ. 'LINE' .A.
TYPE(Y) .EQ. 'LINE'
.A. (SHAREPOINT(X,Y))
CONNECTEDTOL IS SYMMETRIC
One could even speculate about the possibility of a system which adaptively
adjusted to a point on this space-time tradeoff by choosing one of a set of
equivalent definitions based on past performance. While this may seem far-
fetched, its mere possibility accents the flexibility of this approach.
On a more practical level, it should be noted that the storage structures

used to implement associative systems can be designed to deal directly with

c-29

the paging problems of virtual memory systems (19). Ring-oriented systems
have a great deal more trouble with this problem.

Finally, it should be noted that although associative systems typically
store several representations of relations (1, 17), the cost of doing this
in a paged system is ﬁot excessive, since on a given query only one of the
representations will be used (paged in). Moreover, although associative
systems must pre-allocate storage for relations, just as rings must, the
storage will be used for the particular relations which ariée, hot for poten-
tial relations. Thus effective use of pre-allocated storage can be made,

because the relations can grow more dynamically.

C-k4o

L. TRAMP

TRAMP (zimeshared Relational Associative Memorylgrogram) is two packages
of functions: the first—the data structure—may be used to enter, retrieve,
and generally manipulate an associative data structure; the second—the rela-
tional memory-—places an artificial structure on the "associative triples,"
viz., the relational structure. The relational package allows logical infer-
ence to be performed on the data within the associative structure. Specifically,
rules may be entered; these will be followed by TRAMP, effectively expanding
a "minimal" set of data to a workably large set; the number of associations
that must be explicitly stored is thereby drastically reduced. For example,
by defining the relation "HUSBAND OF" to be the converse of "WIFE OF," the
user need only store marital relations in one direction, while effectively
having them available in both directions. More detailed examples and the rules
for using the relational package appear later,

These machine-coded functional packages are presently embedded in the
UMIST interpreter on the IBM/56O model 67. Although this existing union has
proved most fruitful, the data structure is totally independent of the inter-
preter and actually relies on it only for I/O. The relational package is also
independent, except that it relies on the type of recursion that the inter-
preter providés. The relational package is totally dependent on the associa-

tive data structure.

C-41

4.1 THE ASSOCIATIVE PACKAGE

The associative package is closely patterned after the ideas presented
in Section 3. We will thus present in this section a short description of
how these ideas are implemented in TRAMP. Details may be found elsewhere (1,2).
For those totally unfamiliar with the TRAC language, for this paper it is neces-
sary only to know the syntax of a function call. The sharp sign (#) signals
the start of a function call, with the call itself enclosed in an immediately
following pair of parentheses. The arguments are separated by commas, and
the first argument is the name of the function. #{(sub,ARG) is therefore anal-
ogous to the FORTRAN: CALL SUB(ARG). One of the minor additions of UMIST is
to allow implicit calls of functions, i.e., when the normal call might be
#(cl, FUNC) in TRAC, the UMIST call may be either the same, or else #(FUNC).

The name of the storage function is dr and the syntax of the call is
#(dr,A,O,V,). None of the three arguments to dr may be an empty set. Each
point in the cartesian product of the three sets is stored using hash-coding
techniques, i.e., each element of each set is grouped with each pair of ele-
ments of the other two sets, and the resulting triple is stored. Thus a single
call on dr stores as many assoclations as the product of the cardinalities of
the three sets.

The primary retrieval function has the name rl. The syntax of the func-
tion call is identical to that of dr except for variable specification. A
variable in TRAMP is denoted by enclosing a name, possibly null, within aste-
risks (*). Thus, #rl,A,0,V) has no variasbles and asks whether A (0) = V;

#(rl,A,0,%X*) asks: what does'A (0) equal? Place the answer in X. When the

c-42

variable is not given, the answer is returned into the calling string.

rl generates the union of the answer sets. That is, the question:
#(rl,ENDS,L1;12,**) has two answer sets: the ENDS of L1 and the ENDS of L2.
rl simply forms the union of however many sets there might be, however int
is a function which generates the intersection of the several answer sets.
Thus, #(int,ENDS,L1;12,**) generates the set of all end-points common to L1
and L2. #(rl,ENDS,Ll;LQ,**), on the other hand, would generate the set of
all points at the ends of either I1 or L2.

Throughout this article, the UMIST delimiter of arguments is the comma;
the element delimiter for TRAMP cannot be the same, we therefore use the semi-

colon.

4.2 LOGICAL INFERENCE PACKAGE
The associative memory accomplishes a kind of content addressability by
using two quick hashes to address data, and the access time is essentially
independent of the size of storage.* But as discussed in Section 3, many
associations will be implied by a single associative sentence. This poses
two real problems:
1. The user must make sure that all associations that apply are actually
inserted into the structure. This is extremely tedious and prone to
error and omissions.

2. Explicit storage results in gross inefficiency.

*As the size of storage increases, there are more collisions, but they
are quickly resolved, and do not cause a significant delay. Even in extreme
pathological cases, they involve only relatively minor list searches.

c-U3

To alleviate this, TRAMP provides the facility to define, in a characteristic
way, what other associations may be derived from a given association. This
permits all of the information that might be contained in a single association
or sequence of associations to be utilized instead of having to enter the same
information redundantly in each of the several ways that it might be referenced.
The name of the function which makes the definition is ddr. The syntax of
the function call is: #(ddr,(R = EXP)), where R is the relation ("A" compo-
nent) to be defined, and "EXP" is a logical expression which is the defini-
tion.

Before presenting examples of the use of ddr, two relational operators
must be defined:

The first is converse, denoted in TRAMP by ".CON." Converse simply

inverts the order of the two relational arguments*:
R(x,y) « - .CON. R(y,x)

Thus "CHIID OF" is the converse of "PARENT OF"; "WIFE OF"
is the converse of "HUSBAND OF"; "SPOUSE" is its own con-
verse; any symmetric relation is its own converse.

Relative Product: The relative product or composition to two

relations is commonly denoted by Rl/Rg’ and this is the notation

used by TRAMP.

*The relational notation used by TRAMP is derived from the format "R,x,y"
by enclosing the relational arguments in parentheses. This is a slight dis-
tortion of the associative notation: A(O) =V, but the order is preserved:
R(x,y) means that R(x) = y.

C-Lh

XY [(Rl/RE)(x,y)+—->Rl(x,z) A.Rz(z,y)]

Less rigorously, but more specifically,

#(ddr,(R, = Rl/RE))

5

would tell TRAMP that RE(x,y) if a "z" can be found such that

Rl(x;z) and Rg(z,y).

Besides these two relational operators, three logical operators are available:
.A. (conjunction); .V. (disjunction); .N. (negation). Finally, there are six
equality operators: .EQ.; .NE.; .GE.; .LE.; .GT.; .LT., with obvious meanings.
Examples of TRAMP relational definitions are:
#(ddr, (BIGGER = BIGGER / BIGGER)) Bigger is transitive
#(adr, (BIGGER(A,B) = BIGGER(A,Q) .A. BIGGER(Q,B)))
exact same definition using
expanded format—specifying
dummy arguments.
#(adr, (SIB = BRO .V. SIS .V. .CON.SIB))
a sibling is a brother or a sister
and it is symmetric.
#(ddr,(HUSBAND = .CON.WIFE)) Husband is the converse of Wife.
#(ddr,(BIGGER = LARGER) Bigger and Larger are synonomous.
#(adr,(BRO(CAIN,ABEL) = SIB(CAIN,ABEL) .A. SEX(ABLE,"MALE")))
a brother is a male sibling. Note that
constants are denoted by enclosing them
within double quotes.
#(ddr,(MALE(X) = SEX(X,"MALE"))) defined the unary relation MALE

#(ddr,(BRO(X,Y) = FATHER(X,Z) .A. FATHER(Y,Z) .A. MALE (Y)

.A. X.NE.Y)) _
a brother is a male offspring of the same
father, other than oneself.

c-U45

#(ddr,(STEPMOTHER = FATHER / SPOUSE .A. .N.MOTHER))
a stepmother is the spouse of the father
who is not the mother.

#(ddr,(NEPHEW = SIBLING / SON)) a nephew is the composition
of a sibling and son.

#(ddr,(UNCLE = .CON.(SIBLING/SON))) in a male world, uncle is

the converse of nephew and may be defined as

the converse of the definition of nephew.
#(ddr,(UNCLE = °CON.NEPHEW)) or simply as the converse of nephew.

4.3 IMPLEMENTATION OF INFERENCE
The purpose of the inference mechanism is to allow the user to define
under what conditions an implied association may be derived from data expli-
citly in memory. This is accomplished by generating where nécessary (where
defined) a more complex retrieval call from a simple one. Specifically, if
the following definition had been entered:
#(rl,STEPMOTHER , JOHN, **)
which asks for the stepmother of John, would be expanded by the system to be
the following:
#(rcom,#(rl,SPOUSE,#(rl,FATHER, JOHN, **) ,**) #(rl,MOTHER,, JOHN, **))
#(r1l,STEPMOTHER , JOHN , ¥*)
The exact call generated would be slightly different, but that is a technicality,
irrelevant at this point. The final retrieval call in the sequence generated
asks if the desired association was entered explicitly. It-is always assumed
that a relation that has been given a definition may alSo»appear explicitly.
The rest of the expanded call will find the answer if it is present implicitly.

This expanded call is then returned to the UMIST processor, which in turn makes

c-L6

the actual calls to the data structure. The importance of this is that rela-
tions need be expanded only one level at a time, with the UMIST recursion
automatically taking care of the possibility that any relation is defined in
terms of more complex relations, etc. (This is the major difference between
the call as it actually wquld be generated, and as it appears above—the above,
taken literally, would specify an infinite recursioni) Thus the inference
compiler generates TRAMP procedures--they operate only within the TRAMP lan-
' guage—not at a lower, machine level. The definition, entered by #(ddr),
specifies what information the procedure is to derive and what rules may be
used to derive it; the compiler accordingly constructs such a procedure; and
the interpreter (TRAMP inference interpreter--rather than UMIST) expands the
procedure at retrieval time, filling in information specific to the call.

At retrieval time, a retrieval "preprocessor' looks to see if the "relation"
("A" component) has been given a definition. If not, the preprocessor exits
and retrieval proceeds as described earlier. If the name is found to have been
defined, then the "interpreter" is called in to interpret the program generated
by the compiler at the time it was defined. This program tells the interpreter
what TRAMP function calls are to be made, and what the function arguments are
to be.

It should be noted that the compiler actually puts out two programs:
one which, given x of R(x,y), builds a chain to generate y; the other builds
the appropriate chain in the opposite direction, from y to x. Thus question
Fl: #(rl,A,0,**) generates a different sequence of function calls than F2:

#(rl,A,**,V). It may not be immediately obvious why this is necessary, but,

c-L7

in general, the two programs will be quite different. This is always the
case for composition, Still, the compiler would only have to output one
program, and the interpreter could decide how to interpret it. Since the com-
piler will usually be called only once or twice for each relation, or cer-
tainly fewer times than the interpreter, it is most efficient to let the com-
piler do as much of the work as possible.

The compiler is prepared to handle definitions which are circular in the
sense that a relation is defined in terms of itself. That is, symmetric and

transitive relations are perfectly acceptable. However, the sequence:

#(ddr,(PPP = QQQ .V. ...)) #(ddr,(QQQ = PPP .V. ...))

is valid because of its circularity. Were the compiler to attempt to generate
code for that sequence, the code would specify an infinite recursion. This

situation is checked for and flagged if detected.

4.3.1 Algorithm for Parsing TRAMP Relational Language

The parser assumes the sentence is in disjunctive normal form; if not, a
first pass must put it into that form. If the sentence is abbreviated, it
must be expanded by the first pass. This is accomplished by making a complete
scan of the sentence, counting and assigning to each term a nesting depth, as
determined by slashes and intervening operators. A second scan is then made
using that information to insert dummy relational arguments.

Phase II is the phase that does the actual parsing. It takes as input a
sentence fully expanded in disjunctive normal form. Each conjunct (the dual

of a clause in standard notation) is processed independently. The output for

c-48

cach conjunct is code representing a directed graph, or network, where each
individual variable is a vertex and each relation is a directed line. For
purposes of discussion only we will henceforth assume that the sentence being
parsed is of the form
R(x,y) =

i.e., R is the relation being defined and x and y are its dummy relational
arguments. The network to be constructed will always have x as its source
and y as the siﬁk. (We are ignoring a second pass that is made that reverses
x and y; the two passes are of course identical and we will concern ourselves
only with the first.)

The actual parsing is a matter of properly directing the edges in the
network (it is obviously trivial to construct the undirected graph). The
rules used are the following, applied by picking each source (x or any spur-

ious source) and the single sink, y, and tracing out paths:

]

1. If degree = 1 (spuridus source), line is directed out (away from

vertex).

2. If degree = 2, one line goes in and one goes out.
3. If degree > 5, terminate trace of this path.

L, If x, all lines go out.*

*This is not quite accurate. For R(x,y) = A(x,y) .A. B(z,x) a line
would go into x, but this causes no problems and is interpreted in Figure B.

5. If y, all lines go in.
6. Any path that forms a bridge is mirrored by an identical path in the
opposite direction, i.e., forms a cycle. A bridge is defined to be

a path that connects two disjoint paths from Vl to Vg, where neither

Vl nor V2 lies on the bridge.

T« Any lines remaining undirected may be directed arbitrarily, constrained
by two conditions: No cycles may be introduced (only valid cycles
are those arising from rule 6); each vertex must lie on a directed
path to the sink.

Phase IIT takes the network constructed by Phase IT as its input and
outputs a TRAMP procedure. The interpretation of the network is extremely
simple. The only vertices that can have degree one are sources (or the sink),
i.e., the data representing that vertex is the input to the object program.

