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INTRODUCTION

There have been many recent efforts devoted to the study of '"free'"
waves in the atmosphere and the pressure pulse produced by large explosions
such as the Krakatoa volcanic eruption of 1883, the great Siberian meteorite
of 20 June 1908, and, recently, nuclear explosions. As an example of the lat-
ter, the Japanese have recorded such atmospheric waves from nuclear ex-
plosions (R. Yamamoto, Ref, 1),

The pressure pulse produced by such explosions can be decomposed
into two portions, a low frequency "'gravity' wave train, plus high frequency
"acoustic' wave trains., Theoretical analysis has been mainly devoted to
the "gravity" wave portion of the pressure pulse produced by large explosions
on the ground for simple models of the atmosphere, (Pekeris, Refs. 2 and 3,
Scorer, Ref. 4.)

Recently Dikii (Ref. 5) has discussed the gravity and acoustical type
waves. Penney et al, (Ref. 6) have calculated both the gravity wave and
acoustic wave portions of the pressure pulse produced by explosions on the
ground,

Here the interest will be mainly concerned with the gravity wave,
produced by explosions not only on the ground, but at various heights in
the atmosphere. At present the effect of winds is ignored, but will be con-
sidered later, They do have an influence upon the pressure pulse, although

the high-frequency acoustical portion is affected the most.



THE UNIVERSITY OF MICHIGAN
2686 -1 -T

It is assumed that the explosion is symmetric about an axis normal
to the earth's surface, and that beyond a specific distance away from the cen-
ter of the explosion the perturbed values of pressure ete., will be small com-
pared to the unperturbed value. Hence beyond this distance (characterized by
a surfacez ) the hydrodynamical equations may be linearized. The explosion
can then be represented in terms of the excess pressu‘re and normal velocity
on this surfacez . Unfortunately analytical solutions are not available for large
explosions. An analytic solution has been found for an intense spherically sym-
metric explosion (J. L. Taylor, Ref. T) but it holds down to only over-pressure
of about 20 atmospheres. Hence for good source models, values of the excess
pressure and normal velocity must be obtained from observational data,

Hence the hydrodynamical equations are linearized with the viscosity
terms neglected (actually these become important at very high altitudes, roughly
around 200 km). The time dependence of the equations is removed by taking a
Laplace transform of them. A second order differential equation involving the
excess pressure transform is obtained. The boundary conditions that are im-
posed, are, that the vertical velocity must vanish at the earth's surface, and
the total kinetic energy in a solid angle subtended at the earth's surface be finite.
This latter condition (which is a restriction upon the behavior of the excess pres-
sure at high altitudes) is the same condition Scorer and Penney used.

A ring source Green's function is then defined, It is shown that the
excess pressure may be represented in terms of an integral over the surface
surrounding the source, the integral containing the Green's function together

with the values of the excess pressure and normal velocity on E .

D

_4
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An eigenfunction expansion is then obtained for the Green's function
involving the various modes. Only the contribution die to the modes corres-
ponding to the "free' waves (those waves which propagate around the earth
without exponential attenuation) are then retained,

It is shown that for certain temperature models of the atmosphere a
good approximation can be made to the "gravity' wave mode. This approxi-
mation gives good results for Scorer's model of the atmosphere,

The pressure pulse for the directly received wave (as contrasted to
the antipodal wave) is computed for various ranges, for two models of the
atmosphere, In doing so, a simple source model is taken, namely a point
source in space with a delta function dependence in time. The intensity of
the explosion is given in terms of volume of gas introduced. In the calcu-
lation of the pressure pulse at various ranges from the source, emphasis
is placed upon the main body of the gravity wave portion, The tail of the
pulse up to the so-called cut-off point is not considered. In calculating
the head of the pulse a new asymptotic technique is introduced which gives

very good results, for intermediate and long ranges.
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PRESSURE PULSE RECEIVED DUE TO AN EXPLOSION
IN THE ATMOSPHERE AT AN ARBITRARY ALTITUDE
PART 1

Initial Nomenclature:

(1) Spherical polar coordinates (r, 6, §)
(2) Radius of earth r = a

(3) T

absolute temperature
R = gas constant
v = ratio of specific heats
p = gas pressure

p = gas density

¢t = YRT, = Ypo/po
u = velocity = (u,, Uy, u¢)

(4) Unperturbed state denoted by subscripts zero, i.e. T etc,

o’ Po>
(5) Perturbed state is represented in terms of the unperturbed state

plus a perturbation term (which has no subscript) i.e. Po t D,

Ty + T, ...

1. Characterization of the Source of the Pressure Pulse

A large explosion in the atmosphere is usually detected at large dis-
tances by changes in pressure. Hence the excess pressure p(r, t) will be
solved for. At a sufficient distance from the source of the explosion it is
known that the excess variables, pressure, density and temperature are small

in comparison with the corresponding unperturbed variables for the atmos-

phere,
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Let the source of the explosion be at the point (Ro , 0, 0) where
Ry > a (the radius of the earth)., It will be assumed that the explosive ef-
fects are independent of the azimuth angle ). The source can be enclosed
by a surface of revolution Z with axis of revolution 6 = o (i.e. the z axis),
such that outside this surface, the excess pressure, density, etc., are small
in comparison with their respective unperturbed values. The surface Z
may be a small sphere with centre (RO , 0, 0). However, its actual form
will not be specified.

Let ﬁ represent the region outside Z and outside the earth (r = a).
Hence for the region ﬁ, the assumption that the excess variables are small
in comparison with their respective unperturbed values, is valid. +

The source of the pressure pulse will be characterized by boundary
conditions on the surface Z To specify the problem uniquely p(r, t)
and n, u for r on Z must be specified. n represents the unit outward
normal to Z

Hence set the initial conditions.

u(r,t) = O
p(r,t) = OL t < 0 andref
p(r,t) = 0

+ - . :
In addition viscosity and the effects of winds will be neglected for the present,
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p(r,t) = O t < 0
zf(;‘_,t)L t > 0
rey
n.u = 0 t < 0
= g(r, t) t > 0
—

where f (r, t) and g (r, t) are given functions such that f (r, t) and g (r, t)

both vanish when t-o,

2. The Equations of Motion:

To begin with note that the explosive effects are independent of @, hence
all the variables will be independent of .

