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ABSTRACT

The approach to the inverse scattering problem based upon the representa-
tion of the scattered field in terms of plane waves is investigated. This technique
is shown to have several advantages. If the scattered field is thought of as arising
from a set of discrete sources, the field can be obtained everywhere outside and be-
tween each individual source, i.e. it is not restricted to the region outside the mini-
mum convex shape enclosing the sources. This could have practical uses for inves-
tigating cavities or antennas mounted on the surface of the body. In addition, if the
scattered field (phase and amplitude) is known only over some angular bistatic sector,
the near field (in the high frequency case) can be still obtained in certain regions.
Thus, if it is assumed apriori that the body was a perfect conductor, then those por-
tions of the scattering body giving rise to the observed portions of the scattered field
can be found.

For non-magnetic and non-perfectly conducting bodies, it is shown that the
exact total field inside the body could be represented in terms of a plane wave ex-
pansion involving the far field quantities. This representation involves an appro-
priate split up of the far field data, and a fundamental problem still exists to uniquely
determine the split up from the knowledge of the far field data alone. It is possible
that additional information will be needed; perhaps knowledge of the complete scat-
tering matrix for all frequencies. This is an important problem since its solution

will yield both the shape and material of the body.
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INTRODUCTION

The approach to obtaining the near field from knowledge of the complete
scattered field, based upon the plane wave representation is investigated for a fixed
frequency. Such a technique has been used for particular direct scattering problems,
and modified versions of it appropriate to the high frequency case, have been em-

ployed in geometric optics (Kline and Kay, 1965).
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GENERAL THEOREM

1.1 Determination of the Near Field from the Far Field.

A problem of fundamental significance in inverse scattering theory is that
of determining the electromagnetic field at all points in space from a knowledge of
the field in the far zone. In this regard, an important representation of the electro-
magnetic field in free space may be obtained as a combination of infinite plane waves
whose amplitude factors are given by the far-field and whose directions of propaga-
tion are, in general, complex. Although the representation discussed in this section
is valid only at points outside the sources of the field, the extension to points within
a source region is under investigation and will be discussed in Section 4.

Consider the electromagnetic field produced by a given volume distribution
of electric currents j varying harmonically with time (e_iwt) and located in some
finite volume V of free space. The field everywhere in space may be expressed in

terms of the vector potential A given by

uo eikR
— — s (<! '
A"
where R=[ x-x' | , and the far-field distribution has the form
eikr

Alr,6,) ~ A4 (6,9) (1.2)
- r =o

r—>o
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with
IJO '
—— e— 3 t - - 1
A (6,9) i jx"e dx'

(1.3)

k = k(sin6 cos@, sin 6 sinf, cos6) .

The currents j may be thought of as equivalent sources for some scattered field or
as real sources for some radiation field.

For points exterior to V the Green's function eikR/R can be expanded
into plane waves. We shall employ the well-known integral representation due to

Weyl (1919) (see also Stratton, 1941, p. 578)

ikR ik 2 ik - (x-x')
eR =5 e 2 sinodr a8 (z>2') (1.4)

where now k=k(sine cos B, sinasinf, cosa) is a function of the variables of inte -

gration @ and 8 running from 0 to %w—ioo and 0 to 2w, respectively. It is seen
that in this expansion of the spherical wave eikR/ R all possible plane-wave direc-
tions within the limits 0B <2, 0o L (7/2) are included; values of o lying in
(r/2) {a < 7® correspond to plane waves travelling in from infinity in the half-space
z> z', and are, therefore, excluded. In addition, however, inhomogeneous plane

waves with an exponentially decreasing amplitude in the z-direction (for z > z') are
included in order to yield the necessary singularity at R—> 0. These waves corre-

spond to that part of the integration path running from a=(x/2) to @=(r/2)-i®. An

alternative representation valid in the half-space z . z' may be obtained by
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selecting a different path of integration in the a-plane; thus, for example, we may

write

= = e— (x-x sina da dB (z£z')

0 T (1.5)

When (1. 4) is introduced into (1.1) and the orders of integration inter-

changed, one obtains for the vector potential A the following result

. T
) 2T g 100
_ kMo [ ik (x-x) . :
Ax) = r An 1(5)/ / e sine dr d3 dx'
v 0 0
2 ;L-ioo
_ ik ik-xyfo [ o cikex |
= o / e = j(x")e dx'} sinadads,
0 0