All other vertices will have degree > 2 and the edges, taken pairwise, can

only have one of the three following configurations shown with the corresponding

interpretation:
COMPOSITION CONJUNCTION DISJUNCTION
Example:

A definition in disjunctive normal form is (1 conjunct)
R(x,y) = A(x,a).A. D(a,y).A. C(a,b).A. E(b,y).A. B(x,b)
i.e., x stands in relation R to y if

(1) y € Range (D(A(x,-),-) and

(2) y € Range(E(B(x,-),~) and

C-50

if a {q: A(x,q) holds} and if
b = {q': B(x,q') holds} then

Vq € Range (A), q' € Range (B)

C(a,q') and ¢(q',q) both hold.

The input to the parser is thus

8

b
Notice that the parser had to discover the necessity for an extra line because

of the structure of the network (the context of the statement). It turns out
that the parser of the language of relations is highly context-sensitive. Thus

the parsing of this language represents an advance in parsing techniques. For

further details, see (6).

Cc-51

5. THE TRAMP/RAMP GRAPHICS SYSTEM

This section describes an experimental graphic system built using TRAMP
as the primary vehicle for storage and retrieval of data. The display of in-
formation is under control of the RAMP system, which controls the DEC 338
display. This section gives an overall flavor of the process as well as a
description of some of the ways TRAMP is used., Section 5.1 describes the
various subroutines which reside at the 360. Section 5.2 describes the various
display macros accepted by the RAMP system. Section 5.3 presents a few comments
about this experimental system.

The 360 is used for storage, retrieval, and manipulation of the descrip-
tion of the graphical structure as well as communication of display commands
to the smaller display computer. Essentially, the information is stored in a
hierarchical structure built up in TRAMP, whereas the communication between
the large and small computers is under the command of UMIST, which also resides
within the large computer. This intercomputer communication is kept as small
as possible because of the low channel capacity of the data lines.

At each of its transmissions, the small computer sends either the coordi-
nates of a tracking-cross position or the reference name of an entry in the
small computer's display file. The large computer interprets this message in
terms of what it was expecting to receive and sends back the necessary posi-
tion, line, character string, or command (as described in‘a previous section).

In sddition to sending commands to the small computer, the large computer

stores picture information so that it may either alter pictures (upon command),

C-52

or perform computations on picture structure, or redisplay pictures at a later
time.

The quiescent state of the large computer is '"procedure check," which
corresponds to pointing mode in the small computer. In this state, the criti-
cal items on the display are the list of operations which can be performed,
the menu. Because each item in the menu is a character string at the display
tube, 1t has a unique name, a four-digit number corresponding to its location
in the data file, If the light-pen is pointed at an item, for example, the
word POINT, the display file location corresponding to this entity 1s trans-
mitted over the data line to the large computer, which can determine the pro-
cedure corresponding to this name and execute this procedure. This is possible
because at the time that the name item was created, its display file location
was associated with the corresponding procedure, i.e., the assoclation was
defined by executing: #{DR,PROC,#(XIN),#{ TEST), where #(XIN) is an implicit
call on an input string buffer. The call is replaced by the last input string,
and #(TEST) is replaced by the value of TEST, in this case the string POINT,
which was pfeviously written as the procedure which defines a point. The input
string, stored in XIN, is the display file location corresponding to the char-
acter string POINT. Let us assume this location is 0027; then we have #(DR,
PROC, 0027 , POINT).

Now, whenever the light-pen is in pointing mode, and POINT is picked, the
name 0027 will be transmitted over the data line. The larger computer is

in the procedure check state, which means it is waiting to read an input

string, viz: #(#RL, PROC, #(RS),**)). If POINT is picked, this becomes

C-53

first #(#(RL,PROC,#(RS,**)), then #(POINT), which then initiates a string of
commands to define points.

In addition to PROC(EDURES), there are several other attribute names of
paramount importance in the large computer; among these are CLAS(S), COOR(DI-
NATES), characters (CHRS), and HIST(ORY).

For example, to store the description of a point, Pl, which is in Picture
VI, the following set of TRAMP statements is executed:

#(DR,CLAS,P1,V1,)

#(DR,CLAS, POINT,P1)

#(DR,COOR, P1,0370: 0426)

#(DR,HIST,0041,P1:VI).
This involves defining P1 in the class of V1; POINT in the class of Pl; the
coordinates of Pl as 370/L26; and P1's display file entry (41) is then given
the history of the dendrite* of Pl.

The heart of the display file generator in the large computer is a recur-
sive routine which climbs down this structure from the top going down the
left-most dendrite until it finds a terminal element, or thé end of the string.
It communicates any displayable element to the small computer, deletes it from
the string (but not from the memory), and climbs back up the.structure until
it finds the next non-terminal element. It then repeats the previous steps.
When the whole structure has been examined, and all the terminal elements com-
municated to the display, the larger computer sends a pointing mode command

and enters the quiescent state.

*A dendrite is a unique path down from the topmost element of the hierarchy.

c-5

As the routine goes down the structure it saves the path (dendrite) in
order to know the HISTORY of each entity transmitted to the display. This
history is used by many routines, for example, to change or delete items in
the associative memory as the graphical entities that they represent are moved

or deleted from the display.

5.1 THE TRAMP GRAPHICS PROGRAM AT THE 360
This portion of the TRAMP/RAMP system is a UMIST program. Its major
parts are described in detail here. This detailed documentation is included
for completeness; the casual reader may wish to skim much of this section.
The program has two modes—picture mode and construct mode.

PICTURE MCDE

In picture mode, the name of the picture and a menu of operations appear
on the screen, along with any elements already in the picture. Some of the
items which may appear in the menu are ADD TO MENU, NEW PICTURE, POINTS,
LINES, BLANK LINES, CHARACTERS, INSTANCE, BLANK, UNBLANK, DELETE, CONSTRUCT
MODE, and ADD FUNCTION.

The user picks the item he wants from the menu by pointing at it with
the light pen and working the light-pen shutter.

Whenever the user picks an item from the menu, the display computer sends
a L-digit number to the graphics program in the larger computer. This number
is the position of the menu item in the display file of the smaller display
computer. This number uniquely identifies the menu item. When the menu was

originally displayed, this number was associated by the larger computer with

C-55

a procedure which corresponds to the menu item. Therefore the number is used

to refer both to the menu item and to the corresponding procedure.

Procedure ADD TO MENU

When this item is picked up by the light pen a L-digit number is sent to
the larger computer. The larger computer uses this number ﬁo call the corres-
ponding procedure, ATM.

ATM asks the user to type in on the teletype both the character string
which will be the menu name of this procedure, and the name of the procedure
internal to the larger computer program, by printing:

ENTRY IN ... MENU?;PROGRAM?
For example, if the user wanted to put in a new function called DUMP he could,
for example, give it the name

HAVE A LOOK;DUMP
and the character string HAVE A LOOK would appear at the end of the menu and
its display file position, L-digit number, would be associated with the function,
DUMP.

This process will be repeated until the user enters a null—types only a
prime—on the teletype.

Actually, it would be possible just to start with ADD TO MENU and build

up a menu each time, instead of having other predefined items in the menu.

Procedure NEW PICTURE

Picking NEW PICTURE calls procedure VEW (view), which sends a command to

the display computer to start again [ACACACSN] and prints out on the teletype:

C-56

NAME?
If the user does not name the picture, he gives it a null name by typing
a prime,'. The program generates a unique name by incrementing a picture number
counter until it finds an unused name in the series V1, V2, V3, ... , V#,
If the user gives the picture a name, the program will display this name and
the menu (including any additional menu items associated with this name) and
call a procedure DFG (display file generator, see below) which will display

anything already in this picture.

Procedure POINTS

Picking POINTS in draw mode calls procedure PINT (point) which sends a
message to the display computer [ACACACLL}, which tells it to display a track-
ing cross for the light pen to position. When the light pen releases the
tracking cross, the coordinates of the release point along with a list of the
display file names, L-digit numbers,and other things (lines, points, etc.)
which the light pen "saw" at this position on the screen are sent to the pro-
gram. If the list of other things seen is empty the program will return the
coordinates to the display [ACACACPT XXXX YYYY]. The display will use this
information to display a point at these coordinates, XXXX YYYY, and return a
name, a 4-digit number, to the program. If, on the other hand, the list is
not empty the program calls GRAVITY (see below). If gravity is off the list
is ignored and the coordinates are sent. If gravity is on the list will be
examined to see if the coordinates should be changed slightly before being

sent in order to correspond with a neighboring point, line, or intersection

C-57

point of two lines (arcs and other curves have not been implemented although
there is no reason they could not be added).

While the display is adding the point to its display file, the program
is storing references to this new point, giving it a unique point number (by
incrementing a point counter) and associating the coordinates and the current
picture name with this point number. When the L-digit "name" is sent back
from the display, the program associates this with the point name (PR¥) and
picture name to keep a current history of this point for reference.

This proecedure will repeat until the user pushes the END OFFFILE push
button on the display, sending a 4-digit character string, 7777, which the

computer interprets as a signal to end the procedure.

Procedure LINES

Picking LINES in draw mode calls procedure LIN (line) which sends a
message [ACACACLL] to the display, as with point, telling it to display a
tracking cross. When the light pen releases the tracking cross the display
sends tracking cross current coordinates and the list of other entities seen
(within the light pen aperture) to the program. If this list is non-empty
the program calls gravity (as in procedure POINT above) and sends the display
command [ACACACLP], light pen tracking cross with rubber-banding.

Now when the user moves the tracking cross with his light pen a line
will stretch from the center of the tracking cross back to the last position
at which the tracking cross was released. When the tracking cross is again

released the display will again send coordinates and a list of things seen by

c-58

the light pen in the immediate neighborhood of these coordinates. If the

list is non-empty Gravity will again be called. Then the program will send
begin coordinates and end coordinates for the line, [ACACACLE XXX1 YYY1 XXX2
YYY2] to the display. The program then associates a unique name for thisrline
(gotten by use of a line counter) with the current picture and with names for

its beginning and ending coordinates (coordinate names are prefixing it with

1" n

"B" or "E" for "begin" and "end." The actual X-Y coordinates are assoclated
with their respective names.

The program then receives a L-digit display file name for the line and
associates this with the line, L#, for a history of this line. Next the pro-
gram sends another [ACACACLP] to the display, saving the end point of the last

line for the beginning of a new one and repeats. The program continues this

process until the END OF FILE button is pressed.

Procedure BLANK LINES

This pxocedure is just like LINES above except that ACACACNL XXX1 YYyl
XXX2 YYY2 is sent tothe display instead of ACACACLE XXX1 YYY1 XXX2 YYY2 and the
line although present in the display file is not illuminated on the screen.
This procedure may be used to tie a figure together, move the beam to a starting
place, etc. Of course, the information that this is a blank line also is stored

in the progfam.

Procedure CHARACTERS

Picking this menu item calls procedure CHR which sends a light pen tracking

cc.c
command [A"A A'LT] to the display. The display returns coordinates where the

C-59

tracking cross is released and the message CHARACTERS? prints out on the tele-
type ending the line with a carriage return. The coordinates of.the tracking
cross and the string are then sent to the display following a character command,
°a%A°CH XXX YYYY CCCC...C. The display then writes these character strings
starting with the coordinates sent. The program associates a new character
number with this string and with its coordinates and picture name. Next the
program reads the 4-digit name returned by the display and associates that

with the history of this string, C#: PICTURENAME. The tracking cross command

is then sent again to the display and the process repeats until the user hits

the END OF FILE button.

Procedures BLANK AND DELETE

Picking BLANK calls a delete-blank routine with an argument of "B" for
blank (DBL,B). This routine sends a message [ACACACLL] to the display which
instructs it to send back a 1list of things which the light pen "sees" when its
shutter is operated. The program takes this list of items and checks to see
if the list contains the name of a menu item., If the list does contain the
name of a menu item, a message is printed out on the teletype asking for con-
firmation, otherwise the list of entities to be blanked is immediately sent
back to the display with & blank comnsnd [(aA°A°A°BL List]. In addition the
1ist of entities is associated with a sequentially derived blank number so
that the program has a record of what has been blanked. This process repeats
until the user pushes the END OF FILE button on the display.

Picking DELETE causes nearly the same sequence of ecvents to take place

c~-60

as in the BLANK command except that the routine is called with the letter "D"
c

for delete (DBL,D). The program now sends a DELETE command [ACACA DL 1list]

to the display and removes the associations (references) to these entities

from program storage if they are user-defined entities.

Procedure UNBLANK

Picking procedure UNBLANK will cause the last set of blanked entities to
be restored by sending an unblank command [ACACACUB List]. The blank number
is decremented by one so that the next time UNBLANK is called the next pre-

vious set of entities blanked will be restored.

Procedure INSTANCE

Picking INSTANCE calls a routine ADP which causes NAME? to print out on
the teletype. The user then types in the name of the picture. This name is
checked with the list of picture names and added if it is not one of the
existing names. Next the picture name is associated with the current picture
name as a picture-in-a-picture and the display file generator, DFG below,
routine is called to add the instance to the current picture.

At the present time there are no facilities to transform an instance in
any way when adding it to another picture, nor is the added picture checked
to make sure it does not in some way contain the current picture in some way
which would lead to an infinite regression—the barbershop mirror problem.
Transformations—scaling, rotation, etc.—and checking facilities could be

easily added.

Cc-61

Procedures GRAVITY ON and GRAVITY OFF

Gravity is normally on in draw mode (and in construct mode) so these
two items can be left out of the menu unless the user wants to change the
normal convention. The user picks ADD TO MENU and inputs GRAVITY ON; (((SET,
GV,GVX))) and GRAVITY OFF; (((SET,GV,GVXX))) where SET, GV, GVX, and GVXX
are identifiers used in the program,and the parentheses are a UMIST requirement,
When gravity is on it will be assumed that points, ends of lines, etc.
defined in the immediate neighborhood (within the light pen aperture) of pre-
viously defined entities are meant to lie on those previously defined entities.
Therefore, the coordinates of the new entities will be changed to lie on such
points, lines or intersection points.