From Ramsey (Ref, © ), we have the equations of motion

M (uPu+tk = -1 N (p+p)+(-g, 0,0 (O

t (p+p,)

where
1
= —[/-|u2 2 ~ oyl
K N [u g T U Sﬂ’ Elrue u ¢cot9], Elru¢+u9u¢cotﬂ>

the equation of continuity

L (ptpg) +(u. W) (prp )+ (oo )T u = 0, (2)
ot

the adiabatic energy equation

d 9
PYRCRE U RA VAR Y cz[g‘(erpOH(gaV)(erpo)], (3)
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and the equation of state

(ptp ) = (p+tp ) R(T+T )

If use is made of the hydrostatic equations for the unperturbed atmosphere and
second order pressure and density terms neglected, equation (1) becomes

ou ‘ ~ 1 gp
— +(u. V)u+K=¥-— Vp+(-—,0,0). (4)
ot o - p0 pO

Also equations (2) and (3) become

op .

RS A 2
ap 0p

ot T irPo T 02[5? “rPlJ ®)

where the prime indicates differentiation with respect to r. Now, since all the

variables u, p, p vanish for t<0 and r e JJ, take the Laplace transform of

the above equations, and set

[0 0]
U(r,s) = 5 e Stu(r,t)dt
0

o0
P(r,s) = fe_Stp(r,t)dt (7)
A ‘
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Hence
1 g
sg+___V_P+(—-j—),0,0) = 0
po pO
! —
sP+UrpO+po'z,g = 0

2100, = of 30+ Ve,

(9)

(10)

[Since u(r, t)—0 or t—oo for all LE L ‘y_ (r, t), is bounded above, Hence

it can be shown that for sufficiently large s, the transforms of the velocity squared

terms are negligible in comparison with s U (provided U # 0 ).]

If the hydrostatic equation

is used, equations (10) and (9) become

S [P -c%do] = U, [c%p;) + gpo]

S
V. U+— P-gU, = 0

Po

Using equation (11), eliminate ,ja from equation (8) to give

S_[_I_pol/z = —;,_(po‘l/ZP)—"l\rph'1 p, /2 A

where

(11)

(12)

(13)

(14)

(15)
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and the operator L has components

L 1 9 1 9 1 9
L ={-—, - —, — 16
h 8r r 96 rsin6 93¢ 16)
The velocity vector U may now be eliminated from (12) and (13) giving
_ q(r)
V. Lp, 2Py +—5(p U2p) = o (17)
T )
with
stre r > . h' 2
q(r) = |- + — (FA°+A -A—+—A (18)
cg h h r
3. Boundary Conditions:
For r on the surface Z , the following is obtained:
.
09)
P(r,s) = [ e®tf(x,)dt = E(r,s)
()
()
@
n. U(r,s) = S e Stg(r,t)dt = F (r,s)
()
J

It is also required that u. n = O on the earth's surface (i.e. atr = a).

This condition becomes

0 forr = a.

c
I

Hence from equation (8) and (10) one obtains

9P, Ep| = o r = a (20)
or cg
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or

)
— (p ‘1/2P)+A(p “1/2py = 0 r=a (21)
or 0 °

where A is given by (15).

A boundary condition is required for r—o . Here the condition that will
be placed, is that the total kinetic energy in a solid angle whose vertex is the
center of the earth, be finite,

Hence

0.0) 0
erpo(r)ly_lz dr < oo and § po‘llplz dr < o
a a

4, The Unperturbed Variables;

Before proceeding further, several relations are needed involving the

unperturbed variables p,, P,, and T ,. From the hydrostatic equation
) o) 0

and equation of state

pO = R pO’TO

we obtain on integration the following

1 g

p,(r) = p_ (a)exp|-— (—)dr (22)
0 0 - 5 .
_ py(a) 1 F g

Po(r) RTO(r)eXp R g (To)dr (23)

_10_
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The following relation can be obtained from (23)

' 1

- _To

0, T

ag
aQ

|

(24)

o
oy

0

95, The Green's Function:

Define a ring source Green's Function G (r, r ) to be the solution of

q(r) (r-r 6 -6
Z.LG+G———Z—= 3 o) & o)

r 27rs'1116rZ

(25)

which is integrable squared over (a, o) and satisfies the boundary condition

0G
____+AG| = 0 forr = a (26)
or

Later on an eigenfunction expansion will be obtained for G (r, r ).
However in the remainder of this section it will be shown how the Laplace
transform of p (r, t), namely P (r, s) satisfying the boundary conditions
in Section 3, may be derived from G (r, go). Recall the equation for the

excess pressure, namely
V. Lo, V2e)+ (oM o) 5= = o @7

Multiply equations (27) and (25) by G and po_l/‘Z P respectively, then

subtract the two. If in the resulting equation we interchange r and r  j we have

G(r,,r) VYo Lo [po-l/z (r,) P(r,, s):l - [po-l/z (ro) P(r,, SJ EO. L, [G(r

1 (r - 6-6,)
7 o M2 (rg) Prg. 8) Slr1xo) B0 -0, (26)
ry 27 sin 0

I

-11_
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This may be rewritten in the form

-1/2 i}
Vo 9GL,(p, / P) - (p, l/ZP)LOG
L - Jlr-ry) §(6-0,)
= - 1/2 0 0
?[po P] 2msin 6 (29)

Integrate over the domain ﬁ with variables of integration r o+ We obtain using

the divergence theorem,

_ B VN Y _ -1/2

Josar o, R - (o P IL Grds, = -p H2(x) P(z.s) (30)
S

where n is the unit normal to S directed inwards in . The surface S com-
prises of the surfaces Z, r = a, and r = o, Since both G and P are
squared integrable on (a, o), the surface integral at infinity vanishes.

