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ABSTRACT

A brief review of the salient features of the theoretical investigation
of the ¢.w. bistatic inverse scattering problem is presented. The effect of changing
the origin of the coordinate system upon the convergent properties etc., of the
spherical vector wave function representation of the near scattered field and the
surface loci Ex E*= 0, is discussed. It is pointed out that a great deal
of analysis remains to be done in this area, The determination of the surface
of the scattering body from knowledge of the local total electric field is given.
Emphasis is placed upon the generalization of the condition E x E*=0 as applied
to perfectly-conducting bodies, to scattering surfaces characterized by the
impedance boundary condition. Properties of the Matrix inversion associated
with the determination of the expansion coefficients from far field data are dis-
cussed. Some numerical results are presented, and restrictions upon the choice

of aspect angles are deduced.
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I
INTRODUCTION

A brief review of the salient features of the theoretical investigation
of the c.w. bistatic inverse scattering problem is presented in section II,

In section III the effect of changing the origin of the coordinate system
upon the convergent properties etc., of the spherical vector wave function

representation of the near scattered field and the surface loci E x E* =0,

is considered.

In section IV, a discussion upon the determination of the surface of the
scattering body from knowledge of the local total electric field is given. Em-
phasis is placed upon the generalization of the condition E x E*=0 as applied
to perfectly-conducting bodies, to scattering surfaces characterized by the
impedance boundary condition,

In section V, properties of the Matrix inversion associated with the
determination of the expansion coefficients from far field data, are discussed.
Some numerical results are presented, and restrictions upon the choice of aspect

angles are deduced.



1§

REVIEW OF INVERSE SCATTERING THEORY DEVELOPED FOR
C.W. BISTATIC SYSTEM

2.1 THE PLANE WAVE EXPANSION

It is shown here that the total field produced by a plane wave incident
upon a scattering body, can be expressed as the sum of two terms, the incident
field and the Fourier transform of a quantity which is related to the scattering
matrix. The resulting expression is valid for all points in space including the
interior of the scattering body.

To begin, the analysis will be restricted to non-magnetic bodies (although
it could be easily generalized to include such cases) and the geometry of the
scattering body will be limited by placing certain restrictive analytical properties
on the surface S which encloses the volume V of the scattering body. The
classes of surfaces chosen, will belong to class C3 defined by Barrar and
Dolph as follows:

A surface S is said to belong to class 03 if there exists a finite number
m of images, x = x(u, v), yv = yv(u, v), 2¥ = 2%(y, v), ¥=1.2.3. . . m of the

disk u2 + v2 < 1 that cover the surface S, and such that the third derivatives of

xy, yv and 2’ with respect to u and v exist and are continuous.
Harmonic time dependence exp(-iwt) will be taken in which case Maxwell's

equations become

VAE = ik [u e

H
ol "o =

k? inside the body
Y A E = -1 (E. /k) 2 ’

k outside the body

“O /60

where k? , the square of the propagation constant in the body, is given by

2 2
= + i
kl W el“‘o m“ocl'



The incident electric intensity will be expressed in the form

gl = (an) %2 a oKX 2.1)

where k is the direction of the incident wave, and a, the unit vector denoting
polarization.

The homogeneous body will be treated first. In this case, it follows
from Barrar and Dolph, that the total electric intensity E induced by the plane
wave Eq. (2.1), incident upon the body, satisfies the following integral equation

(which has a unique solution)

G

E(x) = E (x) + =™ Edv- < V - $(E - n)ds
\' s

[y

(2.2)

where

p= % ., BR=Gx-x)

and E  is the value of E obtained by approaching the surface from the interior
+
of the body. If E is the value obtained by approaching the surface from the

exterior of the body, it follows from the continuity relations that

- +
k?§-5_1=k2§-_13 . (2.3)

The appropriate expression for the magnetic field is given by

§(§)=H() —— V A E §adv (2.4)
\

Before deriving a plane wave representation for E(x), the following

vector will be introduced.



ik [ k-

(k?_k2> -ik'. x'
= e - = E'WKdv- = e E -nds'
K2 -

v S (2.5)

From Eq. (2.2), it is seen that when |x| — o, in the direction given by the

vector k', then the total field becomes

- ik | x]|
E@ ~ E@+ [T elxl T (k', k) (2.6)
. X

indicating that the vector T (k', k) is related to the scattering matrix. When

Ikl = |k, T(k',k) is a measurable function being proportioned to the far
scattered field in direction k', which is produced by a plane wave of frequency
ck, incident upon the body with direction of incidence given by /1‘_< . The following

theorem may now be proven.

Theorem:
“ik!.
If é(kglo = 1 k"X pxK) dx | (2.7)
-t 2 D 3/2 -\ 2/ M8
(27)
T (k',K)
then ¢£(k"k) = 6(k-k)a- lm 5> . (2.8)
€0 k™ -k' +ie
Proof:

It follows from Eq. (2.2) that

<k? - k2> 1 -ik'. x
b = o-x)ar et S —Len | maw | E Epaxay
(27)
\
1 'il_E"E
- = v $ (E-n) ds
12 (zﬂ)s/z i



On setting

one can show that

when Scn is the surface of a sphere of radius R00 . Letting k have a small
imaginary part, it is seen that the surface integral will vanish when R @

The resulting integrals can be reduced as follows

(x - x') -ik'-x
1 -ik' x /—" // B
7 e dpdx
(2%)3/2 (27 ) 2

—k -ie

R B

p k—1e

e
T k2—k'2

Combining the above expressions, one obtains the result

+ie

¢ o _T0w
—(1_{"5) = 6(_15'1_{')3- lim —‘——‘T——

€e—=>0 k -Kk' +ie
As an immediate consequence of the above theorem, the total field everywhere

in space including the interior of the body,can be expressed in terms of the incident

field and the quantity T(k',k), as follows



T(pk) dp . (2.9)

If the integration space p is expressed in spherical polar coordinates (p, 6p, ¢p)
where the range of the variables are - o <p<w, 0< 6p < 7/2, and
0< ¢p < 27 , then in the above integral, the contour of the variable p bends
above the pole at p = -k, and below the pole at p =k .

It can be shown in a similar manner that the magnetic field can be

expressed in a similar form

ip-

]

1 e

3
W ,uo(27r) /2 p2— k2

H(x K = H (x,k + pAT(pK dp . (2.10)

The above results were derived for a homogeneous body. The results
may be extended to include inhomogeneous non-conducting bodies, i.e. where
k2 = wze u (a real function) and kfi)' varies continuously in the medium. In this

1
case, the appropriate integral equation for the total electric field is (Barrar and

Dolph)

E = E1+—l- ) (kz_kz)Edv- v ) @2—k2> (E - n)ds
= 4 1 - 2 1 = =
v 4rk S

y X <Vk2-E> .
47 -1 - k2
v ]

Unfortunately from the standpoint of rigor, only the uniqueness of the
solution of this integral equation has been proven. It's existance has not yet
been shown.

Additional relationships involving T (k',k) have been shown in

8579-4-Q (1968),  among which is an integral equation involving T (k', k)



and the Fourier transform of the body.

2.2 ALTERNATIVE REPRESENTATION FOR POINTS EXTERIOR TO THE BODY
For a fixed direction of incidence and frequency, the quantity T (k', k)

is required for all values of k', in order to obtain expressions for the field

everywhere in space. Unfortunately, for fixed k, T (k',k) is a measurable

function (far scattered field), only for values of k' such that (5’ , =| k | .

However it will be shown that restricting the requirements on the knowledge

of T (k',k) to the values of k' which lie on the sphere ll_('\ = |_15\, the total

field can be obtained everywhere outside the minimum convex surface enclosing

the body. To show this, let the plane z = z, be the tangent plane of the body,

such that the body lies in the half-space z < z - For points in the half-space

z > Z s the following representation of the near scattered field

I

1 el‘p )

(2#)3/2 p2 - K

E® (x) = T (p,k) dp (2.11)

[\

can be reduced as follows:
Set P, * k sin @ cos
= k sin « sin
Py B

pz=kq

when the domains of integration are
0<p<2r, O0<a<7f/2-im, and -o< q< ©
Expression (2. 11) becomes

m[2-im (271 (o0

ES - ___%_/_2_ 72 (E'E? gla, B, q) cosasinadadpdq,
(27) o o L @ -cosa-ie
g = exp {iksina(xcos B+ysinB)+iqzk} . (2.12)



From expression (2.5), it can be seen that for z > Z s the contour in the

following integral
® .
1 (oK) dg
2 2 .
Lo 4 -costa-ie

may be deformed, to yield the following

mie % T(ksinacosp, ksinasing, kecosa; k)

Hence expression (2. 12) may be placed in the form

T/2-i0 27

. .
s . Xk X E_(o,f) sinadedp (2.13)

= 2r

where
k' = k(sina cos 8, sin a sin 3, cos @)

and E_o is the amplitude and phase of the far scattered field in direction given

by (8,0, i.e.
ikR
s

~f
E 7 E, ) (2.14)

Thus it can be seen that for c¢.w. bistatic scattering, where ILJO (0, ¢) is
a measurable function, the scattergd field for all points in the domain z > z0 ,
can be obtained from expression (2. 13) provided that the analytic continuation
of I_i)_o (6,$) can be computed for complex values of 6, from knowledge of real
values of 6 . It has been shown (Weston, Bowman, Ar, 1966 ) that the analytic

continuation to complex values of 6 is possible provided that }20 (6,9) is



known over the complete domain 0< 6 < 7, 0< §< 27, and a procedure
for doing so is presented.

By rotating the coordinate system, equivalent expressions to (2.13)
may be derived which yield the scattered field everywhere outside a different
half-space excluding the body. Since the union of all the half-spaces exterior
to the body is bounded by the minimum convex surface enclosing the body, it
can be deduced that the scattered field at any point outside this convex surface
can be obtained from the knowledge of the far field bistatic data (measured
over all angles).

At this point, it should be mentioned that expression (2. 13) is not the
only expression that can be used to evaluate the near scattered field from far
field data. It has been shown that expression (2. 13) can be re-expressed in
terms of an expansion of the spherical vector wave functions. For a fixed
region of the coordinate system, the expansion will be convergent down to at
least the minimum sphere enclosing the body. Alternatively it was shown

(8579-2-Q) that expressions (2. 13) could be placed in the form

S e -n
E = =g RE (6,)
n=0

where E = are derived from the gn_l by a recurrance relation (Wilcox expansion).

2.3 EXTENSION OF THE DOMAIN OF CONVERGENCE AND THE CONCEPT OF
EQUIVALENT SOURCES
It was shown above that for a fixed direction of incidence (fixed transmitter
position), one could derive the near field everywhere outside the minimum convex
surface enclosing the body, from measurements of the phase, amplitude and
polarization of the far scattered field made over all directions. This result
has been extended. Considering representation (2. 13) it was shown that it was

convergent down to the tangent plane z = zo, and represented the scattered

field everywhere on the half-space z > Z - However for perfectly-conducting



smooth convex bodies, it has been shown (Weston, Bowman,Ar, 1966) that this
expression was convergent down to the plane z = z* where z*> zo , wWhere

the value of z* depends upon the global geometry of the body. Since the true

total field displays a discontinuity across the physical surface of the body,
expression (2.13) combined with the incident field, cannot represent the true

field in the intersection of the half-space z > z* and the volume of the body.
Therefore in this region, expression (2.13) is said to represent the field

arising from a set of equivalent sources. In particular it was shown that equivalent
sources for a prolate spheroid lie on a line joining the focal point, and for a
sphere, the point at the center. Thus for smooth convex bodies, the domains

of convergence are not limited by the minimum convex surface enclosing the

body, but by a much smaller volume, that is contained by the minimum convex
surface enclosing the equivalent sources. As an example, for the prolate

spheroid with its center lying at the origin of the coordinate system and oriented
so that its major axis lies along the z-axis, representation (2.13) is convergent

in the half space z > ¢, where c is the focal length, and both Wilcox's
representation and the representation involving the vector spherical wave functions,
will be convergent down to the sphere of radius c.

The extension of the domain of convergence will hold for piecewise
smooth conducting bodies. However the minimum convex surface enclosing the
equivalent sources must enclose the curves or points of surface discontinuties
such as edges.

For cavity regions that penetrate the minimum convex surface that en-
closes the equivalent sources, alternative representation for the scattered or
near field must be employed. Such representations will not be of the exterior
type, the plane wave representation (2.13), the expansion in vector spherical
wave functions, or Wilcox's expansion, which are based upon knowledge of the
far scattered field as a starting point, but must be of interior type, i.e. based
upon knowledge of the total field in a domain adjacent to the body. Such

10



representations are only convergent in a finite volume. One particular type
of such a representation is given in 7466-1-F (Weston Bowman, Ar, 1966).
2.4 DETERMINATION OF THE SURFACE OF PERFECTLY-CONDUCTING
BODIES.
Given expressions for the total field (obtained from far field data)
which can be computed in the vicinity of the surface of the body, the next step
is to employ techniques which will locate the surface of the body. For perfectly
conducting bodies, the tangential component of E (the total field) must vanish. ‘
This implies that at a point on the surface E = n & where n in the unit normal
to the surface and é is a complex quantity. For a general point in space the
total field can be decomposed into the real vectors é I and éR as follows
E - ¢ R+i_§ .

For a point on the surface g An=0 and _f_ A n =0, which implies that

I R
é_ 1/ g R- 0. Thus a necessary condition for a point to be on the surface of a
perfectly conducting body is that, at that point, the total field must satisfy the

condition

when E* is the complex conjugate of E ., The advantage of this condition is

that it is a local condition, requiring only the calculation of the total field at

the point in question. Since the above condition is not sufficient, additional
requirements would be required, such that E x E* must vanish at adjacent points

xand X+ Ax, and that

which implies that E is normal to surface. In addition, the resulting surface

rmed by the set of points must be closed. However, even if a surface S0

11



was found such that it satisfied these conditions, it would not necessarily be
the correct surface. Since for the enclosed volume formed by two closed
surface, on which n x E vanishes, there is a discrete spectrum (in frequency),
this implies that at a particular frequency, there may exist additional surfaces
Sn for which n x E vanishes. However the geometry of the additional surfaces
depend upon frequency, and these can be separated out from the proper surface
by employing at least two different frequencies.
For the illuminated region of the body, an auxillary condition was de-
veloped which considerably helped discriminate the proper surface from the
loci E x E*=0. This condition given as )E_i} - |E_SI = 0, yields an approximate
surface, which approaches smooth convex portions of the correct surface in
the limit of high frequency scattering.
From the numerical standpoint where there are errors due to input
information, etc., it was demonstrated both theoretically and numerically
that the condition E x E*= 0, should be replaced by finding the minima of
[ExE* .

2.5 FAR FIELD INFORMATION LIMITED TO A SOLID ANGLE.

For most practical solutions, the far scattered field (phase, amplitude
and polarization) is measurable only over a region of limited bistatic angles.
In this case it is important to know what information can be determined about
the body, where measurements of the scattered far field are confined to a

limited domain of aspect angles. This in turn depends upon the accuracy to

which the near scattered field can be computed using the limited far field data.

