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ABSTRACT

The problem in question consists of determining means of solving
the inverse scattering problem where the transmitted field is given and the
received fields are measured, and this data is used to discover the nature
of the target.

The problem of what information can be determined about the body
if the scattering matrix (phase and amplitude) is known only over an angular
sector and measured in the far field, is studied further. Asymptotic analysis
is used to show that in the high frequency case, portions of a piecewise smooth,
convex surface can be found when knowledge of the bistatic scattered field is

confined to a small cone.

iii



THE UNIVERSITY OF MICHIGAN

8579-2-Q

TABLE OF CONTENTS

ABSTRACT

I FURTHER COMMENTS ON THE FAR FIELD
INFORMATION LIMITED TO A SOLID ANGLE

II' FORMAL PROCEDURE FOR DETERMINING POINTS
ON SURFACE

I  PRESENT AND FUTURE PLANS
REFERENCES
DD 1473

DISTRIBUTION LIST

iv

iii

15
29
30



THE UNIVERSITY OF MICHIGAN
8579-2-Q

FURTHER COMMENTS ON THE FAR FIELD INFORMA TION
LIMITED TO A SOLID ANGLE

It was pointed out in the last quarterly that the near field could be ex-
pressed in terms of the far field quantity EO (6, ¢) which is related to the scat-

tered far field electric intensity

eikR
E="3—E 6.9 . (1.1)
by the relation
2w Go—ioo
E(x) = ;—l;- [ / eﬂi‘igo(a,ﬁ)sinadadB s (1.2)
0 O

and a discussion was presented indicating the zone of space in which E (x)
could be found when knowledge of _P_JO(O, @) is confined to a solid angle. In
practice, the scattered far field (for a fixed transmitter position), will be
measured at a set of N points Qn= (On, ¢n) where n=1,2 ... N, located in the
solid angle 0OC@P<27x and 0 L 6 < eo . With this in mind, there arises several
considerations in connection with any computational procedure for determining
a portion or portions of the surface of the body from the finite set of measure-
ments, namely; the choice of near field representation, the location of the origin
of the coordinate system, and the restrictions on the portions of the surface of
the body which can be determined.

With regard to the choice of representation, there are three which are
essentially equivalent. The first is the plane wave representation given above.
If the number N is very large and the points are sufficiently dense, then

numerical integration of
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60 2r
(x) = 2%/ / eﬂg§ Eo(a,B) sinadadB (1.3)
0 0

can be performed. This technique would have to be employed for high fre-
quencies, in which case Eo(a/, B) would vary rapidly in the solid angle. Fur-
ther details on this approach will be discussed at the end of this section.

For N finite (order of 20 or less) a polynomial fit may be made to

EO(G, @#). One practical representation would involve the spherical harmonics

cosm @

sinm@ (1.4)

Y (6,4) = P:l(cose)

o

in which case the far field quantity I_Eo (6, ¢) would be expressed in the following

form

k8- E_(6,9) - Z (2,8 (0,9) +b T (6,0)] (1.5)

v=1

k@EJ&W=§: [-a, T (6.9 +b s (6.0)]  (1.6)

v=1

where the summation over v indicates summation over n=1,... o, m=0,1,...n,
and over both even and odd components. The functions SV and Tv are given by

the relations

m
1B ; =_ mPn (cos0) cos m 0
emn sind 9 emn T sing sinm @ '
0 0
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Nemn o P (cosh)
T - —0 . n cosm (1.8)
emn 960 06 sinm '

o}

Thus given E (6, @#) at the N points {On’ ¢n} , one can express EO(G, ¢) in

the form given be Egs. (1.5) and (1. 6) where the summation is from v=1 to

v=N. The unknown coefficients a by (v=1, ..., N) are found from the set

of 2N linear algebraic equations. When the half-angle 90, of the measurement

cone is less than x/4, it may be best in the practical treatment, to solve for the

constants a, and bu indirectly, by using a modified set of functions §V and r’i"/V in
) LY ~n/

place of SV and Tu . The functions SV and TU which will be linear combina-

tions of Sv and Tv are chosen so that they behave like ep as 6 approaches zero.

