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ABSTRACT

The problem in question consists of determining the means of solving the
inverse scattering problem where the transmitted field is given and the received
fields are measured, and this data is used to discover the nature of the target.
The concept of equivalent sources is introduced wherein the scattered field may
be thought of as arising from a set of equivalent sources located on or within
the body. This concept is introduced since the radii of the minimum convex
surface which encloses the equivalent sources is related to the convergence of
any expansion technique utilized to derive the near scattered field of the target
from the observed far field. One particular expansion technique is investigated.
It is based upon the expansion of the field in the form of an inverse power
series in T, multiplied by the factor exp (ikr), where (r,0,0) are the coordinates
of a spherical polar coordinate system. The approach to the inverse scattering
problem based upon the representation of the scattered field in terms of plane
waves is investigated. An explicit expression for the scattered field, valid in
the half-space which depends upon the coordinate axis, is given in terms of an
integral operating on the far scattered field. It is shown that the plane wave
representation converges part way inside smooth convex portions of the body,
thus establishing the concept that the minimum convex shape enclosing the
equivalent sources often may be inside the actual scattering body. For non-
magnetic and non-perfectly conducting bodies, the exact total field inside the
body could be represented in terms of a plane wave expansion involving the far
field quantities. This representation involves an appropriate split-up of the far
field data, and a fundamental problem still exists to uniquely determine the split-
up from the knowledge of the far field data alone. The monostatic-bistatic the-

orem is used to determine the material characteristics of the scatterer.
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I
INTRODUCTION

The problem in question consists of determining means of solving the in-
verse scattering problem where the transmitted field is given and the received
fields are measured, and this data is used to discover the nature of the target.
In connection with this, a review of the literature is first given in Chapter II.

In Chapter III, the concept of equivalent sources is introduced wherein the
scattered field may be thought of as arising from a set of equivalent sources
located on or within the body. This concept is introduced since the radii of
the minimum convex surface which encloses the equivalent sources is related
to the convergence of any expansion technique utilized to derive the near scat-
tered field of the target from the observed far field. Thus in some cases the
expansions may be convergent part way inside the body. (This is investigated
in more detail in Chapter VIII.) It is shown in the particular case of the sphere
that the expansion for the scattered field is convergent down to the center.

In Chapter IV, one particular expansion technique is investigated. It is

based upon the representation of the field in the form

Jkr @ E (6, )
E = = 2. "
t n=0

r

where (r,6,¢) are the coordinates of a spherical polar coordinate system. The
leading term given by n = 0 is the observed far field, from which the remain-
ing terms can be derived through a set of recurrence relations. This expan-
sion is convergent outside the minimum sphere enclosing the equivalent sources.
By changing the origin of the coordinate system one would obtain an expansion

outside a different minimum sphere. Thus by repeatedly changing the origin
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of the coordinate system and obtaining the associated expansions, one can ob-
tain expressions for the near scattered field everywhere outside of a minimum
convex shape enclosing the equivalent sources.

In connection with the above expansion, the relationship to the size of the
is investigated. It is shown generally that

1
the ratio of the second term to the first term is in the order of 1/2 kD2,

scatterer and the second term E

where D is the distance from the farthest point of the body to a line directed
from the origin of the coordinate system to the receiver. For specular scat-
tering it is shown that on changing the origin of the coordinate system to lie on
the "ray" directed from the specular point to the observation point, and at the

effective phase center, the second term E. can be made quite small.

In Chapters V through IX, the approaclh to the inverse scattering problem
is based upon the representation of the scattered field in terms of plane waves.
An explicit expression for the scattered field, valid in a half-space which
depends upon the coordinate axis, is given in terms of an integral operating on
the far scattered field. By rotation of axes the same expression can be used
to find the near field everywhere outside the minimum convex shape enclosing
the equivalent sources. It is shown that the plane wave representation is ideally
suited for high frequency in which case the integral representation may be
directly evaluated for many cases by means of stationary phase of other asym-
ptotic techniques. This is demonstrated for specular scattering.

In Chapter VIII it is shown that the plane wave representation converges
part way inside smooth convex portions of the body, thus establishing the con-
cept that the minimum convex shape enclosing the equivalent sources often may
be inside the acutal scattering body.

For non-magnetic and non-perfectly conducting bodies, it is shown in Chapter

IX that the exact total field inside the body could be represented in terms of a
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plane wave expansion involving the far field quantities. This representation in-
volves an appropriate split up of the far field data, and a fundamental problem
still exists to uniquely determine the split up from the knowledge of the far
field data alone. This indicates that additional information will be needed;
perhaps knowledge of the complete scattering matrix for all frequencies. This
is an important problem since its solution will yield both the shape and material
of the body. In connection with representations which are valid in the interior of
the minimum convex shape enclosing the equivalent sources, a practical represent-
ation is given in the second half of Chapter IX. This representation, based on an
expansion in terms of spherical harmonics and Bessel functions, can be used to
find the scattered field in cavity regions that penetrate the body or the minimum
convex shape.

In any numerical approach where one is given the far field and obtains the
near scattered field by use of one of the many representation, the problem re-
mains to determine the shape of the body. If it is assumed that the body is a per-
fect conductor, then one has to find the surface for which the total tangential
electric field vanishes. A necessary (but not sufficient) condition is given in
Chapter X, for a point to be on the surface of a perfect conductor. This con-
dition requires a simple calculation involving the total electric field at a point.

In Chapter XI the monostatic-bistatic theorem is used to determine the material
characteristics of the scatterer. In particular, it is shown that two polarization
measurements of cross section at one non-zero bistatic angle and at the zero bistatic
angle - (backscattering) determine the relative surface impedance of n=u +1iv
apart from the sign in the imaginary part. Such surfaces would correspond to poor
conductors, or absorber coated conductors. However, the case where the ratio of
the bistatic to monostatic cross section is unity for both polarizations produced in-

complete results. In this case, it could only be concluded the u = 0.
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II
REVIEW OF INVERSE SCATTERING TECHNIQUES

There seems to be a variety of problems that are named '"the inverse
scattering problem'" and what follows is certainly not a complete account of the
existing literature on the subject.

Connected with the inverse scattering problems is the question of to what
extent knowledge of the far-field from sources of finite extension determines
the distribution of the same sources. The relationship has been investigated by
Miller (1954, 1956) for the scalar and vector case respectively. The results
are that the far-field determines the radius of the smallest sphere such that
the far-field can be generated by sources all of which are inside the sphere.
Furthermore, if the far-field vanishes the total field is identically zero out-side
every region, such that it contains all sources. These results also follow from an
expansion theorem given by Wilcox (1956). The statements are also true in
two dimensions where an expansion theorem is due to Karp (1961). It should
be noted that the smallest sphere mentioned above does not necessarily deter-
mine the extension of the real sources. For instance, if the sources are dis-
tributed over a certain volume in such a manner that the far-field can be ex-
panded in a finite number of surface harmonics, an identical far-field can be
obtained from a number of multipoles, i.e. from sources inside an infinite -
simal sphere around the origin.

Some acoustic and electromagnetic scattering problems can be formulated
in terms of the Schrodinger equation. A group of one-dimensional problems
has been treated by Moses and deRidder (1963), and a three-dimensional scalar
problem by Kay (1962). The physical problem considered by Kay is to find the
variation of electron density in a weakly ionized gas from a knowledge of the
scattering amplitude resulting from the incidence of a plane electromagnetic

wave. However, his results seem to be applicable to scalar scattering by a
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plane wave from an arbitrary isotropic body. Instead of the ordinary time-

independent Schrodinger equation, Kay considers the integro-differential equation

2
Au+ku- (V(z, x)u(x',kdx' = 0 (2.1)

which takes the form of the ordinary Schrodinger equation if v is a distribution
of the form v(x,x" = V(x) 6§ (x-x'). He required knowledge of the scattering
amplitude over a hemisphere from a wave incoming from the same half-space
in an arbitrary direction for all values of k to determine the function v(x, x').
The question of uniqueness and existence of v(x, x') under any general condition
is not touched upon. Instead, a particular condition on the solution u(x,k) is
introduced which leads to a unique v(x,x').

An extensive bibliography, to the date of publication, of the quantum mech-
anics inverse scattering problem is given by Faddeyev (1963).

A three-dimensional scalar problem is also treated by Petrina (1960). The
scattering body is there assumed to be homogeneous and isotropic so the
Helmholtz equation with a wave number k 1 is satisfied inside the body and the

same equation with a wave number k. is satisfied outside the body. Petrina

0
gives the following relation between the scattering amplitude and the shape of

the scattering body.

otk k1) o
——--——--—-—-—2 = - = e I' X‘ dz . (2. 2)
B(ko)

The integration is to be performed over the volume of the scattering body and

I

1

-
o

1
I |
I
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where kO is the wave vector of the incident plane wave and x is in the direction of

observation. The integral on the right hand side of (2.2) can be considered as
the Fourier transform of a function which takes the value 1 inside the scatterer
and vanishes outside. Thus, knowledge of the left hand side for all 7 determines
the shape of the scatterer. However, this means determination of the behavior of
the scattering amplitude when the wave constant of the surrounding medium is
changed, which is not measurable in a physical situation.

Some results for two-dimensional acoustically soft or hard obstacles is
given by Karp (1961). He forms determinants whose elements are fij where
fij = f(@i,Gj) is the scattering amplitude at an angle of observation 9i for an
angle of incidence Gj of the plane incoming wave. Necessary and sufficient
conditions for a point to be on the surface of the scatterer is thus derived for

the special case that det(fij) vanishes, where Gi =0 1,9 ...Gn are n different

angles. Furthermore, it is shown that if (6,60 0) only (ziepends on the difference
6—00, the scatterer must be a circle.

The inverse scattering problem in geometrical optics has been investigated
by Keller (1959). If the scattering amplitude and reflection coefficient are known,
explicit formulas determining the illuminated part of the surface can be obtained
for two-dimensional problems. In the three-dimensional case the bistatic radar
cross section is proportional to the reflection coefficient and the product of the
principal radii of curvature R 1,R2 at the point of reflection. The problem of
determining a surface when its Gaussian curvature, G = 1/ (R1R2), for all di-
rections of the normal to the surface is given, is known as Minkowski's problem
It has a unique solution for any sufficiently smooth convex body (c.f. Nirenberg
(1953) ). If the differential scattering cross section is known for two different

incident waves coming from opposite directions and the reflection coefficient is

also known, the Gaussian curvature is determined everywhere and the inverse
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problem has a unique solution. It also follows that the problem of determining
the shape of scatterer from knowledge of the backscattering cross section in all
directions has a unique solution in the geometrical optics formulation for a
smooth convex body.

The geometric optics method no longer applies of the scattering body has
any section where one principal radius of curvature is infinite. For a body of
revolution where this is the case or, where the radius of the cross section
varies slowly along the axis of revolution, an approximate method due to
Blasberg is described in Altman et al (1964). Using the physical optics approx-
imation the backscattered far field is shown to be proportional to the Fourier

ikr(x)

transform of the function r(x)e at the point k sin 6, where r(x) is the
radius of the cross section as a function of a coordinate x along the axis of
revolution. The relation is valid for small values of 6 where 7/2-0 is the
angle between the direction of propagation of the incident plane wave and the
axis of revolution of the body. Consequently, if a substantial part of the back-
scattering is confined to small angles, the inverse Fourier transform of the
scattered far field with respect to d = k sin 6 integrated over 6 = -7/2 to 6=7/2
will be a function which is close to r(x)e_ikr(x) for x values inside the body
and close to zero for points outside. According to Brindley (1965) the Blasberg
approximation has been successfully used to determine the shape of objects
from empiric data.