A general discussion of this latter point is presented in 8579-1-Q. However,

the employment of high frequency asymptotic results yields a far more illuminating
picture (8579-2-Q). These results will be briefly presented here. When the
scattered far field is measured over a limited aspect region (example: the cone
0<6< 60 ), the analytic continuation of quantity E o (e, B) given in expression

(2.13), cannot be found for the complete complex o« plane. In this case the

12



following approximation to expression (2. 13) will be employed

27 6

(0] ‘.

i ik
S ik e~ X Eo(a,B) sinadadp . (2.15)

- 2r
0 0

For the case of the perfectly conducting sphere of radius a , illuminated by
the plane wave

i A -ikz
E = xe

the geometric optics scattered far field has the form
a a :
E_O(a,B) =-3 & (e,B) exp [—21ka cos (0/2)] ,
where
e (o,B) = _;’_{‘ [cos o coszﬁ + sinzﬁ:] -)2 {-_1 - cos af] sin 3 cos B -
-zsinacosf .

From relation (2.15) the near scattered field is given approximately by

2r 0

. o .
Eox) = -141‘—7% elkf(a"B)é(a,B) sinadadg |, (2.16)

where
. . o
f(a,B) = r [sm 6 sin & cos (ff - B) + cos 6 cos a] -2acos ¢

2

As k— o, the dominant contribution to the integral arises from the vicinity

of the stationary phase point (B=f, o= ozo) where a satisfies the equation

o
rsin{(e¢ -60) = asin (—-9>
o 2

13



provided that 0 < a < 00 . By means of first order stationary phase evaluation

we obtain immediately

»

<ao>
1/2 iks - ika cos| ="
r:s ) I:D(o)‘J -'é(ao’ 9) e 2

where

ao 28 2s ao
= —_— + = — —
D(s) @os 5 a><1+ o CO8 2> .

The distance s given by the relation

o
8 = rcos(a —9)-acos<—9>
o 2

is the distance along the reflected ray from the point of reflection. The resulting
A

expression for E_s(g) is the geometric optics near field expression. When the

far field information is limited to the cone 0< 6 < 00 , the near field expression

will be limited to a volume of space such that

a
rsin(e -6) = asin<—°> 0<a <6 , (2.17)
o 2 - 0— o0

where (r,6,@) are the coordinates of a point in this volume. In order to find
the portion of the scattering surface which can be determined, set r = a, in which

case it is seen that

a

0
9= % Osayc 8,

This then implies that the near scattered field given by expression (2. 15) can be
found on the portion of the sphere given by the cone 0< 6 < 60 /2 . For points
outside the volume of space given by Eq. (2.17), stationary phase techniques

cannot be employed, in which case the asymptotic approximation to Eq. (2. 16) is

14



obtained by alternative means.

The above example illustrates the fact that in the case of high frequency,
asymptotic evaluation of expression (2. 15) is equivalent to tracing back the rays
to the portion of the scattering surface from which they arose. The result
is not confined to just perfectly smooth convex shapes but can be applied to piece-
wise smooth convex shapes, the far scattered field is decomposable into components

of the form

ik y_(6,9)
_ n
P_JO(G:¢) = zn: én<9.¢) e

and stationary phase evaluation of the expression (2, 15) for each individual
component, effectively traces backthe various rays to their originating portions
of the scattering object. The result is applicable to flat portions, in which
case the far field component approaches a delta function of the angular variables

as k » o . The example of the flat plate given in 8579-2-Q illustrates this.

15



III

EFFECTS OF A DISPLACED ORIGIN ON CONVERGENCE PROPERTIES

In employing the Wilcox theorem or the vector spherical wave function expansion,
it can be shown that the near field representation, derived from the far scattered
radiation pattern, is uniformly convergent for all points outside the minimum
sphere enclosing the equivalent sources of a smooth convex shaped body. From
the knowledge of the near field everywhere outside this minimum sphere, it is
sought to find the associated scattering surface by proper application of suitable
boundary conditions. These Inverse Scattering Boundary conditions, in general,
ought not involve any constituent parameters (surface normal n , surface locus
S(x,y, z), relative impedance n ) of the unknown scatterer and must be given
solely in terms of the known nearfield representations of the incident and the
scattered field with respect to a fixed origin which lies within the scatterer.

For a perfectly conducting surface it was found that the following two boundary

conditions can be successfully applied:

{1g]- 2%} = o 6.1

where E_l denotes the incident field and E_S the nearfield representation of

a)

the scattered field. This boundary condition represents the geometrical optics
limiting approximation and in general, is applicable only within a narrow cone
about the specular point (8579-3-Q, 8579-4-Q).

b)

{ET X E_T’P } = 0, where ET = E + ES (3.2)
This boundary condition was derived by V.H. Weston (Final Report 7644-1-F,
Weston, Bowman, Ar). Although it is only a necessary but not sufficient condi-
tion, namely producing a family of concentric surface loci in addition to the

proper one, its application together with {ll}_ll - IP_lsl} = 0 proved to be

16



indispensable since that portion of the proper locus within the conical section
exterior to the Wilcox minimum sphere can be determined with great accuracy
for a minimum number of expansion terms, (8579-3-Q, 8579-4-Q).

To be more precise, the combined boundary conditions will yield the
proper surface locus only on those portions of the surface for which the chosen
expansion for the scattered field is convergent, for a prolate spheroid, the
boundary conditions applied to the complete vector spherical wave function ex-
pansion associated with the origin located at the center of the body, will yield
portions of the surface outside the sphere r =c¢ where c is the semi-focal
length. In order to obtain the side portions one has to displace the origin in
the plane passing through the center of the body and perpendicular to the axis of
the body. Thus in using far field data one needs to know the domain of convergence
of the expansion. Generally this can be only obtained if the complete expansion
were known, which in practice is not achievable since the number of receiver
locations will be a finite number. If the domain of convergence is not known, then
the application of the boundary conditions to the expansion may yield some correct
portions of the body, but what the correct portions are cannot be prescribed unless
some additional condition is employed. However if it was known apriori that the
origin of the coordinate system was located at the center of the body, and the portions
of the body farthest removed from the origin where smooth and convex, then the
application of the boundary condition will yield the correct surface locus (to within
some numberical error) for these portions. Thus if the approximate location of
the origin was not known, some additional criteria should be employed, such as
the one described below.

A possible additional condition would be to displace the origin of the
coordinate system, and on employing the boundary condition to the scattered field
expansion derived in the displaced coordinate system to obtain a new surface
locus, one would then determine the shift in the surface locus due to the displace-

ment. If the shift is negligible for portions of the surface, then those portions

17



may be the proper surface. For example, if the origin of the coordinate
system located at the center of a prolate spheroid, was shifted slightly

down the axis, the loci for the top and bottom of the prolate spheroid derived
from the boundary conditions applied to the near field expansions, should be
the same as before the shift. These remarks are strictly qualitative. A
quantitative study should be made and is outlined below.

Let x represent the points in a cartesian frame of reference the origin
of which is located in the vicinity of the scattering body (its precise location
was not established) Let a plane wave be incident upon the body producing a
scattered field, the far field

s o ikR
Er g E690
being measured at a finite number (N) locations {en, ¢n} . Let gs (x,N)
be a finite expansion of the near field derived from the far field data (the ex-
pansion may in vector spherical harmonics, or a Wilcox type expansion)
Suppose that the origin is displaced a distance d, such that if x'

represents a point in the displaced coordinate system then
x'=x +d

In the displaced coordinate system, the far field directions {On, ¢n} remain
the same, (i.e. for R'—wso, 6'=6, @¢'=(), however the far field quantity

E' (0, @') is related to E (6, @) by the relation

E' (6,8 = E (6, §)exp(-ik d)

where k is a vector in the radial direction. Let _'1:3_"s (x', N) be a finite ex-
pansion of the near field derived from far field data (N receivers) in the displaced

coordinate system.

18



If x is a point in space where the complete (N = o) expansions are

convergent the difference
TE'S (x, o) - '_fi" (x +d, o)

would be zero. However when a finite number of terms are used in the expansions
(finite number of receivers) the difference will not be zero, except of course at
the receiver positions in the far field. Thus it would be fruitful to determine

quantitatively a number &é(d) such that if

d

s S .
lim M'Sé(a)‘gl‘ ,

d—so0

where Ei is the incident field, the application of the boundary conditions
on the total field at points x for which the above inequality holds will yield the
correct surface to a specified degree of accuracy.

Such a condition given above may have to be obtained through numerical
examples. It will depend upon what expansion for the near field is chosen, and
how the expansion is matched to far field data (i.e., by matrix inversion, least
squares, or otherwise).

To obtain the portions of the surface outside the domain of convergence
(if the complete expansion were used or outside the domain given by the above
inequality for a finite expansion, the origin of the coordinate system wouldhave
to be significantly changed. For this new location of the origin, the domain
validity of a finite expansion would have to be chosen by displacing slightly the
origin and employing the above inequality.

Some initial investigations of the effects of displacing the origin for a
finite expansion in vector spherical wave functions, upon the surfaces derived
through the boundary condition E x E* =0, is discussed in internal memo
(W. Boerner). However, this memo is just an initial attempt to understand the

problem and will not be reported here.
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v

ASPECTS ON CONTINUOUS WAVE INVERSE SCATTERING BOUNDARY
CONDITIONS FOR THE DETERMINATION OF THE
SHAPE AND THE MATERIAL CONSTITUENTS OF A CONDUCTING BODY

4.1 INTRODUCTION
Although methods have been outlined on how to determine the material

characteristics of a conducting body, employing the monostatic-bistatic theorem
(7644-1-F, Chapter XI), no suitable method has been found so far which will
simultaneously determine the shape and the associated material constituents
of an unknown body, since the inverse scattering boundary condition
{ ETXxE' =0, where EL <E +E° } , derived by Weston (7644-1-F,
Chapter X) holds only for the case of a perfectly conducting body. This condi-
tion z( gT X E_T =0 } , though necessary but not sufficient, may however be
considered as a first step of formulating a more general ¢.w. Inverse Scattering
Boundary Condition.

An attempt of generalizing this condition will be prescribed in this section.
Before any C. W.1.S. boundary condition can be applied, a suitable near field
representation of the scattered field from the measured far field radar data
must be sought. This can be achieved by either employing a series expansion
into proper vector wave functions and if so required their associated plane wave
integral representation (7644-1-F, Chapter V; 8579-1-Q, 8579-2-Q) or an
expansion method derived by Wilcox (1956) and Muller (1956) as discussed in
7466-1-F (Chapter IV). The associated expansion coefficients may be obtained
from a matrix inversion technique (8579-2-Q and 8579-1-F). Assuming that
such a sufficiently accurate nearfield representation of both the electric and the
magnetic field vector is found, the question of how to derive suitable I.S. boundary
conditions arises which as well can be applied to the determination of the character-
istic parameters of conducting bodies and their shapes.

In contrast to problems of direct scattering and diffraction for which
the shape and the material constituents of the scatterer are assumed to be known

a priori together with the prespecified incident field vector E_l as regards the
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computational coordinate system and thus may be incorporated into the boundary
conditions, in problems of inverse scattering such boundary conditions must be
sought which in particular do not depend upon either the shape or the material
properties of the scattering body and its enclosing surface, but allow to specify
those characteristic parameters uniquely. And this solely from the near field
representation of the electric and the magnetic field vectors, derived from the
measured far field data as described above. Now the question arises as to

how many and which characteristic parameters must be defined to uniquely deter-
mine the shape and the material constituents of the unknown scatterer. In the
scalar case it is sufficient to employ the following parameters:

i) the local surface normal 2 (R, 6, ) of the proper surface,

i) a relative surface impedance 7 (R, 6,#) which is a scalar quantity,
or the interior propagation constant k (R 6, .
Thus at least three independent characteristic equatmns, solely expressed in
terms of the near field quantities QT = I_:i + E_s and I;IT = gi + I_is , must be
found to determine the surface locus S (R, 6,#) and the surface impedance
=|nlexpiy.

Whereas in the vector case the relative surface impedance must be
formulated in dyadic or tensor formulation, involving a further unknown parametex
which may be described by a local polarization angle € (R, 6, §; k , e ) or
a local depolarization angle &(R, 9, §; k , e ). These angles can be expressed
in terms of the surface normal n (R, 0, ¢) as well as the unit direction vector

(] A
of the incident wave k, and its associated polarization vector e . Thus the

impedance dyadic % v:ill be a function of both the material prop:rties of the
scattering surface, the surface locus S (R,0,#) or its associated local normal
2 (R,6,#), and the prespecified properties /i{i’ 2 i of the incident wave. This
additional complication may ask for one or two more independent characteristic

equations for the elimination of € or 6.
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If such a set of independent scalar and vector equations exist which can
be employed to uniquely determine the surface locus S (R, 6, ) and the material
characteristic n, then one may argue that the I.S. boundary condition
ET X ET*= 0 may constitute the remaining part of such a set of independent
equations for the degenerate case of n = 0. With this goal in mind more de-
tailed properties of { IQT X E_T* =0, E_T X Qi + ES} will be discussed next,
as well as properties of the Leontovich boundary condition and its complementary
formulations. Then it will be shown that for the scalar case a set of independent
scalar and vector equations can be derived, based upon the concept of describing
the material surface properties by a Leontovich boundary condition, which will
in the limit as n = 0, degenerate into the condition ET X E_JT* = 0 as derived
by Weston in 7644-1-F (Chapter X).

4.2 THE C.W.I1.S. BOUNDARY CONDITION ILZT X E_T*= 0 FOR THE DEGENERATE
CASE OF A PERFECTLY CONDUCTING SCATTERER, i.e. n=0.
In chapter X of 7644-1-F, the necessary but not sufficient condition

*
E_T b ET = 0 was derived intuitively based upon the physical properties that the

total field ]_E_T = gi + P_]s must satisfy the boundary condition 1 x L:T =0 on

the surface of a perfectly conducting body, and since the surface normal ?1 is

a real vector also ET cannot be of complex direction, thus E_T X ILJT*= 0.