When gravity is off, display coordinates are used as is.

Procedure CONSTRUCT MODE

Picking CONSTRUCT MODE causes the display file to be cleared with a start
again message [ACACACSN] from the program and a construct menu to appear, re-
placing the draw menu.

Construct mode is described below.

Procedure ADD CONSTRUCTION

Constructions are written in files by the program while in construct
mode. These constructions may be used in draw mode but must be read from the
files and added to the menu. ADD CONSTRUCTION is a spec¢ial procedure which,
glven the name of the construction and the name of the filé 4in which it has

been defined, will read (load) the construction routine and add it to the menu.

c-62

Picking ADD CONSTRUCTION will cause the message "NAME FILE WHERE CONSTRUC~-
TION IS STORED" to print out on the teletype. The user replies with the file
name. Then the message "CONSTRUCTION NAME IS?" prints out. Again the user
replies on the teletype with the name requested.

If the program finds the named construction,the name will appear in the

menu.

CONSTRUCT MODE

The user can define graphical constructs using a small set of "primitive"
constructs and user-defined constructs. This is analogous to a system of
mathematical axioms and theorems derived from those axioms being used to devélop
further theorems.

The system to be described is just a beginning, the primitives here cer-
tainly would not be sufficient to develop many interesting theorems (construc-
tions),however the present system is enough to indicate the feasibility and
potential of this approach.

In construct mode, a menu again appears on the screen. The construction
menu at present contains the following: NAME OUTPUT FILE, POINT, LINE, INTER-

SECT LINES, OUTPUT LINE, END CONSTRUCTION, and PICTURE MODE.

Procedure NAME OUTPUT FILE

Picking this procedure calls two routines C%NS and CONSN4ME. The routine
CINS types a message, "CONSTRUCTION FILE NAME?," on the teletype. The user

answers on the teletype with the name of a line file* (sequential files cannot

*MI'S supports two types of files—sequential files and line files. Line
files can be accessed by line number; sequential files must be accessed sequen-
tially.

C-63

be used because the program utilizes line numbering). If the user inputs a
null, ', the program gives the output file a default name of "-TEMP" which
will create a temporary file of this name.

Next the routine CONSNYME is called which prints out the teletype message,
"NAME NEW CONSTRUCTION'". The user must put in a name here, otherwise the name
of the construction will not be printed in the output file. If the user inputs
a null, ', here he must pick NAME OUTPUT FILE again or escape from construct
mode (currently by picking PICTURE MCDE).

Naming a construction does several things: 1t causes the name of the
construction to be temporarily stored in the associative memory, and it causes

a call to the construction to be stored in the output file.

Procedure POINT in construct mode

Picking POINT calls a procedure PINT which works like procedure PINT
above (see picture mode) except that it also writes a call for a point in the
construction output file. Essentially we are writing an-interpretive routine
for a graphical construction and storing it to be read in later and used in
picture or construct mode just as the current definitions for point or line

can be used.

Procedure LINE in construct mode

Picking procedure LINE calls IANE which operates like LIN above except
that like PENT it prints a call for an input line in the current construction

file.

c-6L

Procedure INTERSECT LINES

This procedure prints "LINE" on the teletype and then sends [ACACACLL]
to the display. The user responds on the display by picking a line with his
light pen. The display sends a list of the entities in the aperture of the
light pen. This 1list is then examined by the program until a line name is
found. If no line name is found in the list the program prints "WHOOPS:" on
the teletype and asks again for the line. After the first line has been found,
the program asks for the second intersecting line.

The program computes the intersection point of the two lines and sends
it to the display [ACACACPT XXXX YYYY]. The program then associates a name
and coordinates, ete. with the point (as with any point) and in addition
prints a call to the routine to intersect lines in the construction file. It

also associates the line name with its data file name to keep a history.

Procedure OQUTPUT LINE

Procedure OUTPUT LINE is different than procedure LINE in that it expects
as input the data file names of two points from the display rather than their
coordinates. It sends [ACACACLL] to the display and expects back a light pen
list containing a point name. If it receives no point name it prompts the
user. When it has gotten two points it sends the display a [ACACACLE XXX1
YYY1 XXX2 YYY2] command. Then it writes a routine to output a line in the
construction file and saves references to the line coordinates and a history

of the line using the name the display sends back.

Procedure END CONSTRUCTION

When procedure END CONSTRUCTION is picked it closes up the construction
file by in effect declaring all inputs to the construction to be variables

(for details, see Section 6),

Procedure PICTURE MODE

Picking PICTURE MODE clears the display and returns to picture mode.

The mode menu is again displayed.

Procedure Display File Generator (DFG)

Display file generator is a routine to climb up and down the data struc-

ture, a semilattice structure, and display what it finds there.

Vi V2

LI V2 P3 PS5 P6

L P65

=

Figure C-7. Path of display file generator through
a semilattice data structure.

In Figure C-7 above we have a simple picture V2 which contains just two
points, P5 and P6. Picture V1 is slightly more complex, containing lines,
11 and L2, points Pl and P3, and an instance of picture V2.

DFG starts frpm the top of the semilattice and goes down the left-hand
dendrite until it finds an end symbol in the above, the letter P standing

alone. It then goes back up one level on the dendrite and finds the coordinates

c-66

of the line or point by querying the memory. The appropriate command is sent

c.cC
to the display A A ACLE XXX1 YYYL XXX2 YYv2 or ASACA®PT XXX1 YYY1 depending

upon whether L or P was found at the end of the dendrite. The display sends
back a L-digit display file entry name which the program associates as the
history of the point or line as the case might be for the example of Figure

C-T.

5.2 THE GRAPHIC MACROS

The macro generator approach was undertaken at the large computer because
of the associative memory capabilities of TRAMP. The fact that we took such
an approach there led us to consider a similar approach at the small computer.
To this end, we defined a set of graphic macros which we felt would be suffi-
cient for our experiment, though they certainly would be incomplete in a system
having a full range of capabilities.

The set of graphic macros defined can be divided into several parts.
These are the basic drawing commands,‘the display file editing commands,and
the figure commands.

The five basic commands used in the construction of graphic entities are:
POSITION (PN), POINT (PT), LINE (LE), NON-INTENSIFIED LINE (NL), and CHARACTER
STRING (CH).

LINE and NON-INTENSIFIED LINE take four decimal numbers, in the range
0 to 1025,aﬁdan optional display file name as arguments. (There are 1024
points in the basic 338 display, but this is an easily adjustable parameter

at the command language level.) If a display file name is supplied the new

Cc-67

definition replaces the o0ld definition of that display file. Clearly, the
only difference between LF and NL is the beam status. POSITION and POINT
are similar commands; both position the beam to the coordinates X,Y given in
the arguments. POINT intensifies the beam once positioning is accomplished.
CHARACTER STRING takes a position and a variable number of chafacters from
the ASCII set, and displays this étring starting at the given position.

One of the design decisions that even this limited subset of commands
raises is: Should the commands refer to absolute locations on the screen at
all times, or should there be some facility for relative or incremental co-
ordinates? An example of a relative positioning command would be "RP 10, — 3"
which would position the beam to a point 10 raster units to the right and three
raster units below the current beam position. Relative commands for lines
could be similarly designed. Although, with a little computation, we have
some facility for relative behavior,* it is clear that we took the more absolute
approach. A complete set of primitives would probably have facilities for
both types of commands.

Editing of drawings can be carried out by using the commands: DELETE (DL),
BLANK (BL), and UNBLANK (UB). Each of these commands takes a display file loca-
tion as an argument, and either permanently delete$ the item from the 338 display
file, temporarily blanks the item without removing it, or unblanks a previously
blanked item. A sketch may also be repositioned using the command MOVE (MV),

which will translate the named item to a new position on the screen.

*Relative position is simply a non-intensified line from the current posi-
tion to the desired position; the distance must be computed before the command
1s given. ‘

c-68

Two other commands are provided which allow one to manipulate drawings.
These are REPLOT (RP) and COPY (CP). The first of these plots a previously
displayed entity at the current beam position. Internally, this means that
another subroutine jump (push jump) to a previously existing section of code
is generated and another so-called instance will appear. Instances thus have
the praperty that if one changes, all change. COPY, on the other hand, generates
a copy of the previously existing code in addition to creating a subroutine
jump to this copy of the code. Thus a copy can be changed without modifying
the entity from which it originally came. Both facilities were included in
our command set so that we might gain some insight about the situations when
each method of creating new entities is useful.

The next step is to allow a user to build up a library of drawings, each
with a name, which he can call up for use in other drawings. To this end, we
have defined the commands DEFINE FIGURE (DF), END FIGURE (EF), PLOT FIGURE (PF),
MODIFY FIGURE (MF), and KILL FIGURE (KF).

DEFINE FIGURE places the system in a special mode whereby all succeeding
actions with the light-pen are made relative to a starting point, and are placed
in a special block until the END FIGURE command is given. At this time, the
figure definition in macro form is stored on the disk under the BCD name given
by the user. When a user wishes to include a previously defined figure in a
new drawing, he issues a PLOT FIGURE command, which plots the named figure at
the current beam position. Because of the subroutine feature in the 338, only
one plot of a figure need be kept in core, no matter how many times the figure

is used.

Figures, like any displayed entity, are subject to the editing commands
DELETE, BLANK, and UNBLANK, as well as to MOVE. To remove or change the
definition of a figure, however, the commands KILL FIGURE and MODIFY FIGURE
are provided. MODIFY FIGURE brings a previously defined figure into core,
displays it, and places the system in DEFINE FIGURE mode so that DELETE, MOVE,
ete. will permanently change the definition of a figure from the appropriate
tables and disk files.

The principal means by which a user communicates the above commands to
the system is through use of the light-pen. Thus the two final commands of
this admittedly incomplete set are POINTING MODE (PM), which places the light-
pen in a wade whereby the name of an item pointed at will be sent to the 360,

and LIGHT PEN TRACK MODE (LT), which causes a tracking symbol to appear and

transmits to the 360 the X,Y coordinates at which the user finally loses

tracking.

There exist several other macros which are more specialized. These
include: Light pen track and return a List of all entities seen when tracking
is lost (LL), Light pen track with rubber banding (LP), enable Pointing mode
and return a list of all entities seen (PL), and track the Grafacon and return
a point when the tip switch is pressed (GN). LP is, of course, useful in
helping a user to see what line he will end up drawing. LL is useful in
performing "gravity" calculations, i.e., the redefinition of the end point of
a line (or some other entity) because of its proximity to other entities.

The actusl gravity calculation is carried out at the 360, but information

about proximity should come from the terminal in order to avoid excessive

C-70

calculations involving "nearness."”

PL is useful in a variety of situations
where potential ambiguities are being resolved. For instance, when a point
is defined at the intersection of two lines, then a person pointing at such
an intersection would be pointing at three entities. PL will return a list
of items and thus give information which can aid in the resolution. PM, in
contrast, returns only the first entity seen plus an X,Y position. This is
more useful than might be supposed, as will be indicated later.

Other, more mundane, commands are: Start Again (SN), which clears the

screen and resets various system pointers; and Names (NS), which is useful

in simulating inter-computer communications and thus helps in debugging.

5.3 COMMENTS ON THE TRAMP/RAMP SYSTEM

Our purpose in building the TRAMP/RAMP system was to provide a vehiéle
through which research questions in graphics could be approached. Note that
the emphasis was definitely placed on research-type questions. Efficiency
and/or speed of operation were sacrificed where necessary in order to provide
a flexible tool. Thus, for example, an interpretive system was chosen as a
host for the associative memory package. We feel that in this respect, our
decisions are not greatly different from those of researchers who use LISP as
their primary vehicle. To have been restricted by questions of efficiency
would definitely have slowed our progress. Research in graphic software systems
is difficult enough without having to grapple with a restrictive tool.

With this aim in mind, some comments are appropriate. It is probably

fair to say that the 338 graphic console was the weakest link in our system

C-T1

from the point of view of flexibility. Our approach there was to define and
implement a set of macros which were graphic in nature. With this set we
hoped to be able to investigate questions of the division of labor between
the small and large computers. More important, it was hoped that a macro
approach would allow the definition of a number of figures and figure combi-
nations whose optional parameters could be much more flexible than the tradi-
tipnal scale and rotation parameters current in more conventienal graphic
systems. Thus, for instance, one could specify round-headed or square-headed
bolts as a variable in the macro call sent from the big computer, rather than
having to specify a number of different figures. It is then easy to postulate
a user calling up a library of general purpose figures which he can specialize
for his needs, through the use of appropriate parameters. The definition of
these display macros could also be done graphically though the cenditions
necessary to allow this might be quite stringent.

Our experiments along these lines were partially successful but were
greatly hampered by the limited instruction set ;f the PDP-8. The code to
implement this facility, when combined with the code for communication and
display file manipulation, etec., quickly exhausted our 338 capabilities.

Thus macro-expansion became the job of the 360, and no division of labor
results were obtained. We still feel that the approach of macro definition

of display files is a valid one. A larger terminal facility would undoubtedly
aid in further investigation along these lines.

Moving to the large computer, it obviously became quite feasible to do

extensive maero manipulations. The example of the graphic generation of

C-72

graphic procedures, presented in Section 6, is one example of the generality
avéilable on the big machine. It is also instructive to note the concise
procedures which result from the associative memory/macro generator approach.
We offer the following example:

Find the set of all points joined by lines to a given point.

This may seem relatively trivial, since it requires only a knowledge of the
end-points of the lines, a selection of those lines which end on the given
point, and continuation by asking for all points now joined to the new set of
end-points. There are two problems with this solution. The first is that we
are potentially in an infinite recursion, where we must exclude all points
previously found from our next search. The second is that the picture does
not necessarily use the same name for points occupying the same space. As

an example, in constructing the letter Y we draw two lines in a continuous
fashion through the center point, and then draw the third line to intersect
these two at the center point. Unless special software has been produced to
check for this, there is no reason why the data structure should describe the
third line as terminating at the same point name as that of the first two-
line intersection.

