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ABSTRACT

The use of Wilcox's recurrence relation method (described in the First Tech-
nical Report, 7644-1-T) of determining the body shape from the scattered far field
data, is investigated in more detail. The problem of concern is the radius of conver=-
gence of the series. When the body is composed of sharp edges connected by smooth
segments, with at least one of the principal curvature zero, the radius of convergence
in this case is given by the radius of the smallest sphere enclosing the body. How-
ever, when the scattering body is a sphere whose center is at the origin of the coor-
dinate system, the radius of convergence is vanishingly small,

The second term of Wilcox's expansion and its relationship to the size of the
scatterer is investigated. Two special cases are consideréd; with the body a perfect-
ly conducting flat plate, and a smooth convex shape giving rise to specular scattering.
Generally, it is shown that the ratio of the second term to the first term in the expan-
sion is the order of 1/2 kD? where D is the distance from the farthest point of the
body to a line directed from the origin of the coordinate system to the receiver, For
specular scattering, D is the distance from the specular point to the aforementioned
line. Further investigation yielded the importance of phase, at least insofar as spec-
ular scattering was concerned. It is shown that the knowledge of phase information
determined the location of the phase center of the specular point.

Further consideration of employing the monostatic-bistatic theorem to deter-
mine the material characteristics of the scatterer is undertaken. In particular, it
is shown that the two polarization measurements of cross section at one non-zero
bistatic angle and at the zero bistatic angle (backscattering) determines the reactive
surface impedance of n= u+ iv apart from the sign in the imaginary part. Such sur-
faces would correspond to poor conductors, or absorber coated conductors. How-
ever, the case where the ratio of the bistatic to monostatic cross section is unity for
both polarizations, produced incomplete results. In this case, it could only be con-

cluded that u = 0,
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I
EQUIVALENT SOURCES

1.1 Radius of Convergence of the Wilcox Expansion

The scattered field at a point x outside an arbitrary body can be represented in

terms of the total fields generated on the surface as follows

ScC

&) = - 4—71T- 's/ [iwuo(ﬁ/\g_)sb + @ AE)A V'¢+(ﬁ-_E_)V'¢] ds' (1.1)

=

A . ik Ix—x'
where 1 is the unit outward normal to the surface and § = e~ |= =

|2-x']
For points exterior to a sphere centered about the origin of coordinates and com-
pletely enclosing the body, Expression (1. 1) can be represented in the form of a

Wilcox expansion

sc kT ® E (6,0)
E x) = (1.2)
- = r n
n-= r
withE (6, 9) given explicitly by
1 / [ A A A
D o c— + N ' .
E -4 / iu MAHA +@HAE)B + (1 E)EnJ ds (1.3)
The scalar quantities An are determined by recursion formulas
A =exp [—ikr' cos 'y] s
° | (1.4)
2iknA_ = [n(n-l) + DJ A .
n n-1
where D is the differential operator
2
1 ] ] 1 0
D = —— —— (sind ) + (1.5)
2 2
sin6 096 00 sine 9 ¢
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and v is the angle between the two vectors x and x',

cos vy = cos Ocos 8' + sin 6 sin @'cos (P - §'). (1.6)
The vector quantity B n is derived from An by means of the relation
0A oA
n-1 1 n-1
N s .
2.7 L [ Ay nAn--l] Y *psin6 _ op (1.9

where 1_r s _1_9, 1_¢ denote the unit vectors of the spherical polar coordinate system

associated with the observation point x.

Expansion (1. 2) is uniformly convergent for all points outside the minimum
sphere enclosing the body, and represents the scattered field outside this sphere.
However, it is possible that the expansion may be uniformly convergent inside the
minimum sphere, in which case it will represent there the field produced by an equi-
valent source. The problem requiring jnvestigation is to obtain an estimate of the
radius of convergence of Expansion (1.2). Inthe case of perfectly conducting bodies
with induced edge or tip singularities, the expansion will not converge inside the mini
mum sphere containing these sharp corners or edges. On the other hand, for smooth
convex shapes, convergence inside the minimum sphere enclosing the body is expect-
ed. Work is proceeding on this matter with expectations that the surface must be
locally analytic in order to carry the expansion inside.