The application of this boundary condition is verified for spherical and prolate
spheroidal test cases in 8579-3-Q and 8579-4-Q, together with the condition

{ I]_E_i] - fE_:SI } = 0 as derived from the geometrical optics approximation. Both
conditions yield the maost accurate results if the incident polarization is parallel
to the generators of the scattering body, since then E_i + E_S = 0 identically.
Although QT X P_JT*= 0 is only a necessary condition but not sufficient in that

an infinite set of exterior concentrical (hyperbolic) surface loci, and for scatterers
of larger electrical measure ka a limited set of interior pseudo locilemanating
from the associated interior caustic) in addition to the proper one are generated,

this proper surface locus can be determined with least error. In fact, in 8579-3-Q
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and 8579-4-Q, it is verified that with _IQT X F_JT*= 0 the proper surface locus
can be identified more accurately as with the condition )I_E_ll - [E_S] =0 for
which only one locus is obtained, however with pronounced deviations from the
proper one (8579-4-Q). The family of resulting surface loci of ET X _IQT*= 0
are equidistantly spaced, concentrical hyperboloids with AX = kAR = 7/2
spacing along the axis of symmetry for rotationally symmetric bodies with
end-on incidence. The resulting plots for one and the same scatterer versus
the electric length are identical for different frequencies. If however, the
resulting loci are plotted versus the geometrical length R = X/k, then it can
be shown (8579-4-Q) that the proper surface locus is stationary whereas all the
other interior as well as exterior additional loci will shift, since the proper
surface locus is independent of the wavelength and all further loci correspond
to a discrete set of eigenfrequencies (7644-1-F, chapter X). Thus the application
of the boundary condition E_T X E_Ttk: 0 at only two different frequencies may be
sufficient to uniquely determine the ahape of a smooth convex-shaped, perfectly
conducting body in those regions which are exterior to the Wilcox minimum
sphere. Those portions of the scattering surface within the Wilcox minimum
sphere can be determined with E_T xE T 0 as well, but not with the condition
g[E_l[ - Esl}= 0, if properties of displacing the computational origin from the
geometrical center are employed at two different frequencies by matching the
geometrical length of the displacement vector so that a stationary surface locus
within the angular domain along the direction of the displacement vector is
found, (8579-1-F ).

Thus the boundary condition E_T X ]_E:_T*= 0 must be considered indispensable
in computational problems of C. W, Inverse Scattering as applied to the identi-
fication of smooth, convex-shaped, perfectly conducting bodies,

Finally the question arises whether the boundary condition E_T X ET*= 0

may not bear more physical information and whether its generalizationto conducting
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bodies may reveal a relationship with Maxwell's Stress-Energy Tensor at the

bounding surface of a scatterer. It was therefore attemptedto employ the Leontovich

boundary condition of the scalar case to study this question in more detail.

4 .3 THE LEONTOVICH BOUNDARY CONDITION AND ITS VARIOUS
COMPLEMENTARY FORMULATIONS.

In problems of C. W. inverse scattering, the concept of an impedance
boundary condition may be employed to its best, if such an impedance can be
defined so that it describes the averaged local electromagnetic properties of
the unknown scattering surface. The boundary condition (4,3.1), known as
Leontovich condition (Leontovich, 1948) suggests to offer the desired formula-

tion for the scalar case:

ET-R-EDA = nzoﬁng (4.3.1)

where

jE_T = l<_31 + }:_ZS , the total electric field

H = g‘ + I;IS , the total magnetic field in the region surrounding
the body,
Z0 = [=2 = S—;— = 120 7 Q, the intrinsic impedance of
o (o} free space,

n=fx , the unit outward normal as regards the surface which

is a purely real vector.

n , the relative impedance, a complex scalar quantity, designated
as Leontovich impedance.

The degenerate cases for which (4. 3. 1) is not applicable are treated in detail
in Senior (1959, 1962) and Weston (CAA-0020-10-TR) and will be excluded from
further discussion. The direct application of (4.3.1) would imply the a priori

knowledge of n=n(R,6,f) and n =n(R,6,f). Thus other formulations of
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(4.3.1) are required which, however, must contain identical information such
that the surface locus S (R, 6, ) and n (R, 9, ) can be found solely from

E_T and I_iT . The first additional equation is found by applying a vector product
operation of ’1; onto (4.3.1), yielding

ETxf = 7 Z, [gT-(ﬁ- ) ’ﬁ] (4.3.2)
which merely represents an alternative statement of (4.3.1) and may be rewritten
with £ =1/n into

H -(3-H)DB = -£Y (xE) (4.3.2a)

and thus corresponds to (4.3.1) under the transformation §T - I__lT s

Z, I_IT -~ -Y E T) and n-» §, where § denotes the relative admittance.
Senior (1962a) has shown the affinities of this transformation with Babinet's
principle and has proven the invariance of this transformation, attributing n
to the material constituents of the body.

In addition to (4.3.1) and (4.3.2) its conjugated formulations will be

introduced as:

ET-@-ET)D = o zoﬁng* @.3.3)
and

ETxd = n* Z_ [g’r*-(ﬁ- H ) ﬁ] (4.3.4)
or

[H*— @- =) ﬁ] = - EXY dxeT) . (4.3.4a)

The validity of statements (4. 3.3) and 4. 3.4) must strictly assume
that all implied field quantities ]_EJ_T and I_{T, as well as the relative impedance
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n =n (R, 6, #) are analytical functions, and n=n (R, 6, §) is piecewise continuous,
satisfying the set of linear equations (4.3.1) and (4.3.2) which in turn satisfy
Maxwell's equations. The particular constraints on n and n for which this is
not the case are discussed by Weston (CAA-0020-10-TR), and scatterers of these
particular features will be excluded. The conjugation of (4.3.1) and (4.3.2)
solely implies the reversal of the reactive character of all implied electromagnetic
quantities, thus the pair (4.3.3) - (4.3.4a) bears similar affinities as does the
pair (4.3.1) - (4.3.2a), now however, for a surface of reversed reactive character.
Assuming that the electromagnetic behavior in the vicinity of a scatterer
satisfies the Leontovich boundary condition (4.3.1), the question must be
answered whether a set of scalar and vector equations can be derived from the
complementary set (4. 3. 1) to (4.3.4) of the Leontovich boundary condition
which may be employed to determine the surface locus S (R, 6, §), the surface
normal A (R, 6, ), the relative surface impedance n (R, 68, #) solely from the
knowledge of the near field representations of E_T and IjT . This may be
achieved by proper scalar and vector product operations of (4.3.1) to (4.3.4)
onto one another which must result in the following set of independent equations:
i) A vector or scalar equation which ought to be independent of n and
may thus determine the surface locus S (R, 6, ) of the unknown target.
This equation may possess a discrete set of additional solutions,
resulting in a family of concentric surface loci.

ii) A set of independent scalar equations necessary to define both the
amplitude / n [ and the phase n/ /n|= exp iy of the relative surface
impedance. These equations should result in a pair of quadratic equations
such that a fourfold complementary solution is obtained, corresponding
to the complementary character of equations (4.3.1) to (4.3.4).

iii) A closed form expression for the surface normal n, which must
yield a purely real vector quantity and ought not depend upon 7,

otherwise the correct solution of n, satisfying (4.3.1) cannot be found.
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To this end the scalar formulation of the Leontovich boundary condition
was considered only which in general cannot be employed for problems of inverse
scattering as applied to the determination of the shape and material constituents
of closed convex-shaped bodies. The vector wave nature of the inverse scattering
problem requires the definition of a dyadic formulation of the relative impedance,
where the following equations must be satisfied on the surface of a non-perfectly

conducting body

BT -(G-ENR =27 (BxH) (4.3.5a)
T & = T A T, A
E xn=Zon'(§ -(n-H')n) . (4.3.5b)

The impedance dyadic is symmetric and will contain all terms except for the

case of plane wave incidence onto a planar surface with invariance along one axis
normal to the plane of incidence for which the diagonal terms are involved only.

In all other cases a local angle of polarization as well as a local angle of de-
polarization together with the radii of curvature will be involved. These prop-

erties however may not allow the formulation of the required independent equations
since the impedance dyadic will become a function of the radiant dependence

along the outward normal (Morse and Feshbach, 1953). Before any further
assumptions can be made, the scalar case will be investigated in detail.

4,4 FORMULATION OF A SET OF INVERSE SCATTERING BOUNDARY CONDITIONS

FOR A SCATTERING SURFACE, SATISFYING THE SCALAR LEONTOVICH
BOUNDARY CONDITION (ET-(@.ET)2)=nZ fixHT.

Applying scalar and vector product operations of equations (4.3.1) to
(4.3.4) onto one another a complex set of interdependent scalar and vector
equations results which are given in the appendix. Inspecting these equations
it was found practical to employ the following three pairs of vector expressions

as fundamental vectors for further analysis (where E = E_T, and H = ET ) :
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A= AFA = [(ExEDTnoeHExpY)]

-1 =1
* = -
At = -AL

Thus A_ and A_ are purely imaginary vector quantities

- B,*B, = [n(E*xBFn*ExHY]

—LII 1
BY - -B
BY - By
Crp = GG, = [n(ExH T r*(E*x BY)]
cr =-¢
 h * Cn

(4.4.1)

(4.4.1a)

(4.4.1b)

(4.4.2)

(4.4.2a)

4.4.2b)

4.4.3)

@.4.3a)

(4.4.3b)

In addition to these three pairs of fundamental vectors, it was found useful to

introduce the following notations:

Dy = 4;xB = Df

Dy = A4pxByp = -Df

By = 4px4, = Ep 1 %2
Ep = BxBp = -Ep 1% =2
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(4.4.4)
(4.4.5)
#= 2A xA = 2nn*(ExE¥) x (Hx H*) (4.4.6)

<= 2B, xB, =2 nn*(E*x BH*) x (E x H*) (4.4.7)



E_=C xC_ =-E* =2C xC, = 2nn*E xH) x (E*x H¥) (4.4.8)

F = __I_?’I: = élxgn (4.4.9)
Fu= -Eq= Bix4y : (4.4.10)

Employing properties of the derived set of scalar and vector equations as

given in the appendix, three orthogonal vectors out of the thirteen vectors

defined must be found to which all the remaining vectors can be simply associated.
Inspecting equations(4.6.6a, 9b, 13) of the appendix, two of the required vectors

may be found in A. and B_, since

I =1’
A
n. A= 0 (4.4.11a)
n - B, =0 (4.4.11b)
B, = nxA (4.4.11c)
B, A, 4.1lc
A
A; = -Dx B, (4.4.11d)

Thus the purely imaginary (4.4.1a, 4.4.2a) vector quantities A_ and B. are

I I
perpendicular to each other (4.4.11c, 4.4.11d) and in fact tangent to the local

scattering surface (4.4.11a, 4.4.11b) . Furthermore, it can be shown that

= A . = A . A =
A -él—(glxn) A (§Ixn) (I_B:Ixn)

-1 I
-B -B - (-B)°-B .B (4.4.12a)
=1 =I =1 =1 ~I o
and
él "B = 0 . (4.4.12b)
Since A_ and B. are tangent to the local scattering surface and perpendicular

I I
to one another, its cross product QI (4.4.4), apurely real vector quantity, must
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be directed along the local outward normal A of the scattering surface, where

D =A xB = -(A AR = - (B, - gl)’ﬁ = [ﬁ-(élx@_l)] n o (4.4.13)
and with equation ( . . ), where it was shown that:

[ﬁ ' (Alxl?*.l)] =-2C - Cy=-2(A " A)+B - B)) (4.4.14a)
D, - -2?191 ©C, = -20 (A, - A, +B ' B,) . (4.4. 14b)

Since no further triplet of orthogonal vectors was found and the remaining vector
quantities as defined in (4 .4. 1) to (4. 4.10) can be uniquely decomposed along

the directions of A 1 EI’ and D, the following theorem can be formulated:

IJ

Theorem: If the electromagnetic behavior in the vicinity of a scatterer satisfies

the Leontovich Boundary condition

ET-(G'ET)Q = nZoﬁxg

T

then the following two purely imaginary vectors

5% 3¢
ETxET) - nmr@ETxHT)

o2
n

and

3k b3
nET B - & TxmT)

os}
"

are orthogonal vector quantities which lie in the local tangent plane of the scatterer
and its cross product, a purely real vector quantity,

A N
QI - éIXEI =n [n (éIx"B‘I)]

is directed along the outward local normal of the scatterer. The absolute values

of these three vector quantities are identical, where
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and A I B—I s l_)I constitute a right-handed orthogonal vector triplet.

These peculiar properties result in the following characteristic equations
from which a set of inverse scattering boundary conditions may possibly derived.

Since with (4.4.13)

. = 4+ .
D) = +2¢C -G,

>
1]

oe]

jwe)
1]

]
5>
-}

]

A + .
2(4) - 4,+B, - By

two characteristic equations for the determination of the amplitude and the phase
of the relative impedance n are found:
(Ex E*) - (EXE¥) +(n rr‘)z (HxH*) . (HxB*) = - 2nn*(E*x H) - (E x H%)

(4.4.15a)
and

nz (g*x H) - (E*x H) + n*z (Ex H¥) " (Ex B¥) = - 2nn*(E x E¥) . (H x H¥). (4.4. 15b)

For the derivation of (4.4.15a) and (4.4.15b), equation @.4.12b) was not used,

thus the orthogonality condition of A_and B. may be employed as the character-

I I
istic equation for the determination of the surface locus, i.e.

A_"B_ =0 or (4.4. 16a)

[(ExE-nmExE9] . [n@E - ExB9) - 0

which can be rewritten into

(& B9 -nmeE- w9 [n- @ B +nr@E- 8] -

= n(E-B) [(E* B9 - (86 BY] 4@ B) (- B)-n @ - B)]
(4.4.16Db)

Although (4.4.16) has not been employed in the derivation of (4.4.15a,b), these
three equations may be linearly dependent which still must be investigated.
The fourth characteristic equation for the determination of the surface

normal, then is given by
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D A_x B A xB

A =1 =1 -1 -1 1
n = A = T = - AT A (4.4.17b)
n ]_)I n éIXI}.I] 291 _C_z

- { [(ExE¥ - nn*(Hx B9 | x [n(E¥XH) - m*(E x r_l*)]}

2 1 (E x H) - (E*x H*)

which is dependent upon 7n and so far could not be formulated solely in terms
of the field quantities.

Inspecting these characteristic equations it is found that a fourfold
solution for the relative impedance n results as was predicted, furthermore
these n represent a set of four complementary solutions. For the degenerate
case n ->0, equation (4.4.15a) degenerates into the inverse scattering boundary

condition E T X I_B_T" = 0 which was derived by Weston in 7644-1-F (chapter X).

To determine the proper amplitude and phase of 7, the

formulation (4 .3.1) of the Leontovich equation must be satisfied whichwould
require a characteristic equation for the surface normal a being independent
from 7, otherwise a unique solution may not be found from the orthogonality
condition (4.4, 16a). Namely were n a function of frequency then also 2 may
become frequency dependent. However it may be possible to express D 1 in
terms of cross procuts of A 19 ]_3_1’ g OF 9 1,2 such that the normal becomes
a closed form expression in terms of the field quantities only.