Another theory of high frequency scattering is employed by Freedman
(1963). There the incoming wave consists of a modulated pulse and the scat-

tered field in an arbitrary direction in the lit region is a superposition of

pulses of the same form. Each discontinuity in

d A(R)

an

(n=0,1, 2,...)
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where A(R) is the projection towards the transmitter of those parts of the
scatterer which are within distance R, is assumed to generate a component
towards the scattered signal. The magnitude of each scattering component is
proportional to the size of its generating discontinuity. A more sophisticated

treatment of the impulse response from a finite object is given by Kennaugh

and Moffat (1965},
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III
THE CONCEPT OF EQUIVALENT SOURCES

3.1 Equivalent Sources

The scattered field may be thought of as produced by a set of equivalent
sources located on or within the surface of the scattering body. These
sources are not necessarily the same as the measurable currents induced, for
example, on the surface of a conducting object, but are related to the math-
ematical representation of the scattered field in the space exterior to the body.
As we shall see, there are various methods for obtaining field representations
valid everywhere outside the scattering object from a knowledge of the complete
radiation pattern of the scattered field. In addition, however, these represent-
ations may also be analytic in a region inside the scattering surface, in which
case the resultant field expression there may be conceived of as being produced
by fictional sources in the absence of the actual body. At points outside the
geometrical surface of the body, the field produced by these fictional sources
is identical to the scattered field of the body; the sources are therefore called
equivalent sources for the scattered field.

The equivalent sources are not, in general, unique--although they are
confined to some finite region of space. The problem of determining the
location and extent of this region is fundamental to the inverse scattering
investigation and, of course, is intimately connected with the radius of con-

vergence of the mathematical field representation.

3.2 Scattering by a Sphere

The problem of scattering by a sphere provides an example in which the
formal series solution for the scattered field converges absolutely and uniformly
inside as well as outside the body. To show this, it is sufficient to prove

convergence for the radial components of the field; convergence of the remain-
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ing components follows easily. Thus consider the Mie series for the radial

electromagnetic field

00
sc sin .n 1
r-H = - T 2 i (2n+1) anhn(kr) Pn (cos 0),
n=1
o (3.1)
sc coS Q n 1
r-E = - i Zn:l i (2n+1)bnhn(kr) Pn (cos 6),

where, for a perfectly conducting sphere of radius a, the coefficients an and bn

are given by

j (ka)
% 7 7 (ka)
n
. , (3.2)
. [(ka)gn(kaﬂ

n_ l(ka)hn(ka)l '

The prime denotes differentiation with respect to (ka). The incident plane
wave is assumed to have unit intensity and the free-space constants Eo’“o
are taken to be unity.

Simplification is obtained by noting the inequality (Weil et al, 1956)

1
Pn (cos 0) a(n + 1)

Sin 0 < 5 for 6 <7 (3.3)

which leads to

10
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00)
S il R D nn+1)(2n+1) |ah (kn)| ,
- - - 2k nn
n=1
(3.4)
sC 1 S
r- E < oK 2 n{n+ 1) (2n+ 1) ’ bnhn (kr)
n=1
Employing the following asymptotic approximations as n = @
n
. — X s (2n - DY
W® g o b o+l (3.9)

where (2n+ 1)!! = (2n+ 1)(2n - 1)...3.1, one finds

a ka2 n 1
~r \r (n+ 1t (3.6)

It follows that the above series converge uniformly in r for all r> 6 > 0.

~ i bnhn (kr)

anhn(kr)

Finally, with the aid of the above inequality concerning the Legendre polynomial

and the following inequality (Weil et al, 1956)

dp L (cos 9)
_n

n(n + 1)
o 5 for 0 <

» (3.7)

~

the remaining components of the scattered field may similarly be shown to
converge absolutely and uniformly for all r > 6> 0.
In the case of a homogeneous dielectric sphere with relative material para-

meters € and u, we find for large n

11
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9 n
po1l| 2 (E&.) 1
aphy, (kr) v l“ +1 ; r \r (n+ 1)
(3.8)
€-1 a <ka2> ’ 1
lbnhn (k)| ~ €e+1 r \r (2n + 1)V !

and convergence for r # 0 is again evident. The result may be extended to
include the case of concentric spheres of different dielectric materials.

The field scattered by a sphere may thus be conceived of as a super-
position of electric and magnetic multipole fields whose sources are located
at a single point--the center of the sphere. TUpon deletion of this point, the

field representation for the scattered field Eq. (3.1) is analytic everywhere

in space.

12
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Iv
THE WILCOX EXPANSION

4,1 Determination of the Near Field from the Far Field.

A problem of :fundamental significance in inverse scattering theory is that
of determining the electromagnetic field at all points in space from a know-
ledge of the field in the far zone. In this regard, the expansion theorem due
to Wilcox (1956) may be employed, once the far-field pattern is known, to
determine the field everywhere in the region outside the smallest sphere en-
closing the sources of the field. These sources may be thought of as equi-
valent sources for some scattered field or as real sources for some radiation
field. In connection with applications to inverse scattering, a problem of
major concern is the radius of convergence of the Wilcox expansion. The
radius of convergence may yield important information concerning the extent
and location of the equivalent sources for the scattered field.

The far-zone scattered field will be represented in the form

ikr

ESC(r,e’ ¢) —

E_(6.0) (4.1)
r—> o

where (r,0,0) is a spherical polar coordinate system with the origin in the
vicinity of, or in the interior of, the body. Let r, 0, ¢ denote the unit

vectors associated with the coordinate system, then the complete radiation

pattern (both phase and amplitude) takes the form
E = E 6+E0ﬁ . (4.2)

From Wilcox (1956) it is seen that the fields can be uniquely determined in the

region outside the smallest sphere enclosing a set of equivalent sources. To

13
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be more precise, let r = ¢ be the radius of the smallest sphere (with the
center at the origin of the coordinate system) enclosing a set of sources. Then

E can be expressed in the form

. o E (6,p)
E = elkrrz —2 , r>c+e€ (4. 3)
= n
n=0 T

where € is an arbitrary small number greater than zero. The higher order

coefficients _E_In are uniquely determined from the following recurrence relations

ikE1 = -r V' E
1 i ¢
. 1 1 1
2iknE = n(n-1)E" + DE~ n=1,23...
nt1 n n
YiknE- = n(n-1) E> . + DE> . + D,E - 1,2,3 (4. 4)
tknE = n(n- 01 -1 0En-1 n=123... .
2ik E3 = n(n-1) E3 +DE3 + D, E n=1273
HREy T n-1 n-1  ~P=n-1 ST
where the operators D, DQ and D¢ are defined by
1 0 of 1 82f
Df = - —(sin@ =)+ —— —F— ,
sin 6 06 06 sin29 o 2
28]5‘1 1 2 2 cos 6 8F3
DF-= - F - — — (4.5)
- 2 2 ’
0 %0 sin 6 sin 6 8¢
2 a}?l 2 cos O 8F2 1 3
Dy =Sime ¢ ©~ 2 op ~ 2 F
sin 6 sin 6

Thus, complete knowledge of the far field pattern implies the determination of

the field outside the smallest sphere enclosing an equivalent source.

14
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The next problem is to relate this result to the scattering body. Consider
a body composed, at the present, of arbitrary material. Let the exterior
surface of the body be given by S. A plane wave of harmonic time dependence
exp(-iwt) will be assumed to be incident upon the body generating a scattered
field. The scattered field at a point x outside the body c’an be represented in

terms of the total field generated on the surface as follows,

(®=-7 [iwuo(_ry\f_{) g+ (mAEAV'g+(a - _E_)V'g] ds' (4.6
S
where n is the unit outward normal to the surface and the Green's function g
is
- JBg (4.7)
with R = Ig{_ - x'l , the vector x' being a point of integration on the surface.

Employing the expansion

e" /R = ik é’ 20+ 1) (kr) b (kn)P (cos W) (4.9)

one can derive the following expansion for g in terms of r, where r is the

distance from the origin to the point x,

eikr [00) An
g = - 2 i Y (4.9
n=0 r
where
1 3 p  (2n+p+1)
A =—m— on+2p + 1Y) —LBTPT L) . 4.10
b (20 (m)! p:Z;( PRI TR TRy (cos?) (10

15
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with

cos Y = cos O cos O' + sin 6 sin 6' cos (P - ') . (4.11)

The angle v is the angle between the two vectors x and x'.
In particular it can be shown that the scalar quantities An obey recursion

formulas

A0 = exp [—ikr' cos 'y] (4.12)

and
. - 1)+

21knAn [n(n 1) D] An 1
where D is the differential operator defined previously in Eq. (4.5). Invest-
igating the behavior of An for n - o0, one can show that the expansion given
by Eq. (4.9), is uniformly convergent for r > r' + 6 > r'. From the relation-
ship

__V_' g = - Yg (4. 13)

where the prime indicates differentation with respect to the source variable

x', one obtains

09)
1 - & —n
V'g " nZ: . " (4.14)

where the vector quantity Bn is derived from An by means of the relation

»\aAn—l A 1 8An-l

A
= - + — - .
En T [—1k An nAn_]J 0 =0 P o ) (4. 15)

)

Interchanging the order of summation and integration it follows that ex-

pression Eq. (4.6) can be represented in the form of a Wilcox expansion

16
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ikr E (6,0
E(x) = = Z i (4.16)
- - T n
n=0 T

with E (0,0) given explicitly by
_ L : . ‘
LN (S [iws (AAHA_+ @ABAB_+(n BB |ds' (4.17)

provided that r > r' for all values of r' associated with the points of integration.

Expansion Eq. (4.16) is uniformly convergent for all points outside the
minimum sphere enclosing the body, and represents the scattered field outside
this sphere. However, it is possible that the expansion may be uniformly
convergent inside the minimum sphere, in which case it will represent there
the field produced by an equivalent source. The problem requiring investig-
ation is to obtain an estimate of the radius of convergence of (4.16). In the
case of perfectly conducting bodies with induced edge or tip singularities, the
expansion will not converge inside the minimum sphere containing these sharp
corners or edges. Thus, if the scattered field is singular on sufficient por-
tions of the surface of the body, then the radius of convergence of the expan-
sion in this case will determine the radius of the minimum sphere enclosing
the body itself. On the other hand, for smooth convex shapes, convergence
inside the minimum sphere enclosing the body is expected. As we have seen,
the problem of scattering by a sphere furnishes an example in which the formal
series solution for the scattered field converges absolutely and uniformly in-
side, as well as outside, the body.

It was shown that for a fixed origin, Wilcox's expansion represented the

scattered field only outside the minimum sphere (with center at the origin) en-

17
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closing the body. By changing the origin of the coordinate system, one will

get a new minimum sphere enclosing the body, outside of which Wilcox's
expansion will represent the scattered field. By considering a sequence of trans-
lations of the origin, a sequence of minimum spheres enclosing the body will be
obtained, such that the envelope will be a convex shape enclosing the body. On
considering the sequence of minimum spheres, Wilcox's expansion will give the
scattered field outside the convex envelope enclosing the body. Thus only for
convex scattering shapes, can one obtain by Wilcox's expansion alone, the
scattered field everywhere outside the body.

Assuming, however, that the Wilcox expansion converges inside the min-
imum sphere enclosing the body, it should be possible, by moving the origin
of coordinates, to generate a minimum convex shape within the body such that
the field is analytic outside this minimum region. The equivalent sources of
the field lie within such a region.

For smooth convex scattering shapes, then, it is expected that the Wilcox
expansion can be employed to determine a minimum source region inside the
body. Knowing the field everywhere outside this region, the problem reduces
to seeking a scattering surface for a particular boundary condition. In case
of perfect conductors, for example, one would look for the surface on which
the sum of the tangential components of the scattered and incident electric
field vectors vanishes. The requirement that the surface remain unchanged as
the frequency varies is sufficient to determine a unique perfect conductor. A
similar technique could be used for bodies whose material properties can be

represented in terms of an impedance boundary condition of the form

E-(E-njn= n [— nAH (4.18)
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where n is the unit outward normal to the surface of the body, and n is a
parameter depending upon material characteristics.