Assuming the Wilcox expansion to converge inside the minimum sphere enclos-
ing the body, it should be possible by moving the origin of coordinates to generate a
minimum convex shape within the body such that the field is analytic outside this
minimum region. The equivalent sources of the field lie within such a region.

For smooth convex scattering shapes, then, it is expected that the Wilcox ex-
pansion can be employed to determine a minimum source region inside the body.

Knowing the field everywhere outside this region, the problem reduces to seeking a
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scattering surface for a particular boundary condition. In the case of perfect conduc-

lzors, for example, one would look for the surface on which vanishes the sum of the
angential components of the scattered and incident electric field vectors. The re-
quirement that the surface remain unchanged as the frequency varies is sufficient to

Wdetermine a unique perfect conductor.
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1.2 Scattering by a Sphere

The problem of scattering by a sphere provides an example in which the formal
Iseries solution for the scattered field converges absolutely and uniformly inside as
well as outside the body. To show this, it is sufficient to prove convergence for the
radial components of the field; convergence of the remaining components follows eas-

ily. Thus consider the Mie series for the radial electromagnetic field

SC 3 m
r.gC. _ sin .n 1
r.H T Z i"(2n+1)b h_(kr)P_“(cos 0),
n=1
(1.8)
r- ESC: - L8 EOO 'n(2n + 1)b h (kr)P 1( 0s0)
- = ik £ ! n n n ¢ !

wwhere, for a perfectly conducting sphere of radius a, the coefficients a and bn are

given by
j(ka)
a D an  comssesetep—"
n h (ka)
n
(1.9)
- l(ka)jn(ka)]

n [(ka)hn(ka)] '

The prime denotes differentiation with respect to (ka). The incident plane wave is
assumed to have unit intensity and the free-space constants €, M are taken to be

unity.

Simplification is obtained by noting the inequality (Weil et al, 1956)

1
P “(cosH)
n n(n + 1)
o T <
v < 5 for 6L 7 (L10)
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sc 1 2
r.H — +
LB S 5 ) D@D fah G|
n=1
(1.11)
i 00
Sc +
r-E° < 5= D n@rD@n+D fb b ()
n=1
Employing the following asymptotic approximations as n —» o
n
. X . (211- 1)'.'.
Jn(X)Nm ’ hn(X)N“1 n+l (1.12)

X

where (2n + 1)!' = (2n+1)(2n-1) ... 3.1, one finds

k 2\ "
a a 1
YT \ 7 Carn (1.13)

It follows by an application of the ratio test that the above series converge uniformly

a h (kr)
n n

" | bnhn(kr)

for all r different from zero. Finally, with the aid of the above inequality concern-

ing the Legendre polynomial and the following inequality (Weil et al, 1956)

1
dPn (cos8) ) n(+1)
do T2

for 6K 7 , (1.14)

the remaining components of the scattered field may similarly be shown to converge
absolutely and uniformly for all r # 0.
In the case of a homogeneous dielectric sphere with relative material para-

meters € and u, we find for large n
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2
”_1 _a ka 1
anhn(kr) od e " r > @n+1)t
. (1.15)
1]a kaz 1
€ =
b h (kr)| ~ | = |— T 2n+1)!

and convergence for r = 0 is again evident. The result may be extended to include
the case of concentric spheres of different dielectric materials.

The field scattered by a sphere may thus be conceived of as a superposition of
electric and magnetic multipole fields whose sources are located at a single point--
the center of the sphere.

1.3 The Question of Uniqueness

Consider the scattered field due to a smooth, perfectly conducting, convex
surface S and assume that an analytic expression for the field is known everywhere
exterior to the equivalent source region which resides inside S. In seeking the sur-
face S by looking for the surface on which the electric field obeys the required boun-
dary condition, it is possible that more than one eligible surface may be found for a
particular wave number k. The question of uniqueness naturally arises.