The integrand for the surface r = a becomes

-1/2
1 0 P)
G (Po _

3G
-1/2 94
. (p, /2 p) (31)

or

=

which vanishes since G and (po_l/2 P) satisfy the same boundary condition
atr = a,

Hence (30) becomes

P(r,s) = o /% (x) fjg.{e_gowo‘l/zm -, PPy, Gpds,  (32)
>

To simplify the integral in (28), note from (13) that

L(po2P) = -sup /2 -1 pp 1/2an (33)

-12-
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P(r,s) = —spol/z(r)g G(r, go)pol/z(ro)g. Q(_I;o, s)dS0

>
_pol/Z(r)-gpo_l/Z (ro)P(EO’S) (hé-) Gn ,i\
Z. 0]

n.i, +n.L,G ds, (34)

Thus it is seen that if n . U, and P are known on the surface Z the

transform of the excess pressure P (r, s) can be found,

6. Eigenfunction Expansion for the Green's Function;

Let L, and L g represent the differential operators

3 [r% oy
LY = —(— — )+ Ya(r) (aér& ) (35)
r or\ h 8r> i
1 0 oy
L = — (sin § —) (0€0&T) (36)
of sin6 96 96
Hence the Green's function is given by
Str-r ) §(o-6,)
(Lp+Lg) G(r,r,) = > (37)
r 2 - 0 27 sin 6
First the operator L, must be investigated. This can be written in
the normal form for the Sturm-Liouville operators
2
9 oy r
= — |+ with p(r) = — (38)
LY — |p(r) o Ya(r) p(r) = —

The parameter s may be chosen sufficiently large such that h(r) is

positive over the range (a, o), hence

p(r)>0 for (a, o).
~13-
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We will consider the case where the parameter s is real and positive, Thus,
p(r) andq(r) are real for (a, o). The following restriction will also be

placed: any model of the atmosphere that is used must have p(r) continuous.
The asymptotic values of p(r) and q(r) for large r have to be investigated.

For large r, ¢% = Y RT, has the asymptotic value

czrucz(oo)+0(—117) (39)

1

p 1
where ¢ () = XRT0 (o). Equation (24) obtains .5_9.,\10 (—2—) for large r.
r
0
Thus it is seen that

1
A~ 0 (—)
r2

and (40)

1

h~n~1 + 0 (—
(—)

J

which together with equations (22) and (38) gives the asymptotic values for

large r
2
p(r)nsre
(41)
r2s? (
A —
q(r) o2 (@)
J

The equation

LY -a2¥ = o
has two solutions w 1 (r, )) and w5 (r, x) whose asymptotic values are

1
W, (r, ))~v — ¢ Tk(00)
r

-14-
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w, (r, A o Tk(®@)
r
g2
where k () is the positive root of k2 () = —“2—(““)_ . The second solution
c4(o

w, (r, 1) is square integrable on (a, o).

Let W(r, A;) represent the set of solutions of

Lrl]U -hiqj = 0 (42)
with the property that

00)

[ Parco (43)

a
and

d

_d_“*i cav| = o for r = a. (44)

r

From Friedrichs (Refs. 9,10 ) it may be shown using (41) that the spectrum of
the operator L is totally discrete, and if - represents the manifold of all
functions SU(X) such that

[

a

‘f/lz dr < 0.

then for YJEL(X'L and the SU such that the functions L r WE%}L, the following

expansion holds
YrZa; Pir,ap (45)

Lr(//mZ}Liailf(r,)ti) (46)

Therefore, the Green's functions G (r, 30) may be expanded in such a form,
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1
In order to simplify the analysis set X = _(HZ +-Z) and let @ (r, uy)
represent the solutions of
2 1
L+ (uy +019 = 0 (47)
so that
0
f ¢‘2 dr<om
a
and
df (r, py)
——— +AQ(r, )| = O at r = a, (48)
dr t
For the present let @ (r, u) be the solution of
5 1
L.§+ (u +Z)¢ = 0 (49)

which belongs to(\#. Multiply equations (47) and (49) by ¢ (r, u) and
¢ (r, u i) respectively., Then subtract the resulting two equations and

integrate from a to . Using (48) one obtains

+al fP(a,pu. dg (r, pu)
2 ¢Za i) B(r,u FAG (e, ) (50)
(/.,L —“1) (h)r___.a dr r=a

Q0
f P(r,u)f(r,u;)dr =
a

Let u = 3 where i # j, then it can be seen immediately using (48) that

00}
[ P dGiupdar = 0 i f (51)
a
Let u approach My and take the limit, obtaining -
% a’P(a,p) |8 of (a, u)
f ¢(I’,u.l)2 dr = p . i A¢(a,u)+—g————g—- > (52)
a Z‘Mi(h)r:a a“ da “:u-l

_16-
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Expand the Green's function G (r, r ) in terms of B(r, u i) by

G(r,r,) = Zaiﬂﬁ(r,ui) (53)
i

Substitute expansion (53) into equation (37). Using the property given

by (46), one obtains

(r-r_) §(6-6
Z¢(r’“i) - (Ii-lz +71}-) + LO a; = S 0 g o) (54)
: 27 sin 8

Multiply both sides of (54) by § (r, /"j) and integrate from a to o, thus

giving
X S(6-6,) B (ro,u;)
LG—(u‘.Z+——) a; = 0oo J (5)
} o4 Zﬂsinejgb(r,pj)zdr
a
¢(ro:1~‘j)
Set a; = Xj(G) (56)

[39)

§ Plr,py?dr
a

hence equation (55) becomes

19 9X; | S(6-06,)

. J 2
— (sin 9 . _ i N }( —_ e e 57
( o0 ) (‘uJ ) J 2T sin 6 ( )

Solutions of the homogeneous equation corresponding to (57) are the
Legendre functions
P’1/2-+-l[,l, (COS 9) and P—l/2+lu3 (_COS 9) (58)

J

the first of which is finite at 6 = 0, and the second finite at § = 7.

-17-
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By the usual techniques it can be shown that the solution of (57) which

is finite over the range (0 &£ 0 < 7) is given by>'<

Pot/2 + gy (08 0) Poyja 4y, (€05 05) ggpgo,
X, = -—1 ¢ (59)
J 4 cosh 7y,

LP-l/z i (cos 65) P.y/p 4 i (-cos ) oy <ogr

The Green's function expansion is now given by

J

0 0]
G(r, EO) :Z[¢(ro’ﬂj)¢(r:ﬂj)xj (Q)J f¢(r:ﬂj)2 dr (60)
a

However the intex_'est for the particular problem at hand is in evaluating
the excess pressure p (r, t) on the earth's surface i.e., at r = a, at a long
distance from the pressure pulse source., Hence the value of G (r, ;_‘0) for
r = a, and 6 such that 6> 90 is required. In this case (60) simplifies giving

E f. .
] 2 cosh ﬂuj

with
f “j¢(ro’p‘j)Ptj (cos Go)Ptj(~cos )

) _r_Z,@_A¢(r,u)+-§—¢(r,u)}
{h au[ or ] (wu%

r=a
where for simplification tj has been set equal to iuj - 1/2. However to evalu-
ate the inverse transform, we require the Green's function for s complex. But

for s complex, p(r) given by (38) is complex, For this case, one cannot deduce

* See Friedlander (Ref. 14) page 170.