This is really another example of the synonym in keyword searches, or
common node points of graph theory. The problem occurs because, although the
coordinates of the end-points may be the same, they have been defined at dif-
ferent times with different external or internal names. Figure C-8 is in
three parts; it fully describes the process of finding all points. Part A is

a description in a normal language; Part B is a solution in meta-language

C-75

using the associative language of an earlier section; Part C is a set of TRAMP

language statements describing the same process.

It is important to note that

the transformation from one language to the next is relatively simple, because

of the similarity between the original language statements, the meta-language,

and the TRAMP statements.

-A-
Name Program
POICON

Read Input

Find 211 Synonyms of
all new points, re-
move all previously
found points (relative
complement), find
union of new points
with answer set, and
with latest new points
to give newest points.

Find all lines from
new point s, then
ends of these lines.
Remove all previous-
ly found points.
Union the new points
to the answer set.
If no new points
found, exit.

NORMAL LANGUAGE

Figure C-8.

Point connectivity:

- B~ -C=
Function POICON # (DS, POICON)
Read into P1 (# (Ds,P1, # (RS))
ANSWER: PANS # (DS,PANS,)
TEMPORARY: NEWP # (DS,NEWP, # (P1))

(holds current # (TWO)))

points generated)

COOR(NEWP) =X, (FIND X)
COOR(Y)=X, (FIND Y)
RELCOM(Y,PANS) Z

RL,COOR, # (NEWP),
RL,COOR, ¥Y*) # (X))

(
(
(
(RCOM, # (Y) # (PANS),
#(
(uN
(

Y)

UNION(ZPANS) PANS Z)
UNION(Z,NEWP) NEWP UN, # (Z); #(PANS), PANS)
#(NEWP), NEWP)

UN,#(2) 3
)

THREE)

END(X) =NEWP,FIND X # (DS, THREE,(
END(X)=NEWP,FIND NEWP # (RL,END,*X*, #(NEWP))
RELCOM(NEWP, PANS)~NEWP # (RCOM,#(NEWP) ,#(PANS),NEWP)

If NEWP is null, exit

else go to step 2 #. (UN,#(NEWP); #(PANS),(PANS)
(BQ,#(NEWP) , ,#(PANS))
(#(Tw0)))))
AN ASSOCIATIVE TRAMP
LANGUAGE PROGRAM

Definition in an associative structure.

C-Th

6. GRAPHIC LANGUAGE CONSTRUCTION OF GRAPHIC PROCEDURES

This describes an exercise in the construction of graphic procedures—
procedures which operate on pictures—where the procedures are defined using
a graphic language—one where the nouns and verbs are specified by actions at
a graphic console. We undertook this exercise for a number of reasons. First,
it seemed that such an exercise might demonstrate the flexibility and general-
ity of the TRAMP/RAMP system. We feel the experiment accomplished this aim;
we suspect that most graphic systems would have difficulty replicating this
exercise. Further, the flexibility of TRAMP/RAMP allowed us to complete the
exercise in reasonable time. Flexibility cannot easily be demonstrated on
paper, but it is fair, we think, to offer this exercise as an indication of
our claim.

The second reason we carried out this exercise was a wish to start in-
vestigating the much heralded "graphic language of the future." The existing
languages are either oriented toward passive graphics, i.e., output pictures
(21,22) or toward the definition of a control sequence based on the arrival
of inputs (23). While such languages will certainly continue to exist, they
are a far cry from the sort of high level man-machine communication that was
postulated several years ago. Such high level communication can only happen
when man could (1) build graphic procedure upon graphic procedure, (2) define
each graphic procedure quickly and easily, making full use of the two-
dimensionality of his input medium.

Finelly, we suspect that such a graphical language, when investigated in

C-75

depth, would yield a number of problems not unlike those encountered in the
artificial intelligence field. We wanted to clarify our suspicions, making
the problems precise wherever possible.
The rest of this section will therefore further describe our work on
this exercise. We have reported the work in more detail elsewhere (U4).
6.1 THE PROBLEM IN DETAIL
We define a graphic procedure as an algorithm, program, or function which
takes graphic entities (i.e., POINTS, LINES, etc.) and produces outputs. As
an example, we might have a graphical procedure which will find the perpendi-
cular bisector of a given line. The algorithm has, as input, the line which
is to be bisected; the output will be the required line displayed on the screen.
This type of graphic procedure may be termed a "construction." Another type
of graphic procedure could be one which checks whether two lines are parallel.
This could be termed "checking a constraint." In this, the input to the algo-
rithm is the pair of lines, and the result is a truth value (i.e., T or F).
Finally, we have the type of graphic procedure which makes two lines parallel,
either by moving one or both in some prescribed fashion. This can be termed
"imposing a constraint."
Thus we will consider three types of "graphic procedures":
(a) Constructing |
(b) Constraint checking
(¢) Constraint imposing
Now the definition of any one of these graphic procedures could be done

in a slightly augmented procedural language (such as ALGOL). However, it must

c-76

be remembered that we are trying to state these procedures by using a graphic
language. Thus the description of the procedure (akin to writing the program)
is done by motions of a light pen on a screen, or pen on a tablet. These
motions are neither the act of physical writing (using a character recognizer)
nor defining a procedure by drawing its flow chart. 1In fact the motions are
very similar to those a user carries out when he is executing a procedure
using drafting equipment.

Unfortunately, when we explain such a procedure to another human being,
many of our statements are heuristic in nature. But in this explanation,
there may be dialog between the participants. In "explaining" or defining the
procedure to a machine, we now have two possible modes of operation, analogous
to the above.

Thus, one of the first questions which arose was whether to use heuristics
or man-machine interaction as a basis for defining these procedures. We have
all heard the arguments for one approach or the other. The interactionists
strike terribly meaningful blows on the shoulders of the artificial intelli-
gentsia, who continue unconcernedly to work towards that nirvana of no-man's
land. In looking at this problem, we came to the conclusion that a little bit
of both was necessary, since neither seems sufficient.

Consider a heuristic program which can deduce a relationship from a given
set of daté and previously deduced relationships. This program may sit stewing
over a picture trying to find out what can be inferred from it, when in fact,
there is not enough information to produce any meaningful inference at allj;

the picture may‘not yet be complete enough to contain relevant inferences.

C-TrT1

But the man-machine program needs the man present, and could ask embarrassingly
silly questions, before "agreeing" with the user or his deductions.

If we consider a heuristic program which recognizes complex objects, we
must have previously defined triangles, quadrilaterals, and other polygons
as well as right angles, parallel lines, and the usual drafting "functions."
Now suppose we use these definitions to describe a special type of roof truss;
then we start drawing, and make the heuristic program follow our progress.
Ultimately, the program must have found several hundred triangles, polygons,
parallel lines, right-angled figures, etc., before it determines that the
whole entity is this special type of roof truss. The fact may, however, be
buried in the great volume of other relationships available. This paragraph
is, of course, intended to point out the problems, not to damn heuristics.

Now consider man-machine interaction, when constructing a procedure
graphically. Let us assume that a construct function exists, and can be run
in the manner described:

The user looks at the CRT, and sees a picture and a MENU of allowable
operations one of which is CONSTRUCT. He points at this with the light pen,
and the question "NAME OF CONSTRUCTION?'" appears on the screen. He types in
"COPY ANGLE," and the machine responds "DRAW INPUTS." By pointing at LINE
in the wmenu, and making appropriate light pen motions, he defines the three
lines (1,2, and 3 of Figure C-9a), and point L4 on line 3. It is important to
note that this particular construction has two implied constraints on the
inputs (i.e., when this procedure is executed):

(1) 1lines 1 and 2 are not parallel

c-78

2

He

Figure C-%a. Construect inputs.

Figure C-9b. Construction phase.

Figure C-Oc.

Four output possibilities.

C-79

o9 st s

(ii) line 3 contains point L

There is also, of course, the constraint that the input objects must be
three lines and one point presented in the proper order. It is possible to
imply constraints by default conditions, e.g., the default of not stating that
two lines are parallel would be that they must not be parallel. This would
probably be more confusing than stating constraints explicitly.‘

Now the user starts on the "construction" phase; he defines point 5 as
the intersection of lines 1 and 2, and takes an arbitrary arc 6 which inter-
sects lines 1 and 2 in points 7 and 8 (see Figure C-9b). It should be noted
that we now have two more potential problems:

(iii) what is an "arbitrary" arc? Is it always the same size?
(iv) the circle, of course, intersects each line in two places.
How did we decide which of these two intersections to use?

Finally, the usér strikes an arc with the same radius, centered at point
4, This intersects line 3 at point 10. He then measures a leﬁgth, equal to
that between points 7 and 8, along the arc from point 10 to define point 11.
By drawing line 12 through points L4 and 11, he obtains the required line (the
angle between lines 12 and 3 is the same as the angle between lines 1 and 2).
This has, however, introduced a problem similar to (iv) above, because there
is more than one angle that could be generated; in fact, there are four (as
shown in Figure C;9c), although two of them are redundant.

Finally, the user must specify that line 12 is the output from the pro-
cedure; this raises another question:

(v) Is an output temporary or absolute? 1i.e., is the result

C-80

always to be displayed, or merely passed on to be used as
an argument for another procedure in a similar fashion to
that of a nested procedure.

Before continuing, we must look at the five problems unearthed in the
example:

The first two are associated with the problem of explicit and implicit
constraints. Presumably, by specifying his inputs, the user implies that
these inputs have certain properties, e.g., that they are POINTS, LINES,
CIRCLES, etc. He may also wish to impose certain constraints which are not
easy to state, e.g., that two circles have a common tangent. We must define
these constraints explicitly; one way to do this is to "write" a procedure—
using the same graphical CONSTRUCT techniques, except that the result of ex-
ecuting this new porcedure is not an output entity but the TRUTH function.
The execution of this procedure is then the constraint checking procedure
described earlier.

The problem of arbitrary values is not yet solved, though these are
certain possible techniques. First, the user could be asked to give the size
or angle, etc. that he wishes to use. This is probably the worst way to solve
the problem, because the used may not know what is 'best,' in fact he may even
be confused by the request, since he may have no idea why the arc must be
drawn. More is said on this later. A second method is to pick the value
arbitrarily, e.g., a length may be one half the screen size. This obviously
has one disadvantage, it may not be appropriate, for the command in the text-

book may be "draw an arc to intersect the second circle," and the arbitrary

c-81

(half screen) arc may completely miss. A third method is to start with some
given value, such as in the second method, but modify this to suit the situa-
tion. This may be termed "hunt-and-peck" and is heuristic. This approach is
probably the most satisfactory of the three, except that it is difficult to
talk about several arcs, all arbitrary, which might have to be copied (i.e.,
the same size duplicated). One can also imagine the case where a second
circle (copied as having the same radius as the first) may also have to pass
through a third circle, thereby imposing a change on the first circle (for
further explanation, see Figure C-10). This situation may seem contrived,
but could occur for systems where the problem was over constrained.

The fourth problem can be tackled in several ways. The first method is
by making an exact definition of sequence and angle. This could involve
statements that an angle goes from the first line to the EEEQEQ; is always
acute, and that all arc lengths measured along a circle are in the anti-
clockwise direction. With these definitional constraints, there is only one
choice of intersection in this example. Unfortunately, however, when we
consider the intersection of a circle with a line, we of'ten need both points.
Therefore, an additional statement might be made—"this is the solution to
the procedure if only one point is required by the next procedure.” The
solution of this fourth problem is therefore either careful design involving
careful description of meanings, or else a heuristic approach, maybe involving
& learning process on the part of the procedure.

The final problem is assoclated with the use of the output, but must be

resolved by the user rather then by the procedure. The user, on requesting

c-82

Problem: Draw an arbitrary cirele, center A to intersect
circle C, then with the same radius, draw circle
center B to intersect D

After first attempt, E intersects satisfactorily,
but F does not. Modify radius to sult second

constraint
.0
°C
[]
. .B
ES A
[}
[}
[
.0
0..
Now cirecle E does not intersect C, but the
solution is bounded:
]}
D F
/
1y .B

Figure C-10. Arbitrary circles and imposing constraints.

c-83

execution of a construct procedure, could be given an answer in a "temporary
mode" (e.g., as a flashing object on the screen). He might then either use

it as input to another procedure (in which case it is treated as a temporary
value, and disappears after use in the next construct) or else made permanent.
This can be achieved by defining the output the attribute of permanency, and
also displaying the object by placing it in a permanent display file.

Suppose we try, however, to use the "man-machine interéction" technique,
and have procedure COPY ANGLE ask a question (at the end) which says "There
are two answers, which do you want?" and display both (possibly flashing) so
that the user can choose which he needs. The user wishes to define a new
procedure (using COPY ANGLE) to produce a PARALLEL LINE construction (see
Figure C-11).

The construction requires an "arbitrary" line 3 which passes through
point 2 and intersects line 1. Then by using the "COPY ANGLE" routine, line
4 is produced so that it and line 3 include the same angle as that between
lines 3 and 1. At the last stage, the user is asked "there are two answers,
which do you want?" (the required answer is 4, but another answer is 4').

Another problem occurs when this new PARALLEL LINE procedure is used by
someone other than the definer. This unsuspecting user merely asks for a
parallel line—and is startled by the question (generated by COPY ANGLE,
which he may not appreciate exists), "There are two answers, which do you
want?"!

Now that the principal problems have been discussed using an example, it

is necessary to conslider the structure of the final procedure. Presumably,

c- 8k

Figure C-lla. Inputs for "parallel line."