Let us assume, therefore, that two perfectly conducting surfaces S and S1
have been found. These surfaces both surround the equivalent source region and

are taken to be smooth. In the simply connected volume V between the two surfaces,

the total electric field satisfies the source-free wave equation

2
(V2 +KIE = 0 (1. 16)
together with the equation

div E = 0. (1.17)

However, solutions of these equations in the simply connected cavity V such that

Q_AE=0 (1.18)
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on the bounding surfaces S, S, exist only for a discrete set of eigenfrequencies.

1

Thus, if k varies continuously, the shape of S, must change in order to satisfy the

1
boundary condition since by definition the scattering surface S is independent of the
wavelength of the incident field. The requirement that S remain unchanged as the
frequency is varied continuously therefore allows us to determine the scattering

surface uniquely.
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IT
RELATIONSHIPS BETWEEN THE SIZE OF THE SCATTERER
AND THE SECOND TERM IN WILCOX'S EXPANSION
In employing Wilcox's expansion, it is of interest to know for what value of r
the second term in the expansion is the order of the leading term. To obtain esti-

mates of the value of r two types of scattering bodies are considered first.

2.1 The Flat Plate

As a representative of the class of bodies which produce a narrow main lobe
in the scattered field, a rectangular flat plate will be considered. It's dimensions
will be taken to be much greater than a wavelength. For simplicity, the coordinate
system will be chosen so that the z-axis lies normal to the flat plate, the origin is
in the center of the plate, and the x and y axes are parallel to the sides. The plane

of incidence will be the xz plane and the angle of incidence denoted by « (Fig. 2-1).

FIG.2-1: FLAT PLATE GEOMETRY
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The incident wave will be assumed to be polarized in the plane of incidence. Taking

the plate to be a perfect conductor, the scattered field at a point x, is given by

B () - 4% f (mx H x ¥'§dx'dy" 2.1)

where X' is a point on the surface of the plate, and

ikR
e

R

X -x
(F==) (2.2)

Y- (k- =)

with

X=X

R:

If the observation point is taken to be in the far field with coordinate (r, 6, ), then

. ikr .
HS=—159—— j ‘ (an)xaelkfdx'dy' (2.3)
= drr - = =
A
where

a=1i sinfsinf +i cos6 (2.4)
2 L i,

f = x' sinfcosP + y' sinfsinf (2.5)

Using the physical optics approximation, where nx H = 2n x gl, with _}f taken to be

the incident magnetic intensity,
_!I_l(i_i) =i y expik (-zcosa+xsina) (2.6)

The above expression can be approximated as follows

s ikeikr
H(r, 6, §) = s (_i_xx_a_) exp (-ikg)dx'dy’ (2.7)
A




THE UNIVERSITY OF MICHIGAN
7644-2-T

where

glx',y'") = fx', y") x'sina (2.8)
This can be evaluated, yielding

S -ikab ikr sinu sinv
i} i 4
H (r,0,0) T — [1_6s1n¢ 1_¢cosecos¢] (2.9
where
ka . .
U= — (sin6cosf - sine) (2.10)
V= —1-{23 sinfsinf (2.11)

| Using the relation

which holds for the far field, the electric intensity in the far field, has the form

S eikr
E = E (6,0 (2.12)
= r —o
where
""_l
Ho ab sinu sinv

E =ik |—— —=— —— —— |-i ,cosfcosf +i sinfb] (2.13)
=o €, 2r  u v =, =

\

The direction of the main scattering lobe is given by § = 0 and § = @. In this direc-

tion E-o reduces to

(2.14)

10
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Using Wilcox's notation for the vector components given as follows,

1 2 3
S A R L7 .
EEl_r E1_6 El.¢ y (2.15)

the 6 component of the second term in the expansion

ikr E
c 1 (2. 16)
r n

is given by the recurrence relations

3
oE

2 o

ZikE12= DE 2 - 12 E - 2"059 ay? (2.17)
° sin 6 ° sin O
where the operator D is

1 0 0 1 82
= e e (SiNG ——) + 2.18
D= <me 5o G0 5) +—3 3 (2.18)

sin"6 9f

2 3
Using the expressions for EO and E0 given by Eq. (2.13), it can be shown that for
6=a =0,

ab
T

[(ka)zcosz o+ (b)% + 0(1)] . (2. 19)