_18_
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that there exists a totally discrete set of eigenvalues {I«‘ j} , hence the expansion
given by (6) is questionable. For p(r) discontinuous we apply the boundary con-
dition that the pressure and vertical component of the velocity must be continuous at
any points of discontinuity of T;) , the orthogonality properties of the eigenfunctions
are retained. Thus we may write

n(s)

G(a,6;r,, 6 —2-——1——— + R(u) (63)
=1 cosh TI'IJ,J

where the summation is over the "free' wave modes (those modes such that iy i
is real for s pure imaginary, or, setting s = iw, for real frequency w). The
remainder R(u) represents the contribution due to the remaining modes. For
present purposes it does not matter whether the remaining eigenvalues form a

totally discrete set or not:.>:<

7. An Approximate Technique to the Determination of the Low Frequency Free Wave Modes:

We now require the values of the eigenvalues M and the eigenfunctions
corresponding to the free wave modes for real frequencies w. This requires a
solution of the differential equation (47) with s replaced by iw. However, this
equation is difficult to solve for most temperature models of the atmosphere.
Simple solutions can be found for an isothermal atmosphere (Pekeris, Refs. 2,

3) or an atmosphere composed of isothermal strata (Yamamoto, Ref. 1 ;
Penney, Ref. 6 ). However, for the case of Scorer's model, (Ref. 4 ) (isothermal
stratosphere and tropsphere with a constant temperature gradient), numerical

methods have to be used,

* Th's is explained in more detail in Section 9.

-19-
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For these various models, it is shown that there is a low frequency
mode which we will call the gravity wave. This low frequency mode possesses
a continuous spectrum in w from w = 0%*to some cut-off frequency w. The
cut-off frequency depends upon the model of the atmosphere. The low fre-
quency mode is essentially a surface wave, the energy being propagated around
the earth. However above cut-off, the character of the wave changes into a
wave which propagates energy upward.

The temperature of the actual atmosphere increases quite rapidly
above 100 km. For instance, at 140 km the temperature is given as 860° K,
For models of the atmosphere possessing this characteristic, namely that
the upper atmosphere is the warmest, there exists a set of higher frequency
modes with a continuous spectrum. Penney et al have shown these modes or
"branches" for models comprised of isothermal layers, with the top layer
the warmest,

We will give here a new approach to the problem which will enable
one to find good approximate analytical solutions to the gravity waves for
some simple atmospheric models. The approach here is based upon an
approximate technique for solving the radial equation for the radial com-

ponent U, of the velocity. Set

1
wtto = -wfalal (64)

L] 1/2
— i wZKZaZ + — (65)

H 4

For some models of the atmosphere there is a lower frequency cut-off

at a non-zero value of w.
-20-
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where ) "1 is the phase velocity of the wave® . From Appendix B it is shown

that

[rz /2 - kzaz] 1/2

U (r,0,w) = P cos 6 M 66
r ( ) iu-—l/Z( ) 2 POI/Z (r) (66)
where M is a solution of the equation
" ° a')z L et + & oAz a2 0 7
M"+M¢ -— (—) +— +— - - =
2 (a > Ao > A A +—;:f (67)
-
where a(r) = p? — -22a2
¢
0

The best way to make use of this equation is to break the atmosphere into
twot regions specified by (i) a4 r <b and (ii) b £r. In the lower region
(a4 r «b), the atmosphere will be composed of the troposphere and possibly
the lower portion of the stratosphere. In the upper region (b< r), the tem-

perature will be assumed to be a very slowly varying function of altitude, We

* This is seen using the asymptotic relations for large real wia,- ipvwia,

2 1/2 T
and P—wxa _ 1/2 (cos O = cos |wraf -___|and noting
7 sin 6 wla 4

that a 6 is the arc length along the earth's surface. Hence for harmonic time

dependence, A1 s the phase velocity of the wave propagating around the earth.

* Note: At the interface of the two regions we will assume that the temperature
is continuous (although the derivatives may or may not be continuous).

-21-
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will use two different approximate techniques for finding M and hence Ur (r, w)
in each of these regions. The solutions will be matched across the interface

r = b, by requiring that the vertical velocity and pressure be continuous functions.
The latter condition can be shown to be equivalent to the criteria that the derivative

of the vertical velocity with respect to r, be continuous.

Solution for the Upper Atmosphere (r >b)

Here T o s a slowly varying function of r, in fact we may take T,

constant, If the region is isothermal we will take T, = T and if the tem-

S’

perature should vary slightly, we will take the value of T, at r = b tobe Tg.

For this region rewrite equation (26) in the form

Z 1" !
3 «a 1
M" + M< -—— (—) +__(§_)+a(§) -B2 + R(r) = 0 (68)
4 ¢ 2 o
«J1/2
where we have set B = |A2 -nh Tz (69)
A+ B
and R(r) = -a - (70)
Since the temperature is slowly varying or constant we may neglect the
remainder term R (r). Solving for M with R set equal to zero we have
r
M o= o V2exp< - [ B(r)dr (71)
b
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This is essentially the W, K. B. approximation. Of course for this to be
sufficiently accurate, we require that the remainder R be sufficiently small, and
this in turn holds provided that o does not vanish in, or close to the region b <r,
In addition, at sufficient distances out there may be a turning point given approxi-
mately by the value for r for which B vanishes. However, we will assume ™ that
the turning point is sufficiently far away from r = b, so that expression (71) is
valid at least for the lower part of the upper atmosphere,

We now have

U . (r, w) = ————exp <~ B(r)dr (72)
r r pol/Z {
ha
where B = |AZ - (73)
r

which for the isothermal case has the explicit form

ﬁ_ngz 1 /e, [2 g2 || 1/2
B = \2) Z(c—é——xa ® +(1—a’)€—§ (74)

T -
CS r

The constant C; () is determined from the boundary conditions at

Solution for the Lower Atmosphere (a%<r<b)

Because \ " is the phase velocity of the gravitational wave we expect

that there is some point in or just outside the interval (a4 r4b) for which

* This assumption breaks down when we approach the "so-called" cut-off
frequency.
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(r'2 / cl - A2 a2) vanishes. Hence the equation (67) has one or more singular
points. Performing an order analysis it is seen that the term ho / r 2 is small
compared to the other terms for low frequencies (periods greater than three
minutes). Thus a good approximation is given by the equation
‘ 3 (o' 2 1 \ o' \
M"+M<-—[—] +—(Aa"+— ] -A' -A%? = 0 (75)
4\ o a 2

and the general exact solution of (34) is

r
M = a—l/Zeg(r) Cz()t)+j‘ae_2g(x) dx (76)
a
r
with g(r) = Adx
!
2 - 1T,
- f(z‘r Ez---&dr (77)
3 c 2 o

Using the first approximation given by (76), higher order approximations
may be obtained by using an iterative process (which will be discussed below).