4.2 Specular Scattering from a Convex Shape.

It is of interest to know for what value of r the second term in the
Wilcox expansion is the order of the leading term. In this section the second
term and its relationship to the size of the scatterer is investigated. The
case will be considered where the dominant scattered field in a particular
angular sector arises from a single scattering center such as a specular point
on a smooth convex body. Assuming perfect conductivity, the first two terms

in the expansion

eikr _E_In
E(r,6’¢) = —r—' —"n-" (4'19)
r
are given by

15 i 2 ,

Eo C 47 (S Ewuo @AH) - k(- BT Ao ds (4.20
o4 [ 5 % '

El el (S 1wuo (nAH -ik(n- E)T Alds (4.21)

=

L Tra p oo g BAOJ . Eds'
S 0 90 sin 6 op | - S

where
A0 = exp [—ikr' cos 'y]
(4.22)
R LIV B ]
A1 = Ao[z ikr' sin Yy + r' cos ¥y
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The integration is over the surface of the body. In the above expressions, r'
is the distance from the origin to the point of integration on the surface of the
body S, and v is the angle between the radius vectors directed to the obser-
vation point (r,6,#) and the point of integration (r',6',#") and is given by the
relation

cos ¥ = cos O cos 6' + sin 6 sin 6' cos (P - #").

Since we are considering specular scattering, the dominant contribution of the
above integrals will arise from a small region about the specular point
(r'S,G'S,ﬂ'S). The coordinates of the specular point depend upon the position
of the observation point (r,0,0).

Since the dominant contribution of the integrals arises from the vicinity
of the specular point (r'S,G'S,¢'S), and can be evaluated by the method of

stationary phase, it follows for kr's sin ozs> 1, that
E~X o sinv)’E . (4.23)
s s =o

This indicates that the value of r for which lE 1|~ T |Eo is given approx-

imately by
r N% kd (4.24)

where d is the distance from the specular point to the line directed from the
origin to the observation point (r, 6, yz)). (A more precise value of ro is

given below.)
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4,3 Effect of Changing the Origin of the Coordinate System

For a general body with dimensions much greater than a wavelength, and
such that the scattered field is comprised of components arising from many
scattering centers, it follows in the same manner as indicated in Section 4.2,
that
l E1 Eo‘ when

l/\/r

9 (4. 25)

r ~0 (1/2kD").
Here D is the distance from the farthest point of the body to the line directed
from the origin to the observation point. The distance D is a function of
(6, §) varying with changing position of the far field observation point.

Changing the origin of the coordinate system will increase or decrease
the distance D, thus effectively increasing or decreasing the ratio of the second
term to the first term in Wilcox's expansion. The effect of changing the ori-
gin of the coordinate system of the far field pattern is to produce an additional
phase factor. This can be seen as follows. Let the origin of the coordinate
system (ri,ei,fbi) be displaced a distance £, resulting in a new coordinate sys-
tem (r,6,$). For a point in the far field r~r, -i -1, 6~6,, and ¢~¢1
Thus if the far field pattern (phase and amplitude) is given by
ikri
e

r,
1

E 6,.8) (4.26)

in the initial coordinate system, it will be given by

ikr
e

E_(6.9) exp (-ik T 1) (4.27)
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in the final system. If the vector £ has components

(- £ sin Gﬁ cos - sin 92 sin ¢£ , =L cos Bﬁ) (4.28)

,ﬁ L
with regard to the final ‘coordinate system, then

T L= cos Y, = -L |cos 6 cos 6, + sinf sin6, cos (¢—¢;_].(4.29)

For further illustration of the effect of changing the origin of the coor-
dinate system, we will return again to the case of specular scattering. Using
the notation of Section 4.2, (r'S,O'S,Q)'S) will refer to the specular point on
the body, giving rise to the scattered field at the ray (6,f) in the far field.
The dominant portion of the integral (4.20) arises from the vicinity of the
specular point. It can be shown that

E (0, 9)~ £ expik [51 x-x _r_:l (4. 30)

where Ei is the unit vector indicating the direction of incident propagation,
and r o is the unit vector directed from origin to the receiver or observation
point (r,0,0). The amplitude factor é is a slowly varying function of 6 and
f. For simplification the direction of the axis of the coordinate system will
be chosen so that gi = —iz .
The phase factor

g@.9) =1 - [; - 51] (4.31)
can be shown to have the form

g(6,0) = 2 cos -2— r' ‘n (4.32)
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where n is the unit outward normal at the specular point (see Fig. 4-1). Since
the position of the specular point is a function of 6 and ¢, it follows that ;'_'S

and n o are functions of 6 and @ also.

oz - r'g . 5
Y I's -0 (4,33)
ég_ = 3 9 ! . /\
50 sin 6 r' ) (4. 34)
82 cos g
—§ i reranit LY (4. 35)
96 Pp 78
2
A 1
28 = - sin 6 sin9?+cos90]-r +sianin9—1— (4. 36)
8¢2 =5 2 PlG

where (r, 6, () are the unit vectors associated with the spherical polar coor-
dinate system at the far field observation point (r, 6, #). In these equations G

is the Gaussian curvature of the surface at the specular point, and p, and p2

1
are the radii of curvature of the surface at the specular point in the (k_i, r 0)
plane and perpendicular to this plane respectively,

Setting

£ - £26+£°% (4,37)

the leading term in Wilcox's expansion has the form
2 _3 3 /\
B =& e kep ;. £3 ke g . (4,38)

Using relation (4.4) together with Eqs. (4.33) to (4.36), it can be shown that

the 6 component of the second term in Wilcox's expansion has the form
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FIG. 4-1: SPECULAR POINT OF CONVEX SURFACE ASSOCIATED
WITH PARTICULAR RECEIVER DIRECTION
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cos 6/2+ sin 6/2 _2218 "1‘”)]

2Gp Gp,sin 6

2
2ikE, = -E 2 Ekd)2 + ik (
1 o) 9 1

. 2 2 2 ,
4 ooike {:sz i 22 ] _2ik£Qg_aL+ 1 ag of ] .ikg

% 00 . 2 op op

sin 0
cos 6 853 og 3 -ikg
-2 -ik g7 1 e ) (4.39)
. op of
sin 6

where d is the same parameter given in Section 4. 2.

It is seen that on changing the origin of the coordinate system, so that

[ @
T < rsr (4. 40)

cos 0/2 sin 6/2
= +
er [Zsz Gplsin 6] ’ (4.41)

expression (4.39) reduces to

2
2 2 1 2 -i
2%kE.“ = |DE -——(E7+ 2 cos 0 Q—g—- e1kg . (4.42)
1 . 2 op
sin 6

. , . . 2 1
The right-hand side of Eq. (4.42) is very small, since £ and & are slowly
varying functions (both porportional to G_l).

Relations (4.40) and (4.41) indicate that on changing the origin of the co-
ordinate system to lie on the "ray'" directed from the specular point to the
observation point, and at the effective phase center, the second term in
Wilcox's expansion can be made quite small. Changing the origin of the coor-

dinate system to reduce the second term in Wilcox's expansion is equivalent
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to tracing back the reflected wave front to the specular point.

This points out the importance of the phase information in the scattered
far field, for in this case the knowledge of the phase leads to the angular
position of the specular point on the body, whereas amplitude knowledge by
itself will not indicated this, only yielding the Gaussian curvature at the

specular point.
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\'
THE PLANE-WAVE EXPANSION

As an analytical tool for investigating the inverse scattering problem, the
Wilcox expansion has several shortcomings. Most important of these is the
fact that one cannot go inside the minimum convex shape enclosing the equiv-
alent sources by means of the Wilcox expansion alone. One may, of course,
speak mathematically of continuing the field to the inside; however, it is felt
that other representations of the electromagnetic field are available which
may yield more concrete results and provide a greater insight into the analy-
tical problems of inverse scattering.

The approach to the inverse scattering problem based upon the represent-
ation of the scattered field in terms of plane waves is here investigated. Such
a technique has been used for partiuclar direct scattering problems, and mod-
ified versions of it appropriate to the high frequency case, have been employed
in geometric optics (Kline and Kay, 1965). This technique is shown to have
several advantages. If the scattered field is thought of as arising from a set
of discrete sources, the field can be obtained everywhere outside and between
each individual source, i.e. it is not restricted to the region outside the min-
imum convex shape enclosing the sources. This could have practical uses for
investigating cavities or antennas mounted on the surface of the body. In
addition, if the scattered field (phase and amplitude) is known only over some
angular bistatic sector, the near field (in the high frequency case) can be still
obtained in certain regions. Thus, if it is assumed a priori that the body was
a perfect conductor, then those portions of the scattering body giving rise to
the observed portions of the scattered field can be found.

5.1 Determination of the Near Field from the Far Field.

A fundamental representation of the electromagnetic field in free space

may be obtained as a combination of infinite plane waves whose amplitude

27




THE UNIVERSITY OF MICHIGAN
7644-1-F

factors are given by the far field and whose directions of propagation are, in
general, complex. Although the representation discussed in this section is
valid only at points outside the sources of the field, the extension to points
within a source region is under investigation and will be discussed in Chapter
IX.

Consider the electromagnetic field produced by a given volume distribution
of electric currents j varying harmonically with time (e_iwt) and located in
some finite volume V of free space. The field everywhere in space may be

expressed in terms of the vector potential A given by

,uo ikR
= — 3 1 1
A(x) i i) dx (5.1)
\'
where R :‘ X - _)g‘l , and the far-field distribution has the form
ikr
A(r,0,9) —~— A (6,9) (5.2)
Tr—>
with
¥ .
- 2 ey ook X 1
A0,8) = ( ix) e dx (5.3)
\'
k = k (sin 6 cos @, sin 6 sin §, cos6). (5.3)

The currents j may again be thought of as equivalent sources for some scat-

tered field or as real sources for some radiation field.
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For points exterior to V the Green's function elkR/R can be expanded in-
to plane waves. We shall employ the well-known integral representation due to

Weyl (1919) (see also Stratton, 1941, p. 578)

T
21 ,— -1

. ., ]
e _ ik elk- (z §)sin adadB(z> z" (5.4)

0 0

where now k = k (sin « cos B, sin @ sin B, cos @) is a function of the vari-
ables of integration @ and B running from O to 7/2 -ic and O to 27, respec-
tively. It is seen that in this expansion of the spherical wave eikR/R all
possible plane-wave directions within the limits 0< 8 <27, 0 <a<(7/2) are in-
cluded; values of « lying in (/2 < a <7 correspond to plane waves traveling
in from infinity in the half-space z > z', and are, therefore, excluded. In
addition, however, inhomogeneous plane waves with an exponentially decreasing
amplitude in the z - direction (for z > z') are included in order to yield the
necessary singularity at R - 0. These waves correspond to that part of the
integration path running from « = (7/2) to @ = (7/2) -i ®. An alternative re-
presentation valid in the half-space z < z' may be obtained by selecting a dif-

ferent path of integration in the a-plane; thus, for example, we may write

T .
2T p—+ i
_§')

sinadadB (z<z'), (5.5
0 T

When (5.4) is introduced in (5.1) and the orders or integration inter-

changed, one obtains for the vector potential A the following result
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i 2m g——i 09]
. L et
A(x) = ‘2%;' ﬁ =" ok X adadf dx'
A 0 Y0

2T lzr-—ioo u

_ik ik-x {Zo W |- - S

= om ( e i i(xNe dx'} sinadadB, (5.6)
0 0 \%

and upon recognizing in view of (5.3) that the quantity contained in '}immed—

iately above is merely éo (o, B), one finds

T
2r ,—-i0
ik 2 ik * x
A(x) = — e~ “A (o,B) sinadadB (5.7)
= 2T -0
0 0

provided x lies in the half-space formed by the portion of the x-axis above the
source volume V, that is, z> Z'max' In this upper half-space, then,(5.7)

provides a representation of the near field in terms of the far-field data. For
x lying in the lower half-space below the source region, z < z‘min we have by

virtue of (5.5)

21 Z+iom
ik 2 ik- x
A(x) = -— e~ TA (o,pB) sin da dB . (5.8)
- 2m -0
0 T
The integrals (5.7) and (5.8) together give the field everywhere in space except
in the region z' . <z< z' which sandwiches the sources. It is clear,
min — — ~ max
however, that other paths of integration in the a-plane depending on the obser-
1

vation angle 6 may be selected to yield results even within z' . <z <z ,
min max
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although the source region must still be excluded. Choosing other paths of
integration is tantamount to rotating the reference axes and will be discussed
shortly.