In this way the series

A ~ ~ ~s n/
ke-E = I:a S +b T]
- =0 vV Vv v v

v=1
A ~ ~ A~
k- E = [—a T +b S]
=0 Vv vV v
v=1

behaves locally as a Taylor series in the variable 6. The general expressions
for §V and %V will not be given here, however their explicit expressions will

be given for cases m=1 and n=1, 2, 3, along with the corresponding behavior

for 6 -0,
A
= 1
S, 11781~ oW
(6] (o]
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~t

2
8,197 8,197 38,11 0(6))

(0] 0 (0]

~ 4
= - - a¥s
Se 13 Se 13 5Se 12 9Se 11 0(6°)

0 o (0] (o)

The near field is given by the relation

N 2r Lo
i 2 ik - x A
= g — = =30 +b +B|- + i
E(x) . f f e {g [av S, vTv] B[avTv bysu]} sinoededB .
v=1 0 O
Integrating by parts it can be placed in the following form
2x % - im

aY (@, B) {% [eﬂg S @] —aia [eﬂi' Lsina 1/3]} dadB

v=1
N 2
Sl Iy QTSI SRIETY I WY
0

The integral representation can be simplified on using the following results:

Q%Eeili‘ié:‘ _é% [eﬂi'i sine B_]:iksinozeﬂ-{'.é[é(&é_\)‘é(&'é)]

ik
=-ikAxe~ =
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03 l:elli )iA + < [e sma/ a]s sinae — —{ik[é(x-éﬁ»a(x-a) 2k}

. 1‘: [- KARAx + 2iK] o5 X

From the following relationship

(1)
We mn()—() 8 hn (kR) Ye mn(e’ f)

o 0

(-;;713-/ / e——Y __(B)sinadads

O

the near ficld can be expressed in terms of the spherical vector wave functions

as follows

E(R, 6, §) = Z {A‘u m +B n (1.9)

v=l
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_ in+1 )
emn emn ,
0 0
> (1. 10)
and =it b
e mn e mn
0 o]
J

Alternatively, if some type of polynomial representation or Taylor
series was derived for EO(O, #) by curve fitting to the s:et of measlt\lred values
E (6, ¢n) n=1,2... N, then the partial derivatives of §-E  and g E_ with re-
spect to 6 and¢ could be calculated. To indicate how this could be used, take
the near field point to be on the z axis. Expression (1.2) becomes

-ioo

e1kR cosa Eo(a,B) sinadadf (1.11)

—0 I

2r
ik
E(0,0,R) - 2‘—,/
0

0

after bending the contour from Go—ioo to % -im. Changing the variable of inte-

gration « to t by the substitution
cosa = 1+it
the above expression becomes

T

2%
E(0,0,R) = % elkR/ / o KRE godtdB (1.12)
0 0

which reduces to the form,
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ikR

<8nE
__o>
kR)" Not™

a=0

{z

O

E
dtdﬁ}
(kR)N+1 / / n+1

(1.13)

upon integrating by parts. This has the form

which is equivalent to Wilcox's Expansion. This shows that the plane wave
expansion is equivalent to Wilcox's expansion. When the number of data points

N is large, and sufﬁciently dense, then numerical integration of quantity

/ / e - = E (o, B) sinadadB (1.14)
0

can be performed. This technique would be best employed in the high fre-
quency region in which case _}go(a,B) would vary rapidly in the solid angle.
In using this technique there would be two sources of errors; (1) the neglect of
the remaining integral taken over the range of @ from 90 to 21 -ioo which is re-
quired in the exact results, and (2) the interpolation and approximation to
Eo(a,B) in the cone 0o g 6, The latter source of error depends upon the
density of the number of measurements in the cone 0 £ 0 £ 00, and can be mini-
mized by increasing the number of data points. The former source of error is
more fundamental and will be examined in some detail here.