For present purposes we will consider the first approximation only, given by

r
1 - 1 g(r) -2 (x)
U (r, = C d (78
o (r w) _erol/Z e 2()\)+£ ae X )

Determination of the Eigenvalue ) = 2™ (first approximation)

First of all we must match the solutions for the two regions at r = b,

!

from the boundary conditions that Ur s

and Ur are continuous.,
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Using the continuity condition of Ur at r = b, we have from (72) and (78)
b
c,(\) = cF(b) cz(x)+f ve28(x) qx (79)
a
Before we employ the continuity condition of U;, at r = b, we note that

the corresponding derivatives have the form

2 1
Up = Upq-T+35 2B b<&r (80)
S

and
vl 2 gl |-Z,8 acdlx <r$b  (81)
= -—+—| t asrs
r r r c2 r2 p0172
where in (80) we have taken the temperature constant To = Tg, and in (81) we

have used the relation

\ g
g(r)) =A = 2t

NSRS
‘ol:')o—

)
Thus for r = b we may equate the right hand sides of (80) and (81) giving

2-y\ 8 a(r )L)e—g(r)
l - ’ 8
(b, w) {B(b) '(z — T (82)

Cs g o r=>,

I

Substitute the value for Ull. (b, w) from (78), and rearrange terms to give

« (b, ) e )y

C, (X)) = -foze'zﬁj(x)dx -[B(b)4%l‘_%_]
Cs

Thus the values C 1 (X) and C, (A) given by (79) and (83) are determined,

However we must satisfy the remaining boundary condition namely that Ull. must
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vanish at r = a. Since the solution (78) in the region a < r<b, is uniquely

determined apart from X, we require a condition upon X in order to satisfy
the boundary condition. From (78) it is easily seen that for UII. to vanish at

r = a we must have

Cr,(x) = 0 (84)

where we shall denote the real solutions of (84) by A ™ . The first approximation

to ™ is given by equation (84).

Higher Order Approximation for U, (r, w) in a<r<b

The problem is to find higher order approximations to the equation

M"+M[f(r)+g(r):] = 0 (85)
in the range a £ r £b, and where for convenience of analysis we set

3 a' 1 a" ‘ '
f(r) = -— +—[— +Aa') -A' - A2 (86)
4 \ o a \ 2

ah

The two independant solutions M| and M, of

M" + Mf(r) = 0 (88)

are M, = o~1/2 eﬁ(r) (89)
r

M, = o"1/2 eg(r)f ae"‘?‘g(X) dx (90)
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As the first approximation to M we take

r
Ml = a"l/zeg(r) CZ(A)+J.ae—Z¢(X) dx (91)
a
where C, (X) is given by equation (83).
To find higher order approximations of (85) we write the equation in
the form
M'+ f(r)M = -g(r)M (92)

and treat the right-hand side as the inhomogeneous portion of the differential

equation. Equation (92) may be solved by the method of variation of parameters

giving

b
M = M1+[g(t)M(t) l;Ml(t)MZ(r)—Mz(t)Ml(r)] dt (93)
r

or expressing it in terms of vertical velocity we have

b
U (r,0) = Uh(r o)+ [ U (b, 0) k(r, ) dt (94)
r
where .
1/2
K(r,t) = — g% (0 B +F(r) § atx, ) e 2P ax (o)
’ r2  pol/2(r) ¢

and U%. (r, w) is the first-order approximation. This is a Volterra integral

equation which can be solved explicitly by successive iterations.
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We may take the second order approximation
b
Uvl(r,w) = Um0+ (Ut 0k, ) at (96)
r
and obtain similar expressions for the higher order approximations.

The next question that arises concerns the matching of the boundary
conditions at r = b, However, it can be shown that the higher approxima-
tions, in fact, even the exact solution found by the iteration technique, are
such that the boundary conditions, namely, that U,., UI', be continuous at
r = a, are automatically satisfied where for r > b we have taken the solu-
tion given by equation (72) with C 1 ()) specified by (79).

The remaining problem is to consider higher order approximations
to ™. Let us consider the second order approximation only. We require

that U.. vanish at r = a. From (96) and (78), we have

b
€2 () + j Ul (t, w) k(r, t)dt = 0
azpol/z(a) a
i.e.,
b h(t t a
Cz(l)+£ dt iz)ezﬁ(t) Cz(h)+£ae‘2¢(x)dx 'é‘a/(x,)t).
e 20(x) ax = o (97)

Solving equation (97) will give the second approximation to ).* .
From equations (B. 1), (B. 2) and (B. 3) of Appendix B, the radial com-

ponent of the excess pressure P(r) is related to the vertical velocity compon-

ent by
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po 2P () = = eg(r)[e—y‘f(m r? pgM% (x) Ur] (98)

hence the second approximation to P(r) is on using (96)

byt t
pO*/Z(r)P(r> = iwe §(r) 1+1f —;;—e?¢“> Cn+ | a e 20(x) gy dt
r a
(99)

8. Comments on the Accuracy of the Approximations:

In order to show the accuracy of the approximations, we give two examples.
First we compare our first and second approximations with the results obtained by
Scorer,

Scorer considered the case where the temperature gradient was constant

in the troposphere and the stratosphere was isothermal, i.e.

2

(r-a) /T, -T
agréh T, = Tq |1 - 1 s

A T,

b &r T, = Ty
where ,Q = b - a is the height of the troposphere
T, = 286.919K is the ground temperature
T, = 229. 539K is the stratosphere temperature

The acceleration due to gravity g, was considered constant with the value

9.806 x 1073 km sec ~2, In addition the constants X, Y are given

Y
!

1.403

9.6137 km

i
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Scorer solved the differential equation for a "modified" pressure func-

tion numerically, and hence obtained the eigenvalue K* which corresponds to

our A *w. We compare the results between Scorer's theory and our approxi-

mate theory with the Table I below where ) * is in units km ! sec,.