A (1.6)

and, upon recognizing in view of (1. 3) that the quantity contained in { } immedi-

ately above is merely éo(a,B), one finds

21 ;l-ioo
Alx) = 51%/ / eﬂi' S éo(a,B)sma da d8 (1.7)
0 O

provided x lies in the half-space formed by the portion of the z~axis above the

source volume V, thatis, z > z;nax' In this upper half-space, then, Eq. (1.7)
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provides a representation of the near field in terms of the far-field data. For x
lying in the lower half-space below the source region, z < Z;nin’ we have by virtue
“of (1.5)
T
2  —+i
/7{ 5 41

eﬂi'z(-f_xo(a,ﬁ)sina dedd . (1.8)

The integrals (1.7) and (1. 8) together give the field everywhere in space except in
the region z' <zgz'  which sandwiches the sources. It is clear, however, that
min max
other paths of integration in the a-plane depending on the observation angle 8 may be
selected to yield results even within z' . {zgz' , although the source region
min max
must still be excluded. Choosing other paths of integration is tantamount to rotating

the reference axes and will be discussed shortly.

1.2 Additional Comments.

As we have seen, the integral representation of the near field in terms of
the far field requires integration over a surface element dQ2=sinada d8 of the com-
plex unit sphere Q. It is interesting to note that integration over the real portion of
the unit sphere yields a result which contains both incoming and outgoing waves.

Thus, in view of the representation (Stratton, 1941, p. 410)

27

sinkR  k eili-(;i—g)

R i sinada dB , (1.9)
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27 T
Xk ik x . _ Yo [ SIDKR
o e éo(a,B)mnozdode---41r ix") R dx' . (1.10)
0 O Vv

On the other hand, complex values of 3 as well as o may be included

‘since, by a straightforward modification of the Weyl formula (1. 4), we have

T . T .
— -100 —=100

eikR ik y ’ ik- (x-x")
— = e— = ="ginada d8, (1.11)
T . T .
-3 +im "5 +ioo
and thus
LS ~ioo
2
A(x) = -&// elli'§ A (o,B)sine da d83 . (1.12)
-= 2T -0
—%—Hoo
1.3 Rotations of the Reference Axes.

The integral representations (1.7) and (1. 8) taken together exclude certain
portions of free space, namely the free-space points lying within the region

z'min‘<‘ z < Z;nax sandwiching the source volume V. These points may be included

by means of a rotation of the reference axes. Consider the integral (1. 4)

T .
27 5-100
ikR
e _ ik ik - (x-x') :
™ _21r/ / e sine da 8 (z3 z')
0 0

)
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where k=k(sina cosB, sinasinB, cosa). This integral is invariant to a rotation of

the reference axes, thus change to new variables o', B' defined by direction cosine

relations

sina'cosB'= sina coseocos (B—¢o) - cosa sinGo ,

sina' sinfB'= sina sin(B—¢o) , (1.13)

cosa' = sina sinf_cos (B-¢o) tcosacosf

where 60, ¢o are arbitrary (real) angles. The inverse transformation, defining the

old variables (a,B) in terms of the new variables (a',B'), is

sina cosf=cosa' sin 6 cos ¢o + sino! [cos GocosB' cos ¢0— sinf' sin ¢0] ,
sina sinB= cosa!' sin Oosin ¢0 + sina' [cos 90 cosfB' sin ¢o+ sinB' cos ¢o] ,
(1.14)

cos @ = cos a' coseo - sin a'sineo cos ' .

Further

dQ = sina do dff = sina' da' df'= dQY (1.15)

and the limits of integration may remain the same. The integral representation is

essentially unchanged in form:

. ik -x!'
e ik elli (x-x) sina' de' d3' , (1.16)

where the directional cosines of k are to be obtained from the inverse transforma-

tion relations given in (1.14). The integral, however, now converges at a'=(w/2)-ico
6
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provided

o (oot s 4 (gt
(x x)sm@ocos¢0 (y y)smeosmgllO (z z)coseo>0, (1.17)

that is, provided

x>
x>

(1.18)

1%

where ?{O is the unit vector
2 = (sin6 cosf , sinf sinf , cos6 ). (1.19)
o) o) o) 0 o o)