Figure C-11b. The construction "parallel line."

c-85

the procedure must be either compiled (into a subroutine) or grouped into a

set of interpretable statements (in the form of a function). This involves

definitions of a program name, the inputs, any validation criteria, the pro-

cedural statements, and finally the outputs. It is possible, therefore, to

have the following formats:

NAME NAME

INPUTS TRANSFER ITEMS(INPUTS & OUTPUTS)
VALIDATION VALIDATION

PROCEDURE PROCEDURE

OUTPUTS

For example, the procedure could be a quasi-FORTRAN program to perform a

procedure shown in Figure C-12:

20

30

SUBROUTINE INTLINE (A,B,C,D,E)
IF TYPE((A, 'LINE').AND.
TYPE (B, 'LINE').AND.
TYPE (C, 'LINE').AND.
TYPE (D, 'LINE'))

GO TO 10

RETURN F

IF(INT(A, B,X))

GO TO 20

GO TO 5

IF(INT(C,D,Y))

GO TO 30

GO TO 5

LINE (X,Y,E)

RETURN T

END

In this somewhat "traditionel" approach, the assumption is that all

arguments are passed by name,* that the three subroutines called are isomorphic,

all being called by name, in a transfer vector and returning the result through

*In fact, the usual descriptive known is not the item name but its synonym

in the form of a display file entry. This is, therefore, a second level of

indirection.

c-86

Given lines A,B,C,D

Intersect the first two to give Point X
Intersect the last two to give Point Y
Construct line E from X to Y, output E

Pigure C-12. The intline procedure.

c-87

the transfer vector with a logical value of the routine passed as the result
of the "function," so that it can be tested in an IF clause. The routine
TYPE is intended to determine the type of item (e.g., its "pictorial" or
other class, such as POINT, LINE, FIGURE, NUMBER (INTEGER, FLOAT, ETC),
ALPHA, etc.) and compare it with the character string which is its second
argument, returning T for a match or F for none. The routine INT will take
the lines in pairs (A,B) and (C,D) and find their intersection points. If
this is outside the limits of reality (e.g., it is far off the screen limits
or if the lines are parallel) it returns F, otherwise it returns T and the
coordinates of the Point are returned as X. The routine LINE takes two points
as its first arguments and defines the line between them as the third argument.
In this procedure, it is not necessary to check for errors (i.e., whether the
result of this procedure is "true"). Since it has no possible error condition
(X and Y must be points in order to arrive at this part of the program), pre-
sumably the next operation is to compile this "program" for future use.
The same example as a TRAMP procedure would be:
#(ds, INTLINE,(
#(edq, #(TYPE)A); LINE,
(#(eq,# (TYPE, B), LINE,
(#(eQ;#(TYPEyC)’ LINE,
(#(GQJ#(TYPE’D): LINE,
(#(eq,#(l‘i\IT,A,B,X),T,
(#(eq,#(InT,C,D,Y), T,
(#(LINE,X,Y,E)),F)),F)),F)),F)),F)),F)))
#(Ss, INTLINE, A, B,C,D, E)
The satisfaction of constraints in these two examples is relatively un-

sophisticated, sinée it merely involves calling special-purpose routines which

test for the required "existence" condition that the (user) specified inputs

c-88

are of the correct type, so that we shall not try to intersect a LINE with a
POINT or FIGURE. There are generally, however, much more complicated con-
straints (often implied in textbook definitions) such as:
The two lines are parallel
The three lines form a triangle (which implies that we have a
closed 3-sided figure), etec.

Finally, the CONSTRAINT CHECK procedure will be very similar to the
CONSTRUCT procedure, except that the graphic procedure generator must not put
out a result, but instead check to see whether the temporary result of the
"CONSTRUCT" is equal to that of the final "input." This may be accomplished‘
by writing essentially the same program as CONSTRUCT, but enclosing it in
an "IF" statement to give the form:

Condition = (IF, result of construct (equals) constraint, give

True, otherwise give False).

Which then itself is called outside the construct as (IF

condition (constraints), go to procedure, print error and call

procedure recursively which asks for inputs again.

6.2 A SIMPLE EXAMPLE

In order to illustrate the operation of the CONSTRUCT procedure, which,
although relatively unsophisticated to the user, is quite complicated, a
simple example of its use will be described. The cénstruction, illustrated
in Figure C-lByis to "draw a line between a given point and the point of

intersection of two given lines." Obviously, this is an extremely simple op-

c-89

eration, containing none of the ambiguities described in the section above.

As Figure C-13 is constructed the figure not only appears on the screen
but a generalized procedure corresponding to it is stored in FILEX. Once
THING has been defined it can be used to repeat the sequence of displaying an
output line, given two intersecting input lines and an input point.

On initiating the CONSTRUCT procedure, the user is asked for the "Output
File Name?," where the graphic procedure (generated by CONSTRUCT and the
user's actions) is to be stored. Figure C-1L4 shows the contents of the
output file.

Then he is asked to "Name New Construction,"” he replies "THING."

Next he is asked to "Define Inputs!,"” which he does by drawing them in the

way he would if he were merely using the graphic system to draw pictures;

thus as far as the user is concerned, he is drawing a picture, but the CONSTRUCT
procedure is also generating code.

The procedure #(LINENAME) will check to see if the data file name returned
by the display corresponds to a line (at the time when the construction THING
1s actually used). The procedure THING++ will be segmented on...,2005,...
in order to generalize the construction, i.e., in order to pass inputs into
the graphic procedure.

Once a construction has been defined, the file may be read, by the TRAMP
procedures, and thus this new program is available to the user. The construc-

tion name is added to the "picture mode" menu for later use.

C-90

INPUT LINES

INPUT
— —
—_—— POINT

a—
a—
’—-—‘

OUTPUT LINE

—

Figure C-13. Construct "thing."

c-91

1 #(DS, THING, (&

1.001 #(PS,GIVE INPUTS!)#(THING++&
1.002 ,#(LINENAME)&

1.003 ,#(LINENAME)&

1.004 ,#(POINTNAME)&

2 #(DS, THING++,(&

2.001 #(DS,11,2005)&

2.002 #(DS,L2,2006)&

2,003 #(DS,P3,#(INTERSECT++,##(L1) ,##(12)))&
2.004 #(DS,PL,2008)&

2.005 #(OUTPUTLINE,##H PL),#H# P3))&
2.006)...

2.007 #(Ss,THING++,2005,2006,2008)

Figure C-1L4. 1List of contents of output file.

Note that, at execution, #(LINENAME) will replace & data file name with
a line name, for example, line name L0913 might replace data file name 2065.
The sequence would then be
#(THING) which does the following
#(PS,GIVE INPUTS!) #(THING++,#(LINENAME) ,#(LINENAME) ,#(POINTNAME))
which prints on the teletype GIVE INPUTS'
the user then selects a line, an intersecting line, and a point on
the display. After the 360 names corresponding to the 338 data file
names have been evaluated by #(LINENAME) and #(POINTNAME), the
procedure calls THING++ with its arguments:
#(THING++,11403,1913,P613)
Which become, within procedure THING++
#(Ds,11,11403)
#(Ds,12,1913)
#(Ds, P4, P613)

ete.

Cc-92

6.3 FURTHER INVESTIGATION IN THIS AREA

If work in this area were to continue, various comments about it could
be made. First, constraint checking on inputs must certainly be much more
sophisticated. It has been suggested above that this involves "writing"

(perhaps graphically) a number of constraint check procedures. While this

is certainly true, it should be noted that the problem becomes more manageable
when one can take advantage of properties of graphical entities such as
symmetry, transitivity, ete. Thus one would like to be able to write basic
routines and have recursive, symmetrical, and other sorts of considerations
handled by a separate definition.

Moreover, it is important that wide ranging use be made of existing
graphic procedures. This necessitates the ability to combine them via logical
statements of combination. TRAMP should be an excellent vehicle for doing
both of these things.

Second, it has been stated above that the problem of an "arbitrary"
arc (or an "arbitrary" anything) has not been solved except in specialized
ways. While this 1s true, it is the sort of problem which might be amenable
to a theorem-proving approach, since the requirements can be "axiomized.!

Finally, throughout this discussion has been implicit an assumption

about "facts."

We have agsumed that facts like theorems or relationships
between elements are easily retrievable and can easily be built upon. This
assumption is largely the result of working with the TRAMP system, under
which the assumption holds elegantly. Probably the most important result

of this effort has been in demonstrating the necessity for an associative

C-95

memory approach when working with experimental graphic systems.

10.

ll‘

12.

REFERENCES

Ash, W. L., and Sibley, E. H., TRAMP: A Relational Memory with an
Associative Base, Technical Report 5, Concomp Project, University of
Michigan, Ann Arbor, June 1967.

Ash, W. L., and Sibley, E. H., "Tramp: An Interpretive Associative
Processor with Deductive Capabilities," Proc. 1968 A.C.M. Nat't Conf.,
pp. 143-156.

Sibley, E. H., Taylor, R. W., and Gordon, D.G., "Graphical Systems
Communication: An Associative Memory Approach,” Proc. 1968 FJCC,

pp. 545-555.

Sibley, E. H., "The Use of a Graphic Language to Generate Graphic
Procedures, " Pertinent Concepts in Computer Graphics, Proceedings
of the Second Illinois Conference, April.1969. .

Sibley, E. H., Taylor, R. W., and Ash, W. L., "The Case for a Generalized
Graphic Problem Solver," Proc. 1970 SJCC, pp. 11-17.

Ash, W. L., A Compiler for an Associative Object Machine, Technical
Report 17, Concomp Project, University of Michigan, Ann Arbor, May 1969.

Allen, John J., Man-Computer Synergism for Decision Making in the System
Design Process, Technical Report 9, Concomp Project, University of

Michigan, Ann Arbor, June 1968.

, "A Survey of Generalized Date Base Management Systems,'
CODASYL Systems Committee, May 1969.

Sutherland, I. E., SKETCHPAD: A Man-Machine Graphical Communication
System, Technical Report 296, Lincoln Laboratory, January 1963.

Coons, S. A., "An Outline of the Requirements for a Computer-Aided
Design System," Proceedings 1963 SJCC, pp. 299-30L4.

Ross, D. T., "The AED Approach to Generalized Computer-Aided Design,"
Proc. 1967 ACM Nat'l Conf., pp. 367-386.

{

English, W. K., Englebart, D. C., and Berman, M. L., "Display-Selection
Techniques for Text Manipulation," IEEE Transactions on Human Factors
in Electronics, Vol. HFE-8, 1967, pp. 5-15.

13.

1k,

15.

16.

17.

18.

19.

20.

21.

22.

23.

Moffett, T. J., "On-line," Modern Data, September 1969.

Roberts, L. G., "Graphical Communication and Control Languages,"
Second Congress on Information Systems Sciences, pp. 211-217.

Gray, J. C., "Compound Data Structure for Computer-Aided Design; A
Survey," Proc. A.C.M. Nat'l Meeting, 1967, pp. 355-365.

Dodd, G. G., "APL—A Language for Associative Data Handling in PL/I,"
Proc. AFIPS FJCC, Nov. 1966, pp. 677-68k4,

Feldman, J. A., "Aspects of Associative Processing,"” Lincoln Laboratories,
Lexington, Mass., April 1965.

Rovner, P. D., and Feldman, J. A., "The LEAP Language and Data Structure,”
Proc. IFIPS Congress, 1968.

Rovner, P. D., "An Investigation into Paging a Software-Simulated Asso-
ciative Memory System," University of California, Berkeley, Doc. 40.10.90,

Jan. 1966.

D'Imperio, M. E., "Data Structures and Their Representation in Storage,"
Annual Review in Automatic Programming, New York, Pergammon Press, 1968.

Herzog, B., "Computer Graphics for Designers," Emerging Concepts in
Computer Graphics, W. A. Benjamin, Inc., 1968, pp. 189-230.

Duffin, John David, A Language for Line Drawing, Technical Report 20,
Dept. of Computer Science, University of Toronto, May 1970.

Newman, W. M., "A System for Interactive Graphical Programming," Proc.
1968 8JCC, pp. 47-5L.

C-96

APPENDIX D

DEVELOPMENT OF A SET-THEORETIC DATA STRUCTURE

Basis for Machine-Independent Information Management Systems

D. L. Childs

ABSTRACT

TABLE OF CONTENTS

D.1 EXPANDED DEFINITION OF STDS FACILITIES

D.2

D.3

D.h

SOME FAMILIAR EXAMPLES PRESENTED IN SET-THEORETIC FORM

DESCRIPTION OF THE DEMONSTRATION FILES FOR STDS

USED IN APPENDIX D.L4

EXAMPLE USE OF STDS

D-2

Page

D-19

D-25

D-29

D-35

A SET-THEORETIC DATA STRUCTURE

1. Purpose:

(STDS)

To provide a storage structure
representation of arbitrarily
related data allowing the data
to be stored as SETS and then

retrieved using SET OPERATIONS.

2. Consequences:

a,

Flexibility, generality, and
scope allowed by set theory.
Pointer-free representation

of data.

Minimal storage requirements.
Quick access of data.

Easy modification of data.
Ideal for paging environment.
No restrictions on questions
as long as tney are formulated

using sets and set operations,

D-3

ABSTRACT

A search for commonality of purpose in existing data structures showed
the basic concern of all data structures to be: INFORMATION versus MACHINE
REPRESENTATION. Since all information is machine independent before being
forced into a machine representation, an effort was made to separate those
properties of data structures which were machine independent, the INFORMA-
TION ENVIRONMENT, from those properties which were machine dependent,
the MACHINE ENVIRONMENT, and then develop a data structure which allows
isolation and separate control of these properties. This approach yielded
the following definition: A DATA STRUCTURE IS AN ISOMORPHISM BETWEEN
A MACHINE ENVIRONMENT AND AN INFORMATION ENVIRONMENT PRESERVING
THE PROPERTIES OF EACH. The particular type of data structure depends on
the structure of the information environment. When the information environ-
ment is represented by set theory, the isomorphism is a SET-THEORETIC
DATA STRUCTURE.