TABLE 1
5000 w? |First Approximation [Second Approximation | Scorer's
to 2\ * to A * Value of 3 *

0 3.1899 3.18947 3.18950
1 3.1913 3.19148 3.19148
2 3.1929 3.19355 3.19356
3 3.1945 3.19570 3.19574
4 3.1962 3.19793 3.19793
5 3.1980 3.20025 3.20022
6 3. 2000 3. 20266 3.20271
7 3.2021 3.20517 3.20521
8 3.2045 3.20778 3.20761
9 3.21052
10 3.21338 3.21342
11 3.21638
12 3.21953 3.21956
13 3.22286
14 3.22637 3.22643

We immediately see that our first approximation gives

the phase veloc-

ities (1/A™ ) accurate to three figures, and for the lower frequency modes, the

error is one unit in the fourth figure.

These errors really are insignificant com-

pared to the errors introduced through the simplification of the atmospheric

model, i.e., neglect of winds could produce a change in the phase velocity in

the second figure, The second approximation is extremely accurate.
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For the second case, we take an atmosphere whose region below 50
geopotential kilometers corresponds to measured values. Above the 50 geo-
potential kilometers we take the atmosphere as isothermal. We will consider

the case where the measured values of temperature are given as follows

(where for convenience of later reference we will call this atmosphere II):

Altitude Temperature
(geopotential km) (degrees centigrade)

surface 29
1.5 18

3.1 10
5.9 -5
9.7 -31
12.4 -53
14.2 -67
16.6 -81

20 -66

25 -55

30 -45

35 -34

40 =20

45 -5
50 + 7

with this temperature model, we calculate A * from the second approxi-
mation by setting equation (103) equal to zero. In Table Il we compare the second

approximations to A * to those calculated exactly (this is discussed below).

TABLE 1I
5000 2 Second Exact Value
Approximation to x * of A ¥
0 3.1519 3.1528
1 3.1577 3.1582
2 3.1624 3.1628
3 3.1663 3.1670
4 3.1697 3.1709
5 3.1727 3.1740
6 3.1753 3.1784
7 3. 1777 3.1821
5 3.1799 3. 1857
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It is seen that the approximate value of X * is accurate to four figures
for small values of w, but for higher values the accuracy decreases to three
figures., For this model of the atmosphere the accuracy is not as good as in
Scorer's model. The main reason for this is that the error is proportional to
(wQ)*for w# 0, where A= b - a, is the interval of integration (in this case

L= 49 km, in Scorer's model A= 9.6137 km). The approximate technique
is good for low frequency waves and not too large non-isothermal intervals.

However, for models of the atmosphere composed of alternating iso-
thermal and constant temperature gradients sections, an approximate tech-
nique of this type should give good results. In the isothermal sections, ana-
lytical solutions in the form of exponentials can be found, and in the sections
with constant temperature gradient, good approximate analytical solutions can
be found.

For large intervals and high frequencies, numerical methods are neces-
sary. However, for very high frequencies asymptotic techniques may be used
(see Friedlander, Ref, 14).

To obtain a numerical solution we will return to the equation for the
radial component P (r) of the excess pressure, From equation (B. 2) and

(B. 4) of Appendix B we have

d/ré d

< —1/2D E’l(r ~w2a2a?f pl/z2p = o (100)
dr h dr

where for the free waves q (r) is given by (18) with s = iw.

I
Set W po"l/Z P(r) exp § Adx (101)

a
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with A given by (15), then (100) becomes

1" h' 2 2 1 Xzaz
\{/ +MV -2A——+- + how ": S, ﬁu = 0 (102)
0

Setting s = iw in (13) and using (101) we obtain
1, I
pol/zinr = --W exp -j- Adx
h a
thus the boundary condition at r = a, namely that U, vanish requires

\1/ "= 0 at r = a.
and the boundary condition at a discontinuity in TO' (but not T ) requiring that
Uy, P be continuous, sets the condition that both ' /h and Y be continuous.
The upper atmosphere was assumed isothermal and the upper boundary

condition at the junction r = b, is

2-Y¥)] g |n
Vo = | g+ |-t (103)
2 cl | bhs
S
where B is given by (74) and ht, hS are the values of h for the lower and
upper atmospheres at r = b, respectively.
Equation (102) was solved numerically using the method of Runge-

Kutta. In addition g was assumed constant, the term aZ/ r2 was set to unity

and the term 2/ r neglected.

9. Simple Source Model:

Consider the case where the surfaceE may be taken as a small sphere
with centre ( R 0’ 0) and radius € . In addition we assume that locally the dis-
turbance prodiced by the source is spherically symmetric about (Ry, 0), If

we take the limit as E shrinks to a point, it is shown in Appendix A that we can
-33-
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write in place of (34)

P(a,0,5) = p l/2(a)G(a, 6;Ry, 0) 1(s, Ry)  (104)

where I(s, R,) is a function of s representing the behavior of the source

at (R, 0).

0)

10. Method of Evaluation of p (a, 6, t):

The excess pressure at (a, 6) may be evaluated from (104) by means
of the inverse Laplace transform giving
1 b+i o

p(a, 6,t) = : f p 1/Z(a)G(a, 0;Ro,0) I(s, Ry)ds (105)
0 A P °

where the line Real s = b is to the right of all the poles of the integrand of (105).
We shall assume that the position of the source ( Ry, 0) and the observer
(a, 0) is such that the contribution of the modes other than the free wave modes
is negligible. It can be shown that the other modes which satisfy the required
boundary conditions at r = a and r = o will attenuate since the phase velocities
are complex. We shall place the restriction that the observer should be in the

geometrical shadow region i.e.,
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In the illuminated region, the modes other than the "free" wave modes
become important, In addition, appealing to known results of acoustic and
electromagnetic theory, the Green's function cannot solely be represented by
a residue series, but must be represented by a contour integral in the p plane.
Hence for the geometric illuminated region, other techniques than the modal
expansion must be used.