We have, therfore,

2T 721-100
N 'k'
Alx) = él;rk—/ / el— iAo(oz,B)sinar'doz'dB' (1.20)
0 O

x-% >max(x'-%) . (1.21)
= "0 = o

provided

This representation is thus valid for all x lying in the half-space formed by the por-
tion of the ?(O axis not containing the sources. Since ?{o is an arbitrarily directed
vector, it is clear that portions of free space within z' <z 2! , which were
min max .
previously excluded, may now be included. In particular, by rotating the X vector
we may generate the field everywhere in the space outside some minimum convex

shape surrounding the sources.
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1.4 Relationship to Spherical Harmonics.

Assume the far field is known as an expansion in spherical harmonics

A (6, @) =Z Z %mP;n(cos t9)eim¢ . (1.22)
n m

Then, because of the integral representation derived by Erdélyi (1937):

—-im

27 12r
P Dcr) P cos )7 = A/ / e Xp M cosa) e W sine dach,
n n ‘ 2w n
0 0 (1. 23)

we have immediately from (1. 7)

A(x) = lkZ Z a . inhfll)(kr) P;n(cos 6)eim¢ )
n m

(1.24)

thereby giving the field as an expansion in spherical wave functions.

1.5 Relationship to Aperture Problems.

Assume the source currents j(x') are confined to the plane z'=0 and de-

note the directional cosines of k by u,v,w where
u = sin & cos B,
v = sin a sin B, (1.25)

W = Ccos a .

The far-field amplitude (1. 3) may be written in the form
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[

4 .
_k LIS t
A (wv)= ﬁj G,y o ROV (1.26)

and the spherical wave (1.4) may be expressed as

o0
eikR=E// eik[:u(x—x')+v(y—y‘)+w(z—z'):) dudv (1.27)
R 2m w

-

since sinaodad8 = (1/w)dudv. Thus, remembering z'=0, we have

Q0

. . R
ik e1k(ux vy wz)A

(u )dudv
R 27 2otV )

- (1.28)
When z=0 this leads to the well -known result that polar diagrams and aperture dis-

tributions are related by two-dimensional Fourier transformations (see e.g. Bouw-

kamp, 1954).

1.6 The Field Quantities.

The electromagnetic field is derived from the vector potential by means of

the relations

§=—l curl A,
Ho
i 1.29
E= - curl curl A. ( )
=T e w a
00
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In the far zone these equations give

ikr eikr ;
go(e, 1)) = (“—o) kA A_O(e, @),

H(r, 6, v

ikr ikr (1.30)
e _ e -i
E(r, 6, )v=—E (6,§) = *— (%“ kAKAA (6.9).

When these relations are applied to the integral representation (1. 7) of the vector

potential, one finds

27 ;L-'oo
H(x) = 51-1;—/ / eﬂ-{- S (-—-) kAA (ar B) sine do dB
Ho
: .
. (1.31)
=21—1;-// eﬂi—H(a B)sinada db ,

and similarly for the electric field

E(x) = —/ / k- x _]::_ (@,B)sinadadB . (1.32)

The near fields may thus be represented directly in terms of the electromagnetic

fields in the far zone.

10
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1.7 Determination of Field in Free-Space Region between Distinct Sources.

If the original source region V can be separated into a number of disjoint-
ed volumes Vi in free space, then it may be possible to determine the field in the
space between these distinct source regions. For example, let the currents j be
located in two finite volumes V., and V_, and further assume that V, lies within

1 2 1

the range z1< z < Z, while V2 lies within the range Zg <z < Z, with 22 < 23 .

Also, let ﬂE)D(G, @) and 1_1{02](9, @) denote the far-field amplitudes due to the sources

in V, and V_, respectively. Then the field in the free-space region z_<z<z_ be-

1 2 2 3
tween the two volumes Vl’ V2 can be represented in the form
T T
T T, .
2 5 ioo 27 5 5100
ik ik- 1 ik- 2
H(§)=21—' el- ég[ ](ar,B) sinadadB - el" 5_}![0 ] (o, B)sinadadB
0 0 0 = (1.33)

The first integral above converges for z > z_, while the second converges for z<z_;

2 3

hence, this representation is valid in the desired region z2< z< 23. This has an
immediate application in providing a means of separating out distinct sources of the
scattered field that may occur, such as an antenna or other protuberance mounted

on a smooth surface.