[\

(ka)zcosza/ + (kb)2 + 0(1)
24k

(2.20)

11
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The second term in Expansion (2. 16) is approximately equal to the first term in the

direction of the main lobe (8 = @, § = 0) when r = r where

1

kro 7w [(ka)zcosza + (kb)2:l (2.21)

For a square plate, this becomes

_ TA 2
r = %12 [1+cos aJ (2.22)

where A is the area of the plate. It follows that the second term in Wilcox's expan-
sion becomes the same order of magnitude as the first term, for r such that kr is
the area of the plate, in square wavelengths.

The analysis developed above holds for the origin at the center of the plate.
Different results will occur when the origin is elsewhere.. Some comments on these

are given below.

2.2 Specular Scattering From a Convex Shape

The case will be considered where the dominant scattered field in a particular
angular sector, arises from a single scattering center such as a specular point.

Assuming perfect conductivity, the first two terms in the expansion

eikr E—n
E (r,0,0) = - E — (2.23)
r
are given by
E -1 f [iwu (nx H) -ik(n- E) i ] A ds' (2.24)
=0 47 o= = - - T o
S

12
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1
oA oA

1 A A 0 4 1 o] '
47 fs[-l—er Lo 30 Lpsme o J L Eds

_ 1
E1 I f [iwu (n x H) -ik(n . E)i } A ds' (2. 25)
S o =~ - ==r

where

A0 = exp -[-ikr'eos 'y] (2. 26)

A1 = Ao {% ikr’zsinz'y+ r'cos 7] (2.27)

The integration is over the surface of the body. In the above expressions, r'is the
distance from the origin to the point of integration on the surface of the body S, and
v is the angle between the radius vectors directed to the observation point (r, 6, #)

and the point of integration (r',0',§') and is given by the relation
cosy = cosfcosh' + sinfsing'cos(P-f') (2.28)

Since we are considering specular scattering, the dominant contribution of the above
integrals will arise from a small region about the specular point (r's’ e's,¢'s),
The coordinates of the specular point depend upon the position of the observation
point (r, 6, §).

Since the dominant contribution of the integrals arises from the vicinity of

and can be evaluated by the method of stationary

2

3 1 ! 1
the specular point (r g0 S¢ s)

phase, it follows that for kr'ssinas> 1, that

ik 2
A~ — (r' si 2.29
E~—5 Ssm'ys) E, (2.29)
This indicates that the value of r for which [ E ) |~ r E0 is given approximately by
r o~ ka? (2. 30)
o 2

13
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where d is the distance from the specular point to the line directed from the origin

to the observation point (r,6,#). (A more precise value of r, is given below).

2.3 Effect of Changing the Origin of the Coordinate System

For a general body with dimensions much greater than a wavelength, and such
that the scattered field is comprised of components arising from many scattering
centers, it follows in the same manner as indicated in Section (2. 3), that

IE l ~T ,E l when
1 o)
£ ~0 (-;- kD?). (2.31)

Here D is the distance from the farthest point of the body to the line directed from
the origin to the observation point. The distance D is a function of (9, ) varying
with changing position of the far field observation point.

Changing the origin of the coordinate system will increase or decrease the
distance D, thus effectively increasing or decreasing the ratio of the second term
to the first term in Wilcox's expansion. The effect of changing the origin of the
coordinate system of the far field pattern is to produce an additional phase factor.
This can be seen as follows., Let the origin of the coordinate system (ri’ Oi,¢i)
be displaced a distance £ , resulting in a new coordinate system (r,6,#). For a
point in the far field r ~r-i - £, 6~6,, and p~ ¢i. Thus if the far field pattern
(phase and amplitude) is given by

ikr,
i
e

) E 0(61, ¢i) (2.32)

in the initial coordinate system, it will be given by
ikr
e
r

E_(6.0) exp(-iki - 2) (2.33)