From (63) and (105) we have

b+1i 00 n(s)
1 f'(a: G;R ;0)
p(a,0,1) = == [ eStpl/2(a) 1(s, Ry) ﬁ j 0 45
211l p-{oo 7= 1 2cosh(mpuj)

(106)

where we have considered the contribution of the ""free' wave modes only. Making

the following decomposition

memu ]

. e

L S T (107)
2cosh(muij) cosh mu j

equation (106) becomes

1 b+i o n(s) ‘
p(a,8,t) = —— S eStp Y2(a) 1(s, Ry) ;e i ds
Tl b—i.(x) j: 1
1 b+i oo L/ n(s) e‘ZWﬁ‘j
- st . '
2wi f © pO/ (2) I(s, Ro) Zfl cosh 7y j ds 108
b-i j= 1 M
Using the relation
Piuj—l/Z (cos 6,) = 1 for 6, = 0 (109)
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and the asymptotic expression

2 ,'(iu-+12) T
Pii- (-cos §) =|—— - it cos [ipi(r-6)-—1|(110)
inj-1/2 - j
T sin 6 F(1Nj+1) 4

for 0 <6 <7 together with the fact that for s in the right half-plane

Real i > 0 (111)

it can be shown that the second integral*of (108) represents the contributions
to the excess pressure of the modes that have travelled at least once completely
around the earth, Hence if we consider only the contribution to the excess pres-

sure pulse that arrives directly, we may take

1 b+i n(s)
pla, 0,t) = : eStp 1/2(a) 1(s, Ry) fie M™ids (112
21l pieo j=1
We may now take b = 0 and set s = iw in (112), giving
1 +@ . n
pla,6,t) = f elwt pol/z(a)l(iw,Ro) Z fje"’“jdw (113
21 % j=1
For certain models of the atmosphere (in the sense of the variation of
the atmospheric temperature T ), there exists only one free mode below some
critical frequency w,. For this case we obtain
w i3 b3 .
o(a, 6,8 = — f slut -mu* pcl/2 (a) 1* (a, 6; Ry, 0) I(iw, Ry) du
2 2 2 7r _
We (114)

" See footnote, page 171 of Reference 14,
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where we specify the eigenvalue by u™* . For models of the atmosphere in
which there exists a set of higher frequency modes with continuous spectrum
in w greater than their respective cut-off frequencies, we must of course,
include their integrals corresponding to the integral given by (114) for the low
frequency mode.

However, for the present, we will consider the excess pressure pulse
produced by the low frequency gravity wave,

From (64) we have

111/2
p* o= i (ua*a)d +— ~ iwr*a for wx™ a>>1 (115)
‘ 4

From (110) we have

P ( 9) : 1/20 A a(r-80) i (116)
% -cos ~ 0s ' - -—
iu" -1/2 w‘ A* a7msing M 4

hence we see that from (116) we may write

. W T
pol/Z (a) £* (a, 6; Ry, 0) I(iw, Ry) = K(a, 6, Ry, w) cog [)|a" a(m-06) -7

(117)
where from (61), (109) and (116) we have, on using the approximate relation

v o iwia

12,2
K = I(iw, RO)CPO(&L))‘)/ - § (Ro. A (118)

)

The integral (114) can be written in the form

. . b4 . m
p(a, 8,t) = — j elwt —1WA™ a7 (og ‘wlk"‘ a(r-0) " Kduw (119)
L
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Decompose K in the following manner
K = K¢+ K,
where Ko and K are the even and odd functions of w. Making use of the

fact that \* is an even function of w we can rewrite (119) in the form

1

We N , T
p(a,8,t) = — f cos[w(t—)ﬁ"aw) cos{wA™a (7 -0) -—|Kg dw
T 3 d 4

i We ‘ . T
+— f s'm[w(t-)("an)] cos |wax*a (7 - 6) - —|Kg dw
T g 4

Decompose p (a, 6, t) into two parts

p(a,6,t) = pl(a,6,t)+pc(a,d,t)
where
1 wC . T
pl(a, g, t) = — f Kg cos wt-wx a0 ~—|dw
Z7r 0 L 4
i We B -
+ - f Ko sin jwt-wix™af -—|[dw
Ty i 4
1 wC i . T
pz(a, g,t) = — f K, cos wt-wax a (27 -60)+—|dw
X rd B 4
i We . T
+ K. sin lwt-wx*a (27 -0)+—|dw
° L

The physical significance of expressions p1 (a, 6, t) and p2 (a, 6, ¢t) is

that pl (a, 6, t) represents the pressure wave which has travelled directly

-38-
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to the observer, whereas pZ (a, 6, t) is the pressure wave which has
travelled through the antipode

For a simple point source at altitude z

= (Rg - a), the source function
(given in Appendix A) is

I(iw, Ry) =

“iwpol/2 (Rg) V

(123)
where V is the volume of gas introduced

In this case K¢ = 0, and (118) becomes

2p,(2) pg (Rg) APN/2
K= K, = 1 - VQ(w) (124)
7rasm9|w|

where for convenience we have set

~w? G (Ry, 2¥)
Q(w) = _ (125)
8 ¢'+A¢ r= a“:
Y e [

Hence the pressure waves which have travelled both directly to the observer and

by way of the antipodes are given respectively by

1 ﬁo(a)Po(Ro) 2 v uc
p-(a,6,t) =\ 2mrasin® —f

xy1/2 * T
(wA*) Q(w) cos jwt - wA™ a6 +—|dw
Ty 4
2
P,(a)py(Ryp) \Y%
p(a,6,t) = <° ° 0) —
2masin 6 T

(126)

w <,
f (w)\"‘)l/2 Q(w) cos

37
[wt -wN\*a (2T -0)+ 2 dw
)

(127)
The integrals in (126) and (127) may be equated to the real parts of
W

I @M Qo) expt

T
3 4
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and

(

wc sk 1/2 . %
f (wA™) Q(w) exp i| wt-wA™a (27 -0)+ 3T duw (129)
0]

respectively. For large ranges (a6 and (27 - ) a sufficiently large) these
integrals may be evaluated by the method of stationary phase,

If wg is the value of w for which
t -af(ur*) = 0 (130)

where the prime indicates the derivative with respect to w, then the stationary

phase technique gives the asymptotic approximation to (128)

2 WX
_ = - 131
la@ Q(wy) ‘W cos[wot Wo A ae] (131)

Similarly if w, is the value of w for which
t-a(27-6)(wA*) = 0 (132)

then the stationary phase technique gives the asymptotic approximation to (129)

2

os,:wot - wo)\*a (27 - 06) +Z}(133)

However the stationary phase technique for (128) is not accurate unless

(AR 1" 2 .
()" /(o) ] 324 (30 and (w)iV) [(m)’] ° < a6. Ithas been
shown by Penney (Ref, 6 ), that for most models of the atmosphere under consid-

eration, this critique fails when the range is of the order of 1000 km or less. For
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these cases it is best at present to perform numerical integration to evaluate (128)
in the manner that is suggested in Reference (6).
In addition, even at very large ranges, the stationary phase technique
fails for the initial part of the received pressure pulse. We shall give here
an asymptotic technique for calculating the initial part or head of the pulse,
We will consider integral (128).