Although the characteristic equations (4.4.15, 16 and 17) cannot be applied
in the general problem of inverse scattering for the determination of the constituent
parameters S (R,6,#),1 (R,6,0) andn (R, 6,#) due to the inherent vector nature,
the presented derivation suggests that such a formulation of local inverse scattering

boundary conditions may exist. A more sophisticated analysis, employing the

vector form of the Leontovich boundary condition, may yield the desired character-

istic equations.
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4.5 SUMMARY

It was shown that it is possible to derive a set of scalar and vector equations
from the complementary set of the four formulations of the Leontovich boundary
condition which may be employed as local boundary conditions to the problem
of continuous wave inverse scattering. Although the derivations are based upon
the formulation of a scalar Leontovich impedance, this first approach reveals
a rather important result. Namely inspecting the characteristic equation (4. 4. 15a)
it can be shown that the associated scattering surface locus can be found if solely
the absolute value of the impedance is known. Thus if the material character
of the surface is known, the following local inverse scattering boundary conditions
may be applied to determine the surface locus S(R,6,{), i.e. the shape of the

scatterer:

@) n =0 (perfectly conducting scatterer):

(E"xE" )-(E"xE" ) =0 (4.5.1)
B) n = @ (perfect magnetic conductor or scatterer with plasma coating):

T*

Txa™) - xH) = 0 (4.5.2)

(H" xH

7) 0<n<oo, ln I # 1 (conducting scatterer for which only the absolute
value-of the relative Leontovich impedance has

to be known):
LS %K 3
ETxET) - ETxET) + (T xHT) - (H xH ) =
'3 %
= - 2nn* (E_T) xLIT) . (E_Txl__i_T ) . (4.5.3)

These boundary conditions are necessary but not sufficient,however they are local
conditions which permit a point by point determination of the surface locus and

its application of two or more different operational frequencies may result in

the unique specification of the proper locus out of the infinite set of the obtained

loci as was discussed in detail in section (4.2).
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Furthermore the properties of the formulated theorem of section (4, 4)
suggest the formulation of a more general set of local inverse scattering boundary
conditions for which the a priori knowledge of the relative Leontovich impedance
is not required. Such a formulation requires first of all the proof that the charac-
teristic equations (4.4.15a), (4.4.15b) and (4.4.16a) are linearly independent.
Then a formulation of the surface normal must be sought which is independent
of n so that the impedance corresponding to the proper plane can be selected.

So far no explicite physical interpretation on the nature of these boundary
conditions was presented, preliminary investigations however suggest that a
relationship between the electromagnetic stress tensor (J.A. Stratton, 1941)
and the properties of the above state theorem exists. It is therefore proposed

to investigate such existing relationships in all detail,

4,6 APPENDIX

For convenience, the total magnetic field vector _HT = H is normalized
with respect to the total electric field vector ET = E by the intrinsic impedance
of free space Z0 = 1207, where Eqs. (4.3.1) to (4.3.4) will assume the
following form

{[g-(ﬁ-g)ﬁ] —n(ﬁxg)}=0 I
{(gxﬁ)-n[__f_i-(ﬁeg)ﬁj}w 1
{[P;*- (4 - E¥%) ?1] -n* (D x g*)} = 0 I

0 . v

{ (E*x 1) - n* [I;I*- (A - H¥) ﬁ]}

The scalar and vector product operations of these equations onto another result

into the following relationships:
4.6.1 SCALAR PRODUCTS

I-.1 or II-1I

E-BE-nH -8 -G -E2-iG- B (4.6. 1a)
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n[E-@xB]: €D -G B

. I_{)Z

or

2n [2- HxE) - [(P;-E_an(r_l-g)]-[(ﬁ-g)2+n2(ﬁ-r_l>2]

P*. P or IP¥. IP*

(E*- E¥) - pf (B%- B9 = (A. E
% [ﬁ. (}_I*x]’:_l*):] = % [}_3."‘

= (E*- E¥ - (n - E*)Z =

or

2ny% [ﬁ . (_H*x §>=$] = [(E_* . 1_3_*) + n:kz (g::: . I-I-r)] - [(ﬁ . E*)z + n*z (fl .

1.0 and Dk- IP*

n(E-H = n(d-E)(- H

) A . A

n*(g* n* (Il . E:.:) (11 . H>;<)

I.TI*

-n[H- ExD)] -

=:=)2 _ n*2 (ﬁ . I;I*)z

dn] - o [ @edl-

¥ (- B - 0¥ (B - B

(MxE) - (MxE¥) - nn*(Ax H) - (A x B¥) =

or

(E* E¥) -nn*(H- HY) = (i-E)

II . I

B {n@xE) - ExE] -

(i - E%) - n*(n - H) (0 - H*)
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(4.6.1b)

(4.6.1c)

(4.6.2a)

(4.6.2b)

I;I*)z]
(4.6.2c)

(4.6.3a)

(4.6.3b)

(4.6.4a)

(4.6.4b)

(4.6.5)



I- I

A {(Exg*)—nn*(l_ixf_f*)} -0 (4.6.6a)
n(MxE*) - (AxH) +n*(@xE) - (AxH = 0 (4.6.6b)
or

n(E** H) +n*(E - HY = n(n- E¥) +n*(d - E) (0 - H¥) (4.6.6c)

4.6.2 VECTOR PRODUCTS

IxI andIIx1I

(ExE) = n°(HxH = 0 (4.6.7a)

(E_*X_E_*) = n;;<2 (gk"}_{*) =0 (4.6.7b)

IxII and DPrx II¢

n(ExH - {[nﬁ- @xE] - [(E-B)+n ®H- I_Iﬂ} A+ [R-BE+" G- B H]
-pPa-w-d-p?lic[G-pEl @ omE] -
e p-rG-»)i+ [G- DE G BH| (4.6.8a)
i (E*x B) = { [ - o) - [(mee w9+ (v Ii*)]} o+

s @ e pr n® om0 B -
- e w9 - G- B0 ]+ (B B B G mo EE] -

- [Exren - @m0t A [B B B P G
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IxI* and IIx II¥

8- [(ExED+npExBY)] = [@xE) - @xB) - n@BxED - B x B)] (4.6.%)

since

n(MxE*) . (@xH = -f-(ExE¥) = -nr*. (Hx HY) (4.6.9b)
or

7 (@ xE) (@ xH = 0-(ExE% = nr*d -+ (Hx H%) (4.6.9¢c)
thus

ne [(ExE9-npHExEY] =0 (4.6.9d)
and

n [n (nx E*) ° (nx H) + n*(a x E) - (0 x E_I*)] =0 (4.6.9¢)
I x IP

A [AxE) - AxEY - nnr@x B - GxEY] =0 (4.6.10a)

3 {GxD) - GxEnsm@xn  GxE) -

= phx (ExBIx 8|+ nBxBHx@xEY - (ExHY  (4.6.100)

II x T

>

n {(ﬁxf_ﬂ_) . (ﬁXEfk)"'ank(ﬁX I_D . (ﬁxﬂ*)} =

- n*(ﬁx I‘_I*) X (ﬁX .E_) - (E*X I;I) + n ﬁX [(E.*X I_.I) X?l] (4.6.100)

(I x IT¥) - (II x I¥)

[n (E* x H) - 7 (E x I_I,*)] = e (Ax B¥) x (A x E) - n (A x H) x (0 x E¥)
+na x [(E"‘x H) x ﬁ__] - 7*n x [(g x H¥) x ﬁ] =

= Ax [(ExE® - no*(Hx B | (4.6.11)
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Equation (4.6.11) constitutes an important result namely that a set of orthogonal
vectors is found which are tangent to the local scattering surface since by

(4.6.5) and (4.6.6a)

[ -mExEn]-0

s>

and

- [(E_ x E*) - nn*(H x }_1=:<)] =0
Verification of (4.6.11)
[n(E*x - rExE)] = [B*x (Ex) - Ex (E*xh) ]

+nn*{(ﬁ-f_f)[(ﬁx§*)xﬁ] (& H)[(nxg)xﬁ]} -

"
=}
>
——
1=
>
=
i
3
3
o
»
sl
L

There exists another formulation of (4,6.11) given by

[ExEY - nntHx 9] = -Ax [n(Ex B - 2(E x 59 ] (4.6.12)

which may be verified as follows:
[(Ex &) - norEx )] = fhe[Exixmn] - n B (E5x n]]
{9 [Exd] o - 1o [mxd] ] -

ﬁB(E H*) + n (E ] [n (h+ E)n - B¥)+n(n- E¥ (1 - H):]}

.

-~

= 0, according to (4.6, 6¢c)
+{[n (n - E¥)H-n (n - H) }gﬂ + [n*(ﬁ . H¥) E - n*(E - ) 1_{_*}} =
=7 [ﬁx(ljx}ﬁ*)] +n"‘[_-'r\1x(lé_]xg*)] =

=-1nx !_—n (E*x H) - n*(E x E*)] q.e.d.
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This concludes the derivation of scalar and vector product operations which

resulted into the following identities:

{[(g x E¥) - nt(Hx B9 | + 8 x [0 (B*x B) - n*(E x B9)] } = 0 (4.6.13a)
or
{[(E x E*) - n*(H x _I_P")] xn + [r; (E*x H) - n*(E x }_I*):li =0 (4.6.13b)

4.6.3 DERIVATION OF ADDITIONAL VECTOR IDENTITIES

It can be shown that D, = n (l_)I - 1) can be reformulated as:

n.D =D (A,xB) = -2 {[nn*(ﬁ- E) (0 - E*) (H - H¥)

1
tan*@- B @ B9 (E-EY] - [nrr@ . B G- B9 (E - B
+n*(d + B%) (E .- 0) (E*- E)]}=
= -2nn+ [(ExH - (E*x B9 | = - 200t (ExED - (Hx B9
+(E*xH) - (ExH)] = -2np [(E- EY (- B9 - n*(E*- B) (E - B

(4.6.14)
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\'

MATRIX INVERSION FOR THE CASE OF END-ON
INCIDENCE ONTO A ROTATIONALLY SYMMETRIC SCATTERER

5.1 FORMULATION OF THE MATRIX

In problems of C. W. inverse scattering it is assumed that for a given
incident field the measured far scattered field canbe obtained for a sufficiently
large number of bistatic angles. If the direction of the incident wave is chosen
along and in direction of the negative Z - axis ofa spherical coordinate system
A

and the polarization vector €

of the positive X - axis, then the scattered field may be represented by a series

of the transmitted wave is parallel and in direction

expansion into vector spherical wave functions:

@ n
A0l .
Ez(Rc'ec'¢c) = 21 Eo El) agmnMgmn+(1)nb8mn ggmn] (5.1.1)
n=1 ms=

where the vector spherical wave functions are defined by:

Memn (R,6,) = ¥ {hﬁll)(kR) 57(60) :‘; (m ¢)} 8

(1) m, .. cos A
- {hn (kR) Rn(e) sin(mgb)} ) (5.1.2)
Nemn (R, 8,8 = < () pPos 0) 5 (mg) b &
=gmn ‘s s - kR n p o8 'm

1 d (1) m cos A
+ {kR = [R h (kR)J Rn(cos 6) sin(m¢)} 6
- 1 d (1) i A
F {E{ R Rb R S(cos 6) o (m¢)} §  (5.1.3)
with
m m m 1 m-1
S (6) = ——=7P (cosh) = Tcosb [:(n-m+l) (ntm) P~ “(cos 6) +
n sin® " n 2 n
+ Pm+1(cos 9)] +m sin 8 P"( cos 6) (5.1.4)
n n
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9 P (cos 6)

55 =3 [(n-m+l) (nt+m) P;n_l(cos 9) - P:ln+1(cos 9)] .(5.1.5)

R (6) =
n
(5.1.5)
For a perfectly conducting sphere the expansion coefficients agmn, ;

b gmn bear the following relationship with the expansion coefficients given by

Stratton (1941), where m =1 for nose-on incidence onto a rotationally symmet-

ric body:
., Wofl (2nt+1)
3tn - TV i % (5.1.6a)
b = i(-pt&ard (5.1.6b)
eln (n+)n n T
Employing the asymptotic approximation of the Hankel functions
+ .
lim { (1)(x)} (-)" ! g{_};ug( (5,1.7a)
X =
— | x h "(x) .
lim dx [x n ] = (-t SR (5.1.7b)
X =

and extracting the factor (ﬁi_x_xﬂﬁ) from the measured field components, the

far scattered field is given by

N
1 1
6, ¢C) Z cos ¢ [a 1o Sn(cos Gc) + beln Rn(cos Gc) ] (5.1.8a)

(] n=1

N
1
E> o6,p9) = - _S_ :sin¢ |:a R (cos 6 )+b Sl(cose)J (5.1.8b)
p e’ e “ c oln n ¢ eln n c

C

where N denotes the total number of receiver aspect angles, and for the cth

receiver the field components are given by
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S S
E_(6, , E. (6,
6 ( c ¢c) ¢ ( c ¢c)
c c
For the formulation of a suitable near field representation, the unknown
expansion coefficients I be In must be computed, To do so, the field
1

components E; , E; , and the inherent terms Sn(O), R111(6)’ cos ¢c must

c c
be arranged in a matrix formulation so that the most suitable matrix repre-

sentation results which satisfies stability criterions, encountered in the inver-
sion of such a matrix.
Inspecting Eas. (3.1.8a,h) which represent the hasis of further analysis,

these equations may be rewritten into the formulation
E = AX (5.1.9)
T -
where the transpose E~ of E is given by:

T _
E- = [Eel (91,¢1), Eez(ez, ¢2>, E93(93, ¢3), Ce

E (0.0 )E; 6 ,p)E, (6,,8), ...
6y NN ¢111¢222

Ce E¢N(6N, ¢N)J (5.1.10a)

which consists of 2N complex elements, and so does the transpose XT of

X which represents the unknown coefficients:

T

X o= a . ,b

aoll’ bell’ a012’ be12’ """ Toln ) (5.1.10b)

eln

With this arrangement the matrix elements of A are defined as well, where

the rth row for 1 < r< N is given by
[Sl (cos 6 ) cos R! (cos 6 ) cos f s2 (cos 6.) cos ) R. (cos 6) cos )
1 r rl r r 2 r r 2 r r’

1 1
S\ (cos er) cos ¢r , Ry (cos Gr) cos ¢r] (5.1.11a)
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and the (N + r)th row for 1 < r < N is given by

1 1 ) 1 .
[— Rl(cos Gr) sin ¢r1- Sl(cos er) sin ¢r’ - Rz(cos Gr) sin ¢r ,
(5.1.11b)

1 . 1 . 1 .
- 82 (cos Or) sin ¢r’ e, - RN(cos er) sin ¢r , - SN(cos Gr) sin ¢r:|

The resulting matrix A can however be decomposed into the product of two

square matrices:

A©G,¢$,n =Bp)CH,n . (5.1.12)
C (] C (]

The properties of this matrix must be investigated in detail to gain more informa-

tion about stability criterions.

5.2 PROPERTIES OF MATRIX A (ec, ¢c, n) = B(¢c) c(ec, n)
Matrix A is a square matrix with 2N x 2N purely real elements for
real angles ¢c’ and Gc . Matrix B(¢c) is diagonal, solely incorporating the

¢ - dependence and its elements are given by:

b = cosf for 1< r< N (5.2.1a)
rr c - =

= - si <Ntr< . 2.
bI‘H-r,N+r sin ¢c for N < N+r < 2N (5.2.1b)

The determinant of B is always smaller than unity, where

N

N N
Det {B} = SZ:-H— CUI sin 2 ¢c . (5.2.2)

This matrix will become singular for

g

. O+m 7/2 , m=0,1,2 ... (5.2, 3a)

and is maximum for

T[4+ m7[2 (5.2.3b)

=3
1
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and it can be seen that otherwise no restrictions are imposed, e.g. the choice

of ¢c = ¢1 = ¢2 =...=f N is permissible. However, it may be advisable

to extract the § - dependence entirely from the field components before in-

verting the matrix, since the { - dependence solely reduces the magnitude

of determinant Det {A}

Matrix C(Gc) , solely incorporating the 6 - dependence in terms of

Legendre functions, needs further thorough investigation. Inspecting Eqs.