11
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II
ANALYTIC CONTINUATION

The field EO(G, @) in the far zone is measurable only for real values of
6, @ inthe ranges 06 <7, 0@ <2r. However, in order to obtain the near
field by means of the integral representation discussed in the previous section, it is
necessary to know go(a/, ¢) where o = 6+i€ . Therefore, we need an extension into
the complex a@-plane based upon the measured quantity EO(B, @).

Now go(e, @) is immediately known for the range -r<6<w . This follows

from the definition

H (6.9) = i kAL (x) e 5 X g (2.1)

\'
and the fact that k as a function of 6 and § satisfies
k(-6,0) = k(6,§17); (2.2)

hence

;10(— 9,0) = go(e, grm) . (2.3)
In addition, H_ is periodic with period 27 inboth 6 and @ .

To obtain an expression for I_io(a/ s ¢) in the complex a-plane, we observe

from (2. 1) that go(a ,$) is a harmonic function in the variables 6 and £; that is

> o2
(——2+ —5) H (6+i&, @) =0. (2.4)
96"  of ©

12
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As such, ILIO(a, @) may be expressed in the following form

(e8]

l'_IO(oz,¢) = Z a ein(6+i§) , (2.5)

n=-a

where the coefficients a are derived by means of the relation

L =L ~ing'
2

a, go(e', g)de' . (2.6)

This provides an extension into the complex a-plane. The series (2.5) may be par-

tially summed and put into closed form as follows:

ei(9+i§)H (" ¢) 150 T
1 =0’ L1 in(6+i&) : 1n6' o1
Bl P=57 A(B+E)__i6' a6 +2,Ze B0 Pe
- n=1 - (2.7)
for £<0, and
o r
H KC ,9) o
=L ' -in(6+i§) ' e 4
Ih—lo(a,’¢ T ox eie'_ 1(9+ i€) de’ + o Ze H (6 Pe
- s -x (2.8)

for £> 0.
To investigate the convergence of the series (2.5) we examine the behavior

of a as n— . Now

13
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T T
1 _- . _ik. ' - _¢ _- .x
a =— PIILiaitne B qobdo =2 | jx)A [ ke POEE g 4
-n 27 4 - 2 = -
8w
-T \% \% - (2.9)
where
k=k(sinfcos @, sinfsinf, cos ) (2.10)
Write k in the form
l_<_=§(e19£+ 0 %) (2.11)
with
t=(-icosf, -ising, 1), (2.12)
then

. I ) A

g = 2K j_(x')/\{t gL Oikex’ gy [ TitD) O-ikex de} dx’
16w

\Y - - (2.13)

But k- x' may be written in the form

k-x' = kr' [cos@cos ' + sin9sin b’ cos (¢—¢'):l

(2.14)
= kr'p cos(6-y) ,

where

2 2 2 2
p = cos 0'+sin 6'cos (§-@'),
(2.15)

tan ¢ = tan 6' cos (f-¢@') ,

and, in view of the integral representation

14
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n
» . im0 -ikr'
MY (krp) = A [ gmO-Ikripeos(6) o (2. 16)
m 27
_1
we have the closed form expression
@D L iy Lk -y ) iy
2n 87 1Ny te Jn--l(kr pI-Le Jn+l(kr Pl e dx
\' (2.17)

As n tends to infinity the dominant contribution is due to the first term

within the braces in the integrand

(-i) % '(x')/\t(gae_i )n_l dx! (2.18)
2, n-—-)oo 81/"(11) LEMNIN2 =’ '
\Y
hence
Constant (kR
a < (o) ( ) (2.19)
n—

where R represents the maximum value of r'. A similar result holds for | a_ l .
The convergence of the series (2.5) is therefore secured for all o=6+if because of

the gamma function in the denominator of (2. 19).

15
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I

HIGH-FREQUENCY SCATTERING

It will often happen at high frequencies that the far scattered field from a
body can be characterized either by a rapidly varying phase function (e.g. specular
scattering) or by a rapidly varying amplitude function (e.g. scattering by a flat
plate). Under these conditions the contour integral representation of the near field
in terms of the far field is particularly convenient because the powerful methods of
asymptotic analysis are then at one's disposal. As an application of the integral
representation at high frequencies we shall here consider the geometrical optics
field produced by a plane wave incident on a perfectly conducting sphere.