The example of high-frequency scattering by a sphere will be treated

first, where the dominant contribution in a cone 0 6 90 in the back-scattered

region, is the geometric optics contribution.
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The incident field is taken in the form

i

-ikz

%>

e

The geometric optics field in the far zone may be written

-2ika cos (/2)

E ®@,B) = -5&(,B) e (1.15)

b [0

where _3_ is the unit vector
A A 2 . 2 A . A .
e (e, B) =x(cosa cos B+sin B) -y (1-cosa) sinf cosB-zsinacosf. (1.16)

It will be assumed that the far field is measured at a sufficiently dense number
of points in the cone 0 < 6 < 00, such that a reasonable approximation to )1. 15)
can be obtained. Employing relation (1. 14) the near field is given approxi-

mately by

9
2%

x = -ﬁ/ / 1kf(a B)"( ,B) sinadadB (1.17)
0 O

Il'ljl

where

f(@,B) = r [sinesina cos (@-B) + cosOcosa] -2 acosg—y

As k—>, the dominant contribution te the integral arises from the vieinity
of the stationary phase point (3=¢, oz=afo) where o satisfies the equation

03
—)
r sin(ao-e) = asin ( 5 )

provided that 0 < ao< 90 . By means of first order stationary phase evaluation

we obtain immediately
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Expression (1.21) thus can be reduced to the following form

T
sin 6 ikg(6 ) -iZ i
S ka 0 0 4 4
E(r.0,f)~ -7 \’ oxkrsing {e B(6)-e 5('90)}

(1.23)
where
ip(6)
e [éZ(QO) +A (6)+ A_O(BO)]
E(OO) = o (1.24)
kr sin (-9 ) + ka sin (=2)
o 2
60 0
On the surface of the sphere r=a, outside the cones 0 < 6 g-z— and 7r——20-§ 6L,

the dominant behavior of the amplitude is given by the factors

2

-1
6
J’é l:sin (6 -90) + sin (—g—)}
and
6 "

\[é [?in(ewo - sin (—g—)_}

It is seen that on this portion of the sphere expression (1.23) does not agree with
(1. 18) the amplitude of which is unity. In addition in the shadow region of the
sphere in the cone ¥ —60/2 < 6 L 7, where the fields should vanish in the high
frequency region, representation (1.23) cannot be used as there is a stationary
phase point, in which case the asymptotic evaluation of (1.17) will give fields with
amplitude the order of unity.

Summing up, it is seen that the approximate representation (1.3) will give
the correct fields in the high frequency case, for a portion of the illuminated face
of the scatterer.

11
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It is of interest to extend the analysis to scattering surfaces with edges.
In this case the scatterer that will be taken will be the flat plate. For convenience
the geometric optics result for the scattered field will be employed. For a plane
wave of unit amplitude incident normally to a square flat plate, of length and
width a, and situated on the z=0 plane of a Cartesian coordinate system, the
physical optics scattered field is given by

Eo(a,8)= ;kifv sin (kEa_ u) sin (1_<2_a_ V) [§ cosa cosf3 —é\ sinB] (1.25)

where u = sin @ cos f
v=sinasinf .
Expression (1. 14) will be used for the near field calculation, with measurements

of the scattered field again confined to the cone 0 < 6 90 . The near field will

be calculated on the x-axis in which case

00 27 ik x
1 e * kau kav [ A A
E(x,0,0) = < " sin( 5 ) sin (T)[ acosacosf -8 sinB] sinadadB
o 0 !

which reduces to

I=>

2
ikx k k -
E-= -12— [el 4 sin(-s u) sin ('ai V) (1-u )dudy . (1.27)
x 2 2
A uv [l1-u -v

The integration in the u-v plane is over the area of the circle centered at the

origin with radius sinGO. The above integral can be expressed in the form

12
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sineo
§=§<_L2 / {:SmEl(kX+—):|+sm a(-kx+ 52 }&—)d (1.28)
27 .
-sinf
0
where o sin (B2
glu) = (1-U ) / dv
A l—u —v