(5.1.8a,b) it is recognized that always two of the 2N x 2N elements are identi-

cal, and for even N matrix C can be decomposed into the sum of two matrices

each containing non-identical coefficients, where for N = 2 we find:

C
C =

C

C
where
€117 %9
€91 7 %4
€127 %1 7
Co9 "4~

Furthermore, it can be shown that

21
31
41

€12 %3 %14
€22 €23 94
39 €33 34
€42 %43 %44
.\ 21
41
1
1(E)r) =
1
16,) =
1
Rl(el) = COS 91
1.\
1(92) = cos 62

44

1
2
1
S0

1
2
1
2

(6

(6

=R (0.) =3 cos 26

)=3c:os€)1

2) =3 cos O

[u—y

)=300329l

2

(5.2.4)

(5.2.5)



Det {C, |} = Det {02} (5.2.6a)
since
02 = TClR (5.2.6b)
where
01 0 O 0010
N N
0 010 01 00

This property may be employed to derive the determinant of C more easily,

where

-1

-1
= + = + =
C C1 C2 C1 (I C1 C2) (Cl C2 +1) CZ (5.2.7a)

where

Det {C } = Det {cl } Det {1+ cIl c, } . (5.2.7h)

For the chosen case N = 2, the determinants result into:

Det{CI}

~lepg gm0y 0) (egy Cog = ey Cy) =

-(3 sin201) (3 sin292) (5.2.8a)

2
ey b- [ ]
De1:{1+C1 C2 = 2l(cos61—cos62) (5.2. 8b)

thus

2
Det {C} = - [:3 sin291] [3 sinzez] \:2(cos 9. - cos 62)] .(5.2.8¢c)
N=2 1
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Employing this scheme, the determinants for the cases N =4 and N = 6 were
evaluated. There it was found convenient to formulate the determinants into a

continued fraction expansion for increasing N, where

46

- l N
Det{C}N |
_________ e — — —
2 |
= i 1
C1 sin 91 :
—l — e —
|
1 |
C 126 [cos@ - os6:|2 l ’
g 911 Fg 9 = €9%Y |
|
1“1— — e o—
|
C s'n26 [cose —cose]z[ s0 -cos91:|2 | ’
g o1t U3 3 2] [°9%%3 }
1 T
C sin29 l:cose - 6]2[0036 -cosf ]2[ 6 -co 6]2 | ’
4 4 4 cos 3 4 9 cos 4 cos ! :
|_ —_
2 — | >
. : 2 2|
Cssm 65[00395 cos Gj[cos 95 cos63:|2[c0565 cos 92] [cos 65 cosel] |
|
-
2 2 - 12 | 6
C.sin 6O jcosO —coses-] ----------------- ':cose —cosel] |
6 6 6 |
. "~~~ " <7I-————-—
etc. . I
[ ] I_ —_
1 N
C sin26 [COSGV - c0S 6 ]2 .................... [ o - 9]2i N
N ON[E PN N - FOSENTE%%
“l—_.—_
|
(5.2.9a)



The constant multipliers were found to be:

2

+1 1 2
c =1=(-0'" 5 1
1 2
1
9 2 9+112-3% 2
Cc_=-2° 3°=(-1) 2
2 2
1
gt 52 341 12-32-52 2
Cq = 2 =(-1) 2 2 3
9 19 2
2 2 2 a+1 12-3%.52.7% 9
C =-2".5" 1T =(-1) . 55 3 * 4
4 1-2°. 3
gt gt 2 5+1 12-3%.52.7%.9%2 2
Cg = A S S S B
) 9 19-2°-3' - 4
2 .2
L LRt 6+112 3% 52 7. 9% 117 2
Ce = 2 =(-1) 55 3 3 2
9 19.29.3°.4% 5
' 2
+ 2c-1)"! 2
c =(-1)¢"! [(C L) ] c (5. 2. 9b)
c 2
[(c-l)‘.]

(2c-1)!''=1-3-5-7-9:-++(2¢-1)

where computational results are given in Table V-1, Inspecting (5. 2.9) it can

be seen that Det {C (Gc, 2N x 2N)} can be decomposed into the product of two
N x N determinants:

2
C (90, 2N x 2N) = D(sinzec, NxN): E (cos OC, NxN) (5.2.10a)

D is a diagonal matrix with diagonal element of the form

2
+ [2 —1'.'.|
d o =(-1)C 1 (2e-1) czsinze

c [(c_ 1)[]2 o (5.2.10p)
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and E is of the Vandermonde type, where Vandermonde's determinant is

here given by:

B . N-1 ]
1cos Glcos 61- *++COS 91 (cos 62-cos 91 )cos 63-cos 61)- .+ (cos 6N-cos 61)
9 N-1

1cos 6200s 62 cos 62 (cos 63—cos 62)(cos 64-cos 62)' -+ (cos ON-cos 92)
V=E= N-1 | = =

lcos 6300s 63 cos 63

N-1 :
lcos GN ----- cos GN (cos GN - cos GN - 1)
L i
N N 6 +0 6 -6
= 'ﬂ' (cos Gr—cos OS) = TT 2 sin ( s2 r)sin( s2 Iy . (5.2.10¢)
N>r>s>1 N>r>s>1

Thus instead of the continuous fraction expansion a closed-form solution for

Det {C (Gc, N)} can be given, where

N . 2 N
Det{C (OC,N)} = ﬂ (—1)C+1[—C—(2L—1—); sinec] T1 (cos Gr—cos 68)2 =

1\t
c=1 (c-1): N>r>s>1
_ N ctlp . 2 N 2(2s+1) | Gs+6r : 6s_er 2
= TT(-1) [esmGC] TT —-——S——sm( 5 ) sin( 5 )| -
c=1 N>r>s>1
X (5.2.11)
Inspecting (5. 2.11) it is found that for a set of N aspect angles R = X ¢ roots

c=1
will be encountered, where N of these roots are the sin2¢9C terms and the

remainder is the product of the squares of the differences of the argument cos 90
of the Legendre functions, for all mutations of the N polar angles 60. Thus the

following restrictions must be imposed onto the Gc—dependence:
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i) GC%O or 7
ii) 60# ec—l’ c=2,3.... N

iii) The distribution of the polar angles Bc must be chosen so that the
determinant neither becomes too much nor too large but of the order of unity
where for each different number N an individual optimization procedure must

be employed.

5.3 SUMMARY
The obtained results may be summarized in the following theorem:

Theorem: V-1

If an expansion of the scattered field into spherical vector wave functions
is employed for the first dipole case (m = 1), i.e., end-on incidence onto a

rotationally symmetric and perfectly conducting scatterer, then the determinant

Det {A (ec, ¢c; N)} = Det {B(¢c)} - Det {c (90, N)} =

N sin2¢ N
+ . - 1t
= (-1)N 17 (-1)° 1[ 5 CJ C(c(_zi),l)" sinec:lz 1T (cosOr-coses)2
c=1 ' N>r>s>1

of the associated scattering matrix A(Gc, ¢c ; N) will become singular for

i) g =pz . p=0 t1 tg 3

c
ii) 90=q7r s q=0, 1
iii) Gc=60+1 , ¢=1,2,...(N-1)
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In addition, pseudo-singular behavior may be encountered even though
(i), (ii) and (iii) are not satisfied if the computational aspect angles exclusively
lie within narrow cones about the z-axis of the computational coordinate system,
thus reducing the value of the determinant to almost zero.

These properties are illustrated in Figs. 5-1 and 5-2 for transmitter-
receiver configurations which may occur in practice most frequently.

For both cases the receiver aspect angles are assumed to be well
distributed within a narrow cone whose invariant axis a is oriented perpen-
diculat to back scatter direction. For simplicity it is assumed that ¢c = 1/4
or ¢c =r/4+ 7, and main attention will be attributed to the dependence of the
polar angle Gc.

The determinant associated with the configuration of Fig. 5-1 will
become pseudo-singular, whereas the second configuration constitutes the op-
timum choice as regards the orientation of the conical section relative to the
computational z-axis. This properly is demonstrated by the added sin26 and
cos 6 - curves in which the respective QC = sin26C and Aur = (cos eu-cos Gr)
are plotted.

In general, the optimum distribution of the aspect angles (Gc, ¢c) depends
upon the given number N of receiver locations, and must be determined for
each individual N separately. Yet from the general structure of determinant
C(GC, N) it may be concluded that such an optimum distribution will be obtained
if the aspect angles are placed in the now identical maxima of the Legendre func-

tions P'Il\I (cos 6) for respective N.

5.4 COMPUTATIONAL RESULTS
With the evaluation of the first four determinants as described in

section 3.2, the properties of matrix C (GC, N) were established, where

Det{C (GC,N)} - QP (0) (5.4.1a)

N
Q. = ] ¢ (5.4.1b)
c:
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FIG.5-1:"PSEUDO-SINGULAR" DISTRIBUTION OF ASPECT ANGLES
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N N 2
PN(GC) = ﬂ sin 6c TT (cosBr-coses) (5.4.1¢)
c=1 N>r>s>1

where Cc denotes the cth constant multiplier of Eq. (5.2.9a). The derivation
of a general algorithm for the constant multipliers Cc required additional
computation of the next higher order determinants Det C (Gc, N) together with
the corresponding PN (90). In table V-1 numerical results are presented, where
Det C(Bc, N) was computed directly from the matrix formulation as derived
from (5.1.8a) and (5.1.8b). Apart from negligible round-off errors the computa-

tional results verify the assumed expression of CC to its best, where

1t 2
CC=E(L-1\)'—'2]— 02 (5.4. 2a)
[(c-1)]
N N 2[ 2
(2¢-1)'1]
Q. = c =TT ¢ , (5.4.2b)
N cUI ¢ e=1 [(c—l)'.]z

For the spherical test case of electric measure ka = 2 (8579-3-Q) the
matrix inversion was tested for a varying number of N of aspect angles and
for different choices of the sets of aspect angles (Gc, ¢c’ c=1,2,...,N). In
the following tables V-2 and V-3, test results for N =4 and N = 6 are presented
to verify properties of stability as they can be predicted from the determinant
given by (5.2.9). To do so the far field components for the chosen sets of aspect

angles are computed from known expansion coefficients as given by Table III- of
exp ikR

R ) is extracted.

8579-3-Q with (5.1.6), where the coefficient (

Employing the matrix inversion technique, as described above, the expan-
sion coefficients are computed. For a computational check the far-field compo-
nents were recomputed with these coefficients. It was observed that the minimum
deviation occurs for those chosen sets of aspect angles (Gc, ¢c = 450, c=12,...,N)

for which the magnitude of the determinant is of the order of unity.
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TABLE V-2-la: COMPUTATIONAL RESULTS FOR N = 4.

T R THETA ’ PHI
I T 0. 7854007 0L TES4000 : - .
1 2 1.047199 . 0.7854000 NR = Using parametric number of
! 37 308999 0.7854000 =
1 4  1.570800 ~ 0.7854000
DF = 0 NR = 4 NT = 1 Computation of Matrix Elements
T = 1 R.= 1 THETA(T,4R) = 0,7854000 PHI(T,R) = 0,7854000
T 0, 707Y055 0. 70710817 0.0
2 0.2499957 1,499999 ~ 1.500005
3 =01 157801 T 5Y09H1 D¢ 3U3 308
4 -0,4062512 0.6249819 9.374977
TE IR E T2 OTHET AT R E 10047199 T PHI (TR T =0, 7855000
1 0.4999985 . 0.866026% 0.0
T2 =0.1250023 T 12299035 2750004
3 -0.4375003. - 0,3247495 5.62699)
& =T, 7890596 13573173 %. 718595 -
T = 1R = 3 THETA(T,R) =  1,30R999 PHI(TsR) = 0.7854000
T 0,7%887170 M. 9A59765 0.0
? -0.3995207 0.7499944 2,799941
T3 S0.33%RBZ3 =0,9636111 I, 627195
4 0.1434330 " =1.581923 =3,716404
T = 1R 4 THETAUT,,R] = L«D7UBUU PHI TV »R) =0.7855%000
1 -0.35007A2E-05  1,000000 0.0 '
T Z =0.5000000 - =0.1050229€=0%  3.000000
3 0.5251140€-05 -1.500000 .= =-0.5251140F-04
T AT 0.3TS0000 0.2625570E=04 = T1.5000000 .
A WATRTX (A is defined by equation (5.1.12))
T 0.7077053 7 0.4999979  1.499997 =0.B8756578D-05
1.590974 -2.625011 0.6249781 -6.187173
T2 0.INTI05% T 0.3535517  1.030A547 T =1,05606€4
1 0.265156% - -3 ,844884 - =1.104856 -3.535487-
3~ 0. 7071055 ~ 0. TR30100 0.549073727 =T 837177
=0.7054105  -2,747846 -1.158044 2.328167
% C.7071055 7=0.2475408D0=05 =0.7426225D=-05 =72.121316
. -1.060658 - 0.40846420D-04 0.1856554D-04  5,303291
T 5 =T.%9999987 =0, 70710787 0. ATK656N0=05 =1.499G68
2.625021 - °=1.590980 . 6.187195 ~-0.6249803
~ 6 =0.3535570 =0, TO7TUB0 T.060h68 =T.060658
' 3.844897 - =0,2A51573 3.535501 1.104860
7 =0.1830115 - =0, 7071081 1837124 =0.5490347
2.743855 .0.7054130 =2.3?8B176 1.158048
T8 0.24754TTD=05 =0.7071081 2.121324 0.7%4262520-05
=0.4084434D-04 1,060661 -5.303310 = -0.1856561D-04
AL MATRIX = B(f ) C.(6 ) as defined by (5.2.1) and (5.2.4)
1 0.7071053 0.0 1.499992 0.0
TTTTILR9097A T 0.0 T T T 0WA7AYTBY 0.0
2 0.0 0.3535517 0.0 ~-1.060664
0.0 — =73.R44884 (AP =3.535487
37 0.7071055 ' 0.0 - : 0.5490327 0.0
4 0.0 -0.2475408D-05 0.0 - =2.4121316
WP - 0 4084%200~0% 0,0 5.303291
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TABLE V-2-1b; COMPUTATIONAL RESULTS FOR N=4.