The incident field is taken in the form

E1= ?( e-1kz ,
(3.1)
i
H = :
and the scattered field is given by
T .
2 9 -ioo
Es(x) = E‘/ / elk.i ES(Q',B) sina dadB
=~ 27 =0
0 0
x (3.2)
27 E—ioo
Hs(x)= ﬁ/‘ / eﬂgi Hs (@,B) sina da d8 ,
= = 2 =0
0 0

16




THE UNIVERSITY OF MICHIGAN
7644-3-T

The geometrical optics field in the far zone may be written as

E°(@,B)=-2 8@, p) e 2ikaCOSE/2)
0 2
(3.3)
o "2ika cos (@/2)
A
where g(ar, B) and h(x,B) are the unit vectors
A A ‘ 2 A 2 A . A
ela, B)=x(cosa cos B+sin B)-y(1-cosa)sinf cosB-zsina cosB ,
(3.4)

A A
h(e, B)=-X(1- cosa) sinB cosf+ 'gf(cosoz sin28+ coszﬁ)— zsina sinf3 .

The exponential behavior of the integrands in (3.2) is thus governed by the
factor

eikf(a’B) (3.5)

where

A a . . %4
f(a,B)=k-§—2acos§= r[sm@smacos (¢—B)+cosecosa] -2a cos > .

(3.6)

Upon examining the convergence of the integral as o—(r/2)-ico, one finds that the
integrand decays exponentially so long as rcos6> 0, thatis, z> 0. When z=0,
however, the integrand grows exponentially as «—>(7/2)-im and therefore diverges.
Hence the representation (3.2) with (3. 3) is valid for all z> 0, or what is the same,

0<6<(n/2).

17
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As k-0 the dominant contribution to the integral arises from the vicinity

of the stationary phase point (3=, a=ozo) where ao satisfies the equation
r sin(ao-6)= a sin(ao/ 2) . (3.7

The physical interpretation of this equation is shown in Fig. (3-1). The quantity
p= asin(aO/2) may be interpreted as the impact parameter associated with an in-
cident ray, and this is precisely the incident ray that reaches the observation point
P after being reflected at the surface according to the laws of geometrical optics.
The angle a is twice the angle of incidence.

By means of a first order stationary phase evaluation we obtain immediately

N\

. sin « ikf (e , @)
Es(ﬁ)m -= 0 = 3(&0, #)e o

a 0 )
[r cos (czo—@)-2 cos— ]rsme (3.8)

and similarly for the magnetic field. If we let s denote the distance along the re-

flected ray from the point of reflection

S=r cos (ozo— 6)-acos (aO/Z) ,

3.
r sinf=ssina +asin(x /2), (3.9)
0 0
then the result (3.8) may be written in the form
1/2 Lo
iks- ika cos (@ /2)
E%x)~ - [g—%] el . Pe >, (3.10)

18
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P(r, 0, 9)
a -9

P
incoming ray

FIG. 3-1: PHYSICAL INTERPRETATION OF STATIONARY PHASE POINT
@, FOR HIGH-FREQUENCY (GEOMETRICAL OPTICS)

SCATTERING BY CONDUCTING SPHERE.

19
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where
CYo 28 28 ao
= -_—t+— +— - . .
D(s) <cos 5 a) (1 5 0053 (3.11)
The magnetic field takes the analogous form
. € Do) 1/2 ~ iks-ikacos(aro/2)
H - = == :
H (x)~s m [D(s)] h(afo, #) e . (3.12)

The amplitude factor [D(O)/ D(s)]l/ 2 in the equations above accounts for the di-
vergence of the rays after reflection at the surface. This factor has been derived
on the basis of geometrical optics for reflection from an arbitrary convex body by
Fock (1948), and it is easy to verify that the quantity (3.11) agrees with the expres-
sion given by Fock in the case of the sphere. The phase of the field is also in agree-
ment with standard geometrical optics considerations.

The ordinary stationary phase evaluation fails in the vicinity of the caustic

given by the equation

a
r cos (o —6)—g'cos—o=0 ; (3.13)
o] 2 2

however, it must be emphasized that the behavior of the field near the caustic may
still be examined by applying a modified asymptotic analysis to the integral repre-
sentation in (3.2). The elegance and simplicity of this representation for application

to high-frequency scattering is evident.