5.2 Additional Comments.

As we have seen, the integral representation of the near field in terms
of the far field requires integration over a surface element d Q= sin o do df
of the complex unit sphere §2. It is interesting to note that integration over
the real portion of the unit sphere yields a result which contains both incoming

and outgoing waves. Thus, in view of the representation (Stratton, 1941, p. 410)

2r
sin kR _ k ( eﬂg *(x-x")

R = I =" sin adadf , (5.9)
0 0
one finds
2T T u
k ik-x . __ O o SinkR
o e A (@B)sinedadf=—- | j(x) =5~ dx\(5.10)
0 0 Vv

On the other hand, complex values of B as well as o may be included

since, by a straightforward modification of the Weyl formula (5.4), we have

ikR T.iow I .io
. S TR S
e_R__ = 21—1;— 2 2 ik (Eg)sinadadﬁ, (z>2z") (5.11)
vii T .
-2 -—+
2-i-1(x) D) 10
and thus
T .
—--ioo
ik 2 ik x
A(x) = o e— —éo (o, B) sin @ da dB . (5.12)
T .
- 5 + 100

31




THE UNIVERSITY OF MICHIGAN
7644-1-F

Finally, it should be mentioned that the plane-wave expansion of the near
field in terms of the far field could have been derived by starting with a sur-
face integral representation of the vector potential. For example, in the case
of a perfectly conducting body, the vector potential for the scattered field is
given by
ikR
R

A%x) = (o AH) ds' (5.13)

-9
47

S
where S is the exterior surface of the scattering body and H is the total
magnetic field generated on the surface. Introducing (5.4) into (5.13) and in-

terchanging the orders of integration, one finds

T
21 ,—-100
sc ik 2 ik.- x sc
(x) = — e= = A (o,B) sin @ doe dB (5.14)
- = 27 =0
0 0

provided x lies in the half-space formed by the portion of the z axis above

the scattering surface S. The last condition may be too restrictive, however,

and the integral in (5.14) may be convergent for points x lying inside the
scattering surface, where it will represent the field produced by an equivalent
source. This very important observation is considered in Chapter VIII where
the domain of convergence is extended into smooth, convex sections of a per-
fectly conducting, scattering surface.

5.3 Rotations of the Reference Axes.

The integral representations (5.7) and (5.8) taken together exclude certain
portions of free space, namely the free-space points lying within the region

z'! . < z < 1z sandwiching the source volume V. These points may be
min - =  max
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included by means of a rotation of the reference axes. Consider the integral

(5.4
2 ¥ -ico

. D e ot
© S ell{- (x-x) sin @ do dB (z>2z")

0 0

where k = k(sin @ cos B, sin @ sin B, cos @). This integral is invariant to
a rotation of the reference axes, thus change to new variables o', B' defined

by direction cosine relations,

1]

sin @' cos B' = sin « cos 6 cos (B-¢O) - cos & sin §_
sin @' sin B' = sin @ sin (B-;bo). (5.15)

cos ¢' = sin & sin 6 cos (B-¢o) + cos & cos 6 ,

where 60, ¢o are arbitrary (real) angles. The inverse transformation, defining

the old variables (@,B) in terms of the new variables (o', ") is
sin @ cos B = cosa' sinGocos% + sina! {cos 6 cos B'cos ¢o—sinB' sin [bo:] ,
sin a sinf = cosa! sinf_sin ¢O+ sina! I:cos 6 cos B sin ¢0+ sinfB'cos ¢0] ,
cos @ = cos &' cos 60 - sin ' sin (90 cos 3'. (5.16)

Further

dQ2 = sin @ da dB = sin o' do' dB' = dQ! (5.17)

and the limits of integration may remain the same. The integral represent-

ation is essentially unchanged in form:
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. ik- - i
£ 'S e (x §)sin o' do' dB' , (5.18)

where the directional cosines of k are to be obtained from the inverse trans-
formation relations given in (5.16). The integral, however, now converges at

o' = (7/2) - i provided
! 3 + —x7! 3 3 !
(x-x") smeo cos;bo (y-y") sin 9051n¢0+ (z-z") cos 60> 0 (5.19)

that is, provided

x*% >x' X (5.20)
where ’320, is the unit vector

X, = (sin 90 cos fbo, sin 90 sin ¢o’ cos 60). (5.21)

We have, therefore,
T

27 ,—-1io
ik 2 ik - x
Alx) = 5— e~ “A (2,B) sin o' do' df (5.22)
0 0
provided
X - X > max (x'. %). (5.23)
= o = 0

This representation is thus valid for all x lying in the half-space formed by
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the portion of the ?(0 axis not containing the sources. Since /X\o is an arbitra-
rily directed vector, it is clear that portions of free space within Z'min <

< Z'max » which were previously excluded, may now be included. In particular,
by rotating the 3?0 vector we may generate the field everywhere in the space
outside some minimum convex shape surrounding the sources.

5.4 Relationship to Spherical Harmonics.

Assume the far field is known as an expansion in spherical harmonics

A 6,p) = ZZ a . ™ (cos ) em¢ . (5.24)

Then, because of the integral representation derived by Erdélyi (1937):

i (1)(kr) P (cos 0) e— + imf

T .
27 ,—-io00

1 2 1k +imf
= = —P (cosoz)e~1m sin o da df8 (5.25)

2m
0 0

we have immediately from (5.7)

A(x)—lkZZ (kr)P (cos G)e mf s (5. 26)

thereby giving the field as an expansion in spherical wave functions.

5.5 Relationship to Aperture Problems.

Assume the source currents j(x') are confined to the plane z' = 0 and

denote the directional cosines of k by u, v, w, where
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u = sin @ cos B3,

v = sin a sin B. (5.27)

W = COSs «.

The far-field amplitude (5.3) may be written in the form

ik (ux'+ vy'")

K -
éo(u, V) = Z;— jx,y) e dx' dy' (5.28)

and the spherical wave (5.4) may be expressed as

ikR @
e _ ik ik o o . dudv
R = on e [u(x x") + v(y-y") + w(z z)] - (5.29)

-0
since sin « do dB = (1/w) dudv. Thus, remembering z' = 0, we have
ikR

u
A(x) = ._2] _l(X' yy) € dx' dy
== Ar ’ R

(0 0]

i i + vy +
_ ik elk(U.X vy Wz)A

_ dudv
27

A (u,v) —~ (5.30)

When z = 0 this leads to the well-known result that polar diagrams and aperturs

distributions are related by two-dimensional Fourier transformations (see e.g.
Bouwkamp, 1954).

5.6 The Field Quantities.

The electromagnetic field is derived from the vector potential by means

of relations
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1
H= — curl A
o ”o a
(5.31)
E = 1 curl curl A .

In the far zone these equations give

ikr ikr
H(r,0,)~— H 0.0) = 5= (2 kA A 6.0),
? (5.32)
ikr ikr .
E(r,6,p)~*—E (0.) = = (Tap) EAEALG.D.

When these relations are applied to the integral representation (5.7) of the

vector potential, one finds.

T .
2T ~-im
ik 2 ik-x, i
H(x) =5 e~ ‘(‘;—)l_g_/\éo(oz,ﬁ) sin o da dB
0 0 °
(5.33)
21 T -im
ik 2 ik * x
= o e — —go(a,ﬁ) sin @ da dB,
0 0
and similarly for the electric field
2 ,L-im
ik 2 ik x
E(x) = 21; e —Eo(a,B) sin o da dB. (5.39)
0 0
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The near fields may thus be represented directly in terms of the electromag-
netic fields in the far zone.

5.7 Determination of Field in Free-Space Region Between Distinct Sources.

If the original source region V can be separated into a number of dis-
jointed volumes Vi in free space, then it may be possible to determine the
field in the space between these distinct source regions. For example, let the

currents j be located in two finite volumes V and V and further assume

1 2°

that V1 lies within the range =z 1< z < Zg while V2 lies within the range
Zg <z< Z, with Zg < 2 Also let LI(OI)(G,Q)) and 522)(6,50) denote the far-field
amplitudes due to the sources in V1 and V2, respectively. Then the field in
the free-space region Zg <z< Zq between the two volumes Vl,Vzcan be re-
presented in the form

2m % -io

_ ik ik-x (1) .
H(x) = o e H (a,B) sin @ da dB
0 0

. (5.35)
27 -2-+ioo
- elli' §_Hé2)(a, B) sin o da df

0 0
The first integral above converges for z > z 9 while the second converges for
z < z_; hence, this representation is valid in the desired region z_, < z < z,.

3’ 2 3
This has an immediate application in providing a means of separating out

distinct sources of scattered field that may occur, such as an antenna or other

protuberance mounted on a smooth surface.
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VI
ANALYTIC CONTINUATION

The field _}_IO (6,0) in the far zone is measurable only for real valuesof
0, P in the ranges 0 < 6 <m, 0 < P < 2r. However, in order to obtain the
near field by means of the integral representation discussed in the previous
section, it is necessary to know Eo(a,[b) where o = 6 + i& . Therefore, we
need an extension into the complex a-plane based upon the measured quantity
H_(0.6).

Now _Ijo(6,¢) is immediately known for the range -7 <6 < 7. This follows

from the definition
H@h =+ [ xAjx) & ¥ g (6.1)
=0’ 4 = = )
Vv

and the fact that k as a function of 6 and @ satisfies

k(-6 ,9) = k (6,9 +m); (6.2)

hence
H (-0,0) =H 6,pxm7). (6.3)

In addition, H_ is periodic with period 27 in both 6 and §.
To obtain an expression for Eo(a,y)) in the complex a-plane, we observe
from (6.1) that go(a,y)) is a harmonic function in the variables 6 and £; that

is

)
—+—=) H(6+i&, @) =0. (6. 4)
s> o082/ ©
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As such, _}_Io(a,¢) may be expressed in the following form

& Jin (0 +i8) (6.5)

Ho(a’ p) = -n

n=-aoo

where the coefficients a_ are derived by means of the relation

T

_ 1 ( e—in@' LIO(O"¢) do! (6.6)

a
-1 2m
-

This provides an extension into the complex a-plane. The series (6.5) may

be partially summed and put into closed form as follows:

1 T e1(6+1§)HO(9,,¢)
- = !
Blaf) =5 i(6+iE) 10" o'+
e -e
-T
(6.7)
T
. . o
N _2_1__ em(9+ i&) i (0',0) e1n9 0"
s )
n=1
-7
for £€<0, and
i0!
. T e10 I_IO(G‘,¢)
- = _ 2 1
H (e f) = o o ienE) ©F
e -e
-
. T (6.8)
1 ~in (0 +if) o ind!
+ == Zzl e H(0',9)e" do'
-7

for £ > 0.
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To investigate the convergence of the series (6.5) we examine the be-

havior of a and n - . Now

41

T
_ 1 ~ing L oo KX 1 -
s | o | kAL Fad a -
-T \4
(6.9)
T
» Len il ot
= —-1—2- JxA k inf -ik - x do dx’
8w
\Y4 T
where
k = k (sin 6 cos P, sin 6 sin P, cos 6). (6.10)
Write k in the form
k = g (% + e0px) (6.11)
with
t=(-i cos P, -i sin P, 1), (6.12)
then
T
p 1V D il ot
2 - 1l2< )AL L o i(n-1)6 -ik * x o +
167 v o
T (6.13)
- —ik. <!
b g o i(n+1) 0 -ik. x a6 % ax
-7
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But k- x' may be written in the form

k-x' = kr' [Cos@ cos 0' + sin O sin O' cos (fb-;b'{l
(6.14)
= kr'p cos (6-y),
where
92 - cos? 9" + sin” 6" cos” p-¢n ,
(6.15)
tan ¢ = tan 6' cos (P - @),
and, in view of the integral representation
0 /7
—. s —- _. ' _ ,
. 1ml//J (kr'p) = i o im0 -ikr'p cos (0 - ) . (6.16)
m 2T
-7

we have 'the closed form expression

NES iy Lk -y -
= ar HxDA {te Jn_l(kr p)-t'e Jn+1(kr p)pe dx' (6.17)

A

-n

As n tends to infinity the dominant contribution is due to the first term

within the braces in the integrand

n-1
o (0% L (kr'g -iw) dx’
20 n> o0 87 (n) ANt 2 © (6.18)
\
hence 01
o | < Qs () (.19
n =
where R represents the maximum value of r'. A similar result holds for a_

The convergence of the series (6.5) is therefore secured for all .o=6+i§ because

of the gamma function in the denominator of (6.19).
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VII
HIGH-FREQUENCY SCATTERING

It will often happen at high frequencies that the far scattered field from a
body can be characterized either by a rapidly varying phase function (e.g. spec-
ular scattering) or by a rapidly varying amplitude function (e.g. scattering by a
flat plate). Under these conditions the contour integral representation of the
near field in terms of the far field is particularly convenient because the
powerful methods of asymptotic analysis are then at one's disposal. As an
application of the integral representation at high-frequencies we shall here con-
sider the geometrical optics field produced by a plane wave incident on a per-
fectly conducting sphere.