"5 =0.4999998 0.0 0.87665600-05 0.0
6250217 . 0.0 6. 187195 0.0
"6 0.0  =0.7071080 0.0 -1.060658 °
7 =-0,1830115 . 0.0 o 1.837124 ‘0.0
T 2. 143959 0.0 -2.372817% 0.0 .
8 0.0 " =-0,7071081 0.0 06 T426252N=-05
Ua0) 10060651 [0 P2 ) -0.185656[5-05
AZ WATRIX™ B(J)Cy(0) (see5.2.6)
10,0 0.4999979 0.0 ~0.87665280-05"
. 0.0 =24625011 0.0  -6.187173
2 UL T0TTUSS — 0.0 v 1. 06068%% 0.0
: 0.2651563 - 0.0 ~-1.104856 0.0
3 0.0 U. 1830109 0.0 -l1.83N17
0.0 - :=?.T43846 0.9 2.328167
T CL7071055 0.0 =0.7426225ND=05 0,0~ — v
-1.060658 0.0 0.1856554D=-04 0.0
5 0.0 =-0. 7071078 U0 -1.499907
. 0.0 o -1.590980 0.0 -0.62498073
T 6 =0.3575%29 0.0 1.05605%8 0.0
_ 3.844897 0.0 3.535501 0.0
T 0.0 =0, 7071081 0.0 =0.54G0347
: 0.9 . - 0.7054130 0.0 1.158048
B U.7%754170-0% 0.0 Z.12137% 0.0
~0.4084434N-04 0.0 -5.303310 0.0

DETA =

8.199226 = Det{B}- Det{C}  (defined by 5.1.12)
A INVEPSE
1 =24.18691 43,94923 -32.83723 10.47621
=74 95RB1 A5 14275 =27.59357 9.7824725
2 24,9589 =44,14315 22,59373 -9.782481
T 2V AKETT T T =43,94904 32.83707 =10.47616
3 R,62A573 ~-15.34219 11.52027 -3.555206
' T.91hD6R. =13 74816 9. 759778 =7.517213
4 =-7.916098 13.74822 -G,.759324 - 2.517228°
T =R.6265%4 U512 T T SI1V52021 T 3, 555185
L5 =2,468427 4,499455 -3.373234 1.006895
=7 463675 4.737175 =72.557513 T 0.5151431
6  2.4634B5 . =44.137193 . 2.557626 -0.5151468
7. 4hB4T5 T =4,499433 I 3TINT ~T.006BRT
7 0.6154478 © .~1,078557 0.7737976 © =0.27207795
0.4351979 -=0.5392716 0.20072581 0.16752550-05
8 -0.4351990 0.5392729 =0.2002686 " -0.1600814D-05
=0.6154646 “1.078551 -=0. 7737928 0.2207780
DETAT = B.557744 = Det (B Det{Cl}
AT INVERSE
I 8.14716& 0.0 =10.54787 0.0
-4.114108 0.0 . -3.499777 0.0 -
Z 0.0 07542795 0.0 T T3135T.
© 0.0 - =3.016924 0.0 1.979821
3 =T3TITEE T 0.0 11.073729 0.0
4,062033 - 0.0  3,254775% 0.0 .
4 0.0 ' =T.077481 0.0 =T.279510
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TABLE V-2-1c: COMPUTATIONAL RESULTS FOR N = 4.

0.0

‘ 72693675 0.0 -3,232408
5 he440035 0.0 ~6.500647 0.0
«2.2983047 0.0 -1.682486 0.0
5 0.0 0.5028201 0.0 0.7%42380
0.0 =-2.011284 0.0 24262690
T =1.,275%%0 0.0 T.,905595 0.0
0.8047444 0.0 0.4309940 0.0
B L R § IR ” =0.43099%8 U0 =Ue
040 1.,077484 0,0 =1.292979
DETA2 =  8,557728 = Det B " Det C,
A2 INVERSE
1 0.0 3.016933 0.0 -1.979826
0.0 T =0.7542263 0.0 113137~
2 4,1141364 0.0 3.499800 0.0
“BYGTIST 0.0 10,5476 0.0 T T
3 0.0 -2.693683 0.0 3,232417
0N [.07T7476 0.0 T.273505
4 -4,042058 0.0 -3.254797 0.0
TVIT2TIBT 0L =11.07328 0.0
T, 0T T=0.,5028179 0.0 T T T =0.7542349
6 2.?7298321 0.0 1+ 682497 0.0
=%.5440031 0.0 65.50067356 0.0 ,
7 C.0 -1.077487 0.0 1.292983
0.0 0.4309940 0.0 0.32323%6
8 -0.8042488 0.0 =0e 4309969 0.0
1.225359 0.0 ~=1.90559%4 0.0
-1
it}
K INVERSF T T
TT=24,18601 T A%,94923 =32,R3727 10.47621
-24,9588" 44,14295 -32,593587 9,.782425
2 24.,9589T <“5h 15315 372.59373 =9, 787%4R1
24.,18681 -43,94904 32.83707 -10.47616
T3 8.h76573 =15.342197 11.52077 T=3,555206
7.916068 ~-13,74816 9.759778 -2.517213%
4 =T.91ANGR TTTI3,74827 =G, 759824 T 2,517228
-8,626534 15.34212 -11.52021 3.555185
5 =72.A4hBLE7T A GO9G55 =3.37T323% 1. 0068S5
-2.463475 4,137175 -2.557613 0.5151431
T8 7.463%48% =4, 137193 Z.557626 =0.5151468
2.4H8416 ~-4,499433 3.373217 -1.00¢889
T T 0.615487T8T =1,078557 T 0L.T7737976  =0.22077%6 T T
0.4351979 -0.5392716 0.2002681 0.1675255D-05
B -N.4351990 0.5392779 =0.2002686 =0, 160081%D=05
-0.6154646 1.078551 -0,7737928 0.2207780
R T

1 1 0

SN SR B | P 41202 Y ;

ER . £l
{(Reat-Part)—- {Imaginary Part}

.4TR231] -0.3602460

2 1 1.075998 ~-0.1207969 K
4 T 1.272995% -0.1538157) E

5 1 =0.2931354 0.5000026 ¢
6 1 =0.%87491% ~ —0.32852 H
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TABLE V-2-1d: COMPUTATIONAL RESULTS FOR N =4 .

7 1 =0.6917142 0.1035799) Ej
B T =0.B&T9TED =0.1RO597TT7 7]
T ym e gy
(Real Part) (Imaginary Part)
I 0,7227698 77 7T=0,9099416
2 1 N.670R07R 04145107 a..
A T = TUFVURTH Qo567ﬁ67.70E-01)
4 1 =0.3726765 =042303397
5 T70.2382536FE=017=0,9745567E-03
6 1 0.4174312€-01 0.3007857F=-02
7 =0, 14206RTES0Z 0, 449732 0F=05 1~ 2o I
8 1 ~0.1969776F=02 -0.8617624F=05
F
-—R————I—%Real PFaﬁ'g) -**-—*{imaginarlyqpart}
1 1 0.4782311  =0.360345K0 \
2 T 05782?46W“f_“_:0;2040950§ T
3. 1 1.075997 ~0.1207969 »
4 I 1.77799%  =0,153A158 ) M
5 1 -0.2931353 0.5000024
6 17=0.348749T3 0 IZBS222( |
7 1 =0.6937160 0.1035298 (9,
g I =0.F6T793739 =0. 1895977
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TABLE V-2-2: COMPUTATIONAL RESULTS FOR N = 4,

R THFTA PH]
1 1~ 1.04710% 0.7852979
1 T 1.30899% 0.,78%3979
1 4 1,57079% 0,7852979
DFTA = 41N0,7537 = Det B- Det C (see 5.1.12)
nETAl = 1.075‘;]& = DetB'Det Cl (See 5’.2.1 and 5.2.4)
NETA2 = 1,075%%6 = Det B+Det C, (see 5.2.1 and 5.2.6)
DET = 381.9136 =petjr+c ' c b (see5.2.m)
- ¢ T )
R T FR , Fl R
’ ‘ (Real Part) (Imaginary Part)
1 1 0,7822425 -0.2040975
2 1 1.071]6 ~0.5945858 } -
3 1 1,075997 © -0,1207976 ~0
4 1 1,77799% ~0.152°9140 ) H
5 1 =N,4R74A74 0.3783260 \
6 1 -0.9387797 . =0.76A0107 E
7 1 -0.6927119 -~ Ao,m?.mné. ¢u
8 1 -0.B86797207 =0.1695909 )
R
R T (Real )%ar,t) (Imaginal)%r[ Part)
1 1 0.72774%8 =0.2099419
2 1 N.AT708306 0.4145110 1 ~
3 1T =0.2099501 N.56THA1IF-0T | “oln
4 1 =0,2726835 -0,2303393
5 T 0.7302307E-01 =N.9745664E=03\
6 1 0,41 74504E=01 0.300?902F-0?}¥1
T 1 =0.T470165E-02 0.44912915=05 ( Poip
8 1 -0.1970025€=02 -0.863A7755=05
R T ~ ERC £16
- (Real Part) (Imaginary Part)
1 1. °0,78226435 -0.2040975 \
2 1 Y,07599 -0.1207976 )
g 1 1.77299% ~0.1523140 ) H
5 1 =0.4874873 0.3285739 \
6 1 =0.9387795 <0.7960106 % E .
7 1 =0,6937118 0.1035333 ¢
8 1 <0.8679290. -0.1695908 ) “
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TABLE V-2-3: COMPUTATIONAL RESULTS FOR N = 4,

T P THETA PHI
T 7 1 1.178097 0.785367g T
1 ? 1.308905 0.7853979 ' L
1 3 1.430896 '0.7853979 ‘ |
1 4 1,570794 0.7852979
DETA = 0,1172265F=01 = Det B:Det C (see 5.1.12)
DETAL = 0,1375974 - Det B:Det
DETA2 = 0.1375988 = Det B Det C,
. _ -l L
DET = 0.8519518F<n1 - Det{1+(% Cz} (see 5.2.)
T FR S
‘(Real Part) (Imaginary Part)

0.,92%4352

_=N.1501959 )

14075997
1.192419)

=N.1207976h
=0.,1210304

! %o
7

1.772995

-0.1528140 )
02225537 \

1
}
1
1
1 -0,5915620
1
1
1

R
1
2
3
4
5
6 -0,6927119 0.1025333 % E
7 L =0, 7879701 = =0,27565677F=0] ¢“
8 -0.86792067 -0.1695009
R T XR X1
_ (Real Part) (Imaginary Part)
1 1 0.7227408 -0.9C99416
2 1 9.,6708390 0.4166115 Z a
3 1 -0,20995%9 0.56766K57=n1 | oln
4 1 =0,3726854 -0.220339]
5 1 0.2382734F-0] -0.9745671r-03
6 1 2.4174596F=01  0.,30029435-02 2 b
7 1 -0.1419870F-02 0.4560921F-05 eln™
R 1 ~0.1970182F-02 -0.859N585F=05
R T ERC £
_./(Real Part) (Imaginary Part)
] 1 0.9354351 ~0.1501959 )
2. 1 - 1.075905 -0.1207976 E
_ 3 1 1.192410 -0.1210306 S 6
4 1 1.27299%4 ~0.1528140 J
5 1 =0.5915629 0.2225536 )
6 1 -0.6937119 0.1035333 E
7 1 -0.7879701 -0.27656775-01? g,
8 1 =0.8679291 -0.1695908 7

60

(see 5.2.1 and 5.2.4)

(see 5.2.1 and 5. 2. 6)



TABLE V-2-4: COMPUTATIONAL RESULTS FOR N = 4,

TR THFTA T
7 T H.5735986 0.7853979
1 2 0.7853979 - 0.7853979
1 3 1.047195 0.7853979
1 4 1.308995 0.7853979

NETA = 0.3053473

NETAl = 0.614369] .
NETA2 = 0.6143543
DET = 0.,4970094
] D ER. , 1
1 1 0,2273244 " =0.5314700
? 1 0.4787709 =0s3A034R/)
4 1 1.0759097 =0.1207976
5 . 1 =0.13001 /" 0.61P5058
6 1 -0,2931336 - 0.5000023
7 1 -0.4874874 - 0.372R5240
8 T =0.6937119 0.1035333
R T XR o X1
1 1 0.7327479 -0.9099605
2 1 0N.6708288 04144293
3 1. -0,209959) 0.5677189E=01
4 1 -0.37726825 ~0.2303446
.5 1 0.23R229RF-01 -0,9759669E-03
6 1 0.6174458F-01" 0,3004137E=-07
7 1 -0.1620120F-02 0.46R9246E-05.
‘R 1 =0,1969R65E=02 -0.87R249T7E=05
R T . FR( FIC
1 1 .N.2272245 -0.5316700
2 1 0.47R729R =0.36012497
3 1 0,7822435 . =0.2060975
T4 1 1,075994 -0.,1207977
5 . 1 =0,129918? 0.6185057
6. 1 =04.2931336 0.5000023
7 "1 =0.4874873 043285239
8 1

-0.6937118

0.1035333
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TABLE V-3-1a: COMPUTATIONAL RESULTS FOR N = 6.

TR THFTA T PHT
1 177 0,78540000  0.78%54000 T
1 2 1,047 00 0.7854000 ~ NR :
1 37 1T.,3DBGYY T T 0,L,TBS4A000 Tt T
1 4 - 1,570800.°  0.7854000
1 5 UL.392T000 0. TRS54000
1 6 0.5236000 . . 0.7854000
DFF= 0 NR = 6 NT = 1 Computation of Matric Elements
T= 1R = 1 THETA(T,R) = 0.7R854000 PHI(T 4R} = 0,7854000
T 0. 7077055 0. INTI0RT 0.0 '
2 0.2499967 1.499999 1. 500005 o
TTT3T=0.,17ATBOY T 1,590981 T 5,.,30330R8 T
h =0,4062512 - N.6249819 9.3764977
4—:0;2756491"“"f?h.OQA3BRR“"—f_“"ﬂ.280675'_“;“"“—*““”“”“'“_“T“
6 -0.1684324 - -2,296881 1.640436
™= T R = 7 THETATT,R) =  [.U%4T7199 PHTTTRT = - U, 7854000
1 0.4999985% 0.8660263 0.0 '
T=0,1250023 77777 71,299035 7 T 2.250004 . . T
3 -0.43750013 . 0,3247495 5.62499]
T A =0.289N0596 7T =1,353173 7 T A G21R8408 T T T T T e
5 0.8984733F-01 -1.,928251 -%.921961
h U.3737878 =D.4972618 -14,15039
T = 1R = 3 THFTA(T,R) = 1.308999 PHI(T4R) = 0,7854000
*—*1‘—0.?588]70”f"”“*0;065°265“”"‘””O;O o Tt - T
2 =-0.3995207 N.7499944 2.799n4
T 3T =0.34408237TTTTS0,9636111 T T T 3,429105° T
4 - 0.1434330 -1.581923% 1. 710404 ‘
5 D.3827277RG 0.7833007 -10.172999
6 0.4309556F~01 2.059617 =0. 7062798 :
T ="1U R =74 THETA(T,R) = = 1,570800 = PHI(T,RT = 0,7854000
1 -0,3%00762F=-05 1.000000 0.0
N 2 =0.5000000 " =0,7050229E=0&4 — 3,000000 -
3 0.5251140E-05 =-1.,.500000 =0.5251140F-04
4 0,3750000 Qe7625570E-04 =7,500000
5 =0.6563923F~05 1.875000 0.1837899€-03
T RT=0.3125000 T TT=DL4594T48E-0%  13,12500 T T T T
T-= 1 R = & THETA(TLR) = 0,3927000 PHI(T 4R) = 0,7854000
TTT1TT0.9238793 T 0W3B26847 T TTTOLO T T
2 .0.7803288 . = ' 1.060661 0.4393414
3 U.,5H5672T8 - T.87578B1 . 2.079479]
4 0.361592R - 2.,629439 : 5.464164 ' -
TS5 0.I378186 T 3.121167 7 T 11.D856Q o -
6 -0.7636195F-01 .- 3.188541 ‘ 18,60277
T = 1 RE= A THETATT,R) = "0.,5238000 " PHT(T,RY = 047854000
: I 0.8660249 - 05000010 0.0 , :
2 U0.hZB998T . 1.29907%9 0. 75000729 -
3 0.3247566 - . 2.062498 3.247606 . )
T4 00234347 6E-01 2.43568B8  T7.96RTS8 T -
5 ~0.2232749 2.167948 14,20821 .
TR TSUGATR026T T TL.207666 T I9,B9749 T T T
A RATRIX - (see equation 5.1, 12)
T 0707105 T 0.49999797 1.499992 ~0.87665280-05"
' 1.590974 -2.625011 0.6249781 . =64187173
Z0.99%3840 T Z65548 T =2.296866 T =2.78408%
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TABLE V-3-1b: COMPUTATIONAL RESULTS FOR N = 6,