KEY WORDS AND PHRASES: information environment, machine environment,
data structure, set theory, Set-Theoretic Data Structure, transformation
operations, set operations, machine independence

D-5

At the beginnin'g of the CONCOMP project, Dr. Franklin H. Westervelt
initiated an investigation into data structures. It was his view that present
efforts in data structure development were too machine-oriented and would,
inherently, be unable to handle future needs. It was his contention that users
of huge data bases of the future should not be burdened with the intricacies of
complicated data representation -- rather, data representations should be trans-
parent to the user. In fact, the user should not even be aware of the type of
storage media or even the type of machine being used. Dr. Westervelt had
often lectured on the need for a general data structure that was not machine
oriented but one that was information oriented, where design emphasi; was
placed on information content instead of machine representation. For example,
in a graphics problem concerning diagrams constructed from lines and points,
the positions of lines and points relative to one another are invarient no matter
what machine is used or how the information is stored. The idea behind this
investigation was to try to separate those properties of data structures which
were machine independent from those properties which were machine dependent,
and then develop a data structure which allowed isolation and separate control
of these respective properties. Historically it seems that most data structures
have been developed for a particular problem on a particulaAr machine and then
generalized. It seemed that the best approach would be to start with a general
means for expressing any problem and then worry about expréssing the general
representation on a particular machine. This was the approach taken by David
L. Childs which eventually resulted in the development of the concept of a
Set-Theoretic Data Structure.

A search for commonality of purpose in existing data structures showed
the basic concern of all data structures was: INFORMATION versus REPRESEN-
TATION. Other complexities involving the amount of data, kinds of questions to
be answered, speed with which they were answered, updating requirements,
all depend on the information contained in the data and the representation of

this information in the machine. These two areas can be characterized sepa-

D-6

rately and independently, and therefore should be approached separately and
independently instead of being blended together. However, this does not seem
to be a widely accepted practice in developing data siructures.

In order to pursue this approach a distinction must be drawn between a
MACHINE ENVIRONMENT and an INFORMATION ENVIRONMENT. The first may
partially be characterized by: addresses, codes, memories, machine hardware,
computer software, programming costs, data locations, sorts, storage medium,
storage size, retrieval speed, cpu-seconds, pointers . . . in short: the empir-
ical world of the computer. This seems to be the most comfortable area to
work in for those involved with the development of data structures. However,
it only covers half the problem. The second area is not so easily characterized,
which may partially account for its not being isolated. This is the area of
'pure information', data relationships, questions, aﬁswers, information extrac-
tion . . . in short, the abstract world of information. Here rests the heart of
the data structure problem, for in order to treat the information environment and
the machine environment as functionally separate entities, their respective |
structures must be precisely stated. The structure of the machine environment
is generally accepted, but a separate structure for the information enyironment
is not. Therefore, the information environment is usually couched in terms of
the machine environment, thus abolishing any hope of functional separability.
The problem then is to devise or find a suitable structure for the information en-
'vironment, such that the resulting information environment operations will insure
the same result, independent of any particular machine-representation of such
information. If the information environment operations themselves are defined
in terms of a particular machine-representation, then they are intrinsically
dependent on that representation. (This, unfortunately, characterizes many cur-
rent data structures.) The means for isolating information environment operations
from the machine-representations of data is not necessarily obvious. The diffi-
culty arises in trying to insure 'generality' and ‘consistency.' 'Generality' in
that the operations must not be restricted to a particular information configura=-
tion, but must be applicablefor any possible information configuration; and

'consistency' in that, independent of the information configuration, the operations

D-T

must yield unique and well-defined results. This amounts to the adoption or devel-
opment of an abstract mathematical model for the information environment. (Set
theory was eventually chosen as such a model.) Assuming that sﬁch a model can be
found and that the machine environment and the information environment are functior
ally separate and compietely independent structures, the function of a general data
structure would be to connect them in such a way as to preserve their integrity.
Therefore, the view is proposed that: ANY DATA STRUCTURE IS ACTUALLY AN ISO-
MORPHISM BETWEEN A MACHINE ENVIRONMENT AND AN INFORMATION ENVIRONMi
PRESERVING THE FUNCTIONAL ASPECTS OF EACH. The particular type of data struc
ture would depend on the structure of the information environment. The schema in
Figure 1 represents the relationship of the 'user, ' the information environment,

the data structure, and the machine environment. It will be argued subsequently

MACHINE
ENVIRONMENT

INFORMATION

USER ENVIRONMENT

FIGURE 1

that this definition allows a data structure to enjoy a degree of machine indepen-
dence. However, it may not be immediately obvious that such a definition implies
any operational improvement in the use of the resulting data structure; but since
any particular machine representation has inherent properties associated with it
(initial programming cost, storage allocation, updating costs, retrieval speed,
etc.), some machine representations are better for some purposes than others.
Given a selection of representations, which one, or ones, should be used with

a particular data base; since, in general, no one representation is best or even
adequate for all retrieval needs? The answer depends on which storage and
retrieval requirements best meet the information environment conditions (which
may even change during interrogationof the data base). If the different machine

representations could be transformed from one to another (at a 'minimal’ cost)

without affecting the form of the retrieval program, then any retrieval require-

ment could be facilitated by the selection from machine representations available.
The control of these operations should be accessible tothe user, but since these
operations do not affect the information environment, only the machine environ-
ment, they should be distinct and separate from the operations of the information
environment. Figure 2 represents this schematically. The box labeled ME-Controls
allows for any operation which affects only the machine environment, which in turn

can not affect the information environment since they are functionally separate.

INFORMATION MACHINE
ENVIRONMENT . ENVIRONMENT

FIGURE 2

Therefore, these operations do not belong as part of a data structure, (though

the previous definition of a data structure does not preclude the use of these
operations in some other context). The transformation operations, or MODE

- operations, are in this catagory and every transformation must have some cost
associated with it in the form of storage and cpu-time used. From the user's

view the mode operations are independent of the information environment being
used, they are to allow transformations with a cost savings compared to the
resulting retrieval and storage costs. The most expensive transformation cost
would result if each transformation had to be programmed when the need arose,
which is the current situation with many data structures. With MODE operations,
however, any transformation can be made between existing machine representations
subject only to the gained or lost retrieval speed versus the increased or decreased
storage requirements. It is important to remember that the information is an invar-

iant under these transformations, only the machine-representation of the information

D-9

is changed. With MODE operations any user has the following economic flex-
ibility: During extended periods of non-use the data can be compacted and
stored at the lowest possible storage rate. When the need arose for interroga-
tion, modification, updating, or analysis the data could be put into an expanded

storage form, thus acquiring the most economical retrieval costs and fastest

response time.

D-10

The concept of a Set-Theoretic Data Structure (STDS) evolved over a
period of three years. The initial direction leading to its development was
inspired by the efforts of Timothy E. Johnson and his work, and by the work
of Jerome A. Feldman, on Associative Data Structures. A most significant feature
of the ADS was the introduction of the functional notation A(o) = v. This notation
is strictly a part of the information environment and can have an arbitrary imple~
mentation in the machine environment. The principle drawback, however, with
any functional notation is the prerequisite for the arguments to be single valued.
This lack of generality at the outset may be an undue restriction. Since a more
comprehensive notation does exist, allowing a collection of values for the argu-
emtns, it seemed worth exploring. The notation A[O] = V may not seem to connote
any more information or generality than did A(o) = v. However, this notation
represents the IMAGE operation in set theory, where 'O' and 'V' are sets of values
instead of being restficted to single values. Ambiguities possible with a func-
tional notation are no longer a problem with the image operation: if 'S' represents
'square root' then what is the value of vin S(4) = v ? Here two values for 'v'
are correct: +2 and -2. The ambiguity disappears using the image notation
S [{4}] = {+2, -2_} . This may further be demonstrated: by féhe '719~th root of 13,
by the "children of x, ' or by the 'points reachable from y.' Besides increasing
the generality of A(0) = v to A[Q] =V, the introduction of 'sets' allows the
potential of utilizing the powerful operations of set theory (which are not defined
algorithmically, thus allowing easy adaption to machine independence).
Crispin Gray and Charles Lang considered set theory in their 1967 paper on ASP.
They were also quick to point out the inherent difficulty of attempting to imple-
ment set theory on a digital computer: a set by definition is an unordered collec-
tion of objects while any machine representation forces an ggggg on the elements.
For every set with n elements there exist n. different orderings. Which of these
should be used for a storage representation, can a canonical ordering always be
found, or does it make any difference? Much of the investigation into data struc-
tures was directed toward resolving these questions. It does make a difference.
One particular ordering is preferred and it can always be found, (thus allowing a

canonical machine representation for any arbitrary set). During the investigation

D-11

it became ever increasingly evident that set theory -- if it could be applied to

a computer -- would be an ideal structure for the information environment. The
feasibility of a set-theoretic approach was described in Concomp Technical
Report 6 and was also presented in Edinbourgh, Scotland, at the IFIP Congress 68,
under the rather cumbersome title: "Feasibility of a Set-Theoretic Data Structure:
A general structure based on a reconstituted definition of relation." The result
allows the separation of the information environment from the machine environ-
ment, by letting set theory represent the information environment. It is now the
function of the data structure to tie the two back together again, using the earlier
definition of data structure as an isomorphism.

DEFINITION: A Set-Theoretic Data Structure -- STDS

A STDS is an isomorphism between a machine environ-
ment and set theory preserving a given universe U under
a collection of set operations S.

This conforms to the schema of Figure 1 with the information environment
represented by set theory. One immediate consequence of this definition is that
from the user's view (the set theory side) it appears to be a machine independent
data structure. Some people may argue that a machine independent data struc-
ture is a contradiction in terms since any data structure must be concerned with
addresses, searches, pointers, word length, and other machine dependent
characteristics. By such a definition, of course, a machine independent data
structure is a logical, and hence technical, impossibility. Whether or not there
is any agreement to calling an isomorphism a data structure in some classical
sense is irrelevant. The relevant issue is the separation and definition of those
aspects of "data structure usage" that do or do not depend on the particulars of
a given machine. It would seem that any data structure could properly be called
machine independent if a user could access any type of data represented in any
way desired without needing to know what machine was being used. The only
clue to the machine might be the storage sizes available and the retrieval times
experienced. To justify that STDS is a machine independent data structure in
this sense, it may help to examine why other data structures are not machine

independent. Most fail immediately since they require a fixed data representa-

D-12

tion and seldom allow spontaneous construction of questions. The data is forced
into these fixed structures which are already geared to specific types of questions.
All data is machine independent before it is forced into a particular machine.
What happens to this information independence, why is it lost? It is only lost
in the sense that it can no longer be accessed directly, it has‘to be embraced
with "handles" or "hooks" or pointers or labels or whatever, which in turn are
able to be accessed. The result is that all data is accessed indirectly through
arbitrary appendages. Unfortunately these appendagesalways seem to possess
machine properties which now render the data accessability machine dependent.
The reason for all this indirection seems to stem from the view that all informa-
tion processing must be algorithmic in nature.

A command like "FIND" must invariably reduce to an algorithmic language
or procedural representation, which on the surface seems quite reasonable since
any machine implementation of anything results in an algorithim. There, however,
is the flaw! What is necessary for the information environment is a structure
emboding operations that are not defined procedurally, but whose implementation,
of course, will be. Since the operations do not dictate a procedure, any proce-
dure giving the correct result is legitimate. Set theory is such a structure. Given
two sets 'A' and 'B', and any set operation '*' then A*B= C is completely defined
for all 'x' if it can be determined if 'x' is an element of 'C' just by determining
the truth or falsity of a statement concerning the membership of 'x' in 'A' and in
'B'. In other words, in set theory only the result is defined, not how to obtain
the result. Therefore, if this aspect of set theory can be preserved and imple-
mented on a computer, then all operations would be independent of how the sets
were represented in the machine and only dependent on the ihformation content of
data represented. 'Any procedure for executing the set operation would work as
long as the information content of 'C' was correct. 'C' could even be represented
in the machine a different way every time. Clearly there would be representations
that would be more desirable than others for certain operations. Since the informa-
tion content of any set is the same no matter what the machine representation is,
a set can have its representation changed without effecting the result of any set
operation, (the only effect would be on execution time and storage allocation).

D-13

A STDS, therefore, allows a user to see only set theory while operating on a
machine environment. However, a user may wish to exercise control over the
machine representation. The MODE operations, mentioned earlier, allow
changing from one machine representation to some other. Only 'time' and
'storage' characteristics need be known about the different MODES or machine

representations since those are the only affects that can be detected by the user.

Figure 3 represents the schema for a STDS.

MACHINE
ENVIRONMENT

A~ MODE
OPERATIONS /

FIGURE 3

Any structure that allows referencing the data directly without dependence
on artificial devices would give this kind of machine independence. The viability
of such a structure depends on the expressive power allowed by the interaction
of the operations. Here is the real strength of set theory. No argument can do
it justice. Only first hand experience can demonstrate the inherent power of the
set operations. For this reason, an interactive demonstration calling program
for set operations was written for use in MTS. People who were introduced to it
very quickly were doing retrieval queries they had previously thought to be
impossible. (Exampleé appear in the appendices).

With set theory as a model the information environment acquires all the
precision, generality, and formalism inherent in set theory. The general con-
cepts proposed earlier may now be particularized starting with the separation
and delineation of the information environment and the machine environment.

The result is two separate and functionally independent spheres of activity,

characterized in part by the following table:

D-1L

INFORMATION ENVIRONMENT MACHINE ENVIRONMENT

SETS ADDRESSES
PARTITIONING POINTERS
N-TUPLES SORTS

NESTED SETS RINGS
MEMBERSHIP LISTS

RELATIONS STORAGE MEDIA
SET OPERATIONS RANDOM ACCESS
INDEX SETS MULTILIST FILE
SUBSETS PAGING
CARDINALITY VIRTUAL MEMORY

Any collection of information can be represented by a set in the information envi-
ronment, while the mode of that set is the particular machine-representation of
that set in the machine environment. Changing the mode of a set clearly does
not change the information content of the set but only"how that set is represented
in the machine environment. A legitimate mode can be modeled after any of the
currently popular data organization techniques: trees, lists, inverted lists, ring
structures, cellular multilist files, index sequential files, hash codes or content
addressable organizations. In fact, any future machine~-organization or hardware
memory device can be utilized for amode, or machine-representation of data. In
all cases the information retrieval speed characteristics of the data organization
will be preserved. However, due to the intrinsic‘advantéges of set theory, the
storage requirements will generally be far less when the data is organized with
a STDS and the representation will always be machine relocatable. The latter
property is possible by the consistent use of relative pointers and the complete
avoidence of absolute pointers for representing information.