14
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in the final system. If the vector £ has components
(—lsmefcossbl , -!Zsmelsmsliz , ~Lcosb ) (2.34)
with regard to the final coordinate system, then

i 4 =-lcosy, =~ [:cose cosf, + sinGsinGloos(¢-¢£)] (2.35)

For further illustration of the effect of changing the origin of the coordinate
system, we will return again to the case of specular scattering. Using the notation
of Section (2. 2), (r's, G'S, ¢'S) will refer to the specular point on the body, giving
rise to the scattered field at the ray (6, §) in the far field. The dominant portion of
the integral (2. 24) arises from the vicinity of the specular point. It can be shown
that

E (0,0~ & expik [k. .’ -r' . r] (2. 36)
=o = =i —s —s o

where }_{_1 is the unit vector indicating the direction of incident propagation, and r o
is the unit vector directed from origin to the receiver or observation point (r, 6, §).
The amplitude factor € is a slowly varying function of 6 and §. For simplification

the direction of the axis of the coordinate system will be chosen so that l{-1 = =i

—Z‘
The phase factor
Y - 2.37
g@.M) =x' [}:o 51] (2.37)
can be shown to have the form
g(6,0) = 2cos Sen (2.38)
’ 2=s =s

where n is the unit outward normal at the specular point (see Fig. 2-2). Since the
position of the specular point is a function of 6 and §, it follows that x;and n are

functions of 6 and @ also.

15
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To Observation Point

S r
-0

Specular H

FIG. 2-2: SPECULAR POINT OF CONVEX SURFACE ASSOCIATED
WITH PARTICULAR RECEIVER DIRECTION

16
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It can be shown that the derivatives of the phase factor g(9, ) satisfies the

following relations

=p' . (2.39)

- ol o, s
—8T s1n0_r_ s _1_¢ (2.40)

0
82g cos 5
- Y (2.41)
2 — —
36 2Ge, 5T
2
)
__g. = =sinf [sinGi + cos6i :’ *p! *sin iSin@ — (2.42)
a¢ -r -6 =S 2 plG

where (_1’_r o1 0’ _i_¢) on the unit vectors associated with the spherical polar coordinate
system at the far field observation point (r, 6, §).

G is the Gaussion curvature of the surface at the specular point, and Py and
p, are the radii of curvature of the surface at the specular point in the (151’ _1;0 )

plane and perpendicular to this plane respectively.

Setting
2 3a
= i + i 2.43
£ =81, (2.43)
the leading term in Wilcox's expansion has the form
2 -ikg 3 -ikg
= i + i 2'
E, £ i, £ 1_¢ (2. 44)

Using relation (2. 17) together with Egs. (2.39) to (2.42), it can be shown that the 6

component of the second term in Wilcox's expansion has the form

17
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LR 2 _ E (kd) +ik( cosf/2 N sinf/ 2 e i)
1 o sz Gplsine -s -r

romike [Dﬁ 622 } ‘Zlkl: o 8£ L1 og szJ e-ikg

sin 6 96 96 sin26 W o9

_9 cosG 85 " og €3 -ikg 5 45
sin 9 W B ¢ ) ( !

where d is the same parameter given in Section 2, 2.

It is seen that on changing the origin of the coordinate system, so that

r' =ri (2.46)
=s s
cos 6/2 sing/ 2
= + ¢
2rs [ 2Gp2 Gplsine ] (2.47)

expression (2.46) reduces to

o kg (2.48)

(E + 2cosH —-@-) J

2 1
The right-hand side of Eq. (2.48) is very small, since £ and £ are slowly varying

2 2
ZikEl = [DC

sin 6

functions (both porportional to G=1).

Relations (2.46) and (2.47) indicate that on changing the origin of the coordinate
system to lie on the "ray' directed from the specular point to the observation point,
and at the effective phase center, the second term in Wilcox's expansion canbe made
quite small. Changing the origin of the coordinate system to reduce the second term
in Wilcox's expansion is equivalent to tracing back the reflected wave front to the

specular point.

18
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This points out the importance of the phase information in the scattered far
field, for in this case the knowledge of the phase leads to the angular position of the
specular point on the body, whereas amplitude knowledge by itself will not indicate

this, only yielding the Gaussion curvature at the specular point.