—
. .2 2
with v = |sinf -u .
o) (o)

When (kavo)/2 >> 1, the asymptotic behavior of g(u) for large ka is given by

ka
5 ' 4cos ( 5 vo)
g(u) ~ (1-u7) / 2 kacosf v
1-u 0 o
Since the following integral has the asymptotic behavior for |B|—> o

sing
sinuB () du ~ glo)sgnB |

» |-

-sinf
o}

ka . .
it follows that for |x| < -23 (i.e. a point on the plate)

k
4 cos (isine )
1 - 2 0
wkasinf cos 6 !
0 0

13

It
2
1>
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otherwise E will vanish for a point outside the plate.
Provided that

kasing >> 1
o)

which implies that the half-angle of the cone of observation must not be too
small, the approximation expression for the near field given by Eq. (1.14).
will give the correct expression for the scattered field points on the plate
which are at least a wavelength away from the edges (indicate by the condition
that |8 =|xik?a|>> 1).

From the above analysis, it is seen that the approximate expression
(1. 14) will give good results in the high frequency case, provided that the
given data is sufficiently dense over the measurement cone (0 <8 <90).
These remarks do not include, at present, surfaces which contain cavities or
protuberances. A study will have to be made of these cases. From a numer-
ical standpoint, expression (1.14) could be difficult to use in the high fre-
quency case. Great care has to be taken in employing expression (1. 14) be-
cause the integrand contains a rapidly varying exponential, which could lead

to serious errors in the employment of any straightforward numerical procedure.

14
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II

FORMAL PROCEDURE FOR DETERMINING POINTS ON SURFACE

Points which may lie on the portion of a perfectly conducting body can be
determined from a knowledge of the field incident upon the body and the far field
scattered by the body. Specifically, if a transmitter and associated receivers
are located such that they subtend a solid angle Q2 with respect to the scattering
body then the points which can be determined will be included in the solid angle §2.
Since the criteria used for determining points on the surface is only a necessary
condition, it is possible that the criteria may be satisfied by more than one point
along a particular ray. However, the location of a point which lies on the sur-
face is, of course, independent of frequency and thus the ambiguity can be re-
moved by multifrequency measurements. Points which may determine other por -
tions of the surface can be determined by additional transmitter siets and their
associated receivers. Thus the data for the inverse scattering problem may con-
sist of several multifrequency transmitter sites and their associated receivers.
The form of the input data, the necessary coordinate rotation and the formal pro-
cedure for determining points which may lie on the surface are discussed in the
paragraphs that follow.

2.1 Input data for the Inverse Scattering Problem.

The input data for the data for the Inverse Scattering problem must be
given in terms of a coordinate system whose origin is in the interior of the scat-
tering body as shown in Fig. 2-1. The orientation of the axes is arbitrary.

The following data is necessary at each frequency and for each transmitter:

1. There are m transmitters located at the points Ti(Rti’ 0, ¢ti)

for i=1,2---M
where Rti is the distance in meters from the origin in the
transmitter location.

Bti and ¢ti are the angular displacements measured in degrees as

defined by Fig. 2-1.

15
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6
Scattering r
body \\\\\.
y
¢
X
FIG. 2-1

o
The field at the origin due to each transmitter is E ,=E e t 8i
where

Eti is the amplitude of the transmitted field at the origin

measured in volts per meter.

ati is the phase of the transmitted field measured in radians

at the origin of the coordinate system.

A
61: eil 9t1+ € ¢ti is a unit vector specifying the polarization

of the transmitted signal.

th
Associated with the i~ transmitter there are N receivers located
at the points P._(R., 0., §.)
ij it i)t Tij

where

th
R.. is the distance from the origin to the j receiver in meters.
i)
th
6. and @ are the angular displacements of the j  receiver
ij 1j
location in degrees.

th th
The scattered field at j  receiver due to the i  transmitter is

5 iae.,/\ ia¢,_
ij ij
E =E e ..TE e .
=iy 6 % Bij au

16
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where

EO i and E dij are the amplitude, in volts per meter, of the

6 and § components of the scattered field respectively.
o bij and a¢ij are the phase, in radians, of the scattered
field respectively.