20
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Iv

REPRESENTATION OF THE FIELD INSIDE THE SCATTERING BODY

In the previous sections the scattered field was represented in terms of a
vector potential involving currents that were physical or otherwise; i.e. the fact
that the scattered field arose from induced sources was not prescribed, only that it
arose from some current distribution. Outside the source region the scattered field
was then expressed in terms of an integral operator acting on the far-zone scattered
field components. In this section the possibility of obtaining an expression for the
total field inside the scattering body, in terms of the far-zone scattered field is ex-
amined.

As a preliminary, the derivation of the total field in terms of a vector po-
tential relating to the actual induced currents (conduction and polarization) is re-
viewed. It will be assumed that the scattering body is contained in a finite volume
VS. The material of the body will be taken to be non-magnetic (i.e. p'—‘po) , and
characterized by the relative permittivity €' which may be complex allowing for
conductivity. For present purposes the conductivity will be taken to be finite (but
can be extremely large) thus ruling out the mathematical concept of a perfect con-
ductor. Let the incident field be generated by a current source go outside the body.
The source will first be taken a finite distance from the body, then later allowed to

go to infinity, to account for plane wave incidence. Maxwell's equations become

Y-H:O (4. l)

weE V€e'E=1iV-J (4.2)
o— = = =0

Y/\E: ]_wNOH (43)
NAH = ipwe €E+J (4.4)

- = o — ~—o

21
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The field quantities H and E will be represented in terms of a vector potential A

and a scalar potential § as follows

u H=YAA (4.5)

E=iwA+V (4.6)

Equations (4. 1) and (4. 3) are automatically satisfied by the potential representation.

Equations (4. 2) and (4. 5) become

WY €A+Y- €V = —2 V-] (4.7)
- = =0
k
(0]
V2A—V(V- A)+k2e'A—i€'V(wu €eP)=u d (4.8)
- === o = 00 0—o |

Since in place of A one could have used A+Vy where ¢ is arbitrary, still auto-
matically satisfying Eqgs. (4.1) and (4. 3), one can impose an additional condition on
the potentials in terms of a gauge transformation. The particular choice will be

taken as follows

Wit €0¢ =iV-A (4.9)

Equation (3. 8) reduces to

2 2
VA-(1-€) V(Y- A +k € A=p T (4. 10)

Taking the divergence of this equation, one obta’ s E~ (4.7) automatically.
Thus, it is seen that with condition (4.9), .~: vector potential A must sat-

isfy Eq. (4.10). Outside the body €'=1, and this reduces to the free space Helmholtz
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equation operating on the components of A .

The above equation can be placed in a different form useful for deriving an

integral expression for A. Eliminating the term (1-€')V(V- A) from Eq. (4. 10),

with the help of relations (4. 6) and (4.9), one obtains

2
+ —_— -1 !
vV A kOA—;.tOJ0 lw,uo€o(l €)E

It follows that A can be expressed in the form

where R=[§_—g(_'| ,
and

J=iwe (1-€")E .
d o L&

This can be represented in the form

g oo [ e
A =AW+ [ I

dl
X X = dx

\Y%
s
where }_\1(5) is the vector potential of the incident field.

The magnetic field is thus given by

. ikR
Hx)=H (x) + ;11; (XA Y'(Q—R—> dx'

\Y
S

(4.11)

(4.12)

(4.13)

(4.14)

(4. 15)
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The source iIo giving rise to the incident field gi can now be taken to in-
finity, in which case gi will represent an incident plane wave. The current
 J(x)= iweo(l— €')E(x) is the current induced in the scattering body, being composed
of conduction and polarization currents. Both the vector Hand A will be continuous
everywhere, due to the assumption that Uy everywhere, and that €' is finite.
In the limiting case when the body is a perfect conductor, H is then discontinuous.
It can be shown that in the limiting case when Ime€'— o, (i.e. a perfect conduc-
tor), the volume integral in (3. 15) reduces to a surface integral, and expression

(3. 15) reduces to

ds (4. 16)

where S is the surface of the conductor and n is the unit outward normal.