19
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III
USE OF MONOSTATIC-BISTATIC THEOREM TO DETERMINE
MATERIAL CHARACTERISTICS
It was pointed out in the last report that in the limit of vanishing wavelength,
the monostatic-bistatic theorem could be used to determine the reflection coefficient
of the body. The ratios of the bistatic cross section to the monostatic cross-section

gives the ratios

2
R (6)

| R, (0) T @1

| 2
R, (6)

R” (0) =I'” (3'2)

where R (6), and R” (6) are the voltage reflection coefficients for polarization
perpendicular and parallel to the plane of incidence. The angle 6 is the angle of
incidence to the surface measured from the normal, and is such that 26 is the bi-
static angle.

The particular case where the material characteristics of the surface can be
represented by an impedance boundary condition will be considered to determine
the number of measurements needed to prescribe the impedance parameter n.

The effect of the surface upon incident energy can be represented in the form

(3.3)

where E and H are the total fields generated on the surface. Such a condition repre-
sents either a poor conductor, or perfect conductors coated with a material of high

index of refraction as is encountered in the use of magnetic type absorbers. For

20
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a single layer of such material n is given by

n = =i ’-2-‘- tan (Nko) (3.4)

where 6 is the thickness of the coating, N is the index of refraction, and u, € are the

relative parameters of the coating.
The voltage reflection coefficients for such a surface can be represented in

terms of n and the angle of incidence 6, by the following relations

_ ncos6-1
1 ncosf+1 (3.5)

R - cosf-1
I n§ cosf+1 (3.6)
Let the real and imaginary parts of n be given by u and v, that is

n=u+iv

It can be shown that

2
Rl(e)l 2 . [(u2+ v2)cos26 +1- 2ucose}/ [(u2+v2)cos 9+1+2ucos6]
(3.8)

R" (9)' 2 [(u2+v2)+cos29-2ucos9] / [(u2+v2)+cos29+2ucos@]
(3.9

For further simplification, the parameters u and v will be replaced by x and y where
X = 2u (3.10)

y:u2+V2 (3.11)

21
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It then follows, provided that R.l. (0) + 0 and R, (0) #0,

_ [ycos%-kl-xcosﬁ] [y+1+x] (3.12)

[ycos26+ 1 +xcos9] [y *l -X]

r :[y+cosze-xcos9] J;V"'l"')l

I [y+00826 +xcos 6] [y+1-x]

(3.13)

Performing algebraic manipulation, one can rewrite the above equations in the fol-

lowing form

2 2
cos6x +plcos6(1 - cosB)xy - cos 9y2+p1(cos9 -1)x-(1 +00529)y -1=0
(3.14)

cos9x2+p2(cos6 - )xy -y2+p200s6(1 -cosf)x-(1 +cos29)y - 00826 =0
(3.15)

P, = [l+rl]/[1-rl] 3. 16)
pzz[lﬂll}/[l‘rll] (3.17)

The quantities p1 and p, are both real and are greater or equal to unity. The prob-

where

lem reduces to solving the two equations for the unknown quantities x and y, in terms
of the parameters Py and pg which are obtained from the measured quantities r_L

and r” . The angle 6 is of course known,being one-half the bistatic angle. How-
ever, the required solutions must lie in the first quadrant of the xy plane. The
reason for this is twofold. First from the definition wl +v2 = y, and the fact that

u and v are real quantities, the required value of y must be greater or equal to zero.

Secondly, it can be shown from energy considerations (the surface can only absorb

22
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energy), that u> o, implying that x > 0. Both Eq. (3.14) and (3. 15) represent conic
sections, in the xy plane. The solutions are given by the intersections of these two
conic sections. However, it is possible that there are no intersections, and if there
are, they may lie outside the first quadrant. Thus, the nature of the conic sections
will have to be further examined to indicate whether the appropriate solutions exist.