2.2 Coordinate Transformation for Inverse Scattering.

2.2.1 Coordination Rotation.

The data for the inverse scattering problem will be given as
specified in Section 2. 1. In order that the data may be used in the inverse
scattering problem a rotation of the coordinate system is necessary for each
transmitter location such that in the new coordinates, denoted by primes, the
transmitter lies on the positive z' axis and the positive x' axis is parallel to
and in the direction of the polarization vector.

For the ith transmitter the position vector to the transmitter and the

polarization vector are

L= Timy

(2.1)

D>

A N
- +
e e 0 te, P

where the subscript ti denotes the ith transmitter. For convenience let

e

(6{0)3]
i1 Y

(2.2)

3

(S

. sin~.
i2 71

Using (2.1) and (2. 2) the unit vectors ?(i, /3\1; and /2; are

17
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n, 6 6

x! =cosy, 0, +sin~y, @ .

i 71 ti ’yl ti
AI—AI ,\l_ 3 A P

=z'XX'=-gsin~y. 0 . +cosy. 0. 2.3

yi i i S 'Yl ti 71¢t1 ( )
2 =7

i ti

N A
In any coordinate system the unit vector f', 6, ¢ at a point are related

to the unit vector /)2, /}\1, 2 by

A A

X = sinfcosf T + cos 8 cos @ 8 -sinf ¢
~ A
Y =sin6 sinf T+cos 6 sin@ 6 +cos @ @ (2.4)
’ﬁ=cos6/x\'-sin93
and

A A oY A
r=sinf cos x+sinf sinf y+cos 6 z
A N~ A A
6 =cos O cosfP x+cos O sinff y -sinf z (2.5)
A A
§=-sinf x+cosf 7.

th

The unit vector to the j~ receiver is from (2. 5)

1

A
r

. A . 3 A A
.. =8inf _ cos@. x +sin6 _ sin@ y +cos6, .z
ij ij ij i ij ij’i ij i

sin @' cos §' X' +sin 0! sin@' 3 +cos 6 2  (2.6)
ij ij i ij ij Ui ij i

From Egs. (2.3), (2.4) and (2. 5) the following relations between the

unit vectors can be obtained

N

N
X, X'=cosvy, cos0 . cosP . -sin~ sin@ .
i i ‘Yl ti ¢t1 71 ¢t1

A
LR = in g +si T
y; " X} = cos v, cos 6, sin ¢ti sin 1, cos ¢ti (2.7)
A A
z,* X! = -Co i
i X cos 7, sin Gti

18
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N A
. ''= - gi - i
X ¥y sin v, cos Gti cos ¢ti cos v, sin ¢ti
~ A‘ - : .
R - + . .
y; - ¥j=-siny cos 6, sin ¢ti cos *, Cos ¢t1 (2.8)
A A
- y! = sin i
z, yi v sin eti
A A
-z = gi oS
X, 2 = sin 6 cos §
A 7
- 2! = sin i 2.
Vit % 6y, sin By (2.9)
A A
z, - 2'=cos 6,
1 i ti

From Eq. (2.6) the angle e'ij can be expressed in terms eij and ¢ij as

A A A N ~ " ~ n
z!- r. =cosf! =sinf  cos @, . z' x +sin@ _sinf  z!' -y +cos6, z'-z,
i ij ij ij ij “i i ij ij i Yi iji i
0<oy <7 (2. 10)
Using the result in Eqs. (2.7), (2.8) and (2. 9) in (2. 10) we obtain
Vs e . 4 )+ .
cos eij sin eij sin eti cos (¢ij ¢ti) cos eij cos eti (2.11)
“The angle ¢;.] can be obtained from
X'+ T =8ing cos@ =sinh cosfP x'- x+
i ij ij ij ij
+sinf, sing, X -y+cosh X -z  (2.12)
ij ij i