The incident field is taken in the form

LREN e—1kz

It
!

~ -ikz (7.1)

and the scattered field is given by

T,

2T = -io
s ik 2 ik x _s
E(x) = — e— =E (ofB)sinadadp,
- - 27 )

0 0

(7.2)

2T = 400
s ik 2 ik-x __s
H(x) = — e— = H (o,B) sinadedB.
= = 27 =0

0 0

The geometrical optics field in the far zone may be written as
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) _3_21_ 2 (a.B) e—Zika cos (a/2) ’

E (@,8)

(7.3)

Hi (e, ) = e-2ika cos (@/2) ’

where e (o, B) and h (a,B) are the unit vectors

ele, B) = X(cosa cos2,8+ sinzB) - §(1-cos @)sin B cos B—Q sina cos B,
(7.4)

A - 2 2
h(e, B) =&(1-cosa) sinBcos B+§(cos asin”B+cos P)-Z sina sinf.

The exponential behavior of the integrands in (7.2) is thus governed by
the factor

RSICHE) (7.5)
where

A
k'§—2acos§

f(a, B)
(7.6)

T [sin 6 sina cos(p -B) + cos O cosa| -2a cos %

Upon examining the convergence of the integral as @ = (7/2) - i ®, one finds
that the integrand decays exponentially so long as r cos 6 >0, that is, z> 0.
When z = 0, however, the integrand grows exponentially as o = (7/2) - i oo,
hence the representation (7.2) with (7.3) is valid for all z > 0, or what is
the same, 0<6 <(7/2).

As k > oo the dominant contribution to the integral arises from the
vicinity of the stationary phase point (8=, a= ozo) where a satisfies the

equation
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r sin (ao— 9) = a sin (afo/2) . (7.7)

The physical interpretation of this equation is shown in Fig. 7-1. The quantity
p = a sin (a0/2) may be interpreted as the impact parameter associated with
an incident ray, and this is precisely the incident ray that reaches the obser-
vation point P after being reflected at the surface according to the laws of
geometrical optics. The angle @ is twice the angle of incidence.

By means of a first order stationary phase evaluation we obtain immed-

iately

\

a sin o ikf (ao, @)
E°(x)~ -5 - e (7.8)

a_ .0 :
[r cos (CZO-H)-z cos~ ]rsm@

and similarly for the magnetic field. If we let s denote the distance along the

reflected ray from the point of reflection

S = T cos (on—O) -a cos (ao/z),

(7.9
r sin 6 = ssin o _+a sin (o /2),
) )
then the result (7.8) may be written in the form
/2 iks- ika cos (@ [2)
S D(0) ~ o)
~ -
E"(x) I:D(SL ela ,fe ) (7.10)
where
a a
0 2s )( 2s o)
= —+ = )1+= - . .
D(s) (cos 5 " 1 . C05 (7.11)
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P(r, 6, 0)
a -0
0

E
incoming ray

FIG. 7-1: PHYSICAL INTERPRETATION OF STATIONARY PHASE POINT

o FOR HIGH-FREQUENCY (GEOMETRICAL OPTICS)

SCATTERING BY CONDUCTING SPHERE.
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The magnetic field takes the analogous form

1/ 2 iks-ika cos(« /2)
0
]]))((S):l 0y (oz p)e (7.12)

The amplitude factor E)(O) / D(s)] 1/ 2 in the equations above accounts for
the divergence of the rays after reflection at the surface. This factor has
been derived on the basis of geometrical optics for reflection from an arbi-
trary convex body by Fock (1948), and it is easy to verify that the quantity
(7.11) agrees with the expression given by Fock in the case of the sphere.
The phase of the field is also in agreement with standard geometrical optics
considerations.
The ordinary stationary phase evaluation fails in the vicinity of the

caustic given by the equation

%
5 - 0. (7.13)

a
r cos (ao -6) - 5 COS
However, it must be emphasized that the behavior of the field near the caustic
may still be examined by applying a modified asymptotic analysis to the inte-

gral representation of (7.2). The elegance and simplicity of this represent-

ation for application to high-frequency scattering is evident.
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VIII

THE VALIDITY OF THE FIELD REPRESENTATION INTERIOR TO THE
SMOOTH AND CONVEX PARTS OF THE SCATTERING BODY

We recall that the vector potential A(x) can be represented as

-im

Do [N

27
A(x) = Ik dB da sina e£ % A (a,B) (8.1)
== 27 9
0 0

provided the position vector x lies in the half-space formed by the portion of

the z-axis above the source volume V, that is, z > Z‘max' For x lying in the

lower half-space below the source region, z < Z'min’ we have

2T ZT--Fioo
ik 2 ik ex
A(x) = -— dB desinae= = A (op) (8.2)
== 2m _0
0 0

In Eq. (8.1) and (8. 2) AO (a,B) is the vector function of the complex

variable @ which is obtained from the far-zone potential (taking Mo = 1)

L ) o kex!
io (616) - 47T _J_(E) e d_)_( i} (8'3)
\%

by means of the analytic continuation

a =0 +if . (8.4)
Here

0<6 <7, 0<B<2m (8.5)

k = k (sin 6 cos B, sin 6 sin 8, cos6), (8.6)
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and the currents j may be thought of as equivalent sources for some scattered
field or as real sources for some radiation field. We can of course deter-
mine the field (E, H) immediately from (8.1) and (8.2) in the usual manner.

For a perfectly conducting surface S the integral (8.3) may be written

explicitly in terms of the (physically) induced surface currents; i.e.,

A@B) = (AB e X4 xes, (8.7)
o S

where H is the total magnetic field. We let o =

0o |

- it, and find that

oKX éo(a/,ﬁ) =] dS (nAH) exp k{ i cosht EOS B (x-x") +

S
(8.8)

+ sin B (y—y'):‘l - sinh t (z —z')}

In Eq. (8.8), letting t - o, we see that the representation (8.1) is valid at
the upper limit o = % - i for z >2z'. Here, the important question arises;
namely, is (8.1) valid for z < z'? If so how far can one go inside the sur-
vace S before the representation (8.1) falls? It is the main purpose of this
chapter to study this question in detail. However, before we consider more
general shapes, it would be enlightening to study this question for the per-

fectly conducting sphere, with the further assumption that we are in the phy-

sical optics region.

8.1 A Special Case: The Sphere

Consider a perfectly conducting sphere of radius a, and let a plane wave
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propagating in the direction of negative z-axis be incident upon it (Fig. 8-1).

Thus
El _ ?(e—1kz
(8.9)
Hl _ _/}\’ e—1kz.

With the physical optics assumption ﬁ/\}l = 2 ﬁ/\H1 ,(0<86 _/\_g ), (8.7)

reduces to
pA
_Hi
_E.:i : vy
(a,6',9")
y
0/
X
FIG. 8-1: SPHERE GEOMETRY.
R 2m /2
. 1 0! do! '
éo(a,B) o dg sinf' d'(x cos 6
J O 0

(8.10)

- '
2 sin 0" cos §1) e ika (cos 0' + cos v)
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where

cos ¥ = sin @ sin 8' cos (@' - B) + cos @ cos 0'. (8.11)

We now proceed to study the behavior of the x and z components of éo

as o > g——ioo. We have (Stratton (1937) p. 367)

.~ . ¢+ .
3 =5— [ &P T (8.12)

2w
Here the path of integration is extended along the real axis of § on any seg-
ment of length 27.
Using Eq. (8.12) we carry out first the §' integration and find the x-

component of éo to be

/2
2
Ao(oz,B) = a dg' sin B' cos 0! -
X
0
(8.13)
-1 1
e ika cos 6" (1+cos Q)JO(~ka sin @ sin 8').
Since about 7/2 cos is odd and sin is even, (8.13) reduces to
azi '
AO(Q,B) =5 sin [—ka (1 + cos @) cos 9']
X
0
. JO(—ka sin @ sin 8') cos 6' sin 6' do' . (8.14)
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We have (Watson, 1952, p. 379)

T
sin (z cos O cosy) J (z sin@ siny) c’ (cose)sinV+1/29 do =
y-1/2 T
0
0 (r even) (8.15)
(_1)1/2(1'-1)(%71) siny-l/zw CV(cos Y)Y . (z) (r odd)
Z T v+ ’
and (Magnus and Oberhettinger, 1954, p.77)
2+1/2 . (1—t2) 4/2}22212 g
C (1 = (-1) (20): P (1) (8.16)

where CI; is the Gegenbauer polynomial. By means of (8.15) and (8.16) we

obtain
% or 1/2 1/2
Ag(a’B)N—z_— (—?a) C, (cos oz)JS/z(-ka) =
a2 _ (8.17)
:‘I?— ’E cos o J3/2(-ka).
or, since
- I <R
SANER - o2 1\/—: i)
AO (a, By~ a2i cos « jl (-ka) . (8.18)

X

By means of somewhat similar analysis we can obtain the z-component in the
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form

AO (a,B) ~ az sin « cos f3 j1 (-ka) . (8.19)
Z

With o = g - it, this becomes

T o, 2, ~ .
éo( 5 " it, B)~a ]1(—ka) l:—x sinh t + z cos 8 cosh t] , (8. 20)
and
ik ex . . .
e— = = exp k{l cosh t (x cos B+ y sin B) - z sinht} , (8.21)
ikex m .
Therefore e = A > 0ast—> o (> 5 -io) for x >0, y>0, and z>0.

This, in turn, implies that the representation (8.1) is valid all the way
down to (and including) the xy-plane which is punctured at the origin.

8.2 The Asymptotic Analysis for the More General Cases

As noted earlier for a perfectly conducting surface S' we have

A (@B = @AB e KX g5 (8.22)
S
With « = 7/2 -it, k is given by
k = k(coshtcos B, coshtsin 8, isinht). (8.23)

We shall now study the asymptotic behavior of the integral (8.22) for t > oo.
To simplify the analysis we choose the coordinate system so that the origin is

on the surface S, and that the positive z-axis is normal to S (pointing outwards).
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Further, we orient the coordinate system so as to have
k e x =k (xcosht+ iz sinht). (8.24)

We let a plane z = zo(zO < 0) intersect the surface S, and denote the
portion of S above this plane by SO. We require SO to have the following

properties:

(i) S0 has the representation z = f(x,y), X, y € A, (8.25)
(ii) S0 is smooth; i.e., fx, fy are continuous functions for x,yeA,
(iii) So is convex,

(iv) f is single valued,

(v) £ is analytic.