Having considered the above preliminary work, we are now in a position to
discuss the possible representation of the field inside the body in terms of the far
scattered field. The notation és will be used to represent that part of the vector
potential which results from the induced currents, i.e.:

u eikR
LT(Z‘)_R_ dx' . (4. 15)

2]
(]

A (x) =

|
S
4

The scattering body designated by the volume VS will be split up into the following
parts V+(§ ), V.(¢) and V6(§), where V+(§ ) is the intersection of VS and the half-
space z< §, V() is the intersection of VS and the half-space z > ¢, and V6(§)
the intersection of VS and the slab -6z ¢ +6 . The decomposition is displayed

in Fig. (4-1).
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V_(z+8)
z2=0+6
< Z= C _6
Vé (€) V+(z—6)
- X
FIG. 4-1: DECOMPOSITION OF THE SCATTERING BODY

Associated with the above, the following vector potentials will be considered,

S v ikR
A, () =;0 J(x") eR dx' (4.16)
V+(z—6)
S Ho eikR
A (x) = ) R dx! (4.17)
V_(z-5)
S “O eikR
A (x) =7 J(x') dx' (4.18)
Vé(Z)
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Using the relations
2 72—r-ioo
elkR - ik i'k'(i-i') : der 48 '
R or e sina da Zyz
0 0
2 72L+ioo
_ ik RS (x-x") . ,
=" or sina da d8 2Kz
0 T

éi(x) and A S(x) become

A (x) —_/ / k- x / =2 J(x") e wlkex dx' sina da dB8

\A (z-5) (4.19)
n 72£+icx)
5 _ _ik ik-x IJ_O n oo kX' ;
é_(g = “om e ym J(x') e dx' sinedadf
0 L V_(z+5) (4.20)

provided that J(x') is absolutely integrable, allowing the order of integration to be

interchange d.

If J is bounded, it follows that each component of é: (x) is bounded

2x a & )
|A (x)l = /// = u M ,,a2+§’2d§’
0 0-6 0
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2 2 2
where p =(x-x') +(y-y') , and a is the maximum value of p such that the cylin-

der p=a encloses Vé. 1t is easily seen then, that when §—0

é:(i) —0 . (4.21)

The above condition that J be bounded may be weakened, by allowing certain types
of integrable singularities. However, these cases will not be considered at the
present time.

Letting 6—0, the vector potential A can be expressed as follows

A=A+ 8 0 +A% (4.22)
where 2 i
_+(§)"‘ -—/ / e— = A (@,B) sinadadB (4.23)
and
27 —+1oo

és (§)= / / = ‘A (2, B) sinadadf (4.24)

+
with the vector k(x,B)=k(sina cosf, sinasinf, cosa). The quantities 1}0 (@, B)

and é; (@,B) are the far field components

A (@, B)="2 Jxye EE gy (4.25)
=0 i

\Q(Z-O)
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U .
- - 2 n oKX '
A (. B)= Jx)e dx (4.26)

\4 (z+0)

arising from an appropriate decomposition of the quantity

M il
A @B=22 [ 2 e EE g (4.27)

defined previously, i.e.

A @B) =AT (@B)+A (a,B) . (4.28)
(0] (0] (0]

It can be shown that the same results hold for the magnetic field, in which

case
§=§1+§i+gs (4.29)
where
2r 12[—100
- +
1S (x) =—X / KX AaT(@B) sinededs (4. 30)
= 27 - o
0
0 0
2 %Hoo
HS (x) = =% e XX tAA (@,B) sinadedB. (4.31)
=-_- 27U - =0
(0]
0 T
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From the above it is seen that it is possible to obtain the magnetic field in-
side the body (composed of non-magnetic material with finite conductivity), from a
knowledge of the far field data. This follows from the results in Section 2, which in-
dicate how 1_(_(&,6)/\ éo(a, B) may be determined for complex values of @ where
a=0+it , from the knowledge of the far field quantities A;(@, @) and A;(G, @),
measured in the range 0 < 6 < % , 0@ 2x. However, if the body is inside the
K the appropriate split up of kK A A must be sought. The key
problem remains of determining a method of uniquely performing this decompo-

slab z2‘< z£z
sition from knowledge of the far field data alone. Additional knowledge will most

likely be required, such as, knowledge of the scattered field for all frequencies, or

all angles of incidence.
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