Consider a general conic section in the form

2 2
ax + 2hxy + by + 2gx + 2fy + ¢ = 0. (3.18)

Its center is at the point (k, £) where

g-h-be o,

2
ab-h ab-h

gh -af

5 (3.19)

By transforming the coordinate system (x,y) to a coordinate system (X, Y) centered
at (k, £) with the axis centered along the principal axis of the conic section, using

the following relations

x - k = Xcos B - Ysinf (3.20)
y = £ = Xsinf3 + Ycosf3 (3.21)
where
2h
= 3.22
tan 283 7 (3.22)

the equation of the conic section in the new coordinate system becomes

X°A +Y°B + 4/ [ab-hz] =0 (3.23)
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where

2A = (a +b) + (a-b) cos2B + 2hsin23
2B = (a +b) - (a = b)cos2B - 2hsin2B

D = abc + 2fgh -a.f2 -bg2 - ch2

The angle |2B| will be taken to be less than 7/2, in which case

cos 28 = (a-b)/J4h2+(a-b)2‘

sin28 = 2h /\l4h2 + (a - h)2

Thus 2A and 2B can be given by

I

2A = a+b+ l4h2 + (a-b)2

-

2
2B =a+b - J4h + (a-b)2
in which case

AB=ab—h2

1 2

" below.
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Define the conic sections given (3. 14) adn (3. 15) by ¢, and c, respectively.

(3.24)
(3.25)

(3.26)

In the cases under consideration (a - b) is positive but h may be positive or negative.

(3.27)

(3.28)

(3.29

(3.30)

(3.31)

The various parameters associated with these conic sections are given in Table IIFI
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The parameter H is defined by the relation

H=(1+ cos9)2 / (1- cosG)2 (3.32)

It is seen that the centers of the conic section ¢y and Cy lie in the right-half and

left-half planes respectively. Also the equations of both conic sections can be

written in the form

Further information can be found by examining the y-intercepts, the x-intercepts,
and the asymptotes.

Conic section ¢ has y-intercepts

1 1 2
vy 7 -1 and Yo = -1/cos 6 (3.33)

and cy has y-intercepts

2 2
ylz =-landy, = -cos6 (3.34)
The x-intercepts of ¢ 1 and the slope of the asymptotes are related. If X, and X
are the x-intercepts, given by the relations
1 2 2 \
X, = pl(l—cose) + P, (1-cosB) +4cos6 (2cos0) (3.35)

>
1"

1 -1
9 - [xlcose ]
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then the equations for the asymptotes have the form

_ 1 1
YEX X, VXX (3.36)
There is a similar relationship between of the asymptotes of <, and the x-intercepts
given by
2 2 2 !
X, = 1/2 —p2(1-cos6) + | Py (1-cos6)  +4cosH (3.37)
2 2
X, = -c:osG/x1 (3.38)

In addition it can be shown that c, passes through the points

1 1
+ 1+
* [1 cos6 ] > cosfH )

and cy through the points

+ [1+cos€] , cosb)

The conic sections are shown in Fig. 3-1 for a typical case. As indicated there is
an intersection in the first .quadrant. Except for the case where P = o and
Py = ® (m.rl = r" = 1), it can be shown that there will always be one intersection

2
in the first quandrant. This follows from the fact that 1 <x 1\< o, and o< x, <1,

1 1
Since Xll and X12 are the slopes of the asymptotes of the branches of the conic sec-
tion in the first quadrant, these branches intercept, and since x 1 and x_2 are also

1 1
the x-intercepts on the positive x-axis, the intersection is in the first quadrant.

Thus a solution can be found for which x> o and y > o. However, from relation
(3. 11) two values of v will be found. This means that the impedance will be deter-

mined apart from the sign of the imaginary part ie;

27
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Y

Intersection
(Required Solution)

FIG. 3-1: CONIC SECTIONS ASSOCIATED WITH
THE DETERMINATION OF SURFACE IMPEDANCE
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t .
n=u-iv

The determination of the appropriate sign will require measurement of the phases
of the scattered field.

As a special case, it should be pointed out, that when 11 = I = 1, the solu-
tion is not unique, with u = o and v undetermined. The most likely possible physical
case that would occur in this instance is where v = o also, implying the surface is a

perfect conductor.
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