Equation (8.22) reduces to

ik o x kzosinht
_A_o(a,B)N e — =“(nAH dS+O0\e , (8.26)

S
0

as t > oo. Hence we study the integral

1= wAHe EXgg (8.27)
S
6]
as t > o.
Since
of of
(-5; ey 1)
A = Y =, (8.28)
of 2 of .2
F (=) + (=
1/1 (8x) (8y)
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we can write (8.27) as

|
i

exp { -ik (x cosh t+ if sinh t)
A

. [}é; X—T—§+,z\:| A H dx dy, (8.29)

where A is the projected area of So on the z = z plane. We integrate (8.29)
with respect to y first. As t —-m the dominant behavior comes from the

neighborhood of the point Yo where

oty .
(5 )yo 0. (8.30)

With this, (8.23) reduces by saddle point integration to

X

2
1~ _2m exp{ -ik |x cosh t + if(x, yo) sinhﬂ B dx, (8.31)
Vk sinh t
X
1
where
2 -1/2
B = (—Qf-’}}-@i’y‘+’z‘)AH I . (8.32)
= ox oy - 2
Yo a9y YO
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Note that because of the assumptions (8.25) we have < Qz—f2> > 0 and there
is only one such point Yo oy Yo

Now let us cut the surface by the plane x = x' (x1 <x'< x2).

For z > Zo’ x1 < x' < x2, the function f (x', y) is monotonically increasing
if y < Yo and it is monotonically decreasing if y > Y, It has a maximum at
Y=Y, This holds for all the curves determined by planes x = x'(x1 <x'< XZ)'
Since the analysis will have to hold for all angles B3, these observations must
remain valid for all cuts parallel to the z-axis of the surface So' Thus the
surface So, z = f(x,y), has a maximum at the origin and monotonically de-
creases away from the origin. Thus it appears that the dominant contribution
to (8.31) arises from the point z = 0 because of the term exp l__l_d(x, yo) sinh t] .
However the remaining term exp (:—ikx cosh t] is a rapidly varying function
and in the limit when t > o this can negate the contribution of the integral in
the neighborhood of x = 0. In order to properly evaluate the integral (8.31) we

proceed as follows. We define the complex plane w = x+ iv. Because of our

assumptions (8.25) about the surface So’ we have

z = £(x,y) = 2 I amnxmyn (m, n positive integers). (8. 33)*
m+n=2

The function f(w, yo) is also analytic in some domain D1 which contains

Assume that the vector function B(w, yo) is also

the line segment x. < x <X

1
analytic in a domain D

9"
9° This domain also must contain the segment

X, <x< X We see that analyticity of B presupposes the analyticity of H on

So' Here, without going into the details, we shall simply remark that we can

Note that assumptions (8.25) (iii), (v) imply that planar parts are excluded

from the surface S . This fact is inherent in the power series expansion (8. 33).
Q .

Thus we are assuming the surface S0 to be locally parabolic.
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always use the high frequency physical optics approximation to H when So is

always completely in the illuminated region, thereby assuring ourselves of the

analyticity of H.

N

T -+
|
y
)
Z:f(X',Y)
(o] /
- 1
z=1(x',y) plane x = x'
FIG. 8-3: CUT OF SURFACE S BY PLANE x = x'.
Now we write the expression (8.31) in the form
27
~1/ - i +
I K sinh t exp [ ikwcosht
C
(8.34)

+ k f(w,yo) sinh t:| B (w, yo) dw,

where the contour C lies in the domain D = Dlm D2, with end-points L X
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The contour C will consist of three parts: the line segment
and the line segment

9 = Xy

x <

W
')21, the contour C1 with end—]g)oints’f{1 and X,
. Since

X

—
I

X,

IN

<
X L%,

[\]

Re{ -ikwcosht + kf(w, yo) sinh t;

Re {—i k (x +iv) cosh t} + Re { kf (w, yo) sinh t} (8. 35)

ksinht{ v coth t + Re l__f(w, yo)] } ,

require the contour C1 to have the property that for w € C1

1

we shall
_ ~ _ e
Re { f(w, yo)} + veotht = f(xl, yo) = f(xz, yo) (8. 36)
Also, since

Im{—ikwcosht + k f(w, yo) sinh t}

= k {—x cosh t + sinh t Im [f (w, yo)] s (8.37)

we see that the integral (8.34) has the asymptotic form for t —> o

2T ~ . R
lN]’k snht | oXP [ k f(xl,yo) sinh t

' exp{ ik [—x cosh t + Im f(w,yo) sinh t] } B(w) dw . (8.38)

C

1
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The numbers 3le and?{z , not specified at present, are restricted by the

requirement that C, must lie in domain D. An additional restriction can be

1
placed when the function

\4 w = x +iv plane

FIG. 8-4: CONTOUR C = x. X, +C, +%_ x

-iwcotht+ f(w, yo) (8.39)

has a saddle point at W, T X + ivo. In this case, by the nature of the
saddle point, we cannot have a '"closed curve " joining the points §‘41 and 3‘(’2

when 3\('2 >§; (see Fig. 8-5), where

— NO
Re {f(wo,yo) + v, coth t = f(X 9 yo) . (8. 40)

8.3 Application I: Elliptic Paraboloid

Consider the elliptic paraboloid given by
2 2
z=-ax -bxy-cy = f(x,y) , (8.41)
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whose principal radii of curvature Rl and R, are given by

2

2a+c) = 1/R1 + 1/R2

(8.42)
2 2’
2Y(@a-c) +0b = 1/Rl - 1/R2
The stationary point V, [Eq. (8.3@] is given by

—bx—20y0=0, (8.43)

and for y = yo, we have
x2 2

f(x, yo) = - 1 Elac—b]. (8.44)
For this surface = -® and Xy = . We need to consider the possible
stationary points of the function E:')q. (8. 39)]

-iwcotht + f(w,y) fort — o . (8. 45)

0
From
lim 2 I:—iwcotht + f(w, y')_‘]
ow o}
t >
2
= lim [—icotht— A (dac-D ):] =0,
2c
t>mw

we see that the stationary point is at w = W where

w = —=2¢el . (8. 46)

° (4ac - b2)
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o

Thus the value of ¥ _ to be taken is given by D*Zq. (8.408

2
~0
= + .
f(x2 , yo) Re{f(wo, yo)} Voo for t = o , (8.47)
i.e., (,}\(,0)2
2
4ac-b 4ac -b 4ac-Db
therefore,
2
®0) = —B—s (8. 49)
(4ac -Db)

Therefore, in this case we find that

f(’;{g, y) = - ———9-——2 (8. 49)
4ac - b
From (8.41) and (8.42) we observe that
RR., - —— (8.50)
- . 2 Fl .
L2 4ac -Db
and that the curvature of the curve z = f(x,y), x = 0 is
-2¢
(8.51)
2
(1+ 402y )3/2
If we let
1 -2¢
-5 = = -2, (8.52)
Ry (1 + 4023]2)3/2
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then we can write (8.49) as
R, R
~0 B 12
f(x2 , yo) = - 2Ry . (8.53)

Now we go back and from (8.38) observe that the integral I has the dominant
asymptotic behavior
Rl R2
I~ 0O |[exp(-k- sinh t - _ZE_)] . (8.54)
y
Note that in the original expression [Eq. (8.22), (8.23)] the angle 3
occurred. The coordinate system was rotated to remove the dependence on f3,
so that the proper asymptotic behavior for all angles 3 requires a rotation of
the coordinate system. This effectively changes the value of Ry. It goes

from R, to R_ where R, is the minimum radius of curvature. Therefore,

1 2 1
Rmin
I ~exp (-ksinh t - S ) . (8.55)
From (8.22), (8.23), (8.24) and (8.55) we see that eﬂi' X é‘-o —> (0, exponen-
tially as
yi .
@ > T -io (8.56)
for z > zq‘ where
x Rmin
Z = — (8.57)
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min

L /////

Plane

FIG. 8-6: REGION OF CONVERGENCE FOR THE PLANE WAVE
EXPANSION FOR AN ELLIPTIC CYLINDER.

8.4 Application II: Spheroid

We now consider a body of revolution, and take the z-axis to be the
axis of revolution. In this case the orientation of the x, y axes does not

matter.

The surface is given by

= f(x,y) = -b+b (8.58)

2 2 2
p =x ty

The stationary point y = Y, for which % =0 is y, = 0, and we have

f(w, yo) =-b+b (8.59)

This function will be taken to have cuts along the x-axis, x> a, and x < -a.
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Let W be the stationary point of
-1 w+ f(W,YO) (t = oo) .

This is given by

2

1=§£ _ _b-w/a
ow W2
L-73
a

to be

provided that b > a.

FIG. 8-7: SPHEROID
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w = x+ iv plane

L —X
-a a
FIG. 8-8: CUTS FOR f(w, y ).
From Eq. (8.40), for t = ®, we determine ¥ (2) so that
(8.63)

- ~ 0
Re{f(wo,yo)} + v, S f(XZ’yo)

Thus,
_ _ a
2
b.
2
a
or,
or,
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Therefore,
2

a -—
=5 C R (8.64)

~0
X
2 0

where RO is the radius of curvature at the tip. We find that

9 1

0 (?g) 2 2
f(’>‘<’2, yo) =-b+b|[]1- 5 =-b +1fb" -a" . (8.65)
a

Thus the asymptotic behavior of I for t = o is given be

I~vexp {—k sinh t b - a‘/bz - a2 ]} (8.66)

This means that the region of convergence of the plane wave expansion

holds for z > z* with

z% = -Db + l’bz —a2 , (b>a) . (8.67)

This plane goes through the focus of the spheroid.
Finally, we note that the results obtained earlier for the sphere follow
immediately if we put b = a + € and take € > 0 to be arbitrarily small.

zZ

— X

SN
fo2 -2

Z = z* plane

FIG. 8-9: REGION OF CONVERGENCE FOR THE PLANE WAVE
EXPANSION FOR THE SPHEROID.
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IX

REPRESENTATION OF THE FIELD INSIDE THE
SCATTERING BODY AND CAVITY REGIONS

9.1 Continuation of the Field Inside of the Body.

In the previous sections the scattered field was represented in terms of a
vector potential involving currents that were physical or otherwise; i.e. the fact
that the scattered field arose from induced sources was not prescribed, only
that it arose from some current distribution. Outside the source region the
scattered field was then expressed in terms of an integral operator acting on
the far-zone scattered field components. In this section the possibility of ob-
taining an expression for the total field inside the scattering body, in terms of
the far-zone scattered field is examined.

As a preliminary, the derivation of the total field in terms of a vector
potential relating to the actual induced currents (conduction and polarization) is
reviewed. It will be assumed that the scattering body is contained in a finite
volume Vs' The material of the body will be taken to be non-magnetic (i.e.