For an example of the above, let E be a set of employed persons and let
F be a sct of fathers. Then, to find the set A of all fathers who are also employed,
A would equal the INTERSECTION of E and F. This operation takes place in the
information environment. To actually accomplish this retrieval requires assign-
ing modes to both E and F in a machine environment. Let E have, say, MODE(6)
which may be assumed to have slow retrieval and small storage properties.

Assign, say, MODE(3) to F and assume that it has fast retrieval characteristics

D-15

but requires large storage. Let IN be a FORTRAN callable subroutine which
performs the operation of INTERSECTION. Then "CALL IN(E,F, A)" gives A as

the set of fathers who are also employed, and the mode of A will be the default
mode. The point to be made here is that if the mode of E were changed from 6 to 3
or if the mode of F were changed from 3 to 6, or if both modes were changed, the
resulting set A of IN(E, F,A) would be exactly the same, only the time to execute
IN(E, F,A) and the resulting default mode for A might vary.

An important concept in set theory is that of "partitioning." This concept
allows STDS to provide the facility to take maximum advantage of any storage
medium when handling large data bases. Partitioning is the operation of sub-
dividing a data base into several distinct and independent parts as a function of
the information content of the parts.

For example, suppose that one must deal with a data base of, say, two
million automobiles where each automobile has, say, 150 recorded data items.
This data base might be contained on 20 magnetic tapes and require one and one=
half hours per day to update. Suppose further, however, that it is the case that
only about 30 of the 150 recorded items account for nearly all of the updating
required.

If the data base were organized on tape as an STDS, the first pass over the
set of twenty tapes could partition the data base into two parts:

4 tapes containing the partition subject to frequent change,

16 tapes of reiatively static data.

With the data} so partitioned, the daily update would now deal with only
1/5 of the tapes préviously required. Furthermore, no loss of interrogation
generality is incurred by this process. If "wild card" changes occur (i.e. changes
that are not among the most frequent 30 items), these changes may be used to ob-
tain dynamic partitioning, if desired. Or they may be maintained as a small set
of "changed" individuals until it becomes economically or procedurally attrac-
tive to merge (in terms of Set Theory, union) them with the master data base.

Other facilities also follow from the basic nature of a STDS. Among the

more important features are:

D-16

1) Any data base that is in machine readable form requires no redesign
for use with STDS.

2) Most data bases in their raw input form (i.e. no structure associated)
have enough redundancy and unused portions of data fields to permit
a reduction in storage requirements by a factor of about four (based on
current experience) when placed into the most compact STDS. Impor-
tantly, the data base in maximally compacted form in STDS would
still permit total interrogation.

In one specific case, a data base of 300,000 records of 120
characters/record was reduced to most compact form. Later when
expanded for fastest retrieval, the expanded sets occupied only 1/4

of the space originally required by just the raw data (i.e. 9 x 106
characters for fastest retrieval and total interrogation versus
3 x 105 * 120 = 36 x 106 characters in raw form).

3) Test runs of huge data bases may be expedited by using STDS to ex-
tract random samplings (i.e. subsets). These subsets may be used
for experiments with partitioning and other schemes to obtain the
fastest interrogation of the complete data base. Importantly, all STDS
operations are completely compatible in both the subset and total data
base cases.

4) Set Theory lends itself naturally to an English language superstructure,
Many set operations already have English equivalents. For example:

"and"-» "intersection" "The set of people who are

married and unemployed” is the same as "The inter-

section of the set of married people with the set of

unemployed people. "

"or" - "union" "The set of blue or red automobiles"
is the same as "The union of the set of blue automo-

biles with the set of red automobiles."

D-17

“"but not" -+ "Relative Complement" "The set of
people who are employed but not high school

graduates" is the same as "The relative cbmple-
ment of the set of employed people with respect

to the set of high school graduates."

"=== or === but not both" «+"Symmetric Difference"

"The set of people who are employed or in school, but

not both" is the same as "The Symmetric Difference

of the set of employed people and the set of people

in school." |

5) The modularity of set theory may be carried into the design of a STDS.

All of the set-theoretic operations may be implemented as subroutines.
Each subroutine for either operations or modes (storage-representations)
and independent of one another. Further, new operations (or modes)
may be added at any time with no disturbance of previously implemented
operations, modes or data already in existence.

Finally, the universality of set theory allows for the complete range of
inquiry and complete management over any type of data. This fundamental fact
together with the constructive demonstration of the existence of a canonical
machine-representation for an arbitrary set provides the foundation for a Set-
Theoretic Data Structure and its properties. However, the viability of any such
implementation will depend on the transformation algorithms, the set operation
algorithms, the storage media available, and most importantly the cleverness in

the design of the different machine-representations.

D-18

D.1 EXPANDED DEFINITION OF STDS FACILITIES

#R SS81:STDS*
#EXECUTION BEGINS

** SET-THEORETIC DATA STRUCTURE: INTERACTIVE DEMONSTRATION **
(12/6/69)

FOR AN EXPLANATION ENTER "1": 1

CONVENTIONS:
C(A) = CARDINALITY OF A
L(A) = LENGTH OF LONGEST N-TUPLE IN A
U(A) = LARGEST DATUM NAME (INTEGER) IN A

ALL ARGUMENTS MUST BE FROM 1 TO 4 CHARACTERS

SET OPERATIONS AVAILABLE:

UN(A,B,C) IN(A,B,C) SD(A,B,C) RL(A,B,C)
CV(A,C) DM(I,A,C) iM(I,A,B,C) RS (I,A,B,C)
NF (A,C) RD(A,B,C) CARD (A) XREL(A,B,C)

XPAN(I,A,B,C) 1IGTJ(A,I,J,C) IEQJ(A,I,J,C)

NON-SET OPERATIONS AVAILABLE:
SETH LIST FREE MIN INDX SET
GET pUT MTS DATA XSUB

** QUID(A....Z) GIVES EXPLANATIONS OF OPERATIONS A THROUGH 2.
** ATTENTION INTERRUPTS ARE FIELDED BY STDS*.

?QUID (UN, IN,SD,RL,CV)

HH#H

#

UN(A,B,C)

#

-C = A UNION B

C IS THE SET OF ELEMENTS THAT ARE EITHER IN
SET A OR SET B.

#

233

HH#

#

IN(A,B,C)

.

C = A INTERSECTION B

C IS THE SET OF ELEMENTS COMMON TO BOTH SET A AND SET B.
#

(233

D-19

HiH4

#

SD(A,B,C)

#

C = SYMMETRIC DIFFERENCE OF A AND B

C IS THE SET OF ELEMENTS THAT ARE EITHER IN SET A OR IN
BUT NOT IN BOTH.

#

Bh##

#hd4

#

RL(A,B,C)

#

C = RELATIVE COMPLEMENT OF A WITH B

C IS THE SET OF ELEMENTS IN SET A THAT ARE NOT ALSO IN
SET B.

#

#4#4%

Hi##

Cv(A,C)

#
#
.
C = CONVERSE OF A

C CONTAINS "REVERSED" N-TUPLES OF SET A.

IF <W,X,Y¥,Z> IS IN A, THEN <Z,Y,X,W> IS IN C.
#
#

#4#
2QUID (DM, IM, RS, NF)
#H##
#
DM(I,A,C)
#
4 C = I-TH DOMAIN OF A
#
C IS THE SET OF ELEMENTS THAT APPEAR IN THE I-TH
POSITION OF N-TUPLES IN SET A.
#
#i44
#444
#
IM(I,A,B,C)
#
C = I-TH IMAGE OF B UNDER A
#
C IS THE SET OF ELEMENTS THAT APPEAR IN THE I+l
POSITION OF N-TUPLES IN SET A, ONLY IF THE CORRESPONDING
FIRST ELEMENT IN THE N-TUPLE IS CONTAINED IN SET B.
#
#444

D-20

C

[

333

#

XREL(A,B,C)

#

C = RELATION EXTRACTED FROM A BY B

#

A IS A SET OF N-TUPLES, B IS AN INDX SET.

C IS THE SET OF N-TUPLES WITH L(C)=C(B) and WITH C(C)
EQUAL TO OR LESS THAN C(A), SUCH THAT IF <I,J> IS
AN ELEMENT OF B THEN THE I-TH ELEMENTS IN N-TUPLES
OF C WERE J-TH ELEMENTS IN N-TUPLES OF A.

#

333

?QUID (XPAN, IGTJ,1EQJ)

#h#d

#

XPAN(I,A,B,C) XPAN(I,A,B,C,V)

#

C =A EXPANDED BY B.

#

C IS THE SET OF N-TUPLES SUCH THAT:

<X(1),..,X(1),A(I+1),..,A(N),B(I+1),..,B(M)> IS IN C
IFF N = L(A), M= L(B),

<X(1),..,X(1),A(I+1),..,A(N)> IS IN A, AND

<X(1),..,Xx(1),B(I+1),..,B(M)> IS IN B.

#

333

HEH#

#

IGTJ(A,I,J,C)

)

C IS THE SET OF N-TUPLES FROM A HAVING AN I-TH POSITION
LOGICALLY GREATER THAN THE J-TH POSITION.

#

323

FH##

#

IEQJ(A,I,J,C)

4 :

C IS THE SET OF N-TUPLES FROM A HAVING IDENTICAL I-TH
AND J-TH POSITIONS.

#

#ih#

D-21

?QUID (SETH,LIST,FREE,MIN)

Hike

#

SETH (A) SETH(A,U(A) ,L(A),C(A)) SETH(A,B,L(A),C(A))
_ :

A IS THE SET TO BE FORMED. ‘

B IS AN INDEX SET SPECIFYING THE LARGEST DATUM NAME

(AN INTEGER) FOR EACH POSITION OF THE N-TUPLES OF

u(a),L(A),C(A) ARE RESPECTIVELY THE LARGEST DATUM NAME,

THE LENGTH OF THE LONGEST N-TUPLE, AND CARDINALITY
OF A.

WHEN A IS THE ONLY ARGUMENT, THE ELEMENTS ARE TO BE

ENTERED INDIVIDUALLY USING A (XIY) FORMAT, WHERE X
AND Y ARE INTEGERS. IF DATA IS IN A FILE USE:

DATA(A) .

#

23 L

b

LIST LIST(A) LIST(A,I,J) LIST(A,I,J,V)

#
#
#
A IS THE SET TO BE LISTED.

I AND J ARE INTEGERS INDICATING THAT THE I-TH THROUGH Tt
J-TH ELEMENTS OF A ARE TO BE LISTED.

WHEN NO ARGUMENTS ARE PRESENT, THE CLASS OF AVAILABLE SI
WILL BE LISTED.

V=1 ALLOWS FOR VARIABLE PRINT FORMATS.

V==1 ALLOWS SETTING PERMANENT PRINT FORMATS.

#

HH¥d

231

#

FREE(A,...,2)

: |

A,.e.;2 ARE SETS WHICH ARE TO BE DESTROYED.

#

HH#d

#i4#

#

MIN(A,...,2) MIN

o |

A,...,2 ARE SETS WHOSE STORAGE ALLOCATION IS TO BE
MINIMIZED,

WHEN NO ARGUMENTS ARE PRESENT, ALL SETS WILL BE MINIMIZ
#

321

D-22

?QUID (INDX,SET,GET,PUT,MTS,DATA)
#H4#
INDX (A) INDX (A,X(1),...X(C(A)))

A IS TO BE A SET OF ORDERED PAIRS, WHOSE DOMAIN ELEMENTS
" ARE 1 THROUGH C(A), AND WHOSE RANGE ELEMENTS ARE TO
BE LISTED INDIVIDUALLY,
C(A) IS THE CARDINALITY OF SET A.
WHENEVER A ZERO IS ENTERED AS A RANGE ELEMENT, THE
'REMAINDER OF THE SET WILL BE GENERATED RANDOMLY
BETWEEN 1 AND U(A).
X(1),..,X(C(A)) ARE RANGE ELEMENTS.

#H= M=
3= =
= 2=

SET(A’B' o0 -.' Z)

A IS THE SET TO BE FORMED.
B,.¢¢,2 ARE INTEGER ELEMENTS OF THE SET A.

2= A=
N
2= A

GET (A)
THE SPECIFIED FILE IS PUT INTO A.

;M= A=
= I
8= 2

PUT(A)
A I8 PUT INTO THE SPECIFIED FILE.

3=t e R 3 = B e S B 2 W = e = 2 2 S S e F= 3= 3= S e ¥ e e T e e

=
E
=
2=

#h4d

MTS IS CALLED.
RETURN TO STDS* BY ENTERING "$RES".

?QUID (DATA,XSUB)

322
#
DATA(A,L(A),C(A)) DATA(A,L(A),C(A),V)

THIS COMMAND ALLOWS READING DATA FROM FILES.

V=1,..,10 PICKS A PRESET INPUT FORMAT.
V=-1,..,-10 ALLOWS SETTING INPUT FORMATS.

#

#

#

#

#

#

#h#4

Bedd

#

XSUB(A,C) XSUB(A,I,J,C)
.
o IS A SUBSET OF CONSECUTIVE ELEMENTS OF A.

WHEN I AND J ARE GIVEN, C CONTAINS THE I-TH THROUGH
THE J-TH ELEMENTS OF A, OTHERWISE TWO ELEMENTS
#
#
#
#

ARE ENTERED AND C CONTAINS ALL ELEMENTS IN A
BETWEEN THESE ELEMENTS.