2 0.707105%

0.3535517 1.060654 ~1.060664
U.’651567% =3 R4480% ~T.T0%4A5h -3.535487
=1.574405 - 7+693146 -0.4060120 9.,80280R
T30 T0TINSS T T T0W1R30109 T TTT0.5490327 0 T TR LRI T
-0.7054105 =2.743846 - -1.158044 2.37281467
0.2073B927 77, 216644 T ,507739 U0, 8R96427
4 0.7071055 =0,2675408N=05 =0,74262250=05 ' =2.,121316
=T.N60A%H O A0RLA20D=04 D TASKSSAN=04 5303761
: 1.325823 =0.13460020=-03 =0.3248971D-06 =-9,.280760
5 0L.7071054 0.6532800 7T T 71.959483 BT T 1.690993
3465977 1.767078 4.858549 0.6249722
5767127 7 T =2.,510626 T TTTTU5,8915%0 T =7, 710974
6 0.7071052 " 0.6123707 13837111 1.050653
7. OTER0Y 0. 7296737 I GL558T =Z2.63187T1"
3.065926 -7.291532 1.70788% -12.,58701
T T =0.4999998 T =0, 7071078 T 0. ATAB560N=05" =1..499968
2:62502) © ~1,590980 5.187195 - =0.62459803
‘"7.263574“‘“‘TW0.9043876“_““f”'?.784094_fff*~"?.2Q6875"
8 -0.3535529 .  -0.7071080 1.0604568 -1.060£58
3« RLABQT o= 7651573 3035507 L11I04B60
~7.601156  1.574410 ~9.8028412 _ 0.4060135
T=0.1R30115 7 TT=0.707T1081 T 1LBAT1 74 =0.5490347
2.7438%5 0.7054130 T=2.328175K 1.158048
=Te216670 7T =0,2073901 T =0.8896454 =1, 507745
10 0.24754170=-05 =0.7071081 2.171324 0.7426252D-05
" =0 40R%4X4D=-04 1. 060661 =5.30331D -0.1856561D-04
0.1346006D-03" -1.325828 9.280793 0.3248583D-04
TTIT=0.6532824777 207071080 T TT=1,499998 1, 459846 —
-1.767085 -2,465989 =0.6249745 -4.858566
T T 72.51063% =5eT6T1I4RTTTTT T L TI00T T T T S5,891642
12 -0.6123729 =0.7071078 | =1.060657 -1.837117
=0.72296245 =7.916812 7. 6515R81 -3.444579
. 74391559  -3,065937 12.58705 -1.707891
Al MATRIX = B(§)C.(6) »
1 0.7071053 . 0.0 1.49999) 0.0
T.59097% 0.0 0.57497R] 0.0
-0.9943840 0.0 -2.296866 0.0
T2 0.0 0.2535517 0.0 ' T =1.060664
— 0.0 - =1,844884 0.0 -3.535487
0.0~ 7.693146 0.0 9.802B08
3 0.,7071055. 0.0 0.5490327 0.0 -
=0.7054105 0.0 — =1.158044 0.0
0.7073893 0.0 1.507739 0.0
4 0.0 =0.7%75408D-0% 0,0 -2.7121316
0.0 0.4084420D-04 0.0 5.30329)
0.0 =0.1346002D=-03 0.0 -9,280760
5 .0.7071056 . 0.0 1.9598238 0.0
3 465977 0.0 4 . B58549 0.0
. 5.767127 0.0 5.891620 0.0
6 0.0 0.6123707 0.0 1.060657
0.0 0.72296237 0.0 -2.651671
0.0 -7.3915327 0.0 -12.59701
7 -0.4999993 0.0 0.8766560ND-05 0.0
2.625021 0.0 6. 187105 0.0
1.265574 0,0 _ 2.784094 0.0
T B 0.0 T .=0.7071080 0.0 -1.060658
0.0‘ 1574410 0.0 0.4060135
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TABLE V-3-1¢c: COMPUTATIONAL RESULTS FOR N = 6.

0.0
TCTAIRSS T 0.0 — <=2.37817% 0.0 -
=7.216670 n.n ~-0.R8896454 0.0
Y0 0.07 T -0.707]081 0.0 0.74262520-05
0.0 T 1,060661 0.0 ~ =0.1R54561D-04
TTTT0.0 T T T T T 10325828T T T 0.0 T T T T 0432489830-04
11 =0.6537824 0.0 -1,499998 0.0
=T 76T0FS N0 =0.A7%9755 o.n T T
2.510634 0.0 7.711001 0.0
YZT0.0 T 0, 7071078 T 0.0 T T T T T T T -1.837117
0.0 -7,916812 0.0 '-3,444579
TTTTTOL0 T T T T a3, 05937 T T, T T T T T T T -1,707891
T170.0 T T 0,4999979 TTTTT0,L,0 T A0, 87565280D-05
0.0  =72.625011 0.0 -6.187171
“““““ .0 TTTTTTT AT 265548 T TN T T  TBA0RA T T
2 C.7071085 0.n 1.060554 0.0
Ne7Hh5T5614 .0 =1, TO4R%E 0.0
-1.5744C5 0.0 -0.4060120 0.0
370,07 7T TTTUNL18R0109 TTTTTOL.000 T T -1.R37117
0.0 =2.743846 0.0 2.72B167
— 0.0 T 7.,216644777 0.0 T 048896422
4 0.707105% 0.0 -0.74267225N0-05 0.0
-1.0606%H 0.7) ' ’ O. ITHS65540-0U4 0.0 —
1.325823 0.0 -0.3248971h-04 0.0
TTH5 0.0 UTTTTITNL6532800 T 70,0 T 1,499903
0.0 ' 1,767078 0.0 0.6249722
—TTDLD 0 TTLD,510626 T T T 0.0 T =7.7109747
& 0.7071052 0.0 1.837111 0.0
2. 916807 0.0 J444507 O.0
3.065926 . 0.0 1.707885% 0.0
70,0 T T T =0.7071078" NL,OTT T T -1 499068 T
0.0 -1.,590980 0.0 -0.6249803
TTTTTQOLO T TTTTT0.0943876 T n.0 LT 2.296875 7
8 =0.3535%529 . 0.0 1.060568 0.0
3, B44aR9T7T 0.0 . 1.535507 0.0
-2.693155 0.0 -9,807843 C.0
TGO 0LO0 T T L0, 7071081 T 0.0 CTTTT T T=0.5490347 77
en Ce0 0.7054130 0.0 1.158048
0.0 7 TTTTZ0,2073901° N0 T TTTTTT-1,507745 7
10 0.2475417D-05 - 0,0 2.171324 0.0
“T=0.40R4434N=04 0.0 =5.303310 0.0
0.1246006D-03 0,0 c.280793 0.0
T 0.0 = 0.70710R0T 0.0 T -1.959846
0.0 , -3,465989 0.0 -4 ,858566
L T P £ N A T 0.0 7 TTTTTTT=5,891647
12 =0.6123729 0.0 -1.N060657 0.0
=06 27296745 - 0.0 2651681 0.0
7. 39155q 0.0 : 12.58705 0.0
DETA = -7.864776 = Det {B}- Det {C} ‘
A INVERSF
1 =-2076.057. R24.8329 =235,4175 36.478R4
TTTTTT<4829.994 5247 ,467 =2061,957  TT812,23797
-229.4479 14,48322 ~4822 .696" 5227.653
T2 T 7067,038 0 T =A13,2238 79,4407 T T =34,48125
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4827 .681

. ___TABLE V-3-1d:- COMPUTATIONAL RESULTS FOR N=6.
=82?27.630 .

2076,055 -R24,83R3
7354273 =TF.4A045 4RI9,960 =57242.473
3 772, 0667 =306.8711 B1.52279 =13,40418
TTTTIT79R,T7TR =052 ,241 15612367 =297, 4619 o
 R0.44223 -11.230136 1789,795 -19%4,655
TTRTTET56,1076 T 703,453) T=80.43957 11422946777
-1789,769 1024 ,624 -773.0571 306.8698
=R7.577367 1330404 <1798, 739 1557.208
5 =287.,7437, 114,1203 -32,43706 4,892121
TTTT=669.R8KA TT727.0248 =274 ,09687 T 103.,42R7
=26,79751 3,337242 -6562.7319 712.7876
TTB 274408537 T T =I03,423277 24, 79549 -3,336919° 7
- 662.7093 271247620 287.7342 -114.1178
.?(.43678 -1 e RUZ2706 HAhY, BHIH VLT AL
T B9.14685 -35,27639 9,953992 -1.47€195
20T 7T T =225.4182 7810 18503 “Z29,D89R”1 "
£.845014 -0.7152721 203,4543 ~216.9£84
~T=B1.179%1 79,08693 =4 ,B8440A9 T D,.T7150863% T T
-203, 4405 216.9531 ~89,14116 25,2744%
-9, 05TR8H T4 TART TS =T e THHS 2250077
9 -)19,RR%75 7.822536 -2.183500 0.3186573
T66, L6690 T50.39694 7 =16.69391 T 5,444818 T T
-1.091021. “0.8101490D=-01 =-44,75387 47.,01123
TTI0 16.69138 SR 445745 T T T 1.090693 T T 20, 8095460D=01
44 ,74R829 -47.,00520 19, 882913 - =T7.821692
Z.18B379% ~U. 1THH67DB] h65,405171 -50.39080
11 2.400715 =0.9341004 0.2574637 -0.37074570-01
T T 5.675287 =6.136266 T T 1.695998 =0, 4660073 T
0.6620728N-01 0.8364774ND-04 5.242401 -5.312328
T2 T =1,.695290 T 0.465757T T =0.66137270-07 =0,9605588D=-04%
=5.241025 5310824 -2.400137 0.9338818
=0.72575406% U, 3706728D=01 =5.67399% 6. 134767
TETAT = =3.9759%8 = Det {B‘? Det i’cl’g - e
KT INVERSE T o e
T =5%3.6156 0.0 =107.8739 0.0
262.127 0.0 -20%4.3067 0.0
-17.7931% 0.0 T T=272.3880° T 0.0 T
-2 0.0 14,99275 2.0 3.550754 ;
0.0 1144198 NN 14.,00711
0.0 16422107 0.0 ~14,23709
3 04,6294 0.0 115.9178 0.0 '
-284,6938 0.0 221.2133 0.0
18,62790 0.0 29723517 0.0
4 0.0 -17.46460 0.0 -4,013707
0.0 -13.441339 0.0 -17.46238
0.0 -19.40593 0.0 16.49383
5 '4—“5.3287 000 ‘80.60011 0-0
203, 6143 0.0 -157.3388 0.0
T A5 1TTe T 0.0 =214.11R89 0.0 -
6 0.0 13,98429 0.0 3.021337
0.0 10.96794% 0.0 14,37258
0.0 15.,64476 0.0 -13.53111
T 215.4509 0.0 37.30367 0.0
-99,46158 0.0 76.28499 0.0
T 5.571637 0.0 105.9758 0.0
8 0.0 ~-84123169 0.0 -1.569300
0.0 =6.5148678 0.0 ~8.6802463
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TABLE V-3-le: COMPUTATIONAL RESULTS FOR N = 6,

9 =6R.IBT9R 0.0 - =I0.61173 0.0
30, 95625 0.0 . -723.26369, 0.0
T, 824127 0,0 T T3 0BREAS T 0.0
10 0.0 . 3,191295 0.0 _ 0.5233298
) N0 T ,667959 0.0 o= T 4,027597
0.0 . 3,110316 0.0 ©1=3,231779
T1 1067905 0.0 1. %2708R 0.0
-4,652337 0.0 ) 2,456405 0.0
TTTT0L1957558 0,00 T TS, 381962 0.0 -
12 0.0 ‘ -0.6498930 0.0 -0.8706913D-01
00" T L), 6498923 0.0 T =1,038577
0.0 ~o‘5491493 0.0 0.7001629
DFTAZ = - 97517ﬁ = Det { Deyfqz
A2 INVFRSF
1 Oon -]4.00701 0-0 -16022097
U0 , 14.,73700 U.0 -14,9975%
0.0 -3.550709 0.0 : -11.44183
T2 204,3484 0.0 T 17.796K9 0.0 o
27244440 ©040 _ 553,7254 0.0
N07.BAST 0.0 T T=267,17887TTT0L,0 T
3 0.0 , C 17.66228 0.0 19.4058)
U.0 : . = l6.8TG3 TR \ 0,0 ‘ 1746436
0.0 ~ 4,013655 0.0 13.44321
T4 =221.25877 0.0 T T TTT=18,5176TTT0,0 0 0 T
-297.2960 0.9 : -604,7488 0.0 :
T T =115.9%08 T 0.0 T T T T 285,750 T 0.0 T
Y v ' : =1 B.A72% DD =15.64467
0.0 . 13,53103 0.0 =173.98411
0.0 L =34021296 0.0 ~10.9£280
&  157.,371% 0.0 12.514527 0.0 T
‘ 21441626 0.0° 435,4145 0.0
T 800616637 T 0.0 T =203,6547 T 0.0 T
7 0.0 © 8.802417 NN 8.723711
0.0 =7.822785 0.0 8., 123C67
0.0 , 1.569277 0.9 6.514594
T8 =6.30100 0.0 T T T TR 572988 T 0.0 .
~— - -105.9974 0.0 -215.4931 0.0
T =3T311B0 000 T 99,48148 T T 0.0 -
9 0.0 .. =4,027582 0.0 -2,110293
0.0 ‘ T,237753 0.0 =3.1912%3
C.0 -0.5233213 0.0 : -2.667926
Y0 ?23.36BTA 0.0 1.524554 0,0 —
33,69325 0.0 £8,39530 0.0
TTTTI0GERIA30 0.0 T T TTT=30,96253 0.0 "‘
11 0.0 o . 1.038575 0.0 045493452
0.0 =0, 1001590 0.0 0.6498849
0.0 " 0.B7067720-01 0.0 0.6498855
TEIA5T700 0 0.0 =0.19682726 0.0
-5.363024 0.0 -10.68115 . 0.0
YL 422493 0.0 4,5533728 0.0
NET = 1. 9T7RORT = Det{hcil ,02}
"N INVERSE ™ -
T =2078.057 R24.8329 =235.4175 T 36,4788