B = uo), and characterized by the relative permittivity €' which may be complex
allowing for conductivity. For present purposes the conductivity will be taken
to be finite (but can be extremely large) thus ruling out the mathematical con-
cept of a perfect conductor. Let the incident field be generated by a current
source J o outside the body. The source will first be taken a finite distance
from the body, then later allowed to go to infinity, to account for plane wave

incidence. Maxwell's equations become

vV-H=0 (9.1)

We V- -€eE=iv-J (9.2)
o— = - =0

YAE = iwu H (9.3)

VAH-=ive € E+ J (9.4)

- - (0] - -0
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The field quantities H and E will be represented in terms of a vector potential

A and a scalar potential § as follows
o H= YAA (9.5)

E=iwA+ VD . (9.6)

Equations (9.1) and (9.3) are automatically satisfied by the potential represent-

ation. Equations (9.2) and (9.5) become

wu
iwy . E'é—i-y. €'Y¢ = 20 y 510 (97)
k
0
VA-V(V-A) +K €A-ic Vg e ) =pu . (9.8)
- - - = 0 - 0 O 0 —0

Since in place of A one could have used A + V¢ where ¢ is arbitrary, and
still automatically satisfy (9.1) and (9.3), one can impose an additional con-
dition of the potentials in terms of a gauge transformation. The particular

choice will be taken as follows
wu060¢ = iv- A (9.9)
Equation (3.8) reduces to
2 2
v é—(l—e')g(y-é)%—ko eA=pu J . (9.10)

Taking the divergence of this equation, one obtains (9.7) automatically.
Thus, it is seen that with condition (9.9), the vector potential A must
satisfy (9.10). Outside the body €' =1, and this reduces to the free space

Helmholtz equation operating on the components of A.
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The above equation can be placed in a different form useful for deriving
an integral expression for A  Eliminating the term (1 - €') V(V- A) from

(9.10), with the help of relation (9.6) and (9.9), one obtains

2 2 , ,
VIA+ KA = p I -iwp € (1) E. (9.11)

It follows that A can be expressed in the form

A(x) = f l: +J (9.12)
where R = [x - x'| and
J = iwe (1 -€") E. (9.13)
< o 4
This can be represented in the form
[.,l,o eikR
_ 1 1
A(x) = A(x) + — ym J(x") R dx
\%
S
where 1_&1(5) is the vector potential of the incident field.
The magnetic field is thus given by
i 1 (elkR)
H(x) = H(x) + = JEIAY T/ & (9.14)
\%
s

The source J o giving rise to the incident field LII can now be taken to
infinity, in which case ﬂl will represent an incident plane wave. The current
J(x) = inO(l—e') E(x) is the current induced in the scattering body, being com-

posed of conduction and polarization currents. Both the vector H and A will
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be continuous everywhere, due to the assumption that y = Hy everywhere, and
that €' is finite. In the limiting case when the body is a perfect conductor, H is
then discontinuous. It can be shown that in the limiting case when Ime' > oo,
(i.e. a perfect conductor), the volume integral in (9.14) reduces to a surface

integral, and expression (9.14) reduces to

ikR
e

H(x) = Hi (x) + - (oA DA V! ds

4r
S
where S is the surface of the conductor and n is the unit outward normal.
Having considered the above preliminary work, we are now in a position
to discuss the possible representation of the field inside the body in terms of

the far scattered field. The notation és will be used to represent that part of

the vector potential which results from the induced currents, i.e.:

7 ikR

AS(x) = 2 Ix) %5

4q
v

S

dx! (9. 15)

The scattering body designated by the volume VS will be split up into the
following parts V+(§), V (¢) and Vé(f), where V+(§) is the intersection of VS
and the half-space z < ¢, V_(f) is the intersection of VS and the half-space
z> ¢, and V6(§) the intersection of VS and the slab ¢ - 6 <z <¢ + 6. The
decomposition is displayed in Fig. 9-1.

Associated with the above, the following vector potentials will be con-

sidered,
7 ikR
A(x) = — J(x")

dzg_' (9. 16)

V+ (z-6)
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Z

A

V_(z+6)
m z=€+6
i —i z=¢ -6
QW
\A () v, (z-6)

» X

FIG. 9-1: DECOMPOSITION OF THE SCATTERING BODY

S Ho eikR
A" (x) = J(x") dx' (9.17)
V_ (z-6)
s Ho eikR
Aglx) = Ix) =% dx! (9.18)
Va(z)
Using the relations
T
. 2T a7 -io0
o KR ik 2 ik (x-x) . '
R " o e— = sin e de d8 z >z
0 0

21 LI +ioo
ik 2 ik - x
=T 9 e~ “sinadadl z<z'
0 0
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S S
A +(x) and A _(x) become
27 lzr- -ioo
. u
S — .l_k_ 1..k_'_ 0 1
é+(§) - 2T € T i(é)
010 V+(z-6)
(9.19)
e_ﬂi' = dx' sin o da df
2T er-—ioo u
S — lli ﬂf.' X 0 1
A (x) o e 2 3%
0 T V_(z+6)
(9. 20)
e_11£ = dx' sin o da df

provides that J(x') is absolutely integrable, allowing the order of integration

to be interchanged.

If J is bouanded, it follows that each component of ésé(zi_) is bounded

2T pa 26 )

< —% p—"—’—@—H dpd =u M ¢a2+ ¢ de

0

IA (x)

2 2 '
where p = (x-x") + (y-y')z, and a is the maximum value of p such that the

cylinder p = a encloses Vé. It is easily seen then, that when 6 - 0

ALx) >0, (9.21)

The above condition that J be bounded may be weakened, by allowing certain

types of integrable singularities. However, these cases will not be considered

at the present time.
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Letting 6 = 0, the vector potential A can be expressed as follows

A=A+ AR +FARE (9.22)
where
Zﬂ E—ioo
NS e X \F (4 B) sin @ de dB (9.23)
e 27 -0
0 0
and
27 ZT——ioo
s ik ik-x - )
(x) = -=— e= = A (o,pB) sinadedB (9.24)
== 27 -0
0 0

with the vector k(a,B) = k(sin @ cos 3, sin @ sin 8, cos @). The quantities

+ - :
éo(a,B) and éo(oz,B) are the far field components

N u

A (@f) = 2 I(x) e B E gy (9. 25)
V+(z—0)

- Mo -ik * x!

Al B) = J(x) e = = dx' (9. 26)
V (z+0)

arising from an appropriate decomposition of the quantity
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u oo
) 1 _ﬂ_{.' X 1
Al p) = = J(x" e dx’ (9.27)
A%
s
defined previously, i.e.
+ -—
A(@B) = & (0B) + A (aB). (9.29)

It can be shown that the same results hold for the magnetic field, in

which case
H =g1+;_1i+lis_ (9. 29)
where
2 E—ioo
s -k 2 ik x +
H (x) = e= = kAA (o,B8) sinadad3  (9.30)
=+ 27ruo - o
0 0
M #E+io
S +k 2 ik - x -
H (x) = e~ “kAA(e,B) sinadads . (9.31)
== 2 )
© 4o 4§ 0

From the above it is seen that it is possible to obtain the magnetic field
inside the body (composed of non-magnetic material with finite conductivity),
from a knowledge of the far field data. This follows from the results in Chap-
ter VI, which indicate how k(o, ) A A O(a,B) may be determined for complex
values of @ where @ = 6 + it, from the knowledge of the far field quantities
A(;(G,yb) and A(;b(e,jb), measured in the range 0<6 < 7/2, 0< § <27. How-
the appropriate split up of

ever, if the body is inside the slab z <z <z

2 r
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k A A must be sought. The key problem remains of determining a method of
uniquely performing this decomposition from knowledge of the far field data
alone. Additional knowledge will most likely be required, such as, knowledge
of the scattered field for all frequencies, or all angles of incidence.

9.2 Continuation into Cavity Regions

A practical technique can be formulated which can be used to find the
scattered field in cavity portions of the body or portions of the minimum con-
vex shape enclosing the equivalent sources. To demonstrate the process of
continuation, the vector potential will be used, although, in practice the corre-
sponding process would be employed with the field quantities. From (9. 15),

the vector potential of the scattered field is given by

ikR

1)
(x) = 7~ I(x" dx' (9.32)

where J(x') are the physical currents, conduction and polarization. For the
special case of a perfectly -conducting body, the volume integral is replaced by
a surface integral containing the surface currents j = n A H.

Let x o be a point outside the body. Then expression (9.32) can be placed

in the form

iku 09)
-2 37 ' Dy e
A(x) = i ]n(kl‘) £(~>g)(21r1+1)Pn(cos'y)hn (kr"dx' (9.33)
n=0
\
s
where
1 - - !
r= Jx 51 , (9.34)
r = 15‘50 , (9. 35)
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provided that r < r' . , where r' . is the minimum distance from x to the
min min =0

surface of the body. The angle v is defined by the relation

- - (x' - =rr'co
(x-x)- (x'-x) s v

using a local spherical coordinate system (r,6,¢) centered at x, and the
0
addition theorem

P (cosy) = P (cos 6) P (cos 0" +
n n n

+ 2 2 (n-m)! P (os9)P (cosG')cosm(¢ - (9. 36)

(n+m)

one obtains the following expression
s m im
= i .
A (x) 2_1 ./: i ]n(kr) Pn (cos 0) e a (9.37)

where the coefficients a am 2T€ expressed in terms of a volume integral over
the currents, which will not be given here, since their actual form is not
important.

Representation (9, 37) will be convergent and will represent the scattered
field in the domain r < r'min' However this restriction on the domain was
imposed by the derivation, namely by the'radius of convergence of the chosen
expansion of eikR/R in terms of the spherical Bessel functions. Thus it is
possible that representation (9.37) will be convergent over a larger domain
i.e. 0<r <c, where chmin. Similar results were developed for the ex-
pansions involving the far field quantities, given in Chapters IV and VIII.
Representation (9.37) provides a practical means of continuing into cavity
portions of the minimum convex shape enclosing the body or equivalent sources

To illustrate this consider a body containing a cavity, as shown in Fig. 9-2.
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Assume that the scattered field has been obtained from far field data for the
region z > Z If the convex portion of the body is smooth and analytic, the
plane z = Zo cuts the body (see Chapter VIII), Take a point 50 to be in the
domain z > Zo' From the above results, the vector potential can be repre-
sented in the form given by (9.37), and will hold for r < ¢, where c is un-
determined but is greater or equal to T oin the minimum distance from X, to
the surface of the body. The unknown coefficients 2 in expression (9, 37)
can be found since the value of A(x) is known on any sphere lying in the
domain z > Z s and centered at X Thus if r is the radius of such a

sphere and (rl, 91, ¢1) are the coordinates of a point on this sphere, the co-

efficeints, a . can be calculated from the relation

T 2
. _ (2n +1)(n-m)! m
]n(krl) &m 47 (n+m)! Pn (cos 91)
0 0
.3
ile (9.38)
ce Ay, 0, ¢1) sin 6, d6, d¢1 .

From this it is seen that the scattered field can be extended into the domain

given by the intersection D of the sphere | x - x

< ¢ and the half-space

z < Z - Such an analytic continuation can be extended farther into the cavity
region, by using representation (9,37) centered on a new point §0 located in
the extended region D, and .repeating this process.

In the above, the analysis has been carried out with the vector potential,

A similar analysis will hold for the field quantities themselves.

79




THE UNIVERSITY OF MICHIGAN
7644-1-F

Surface of
Body

Plane z = z
o

Domain D

FIG, 9-2: ANALYTIC CONTINUATION IN CAVITY REGIONS,
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X
DETERMINATION OF PERFECTLY CONDUCTING SHAPES

Let E be the total electric field and assume that

A
= ”~ + .
E=¢ 4 i£,b . (10.1)

Then
EAE*= -28 & AND. (10.2)

On a perfectly conducting surface we have

IAE = 0, (10.3)
From this it follows necessarily that

EAE* = 0; (10.4)

because if this were not true we see from (10,2) that E would be a vector
having a complex direction, and this in turn would imply, since n is a real
vector, that A A E # 0 on the surface.

By means of the following example we shall see the significance of the
observation (10,4)., Consider a plane wave incident upon a perfectly conducting

-iwt
plane z = 0, Assume the time dependence e ! and the polarization so that

i ik (y sin @ - z cos @)

E = (§ cos @ + % sina)e (10.5)
H =%
Thus, for the reflected field we have
I , N
Er = (§ cos @ + % sin @) e (ysina +2 cos a) (10.6)
H =%,
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>y

X \k = k(-z cos a+y sina)

FIG, 10-1: GEOMETRY FOR PLANE WAVE INCIDENCE
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We find the total field to be

ik y sin o

Ey = 2i cos a e sin (kz cos @),

ik y sin o

EZ =2sginae cos (kz cos a). (10.7)

Therefore,

.k . ~
=gty S l:z sina cos(kz cos @) -i§ cos a sin(kz cos oz)] , (10.8)

so that
‘ 9 .