19
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A . . A
v - ?i = sineij sin ¢1J = sin eij cos ¢ij x4+

A A A A
+ si ey + 6.y -z . (2.
sin eij cos ¢ij y' - y +cos i y -z (2.13)

Using the result of (2.7), (2.8) and (2. 9) in (2. 12) and (2. 13) we obtain

Y ' - qi -
sin eij cos ¢ij sin eij cos v, cos 6,, cos (¢ij ¢ ti)
+ i . : _
sin eij sin v, sin (¢ij ¢ij)

- cos eij cos v, sin eti (2.14)

and
C il - o , _
sin eij sin ¢ij sin aij sin v, cos 6, cos (¢ij ¢ti)
+sinf,, co i -
jjcos v sin (g -9 )

+ cos Gij sin Y sin eti . (2.15)

Using the value of eij determined by Eq. (2. 11) Egs. (2. 14) and (2. 15)
determine ¢;] in the range 0 <¢;j <27.

In a similar manner the inverse transformation can be obtained as

cosf. . = -sinf' sin@  cos (P'.+~) +cosh' cosh. 0<6O, <« (2.16)
1j ij ti ij 1 ij ti ij

and

20
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: i Dy
sin 6., cos ¢i' sin Gij cos 6, cos ¢ti cos (¢ij ¢ti)
- sin t9'J sin ¢ sin ('y ¢ )

+ ' si :
cos eij sin 6, cos ¢ti (2.17)

) . i g . -
sin eij sin ¢ij sin eij cos 91;1 sin ¢ti cos (¢ij "yi)
+ sin 6" i + @
sin eij cos ¢ti sin ('yi ¢ij)

Co .
+ cos 913' sin 6, sin ¢ti . (2.18)

Equations (2. 17) and (2. 18) uniquely determine ¢ij in the range 0<¢ij<21r.

The components of the scattered field at the jth receiver due to the ith
transmitter in the directions of the unlt vectors 6; and ¢' must be determined.
It is convenient to remove a factor (e )/R before developmg these expres-

th th

sions. The expression for the scattered field at the j© receiver due to the it

transmitter at a particular frequency is
io io
*%.. ¢ .

*-E e g +E, e Jg._ . (2. 19)
=ij eij ij ¢1] 1]

The scattered field can be written as

21



THE UNIVERSITY OF MICHIGAN

8579-2-Q
ikR ikR
s e U £ o.e neor P £
E = = LA+ N . 2.20
=ij " kR., “ij kR., | 76.6.. ¢..¢..1 (2.20)
1] 13 1] 1) 1) 1
The quantities 5 5 and § ¢ can be determined from (2. 19) and
ij ij
(2.20) and are
i(e, -kR.)
..
£ =kR_E e J (2.21)
6. 1j 6.,
ij ij
ile, -kR.)
¢ij ij
ij ij

>
>

éG}J z 1] 5y &Gij 9'13' : 913 -6 ¢13 6'13' : ¢ij (2.23)
and
Ph ¢ ‘ g o s .
E ¢;j ¢ij o Ey- & gij ¢'ij : ei]_ + 3¢ij ¢;J . aij . (2. 24)

The products of the unit vector can be obtained from Egs. (2.3), (2.4)

and (2.5). The results are

22
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= ! + ! ) -
56;]' Eeij {cos Bij cos ('yi ¢ij) [cos eti cos eij cos ¢ij cos (¢ti ¢ij)
. . + Vo + @ )ai _
+ sin eti sin GijJ cos Gij sin ('yi ¢ij) Sm(¢ij ¢ti) cos Gij
o . e .
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2.3 Points on the Surface.