#Hid

D-2h

D.2 ©SOME FAMILIAR EXAMPLES PRESENTED IN SET-THEORETIC FORM

BINARY RELATIONS

A= {<c,a>,<c,d>,<a:e>’<a’f>’ //p\\
d
.<a’k>,<d,k>,<d9b>’<d'h>] e/z\k/i\h

CARD(A) = 8

CONVERSE of A: CV(A,C)

e f k b h
C = {<a,c>,<d,c>,<e,a>,<f,a>, \\‘,/'\\$i/
<k,a>,<k,d>,<b,d>,<h,d>} a\ /d
¢

1. Find BEGIN and END points.

DM(A,B) = RG(C,B) B = la,c,d}

RG(A,E) = DM(C,E) E = [a,b,d,e,f,h,k]
2. Find FIRST and LAST points,

RL(B,E,F) F=c]

RL(E,B,L) L = {b,e,f,h,k]

3., Given points P, find successor points S,

IM(A,P,S) If P={c] then S = [a,d]
If P= ja] then S = [e,f,k}

EXECUTION TIMES IN SECONDS ON IBM 360/67

DOMAIN CONVERSE 1 IMAGE 10%
#A=(2) 100 0.004 0.041 . 0006 .004
(2) 500 0.019 0.302 . 0006 .027
(2) 1000 0.035 0.685 .0007 .069
(2) 5000 0.148 5.142 .0013 .769

D-25

LTE RINGS

he———g

‘\\‘a//'

f/ N o

A = {<i,d>,<d,e>,<e,f>, $ 3‘-> ,\\\

<f ,a>,<a,b>,<b,i>, P‘b"°\\\\ 1 k
i/ d‘/

<a,g>,<g,h>,<h,a>,

J

<p,0>,<0,e>,<e,p>,
<c,j>,<j,k>,<k,c>,<b,cg}

CARD(A) = 16

Given points B, find all reachable points C,

#L1ST REACH

> 1 SUBROUTINE KREACHCA»B»C,T)

> 2 INTEGEK A(l)oB(l):C(l)oT(l)

> 3 CALL UN(BsBsC)

> 4 100 CALL IMCASBLT)

> S IFC(CARDC(T) «EQ¢0) RETURN

> 6 CALL RL(T.C»B)

> 7 IF CCARD(B) +EQ «0) RETURN

> 8 CALL UN(CC,B»C)

> 9 GO TO 100

> 10 END

ACTUAL RUNS

CARD(A) = 1000 gave CARD(C) = 12
CARD(B) = 1 cpu~-sec = 0.0207
CAl. A) = 5000 gave CARD(C) = 992
r 2B)=1 ~ cpu-sec = 2,48

OPERATIONS EXTENDED TO N-TUPLES

A ={<p,q,r,s,t>,
<k,z,m,n,o0>,
<a,b,c,d,e>,
<u,V,W,X,y>,
<f,8,h,1,J> }

I-TH DOMAIN of A

DM(1,A,C)
DM(3A,C)

C = ga,f,k,P,u
C = {c,h,m,r,w

I-TH RESTRICTION of A to B

let B =

]

{z,s] then for
RS(2,A,B,C)

C = [<k,z,m,n,o>}

and

RS(4,A,B,C)

C = {<p,q,r,s,t>}

LET A = {<name,mother,father,spouse,sex>}

GIVEN x ,find all sisters of x.

let X = {x} and W = {female}

RS(1,A,X,B)
DM(2,B ,M)
DM(3,B,F)
RS(2,A,M,C)
RS(3,A,F,D)
IN(C,D,G)
RS(5,G,W,H)
RL(DM(1,H),X,S)

[n-tuples with x in position 1]
{x's mother, m]

[x's father, f}

{n-tuples with m in position 2}
{n-tuples with f in position 3}
{intersection of D and C}
{n-tuples of G, female in 5 pos.)]

{siaters of x}

D-27

D.% DESCRIPTION OF THE DEMONSTRATION FILES FOR STDS USED IN APPENDIX D.h

Universe:

Item #

March 1967 Current Population Survey with

Income and Work Experience Supplements Included

(Bureau of Labor Statistics).

Married, Spouse

Present, Head and Wife of Family or Subfamily,
Age of Wife 21 or over, Living in 96 of largest
104 Standard Metropolitan Statistical Areas (SMSA).

Unit

Family Files

l.
2.

Family

Family

Family

Family

Family

Family

SMSA

SMSA

Characteristics

Family Code Number

Primary Family
Each Subfamily or
Secondary Family"

Type of Family
Primary Family
Subfamily
Secondary Family

Weighta
Presence of Own Children
None
All 6-~17
None Under 3, Some 3-5,
Some 6-17
All 3-5

Some Under 3

Relation of Wife to Head
of Household
Wife
Child
Other Relative
Non-Relative

CPS Unemployment Rate
0-9.7%
Over 9.7%

BLS Employment Change,
1966-67 '
Under .1%
0.1-9.7%
Over 9.7 %

D-29

Coding

1-11629
0

1-6

1

2

3

0-999999

w N - O

VbW

0-97
98

1-97
98

Item # Unit
9, SMSA
Wife Files

1. Family
2. Family
3. Family
4, Wife
5. Wife
6. Wife
7. Wife

Characteristics

Relative Opportunities
.001~-.997
.998 or more

Family Code Number

Primary Family
Each Subfamily or b
Secondary Family

Race of Wife
White
. Negro
Other

Age

Age at last birthday

Age 99 or over

Labor Force Status, March

Not in Labor Force
In Labor Force

Employment Status
Employed:

At work full-time
At work part-time

Coding

1-997
998

1-11629
0

1-6

w N

14-98
99

N

01l
02

With a job,not at work 03

Unemployed:
Looking for work

Temporary lay-off

New Job

New Job, School
Out of Labor Force:

House

School

Unable

04
05
06
07

08
09
10

Unpaid,less than 15 hrs.ll

Other

Recoded-Intermediate Hours

1-34 Hours

Usually full-time,

Economic

Usually full-time,

Other

D-30

12

Item # Unit

8. Wife
9. Wife
10. Wife

Husband Files

1. Family
2. Family
3. Husband

Characteristic

Usually part-time,
Economic
Usually part-time,
Other
35-39 Hours
40 Hours
41~-47 Hours
48+ Hours
Intermediate Duration of
Unemployment not coded
1l or 2

Intermediate Duration of
Unemployment

Under 4 weeks

4 weeks

5-6 weeks

7-10 weeks

11-14 weeks

15-26 weeks

Over 26 weeks

Not unemployed

Years of School Completed
None
1-4 elementary
5-7 elementary
8 elementary
1-3 high school
4 high school
1-3 college
4 college
5 or more college

FILOW
Negative or none
Amount
$25,000 or over

Family Code Number

Primary Family
Each Subfamily or
Secondary Family

Age
Age at last birthday
Age 99 or over
D-31

Coding

w

QO U

O Ut WN -

C OO WM

0
1-24999
25000

1-11629

0

1-6

14-98
99

Item $

4.

5.

Unit

Husband

Husband

Husband -

Husband

Characteristic

Labor Force Status, March

Not in Labor Force
In Labor Force
Armed Forces

Employment Status

Employed:
At work full-time
At work part-time

With a job,not at work

Unemployed:
Looking for work
Temporary lay-off
New Job ‘
New Job, School
Out of Labor Force:
House
School
Unable

Coding

O N =

01
02
03

04
05
06
07

08
09
10

Unpaid,less than 15 hrs.ll

Other
Armed Forces

Recoded-Intermediate Hours

1-34 Hours:
~ Usually full-time,
Economic
Usually full-time,
Other
Usually part-time,
Economic
Usually part-time,
Other
35-39 Hours:
40 Hours
41-47 Hours
48+ Hours
Intermediate Duration of
Unemployment not coded 1
or 2

Intermediate Duration of
Unemployment

Under 4 weeks
4 weeks

5-6 weeks

7-10 weeks
11-14 weeks
15-26 weeks
Over 26 weeks
Not unemployed
D-3%32

12
99

w

OO

O N Wwn =

Item # Unit Characteristic Coding

8. Husband Years of School Completed
None '
1-4 elementary
5-~7 elementary
8 elementary
1-3 high school
4 high school
1-3 college
4 college
5 or more college

QAU & WK

9. Husband FILOW
Negative or none 0
Amount 1-24999
$25,000 or over 25000

aWeight in file is 100 times the true weight.

bEach subfamily or secondary family within a primary family unit
has a separate number. Subfamilies and secondary families are
contiguous on the file to their respective primary family.

D-33

D.4 EXAMPIE USE OF STDS

RUN SS81:STDS*
#EXECUTION BEGINS

** SET~-THEORETIC DATA STRUCTURE: INTERACTIVE DEMONSTRATION **
(2/18/70)

FOR AN EXPLANATION ENTER "1": (See AppendixD.1)
?GET (H) |
FILE = CPSH1
ENTER PRINT FORMAT: (9I8)
DONE! L(*)= 9 C(*)= 5812 (0.2912 SEC)
H {4 the set of nusbands (heads of households)(See Appendix D.3)
2GET (W)
FILE = CPSW1
ENTER PRINT FORMAT: (10I7)
DONE! L(*)= 10 C(*)= 5812 (0.3250 SEC)
W i4 the set of wives. (See Appendix D.3)

?SET (UNEM, 4,6,5,7) '
* DONE! L(*)= 1 C(*)= 4 (0.0036 SEC)

UNEM 4is the set of codes fon "UNEMPLOYED"

?RS (5,H,UNEM, UH)
DONE! L(¥*)= 9 C(*)= 95 (0.4715 SEC)

UH is set of unemployed husbands

?XPAN (2,W,UH,WUH, 1)
DONE'! L(*)= 17 C(*)= 95 (0.5356 SEC)

WUH combines (matches) the wives of unemployed husbands in a
set of 17-tuples (wife-husband relationships)

?IGTJ (WUH,4,11,0LDR)
DONE! L(*)= 17 C(*)= 13 (0.0023 SEC)

OLDR 44 the set of wives of unemployed husbands who are olden
than thein husbands. '

?RS (6 ,0LDR, UNEM, UNW)
DONE: L(*)= 17 C(*)= 1 (0.0023 SEC)

D-35

UNW (s the set of unemployed wives of unemployed husbands who
are olden than thein husbands.

?LIST(UNW,1,1,-1)
ENTER OUTPUT FORMAT: (5110)

2006 0 1 57 2
5 9 6 3 6520
53 2 5 9 6

6 6321

By examining this with the codes in Appendix D.3, it may be
sdeen that we have Located a 57 year old wife of a 53 okd
husband such that the FILOW (family income Less own wages)
forn each £Ls 4in excess of 6000 dollarns, This may be due %o
pensdions, intenest, dividends, capital gains on othen
Aounces, explaining the basis of this data sample instance.
Obsenve the CPU times used to find this nesult from an ini-

Ll set of 5812 Total time to do STDS
) openations = 1.644 sec.

#SIGNOFF

#OFF AT 18:11.26

#ELAPSED TIME 1400.7 SEC.+ due Langely Lo typed comments!
#CPU TIME USED 10.471 SEC.+ due Largely to program "Loadin
#STORAGE USED 929,573 PAGE-SEC. and "nelocation"!
#DRUM READS 107

#APPROX. COST OF THIS RUN $2.42

#FILE STORAGE 841 PG-HR $.12

The above is an actual STDS session retyped for greater

readability using italics to distinguish the comments.

UNCLASSIFIED
‘ Sccurty Classification N
DOCUMENT CONTROL DATA-R& D

(Securlty classification of titte, hody of ahatract and Indexing annotatton muat be antered when the averall roport ia clasgitied)

O

(- ORIGINATING ACTIVITY (Corporate author) 28, REFORT SECURITY CLASSIFICATION
Unclass
The University of Michigan TRCTYI soifled
CONCOMP Project '
. REPORT TITLE)
CONCOMP: Research in Conversational Use of Computers
- DESCRIPTIVE NOTES (Type of report and Inclusive dates)
Final Report '
- AUTHORTS) (Firal name, middie Iniflal, Taai name)
Franklin H. Westervelt
REPORY DATE ' 7a. TOTAL NO. OF PAGES 7. NO. OF REFS
December 1970 19 + Appendices --
& CONTRACTY ﬁGRAN‘r NO. 98. ORIGINATOR'S REPORT NUMBER(S)
DA-49-083-08A-3050
b. PROJECT NO. 07449-3-F
€. ‘ [T:8 3' 't.u 'E.;on:'fpoa'r NOI(S) (Any other numberas that may‘bo assigned
o : None

0. OISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

V. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

). ABSTRACY .

Thls report describes the final research results of the CONCOMP Project: Re-
search in the Conversational Use of Computers, which was funded from 1965-1970. This
research involved the design, development, and testing of computer programs for
graphlical input of problem statements and graphical output of results from a computer;
the application of the techniques so developed to speech synthesis, systems design
research, and research in the logic of computers; the study, design, implementation,
and testing of systems for describing graphical operations within the format of
procedure-oriented computer programming languages. All of this work was predicated on
the avallability of IBM %60/67 hardware and software. When TSS was unavailable,
CONCOMP undertook two additional tasks: (1) development of the conversational aspects
of an operating system for the central computing facilities to support effective man~
machine interaction; (2) development of an effective hardware interface for the
support of the remote terminal devices.

W

D ov.1473 | UNCIASSIFIED

Security Classification

UNCIASSIFIED

16,

Security Claasification

KEY WOROS

PR _ -
LINK A LINK B LINRKR ¢
noLE wT noLs wre | woce

interactive computing
Data Concentrator
remote termlnal devices
computer graphics
computer-aided degign
audio-response unit
cellular automata

data structures
graphical languages
MAD/I language

extensible languages

biological simulation

UNCIASSIFIED

Svcurity Clussification