EAE*=2i% e iy SIe i (2kz cos @), (10.9)
We now let

EAE*=01i,e., sin (2kz cosa) = 0, (10, 10)
and find that

nw
- . = + + L]
2% Sreosa 0 D0 L %2 (10.11)

k#0, af 7/2) .

We now observe that if we had been given the reflected field (10,6) and
had known that the scattering surface was a perfect conductor, then by in-
voking the necessary surface condition E A E* = 0 we would have arrived to
the conclusion in (10,11). However, since the actual scatterer must be in-
dependent of k, we pick out the surface z = 0 out of the family equation (10, 11),
thereby determining the scatterer uniquely.

However, when the incident polarization is parallel to the generators of
two dimensional bodies, then E*A E = 0 everywhere, as is seen in the above
example for the case Ei =/)\<. In this two dimensional case, the condition

E* AE=0 fails to provide useful information,
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The condition EA E* = 0 will play an important role in any numerical
attack on the determination of the surface of a finite three dimensional con-
ducting body from far field measurements,

Next we remark on the uniqueness question for more general case. Con-
sider the scattered field due to a smooth, perfectly conducting, convex surface
S and assume that an analytic expression for the field is known everywhere
exterior to the equivalent source region which resides inside S. In seeking the
surface S by looking for the surface on which the electric field obeys the
required boundary condition, it is possible that more than one eligible sur-
face may be found for a particular wave number k.

Let us assume, therefore, that two perfectly conducting surfaces S and
S1 have been found. These surfaces both surround the equivalent source re-

gion and are taken to be smooth, In the volume V between the two surfaces,

the total electric field satisfies the source-free wave equation
2
(v2+k JE=0 (10.12)
together with the equation

divE=0 . (10.13)
However, solutions of these equations in the simply connected cavity V such
that

n/AE =0 (10. 14)

on the bounding surfaces S,S. exist only for a discrete set of eigenfrequencies.

Thus, if k varies continuouslly, the shape of S1 must change in order to sat-
isfy the boundary condition since by definition the scattering surface S is in-
dependent of the wavelength of the incident field. The requirement that S re-
main unchanged as the frequency is varied continuously therefore allows us to

determine the scattering surface uniquely.
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XI

USE OF MONOSTATIC-BISTATIC THEOREM TO
DETERMINE MATERIAL CHARACTERISTICS

For a class of perfectly-conducting bodies, the monostatic-bistatic cross-
section theorem stated as follows, is well known: In the limit of vanishing
wavelength, the bistatic cross-section for transmitter direction k and receiver
direction n is equal to the monostatic cross-section for the transmitter-

receiver direction k + n with k # n o for bodies which are sufficiently smooth,

FIG, 11-1: GEOMETRY FOR MONOSTATIC-BISTATIC THEOREM

This theorem may be amended for non-perfectly conducting bodies, thus
yielding information on the material characteristics of the body.

Let 26 be the angle formed by the vectors ’ﬁo and k (i.e., the bistatic
angle). Let the surface of the body be sufficiently smooth, and let its elec-
trical properties be characterized by a voltage reflection coefficient R, which
is a function of the angle of incidence (6) and polarization; i.e., R = R“ (6) for
polarization in plane of incidence and R = R _L(G) for polarization perpendicular
to plane of incidence. Denote o _L(g, ’fl_o) as the bistatic cross-section where
both transmitting and receiving antennas are linearly polarized perpendicular to
the plane formed by the vectors (l{_,ﬁo), Let O'H (k, ﬁo) denote the bistatic
o).

cross-section where both antennas are polarized parallel to the plane (k o

)
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The bistatic cross-section G—L(lg,fl_o) is a product of two factors; a geo-
metrical factor depending upon the radii of curvature of the surface of the
body, and a material factor depending upon the reflection coefficient. How-
ever, as implied by the monostatic-bistatic theorem given above, the geo-
metrical factor for G_L(lg,’_ﬁ_o) and U_L(15+f1_0, 1£+ﬁ0) are the same. Thus, it

follows that

2
A
L 2 - RO = r (11.1)
G_L(15+’_r§0, Li+§o) R_l_(O) L
Similarly, it follows that
2
o & 1) B @

= | — = r (11.2)
+10 + 0 .
0H (li EO’ k‘ E‘O) R” (0) H
The particular case where the material characteristics of the surface can
be represented by an impedance boundary condition will be considered to de-
termine the number of measurements needed to prescribe the impedance para-

meter ". The effect of the surface upon incident energy can be represented

in the form

E-(E- nn = n AH (11.3)

where E and H are the total fields generated on the surface. Such a condition
represents either a poor conductor, or perfect conductors coated with a
material of high index of refraction as is encountered in the use of magnetic

type absorbers. For a single layer of such material n is given by
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= -ME’ tan (NK6) (11.4)

where 6 is the thickness of the coating, N is the index of refraction, and u,
€ are the relative parameters of the coating.
The voltage reflection coefficients for such a surface can be represented

in terms of n and the angle of incidence 6, by the following relations

necos O -1

R_L " ncos 6 + 1 (11.5)
R n/ cos 6 -1 (11.6)
| n/ cos 6 + 1 ’
Let the real and imaginary parts of n be given by u and v, that is
n=u-+ iv . .
(11.7)
It can be shown that
(u + ) 082 6+1 - 2u cos 61
[ 1 (6)’ 2 == (11.8)
[(u + v ) cos 9+1+ 2u cos 6]
2 2 2
2 + + -
I R (G)I _ [(u v )+ cos 6 -2u cos 9] . (11.9)

2 2
[:(u +v2) + cos 6+ 2u cosa

For further simplification, the parameters u and v will be replaced by x and

y where

X = 2u (11.10)

y=u +v . (11.11)
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It then follows, provided that ]EiL(O) # 0 and R” (0) # 0,

[y cos26+ 1 - x cos 9] [Y"' 1+X] (11.12)

—y

[ycos26+l+xcos(9] [_y+1 - X

j—_
_ I-y+00529—xcose] [Y+1+X_
” E;+cos29+xcos0] [y+1,.)§

(11.13)

Performing algebraic manipulation, one can rewrite the above equations in the

following form

2
cos O x + p, cos 6(1 - cos9) xy-cos26y2+
9 (11.14)
+p1(cos6—1)x-(1+cos )y -1=0

2 2
cos O x +p2(cos6—1) xy -y +

2 2
+p2 cos H (1L - cosB) x -(1 +cos B)y-cos 8 =0 (11.15)

[1+ r_L] /L : fl_] (11.16)
b, - [HrH] / [ -rH:]. (11.17)

The quantities Py and p, are both real and are greater or equal to unity. The

where

1l

P

problem reduces to solving the two equations for the unknown quantities x and
y, in terms of the parameters Py and D, which are obtained from the mea-

sured quantities 1:Land rl I . The angle 6 is of course known, being one-half
the bistatic angle. However, the required solution must lie in the first quad-
rant of the xy plane. The reason for this is twofold. First from the defin-

2
ition u2 + v =y, and the fact that u and v are real quantities, the required
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value of y must be greater or equal to zero. Secondly, it can be shown from
energy considerations (the surface can only absorb energy), that u >o, im-
plying that x > o. Both (11.14) and (11.15) represent conic section, in the xy
plane. The solutions are given by the intersections of these two conic sec-
tions. However, it is possible that there are no intersections, and if there
are, they may lie outside the first quandrant. Thus, the nature of the conic
sections will have to be further examined to indicate whether the appropriate
solutions exist.

Consider a general conic section in the form
2 2
ax + 2hxy + by + 2gx + 2fy + ¢ = 0. (11.18)

Its center is at the point (k,£) where

k=£h—'—b§ , £=g-h—-:—%f . (11.19)
ab -h ab - h

By transforming the coordinate system (x,y) to a coordinate system (X,Y) cen-
tered at (k,£) with the axis centered along the principal axis of the conic sec-

tion, using the following relations

X —k=Xcos B -Ysinf (11.20)

y -4 =Xsin B+ Y cos B (11.21)
where

tan 26 = ';‘z?— (11.22)

the equation of the conic section in the new coordiante system becomes

X2A+Y2B+A/[ab -hz:' =0 (11.23)

where

2A = (a+ b) +(a - b) cos 28 + 2h sin2fB (11.24)
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2B = (a+Db) -(a -h) cos 28 - 2h sin 2B (11.25)
2 2

D = abc + 2fgh - af - bg - ch2 . (11.26)

In the cases under consideration (a - b) is positive but h may be positive or

negative. The angle 2[3, will be taken to be less than 7/2, in which case

cos 28 = (a-Dh) /‘J4h2 + (a -b)T (11.27)

sin 23 = 2h/ 1/4h2 + (a - h)2 . (11.28)

Thus 2A and 2B can be given by

7

2A=a+b+1/4h2+(a—b)2 (11.29)

2 27
2B=a+b -44h + (a - D) (11.30)
in which case
AB = ab - h2. (11.31)

Define the conic sections given (11.14) and (11.15) by ¢ and ¢y respectively.
The various parameters associated with these conic sections are given in

Table XI -1. The parameter H is defined by the relation
2 2
H=(1+cos 0 [/ (L-cosb) . (11.32)

It is seen that the centers of the conic section ¢y and cy lie in the right-half
and left-half planes respectively. Also the equations of both conic sections

can be written in the form
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Further information can be found by examining the y-intercepts, the x-inter-

cepts, and the asymptotes. Conic section c

1

and 02

Yy

The x-intercepts of c

%9

1

%

1
y =

1

-1 and yzl = - l/cosze

has y-intercepts

2
—1andy22 = -cos 6.

1

are the x-intercepts, given by the relations

has y-intercepts

(11.33)

(11.34)

and the slope of the asymptotes are related. If X and

= pl(l - cos h) + 1/p12 (1—cos6)2 + 4 cosH J/(2cos6) (11.35)

1 -1
x2 = - [Xl cos O:I

then the equations for the asymptotes have the form

1 1
y = X X y = X, X (11. 36)
There is a similar relationship between of the asymptotes of c2 and the x-
intercepts given by
2 2 2
X, = 1/2 |:—p2(1 - co0s0) +\/p2(l - cosB) + 4 cosb (11.37)
X12 = - cos 6/x12 (11.38)
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In addition it can be shown that c | passes through the points

1 1
(t [1 * coSs 9] ’ cos 0 )

and ¢, through the points

(+ ‘:1+ cos 6} , cos 0)

The conic sections are shown in Fig. 11-2 for a typical case. As indicated there is
an intersection in the first quadrant. Except for the case where p1 = o and p2= 00)
(i.e. n == 1), it can be shown that there will always be one intersection in the
first quadrant. This follows from the fact that 1 < x1 <o, and 0 < x2 <1. Since

1 1

xl1 and x12 are the slopes of the asymptotes of the branches of the conic section in

the first quadrant, these branches intercept, and since xi and xi are also the x-
intercepts on the positive x-axis, the intersection is in the first quadrant. Thus
a solution can be found for which x> o and y > o. However, from relation (11.11)
two values of v will be found. This means that the impedance will be determined
apart from the sign of the imaginary part i.e; n=u+ iv. The determination of the
appropriate sign will require measurement of the phases of the scattered field.

As a special case, it should be pointed out, that when ll.: rH = 1, the
solution is not unique, with u = 0 and v undetermined. The most likely possibld
physical case that would occur in this instance is where v = 0 also, implying
the surface is a perfect conductor.

Summing up, it is shown that the two polarization measurements of cross
section at one non-zero bistatic angle (backscattering) determines the reactive
surface impedance of n = u + iv apart from the sign in the imaginary part,
where such surfaces would correspond to poor conductors, or absorber coated
conductors. However, the case where the ratio of the bistatic monostatic
cross-section is unity for both polarizations, produced incomplete results. In

this case, it could only be concluded that u = 0.
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