The scattered field due to the ith transmitter along a ray from the origin

to the jth receiver at a particular frequency can be written as

23



THE UNIVERSITY OF MICHIGAN

8579-2-Q
@ n
+ +
ES=Z li(_i)n 1a o +(—i)n la -
- emn=—emn omn Somn
n=1 m=0
+()"  n  +(-)'b. n ] (2.27)
emnTemn omn <omn
where
= ey ( (kr' )P (cos6')) ¢'
—emn sin 6! i cos
(l) (k ') '— P (COS 9! ¢' ¢' (2 28)
06'] n 1] sin .
and
_ nlntl) (1) \ o
-emn kr;] (kr! )P (co 0} )in ¢ !
1 9 ( ) ]
+ - _0_ LA
kr!, 8r!.[ j (krl) 0T, P (cose )6
1) ij ij
+ m 9 [ (1) ' P oA -
kr'J sine' arij ij n (kr! ) (cos@ )¢ (2.29)
The coefficients a , a , b and b are unknown and to be
émn omn €emn omn
determined.

Assuming the receiver is in the far field of the scattering body and

introducing the following notation
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the expression for the scattered field can be written approximately as

-
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From (2.25), (2.26) and (2. 32) we obtain
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It is convenient to write Egs. (2.33) and (2. 34) as a single sum as follows:

[09)
<)
v -
Co! 3 (av SV +bv Tv ) (2.35)
2 v=1
oo}
o - - + .
G¢,” L._;.J ( ayTU bvsv) (2.36)
1)
v=1
where
417 %10
47910
a3 = ae11 etc

In general, the subscripts e or o, and the values of m and n can be

determined for a given v as follows:

1. nis determined by (n-1) (n+2) < v { n(n+3)

2. If v-(n-1)(n+2) is even use o, odd use e

v-(n-1)(n+2)

3. m is given by the integer or next highest integer to 5 1.

Assuming that the series in (2. 35) and (2. 36) can be approximated by a
finite number of terms a system of 2N linear equations (where N is the number

of receivers) can be formed to determine the av and bv. There will be N

equations of the form

N

= + . 3
Egr E (a 8 +b T ), (2. 37;
1]

v=1
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one for each value of the index j.

Similarly, there will be N equations of the form
N
5¢,_ = E (-ay T, +bV sv) : (2.38)
ij
v=1

The system of linear Egs. (2. 37) and (2. 38) can be solved by standard

methods and results used in Eq. (2.27). The scattered field is approximately

N(v) n

.+l +1
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n
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From Section 2. 1 the incident field along a ray to the jth receiver is

iati —ikrij A
E = 3 1 1 1 + 1 Al 1 -_ail 1 ] .
E, =E e e (smeijcos¢ij T cos eij cog¢ij eij s1n¢ij aij)
(2. 40)
From Eqgs. (2.39) and (2. 40) the total field is
E =E_ +E (2. 41)
= Fyg = :

The criteria for determining points which may lie on the surface of the

scattering body is

E x E_ =0. (2. 42)
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In an actual calculation Eq. (2.42) may not be satisfied exactly and

practically it may be more useful to look for minimum values of the function

e
E .
[Ep * Eq |
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PRESENT AND FUTURE PLANS

At present, analysis is being carried out to investigate the amount
of data that is necessary in order to determine the shape and size of a dielectric
body. A review of the techniques developed by Gelfand and Levitan and the tech-
nique developed by Kay for scalar scattering has been carried out. This review
will be presented in detail in the next quarterly. The possibility of generalizing
the results to the three dimensional vector case will be investigated.

Practical techniques for determining the surface of a perfectly con-
ducting body are being carried out on a specific example. Theoretical condition
ExE * = 0, based upon knowledge of the total field E in the vicinity of the scat-
tering surface, was investigated numerically, and the results indicate that this
condition may be very difficult to employ in any numerical scheme where only
approximate values of the total field are known. To improve its use, a proper
normalization factor, yet to be found, may have to be employed. However,
alternative conditions can be used, such as in the high frequency case, where

2 i]2
the approximate condition 'Esl =‘ I_{ll may be employed to find the illum-

inated portion of the body. This later condition appears to be much more practical

in any numerical approach.

Further asymptotic analysis will be carried out with the approximate
near field expression Eq. (1. 14) to investigate what portions, if any, of concave
surfaces can be determined when knowledge of the far field is confined to a cone

0L0 <8,
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