66



TABLE V-3-1f: COMPUTATIONAL RESULTS FOR N = 6,

-4R79,994 8247 467 -2N06h1,957 813.,2379
Y Vi PR LN AL Y6 GRIZZ =WV eIE T T 5227.653
2 2061.938 -R132,2238 279.4407 -34.48125
3R77, 681 T=6227.6307 20760557 T T=824,838R7
235,4223 ~36,48045% 4829,940 ~5242,438
T3 7. 0667 T E306.8T11 TRTL.52279T T =13,406198
1798,773 ~1952,24]) 75641236 =293,4619
RN e&Hh3773 -11.72076 17R73.,79% =1 93%,6%5
4 -=756,1076 £ 291,453 -80,43952 11422646
=1789.760 TTT1934,624° T=T773,05717 7 306.,R6997
-R7,52342 13.40464 -1798,739 19%2,208
—5—=7g7. 743277 114,1203 TTTTTTR12,43 7067 4 R92171
-669, 8868 777.0248 -2764,0968 103.4287
=76, 7G7THY Te 337347 -667. 7319 TY7. 7876
6 274.0853 C o =103,47132 26.79549 -3.336910
TTTTTRA2, 7093 =T12.7620 T T 287., 732 T T =114.1178
I2.4367R8 -4 4892206 669,8616 ~-726.9986¢
T B9.14ARS T TR, 27630 T T T79,953990 T 0] ,476105
207.7711 . =275.4182 81.18603 -29.0897
6. BESTT 4 =0 TI52 777 2073.4543 =7216.9€8%
8 -A1,1795) . 26,08693 -6.844050 0.7159863
=203, 4405 T214,9531 T T =89, 1411467 T 35,07445
-4,9%25R8R . 1.476175 -207,7565 225.4027
T 9 <19,R8AR525 T.8225367 =2.1835007 7 0.3186573
~46,46694 . 50.39694 -16.69191 5.446818
=1, 09777 U RTOTA#90N=01 =44, 75387 4T7.01133
10 16.69138 ~5.445745 1.090593 -0.8095460D-01
T AAGTAR29 T 4T ,00520 T T 19,8293 T T T 7, 821692
2.183205 -0.31861361 46,66171 -50.39080
TYIT T 2.400715 T =0.6341004 T 0,5 74637 T T =0, 3707457001
5.675387 -hi136266 1.695998 ~0,4660073
0.6520720N=01 0.8364764D=-04 5 242401 -5.3172378
12 -1.695390 0.4657577 ~0.66132270-01 -0.96055800N-04
TTTE5L2810725 T T 5G310824 T T TS 400137 0.9338818
. =0.25740865% 0. 37067?80 =01 -5.673994 6.134767
R 7 FR Fl
1 1 0.4777118 -0.3603441
2 1TTNVTIR23263 T =0,2040949°
3 1 1.076478 - -0.1207948
4 1T 1.,273079 T T 20,.1538157
57 1 0.1342068 =0.6048777
-6 T 0.7770T87 =05 TRRAT 7
7 1 =0.2927000 0.5000026 ¢
'—B“___T TENGARTSIE? T DG37R522 u

.1 =~0,6941013 .
10 1 -0.868037
11

0.1035299

=0. 180597

1 ;0.94273925-01, 0.6589078
12 1 '-.()_.139749,7 . - 0.6TRH0D6S 7
TRTTTTTYT TXR X1
T ONLTIP046% T =0,9100457
1 0.6706334 0.6167143
1T =0,72T00334 0.5680%507F-0T11 aoln
1 =N.3726118 -042301776

1 0.72385065F-01 ~0.98902086E=02
v -1 064171939F~0]1 0,3016%03F-02 b
T =0, uzsmam—*o‘mwarﬁf}“—ﬁﬁ“
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TABLE V-3-1g: COMPUTATIONAL RESULTS FOR N = 6.

8 1 =0,1962515E-02 -0.1287782F-04 \

9 T 0.53881RAE=0% =0, ICT4IONE=0%
10 1 0.63R6307E-04 0,97279858F=-06 Poin
11T 1 =0, 15 188BF=-05 0,1228147E= -
12 1 =0.1411965E=05 -0.1046130F=06

R T FRC FIC

1 1 0.4777117 -0.36072660

T2 TTTTTYITTDLTBR2INETTT T =0,2040949

3 1 1.076477 -0.120797 ( -

4 17 "1.,2732078 =0.1538157 L)

5 1 0.1342067 -0.6048777 ( H

& T 0.7770186 =0.53ITRARTU 7

7 1 -0.2976999 0.5000025 \

B 1 =04B75167 0.37852723

9 1 =0.6941013 0.1025299 E

Y0 1 =0.B&R0IZR =0T TE95977 "
11 1 -0.R427376F-01 0,6589078 \
12 I =0,1397491 U.01850064 ./
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" TABLE V-3-2: COMPUTATIONAL RESULTS FOR N = 6.

T - R THET A PHT
1 Ty 1.57079% . 0.7853979
1 2 1,679R896 ' 0.7R53979
1 2 1.30R9°5 ' . 0.7B51979
1 A 1,17R09¢ - N, TR53979
1 5 Ye0GT195 ' . 0.7TR%3979
1 6 0.016297% 0.7853979
DETA = -0,2481404F-02 = DetB  DetC
NETAL = =0.5461611E-07  DtB  DetC
NETA2 = -0,5461816F-02 = DetB " DetC,
I T -1
DET = 0.,4543355 = Det&*'c Cz}
R T - FR O f]
(Real Part) ‘(Imaginary Part)
1 - 1 1.273079 -0.1538140 \
27 1 1.192777 -0.121030%
3 1 1.076477 -0.1707975 lfp
4 1 0.925B0%1 - -0.15009%9 [ @
5 1 0,7823270 -0.2040975 ( H
3 T N.h?7RE24R =N.27A56AT ]
7 1 -0.R680280 =0.1695910 N
8 1 =0,T8R2RS0 - =0.77165675F=01 '
9 1 =0.6940970 n.1035333 § Eg
10 1 -0.,5018370 0.2225537 P
11 ' -DL,4RT512? 0.3285241 {
12 1 -0.38627¢8 0.4210207  J
R T XR - X1
(Real Part) " (Imaginary Part)
1 1 0.,73727082 -0.9100257
? 1 . 0.670R6P1 _0.4146953 )
3 1 =0.2000474 0.56795315=01 " a
4 1 =0.,3776028 -0,2303743 & oln
5 —-1--0,23R1674F=01 =0.9854243F-03
6 1 . NJAVT4TRSE=01 0,301A9575-02 }
7 1 =0.14175196-02 0.719%473E-05
A 1 =N,1969686F=02 =0,1422371F-04 ) ~—
Q 1 0,5132791F-04 -0.5792277F-06 b
10 1 0.6510974E-04 0.15098]8F-05 ? eln
11 1 =N.1117200E=05 ~0.5R17608F=07 }
12 1 =0.1282133E-0% =-0,3721185F-06
R A FRC FIC
' (Real Part) -(Imaginary Pari)
1 1 1.273078 -0.1523160 )
? 1T 1,192776 =0.121730A
2 1 1.076476 -0,1207975 ( a
4 1 0.925R050 =0.1500959 oln
s 1 0.7823229 -0,2041975% J :
6 . 1 0.626674R ~0.27A56AT
7. 1 -0.8680279 -0.1695910 \
8 1 -0.788284R =0.27656765=-01 b
.9 1 -0.6940969 0.10253233 5' eln
10 1 =0.5918369. 0.2225537
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TABLE V-3-3: COMPUTATIONAL RESULTS FOR N = 6.

T R THFTA PHI
1 1 N.12n08995 0.78952679
1 2 N.,72617993. 0.786%979
1 3 N.29269R9 0.7852979
1 4 N,52359n4 0.7851979
1 5 0.654498) 0.7853979
1 6 N,7R53079, 0.78513979
NETA = =0,10607£5F=16
NETAl = =0.2249567F-165"
NDETA2 = =0,6205B44F=15
IET = 0,6778413E=-01 o
R T FR F1
1 1. N,?2864795F=01 =0,L5759N4
2 1 0.66623A4F=0] =0.6E16657
2 1 0.,1342067 -0.,6040705 "
4 1 0,22707R7 - =0.5316702
5 1 0.3427305 =0 4478709
6 1 0.,4777105 =N.36024R3
7 1 =0,2000465E=01  0.7042730
8 A =N, L6V aTI1E=D1l  0.6AT304T
9 1 =0.8B427298F=01 0.6589066
10 1 =N.139748% " 0.61RA058
11 . 1 =0,2097238 N56E6968
12 1 =0.292698” . 0,5007073
R T X X1
1 1 N0,7536628 -0.,70042064
2 1 0.,657882% Ne?2076HAKQ3
3 1 =0.,2177883 -0.10883737-01
a4 1 =N.368453] -N0.1620270
— 5 17 D.26601P0F=0) . N, 19RARRTFE-N1
6, 1 0.4105565E-01 =0.18745363%=01
T = 1 <0.21799R?F=-02 =0.51.5780:<07
© 8 1 <0.20606745E-02 0,51464215=-07
Q 1 0.1989400F-03 N,RL07808CE-03
10 1 0,1203925F-03 =0,8427415F=03
11 1 =0.1488529F~04 -0.6500229F=04
12 1 ~0.,9949403E-05 0.6815187E=04
R . T FRC FIC
1 1 N.724B0265E-01 -0.6G82113?
2 1 0.658%268F~01 -0.6619473
2 1 2.1336178 -0eA0%4321
4 1 0.226Ah036 -0.5307534
5 1 D.34249711 "=0.4662211
[ 1 0.4775945 -0.36570487
7 1 =0,1911997F=01 0.70469143
8 ~1.#0.43208RAE-01 0.6P77364
qQ 1 -0.8338946E-01 0.65°Q058
10 1 -0.1388899 0.6181347
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‘TABLE V-3-4: COMPUTATIONAL RESULTS FOR N = 6.

T P THETA PHIT
T 1 1.57079% N, TREG79
1 2 1.308995 0.7853979
1 3 1.832595 0.7853979
1 4 140471085 0.7851979
1 5 - 2.094394 0.7R%1679
1 6 0.,7852979 0.7R51979
DETA = =1766R95,
NETAL = -0,1647988F =07
DETA2 = ~0.164R334F=(2
DET = 0,1072153F 10
R T £R £
1 1 '.273079 =N,1538140
2 1 1.076477 -0.120797%
R 1,206344 _=0.31P209)
4 1 0D.7823727q -0.704N978§
5 1 ~1.0708e8 -0,5945R48
6 1 D.4777T105 . -0.3607483
7 "1 =N.RARN2B0N ' -0.169%019
f 1 -0.6940970 0.10>5233
9 1 =0.9605555 ~0.4770009
10 1 -0.4R75177 0.32857%41
11 1 -0.9385232 " -0,796N) A7
12 1 =0,2974982 0.5000073
R T XR X1
N Y 0,730 T4 7 T ~0.9092416
2 1. D.6708375 0.41%44109
3 1 -0.7209956( 0.56THH2TE=0]
4 1 =0.377%8538 =0.2303391
5 1 0.23821RAE=01 =0.9744091F=03
6 1 '0.4176646F-01 0.3007873F-02
7 1 =0.1419418F-02  0.4501432E-05
8 1 -0.19703745-02 -0,858n720r-05
9 1 0.5178574E-04 0,458)560%-08
10 L. 0.A558617FE=04 0,1169489%=07
n -1 =0.1207627F<-05- 0.666R106F=08
12 1 -0.1568012E-05 0,10274585~07
R T FRC FIC
1 L 1.22772078 -0.153R140
2 S 11076475 ~0.1707976
2 1 14286345 -0.2183992
4 1 0,78%2%70 -0.2040974
5 1 1.0708R7 ~0.5G45848
A 1 0.4777105 -0.3603483
7 1 =N.R689279 . =0.1695909
8 "1.-0.6940970 . 010253312
9+ 1 ~0.9605554 - -0,477n908
10 1 -0.,4875121 0.3285240
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TABLE V-3-5: COMPUTATIONAL RESULTS FOR N =6,

T R THFTA P
1 1 1.178097 0.7857979
1 2 1,047105 . 0,7853979
1 3 N.0147974 0.78652979
1 4 0,7953979 0.7853979
T & 0.6544087 0.7853979
1 6 N.523598% - 0.7851979
DETA = =0.1N32820F-06
NFTAL = =0.947543TF=-06A
DETA?2 = -0,94653564F =06
NFT = 0,1087894
P T FR E1
1 1 9.9385R08&1 -0.1500949
2 1. 0.78232217 -N.,204N975
3 1 0.6766248 -0.27¢65667
A 1 N.,4777105 -0.3£03483
5 1 0.%427395 -0.4472709
6 1 0.22701 A1 -0.5316702
7 1 -1.591 8370 062275537
8 1 =N0.487512° 0.37205824]
g 1 =0,3RA37HA 04210207
100 1 =0.72976982 0.500N073
11 1 =0.20972138 © 0.56559A8
12 1 =N, 1397482 0.6185058%
R T XP X1
1 1 0.7215804 -0.91727601
2 1 NehAT20417 N.417N08D
3 1 =0.20Q85725 0.57544428=01
4 1 =0,2731167 - =0.2211G34
5 1 0.2370379F=01 =0.1219524F=0?
6 1 0,4189685F-01 0,33000675-02
T 1 =N,1392134F=02 Q.6279363F=04
8 1 =0.2N13426E-02 =-0,9256308F-04
9 1 N.47R8348RE=04 =0.,926RB] TF=-05
10 1. 0.7616171F=04 0,17126B5F-04
1 1 =D0.1070560FE-05 0.6109376E=05h
12 1 =0.75234C1F=05 -0.1884111F-05
R T FRC FIc
1 1 N.93R7RO5%4 =-0.150n947
? 1 0.7823234 -0.2040903
3 1 N.67266256 -0.27¢5675
4 T 0., 4TTTL14 -0.7260149)
5 1 0,2427404 -0.,467R717
6 1 n.?7270190 ~0.5116£709
7 1 -0.5918363 0.2225530
8 1 -0.4875115 0.37285223
S 1 =0,3R63765 0.4219200
10° 1 -0,292¢6981 0.5000018
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