Define the following series

Ai(w) = i Ay weD (134)

n=0
©
(Y2 Q) = 2,2 Qo) > dpwln (135)
n=0
where dg = 1, and the time interval
T = t-afnrg- (136)

By the stationary phase technique, the condition T = 0 or t = afx
would indicate the beginning of the pulse. However forl’tl small, the stationary
phase technique fails and we shall show that U = 0 does not represent the begin-
ning of the pulse, but a point near the peak of the first compression,

The integral (128) may now be written in the form

)
X ol/2 Qo) fc wl/z.z dnwzfl.[l—1a9(w5x2+w7x3+...)+...:|
0]

n=0

T
exp i[w"r - w3x1ae+ﬂdw (137)
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Making the substitution
w o= 0(7{1 ae)"l/3 (138)
4 = T(ryag) L/3 (139)
and defining the integral
® ; 3
Fp(q) = f c-1/2+n el[‘Tq"T] do (140)
0

expression (137) has the asymptotic form

Q(O)e”/ Fi1(q) + ———7= F3(q) + ——— Fs(q) +...
Y ST OPTITIE (A ja0)4/3 °
iag iag

-(———_Alae)f’/B A2 Fg(a) ‘m—[k3+dlkz] Fg(q)+...4 (141)

In Appendix C, F, (a), F;(q) and F, (q) are expressed in terms of
Airy integrals, and Fu (q) for n =3 are expressed in terms of Fp(d); m=0,
1, 2. Thus expression (141) may be represented in terms of Airy integrals
(which are tabulated, Ref. 13). After much algebraic manipulation, the realpart

of (141) has the following asymptotic form

Ao 73
3126

2Q (o)

where Aj (y) is the Airy integral, with Ai' being its derivative. The argument

y is given by

-

T (12a120)1/3
_42_
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The functions C; (T) have the forms

C ('t—) — 1+__t_m éd _ZOA'Z + 81{2 2d _7MD
1 (12x1a6) \ 1 8x/ (12xya0)2 \('? Ay

) (D) = 1 f > (o glrztdia
‘ (1237 26)2/3 ! "6y (12x1a9)5/3 % A1

10 11[xg+dy 3 2 an;
(12x1a0)4/3 6X 1 (12x126)4/3 3x4

+ 3 16[>L3+d1)\2]
* 773 (144)

For the real part of integral (129) one may derive in a similar manner

the asymptotic expression

3

\ 1
- A. . _— 145
2Q (o) Thia(27-6) [ i (y)Bl(y)+2ﬂ (145)

Ao T

where the argument of the Airy integrals in this case is given by

T

A 146
’ [12xia(2n-0)1/3 te

with

T = t —a(2r-6)x, (147)

Because the distance around the earth by way of the antipodal route is extremely

large, the higher order terms in the asymptotic expansions are unnecessary,
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except for very large U in which case, the stationary phase technique is valid.,

The directly received pulse p1 (a, 6, t) is calculated for Scorer's
model of the atmosphere for explosions both on the ground and at a height of
9.6137 km , and the pulse forms are plotted in Fig. 1.

The integral representing the pulse was calculated using the stationary
phase technique forT = t - a 61, > 160 sec. and using the asymptotic expan-
sion involving the Airy integrals for T % 160 sec. Even though the use of the
stationary phase technique for the case when a§ = 3600 km (the distance from
the source) is somewhat a delicate matter, there is good matching of the re-
sults obtained by the two techniques. The complete pulse forms are not given,
the dashed line indicating that the remaining portion of the pulses are not given.
The transit time of the first crest (given approximately by t= a 6A ) is 3 hr,
11 min. and 5 hr, 19 min. for distances 3600 and 6000 km respectively.

In addition, the received pressure pulse p 1 (a, 6, t) is calculated
for atmosphere II for a range of 7000 km for explosions on the ground and at
a height of 39 km. A table of the inte.n‘sity function required in the evaluation
of the pressure pulse integral, and the )\'s are given below. The value of the
A's for the higher values of w's are not calculated.

The stationary phase technique was used for T >260 secs., the othe;‘
asymptotic technique for T £ 260 secs. The main body of the pressure pulses
observed at ground level at range of 7000 km from both an explosion on the
ground and an explosion at 39 km are plotted in Fig. 2. The transit time of

these pulses is roughly 6 hr, 8 min,

-44 -
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ol s 13 |20 {Bo)
15000 w AT (w) o, (a) Q(w, Ry)
Explosions on the ground | Explosions at 39 km
0 3.15283 10.71 . 1856
1 3. 15819 10, &3 . 1848
2 3. 16277 10. 90 . 1862
3 3. 16695 10. 66 . 1643
4 3.17091 10. 42 1829
5 3.17472 10. 09 . 1807
6 3.17844 9,74 . 1783
7 3. 18209 9,37 . 1758
5 3. 18569 8.99 . 1730
9 3.18923 8. 61 . 1699
10 3.19274 8. 25 . 1671
11 3.19620 7. 86 .1635
12 3. 19962 7.54 . 1609
13 3.20301 7.19 . 1576
14 3.20635 6. 86 . 1542
15 3.20965 6.51 . 1500
16 3.21290 6.19 . 1462
17 3.21611 9. 89 . 1424
18 3.21925 5. 60 . 1387
19 3,22239 5. 30 . 1344
20 3.22545 5.03 . 1304
21 3.22646 4,77 .1263
22 3.23142 4,51 1221
23 3.234 33 4,30 . 1187
24 3.2371% 4,09 . 1151
25 3.239 9y 3.87 L1111

One important difference between explosions on the ground and at an
altitude of 39 km is that the gravity wave portion of the pressure pulse is
less attenuated for the latter case.

As expected the amplitude on the ground of the pressure pulses is less

for high altitude explosions. For atmosphere II, the ratio of amplitudes of

the pressure pulses observed on the ground due to an explosion at 39 km and
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on the ground is . 017, where the same volume of gas is released in both cases.
An estimate of the ratio of the amplitudes of the gravity wave portion of the
pressure pulses is given by

zZ, o
exp < - j‘ - dz
co” (2)

Z1

N

>

where z,, z; are the altitude of the explosions, However this holds for
idealistic explosions characterized by the sudden release of a specific amount

of gas,

11, Comments:

The pulse forms in the previous section have been obtained from an
idealistic source model, The source representation could be more generalized
by taking a different time dependence (like the ones mentioned in Ref. 6) rather
than the delta function. Another question arises as to the relation between the
volume of gas introduced and the total energy released by an actual explosion,
for instance a nuclear explosion. Penney et al do give some estimates for ex-
plosions on the ground. However, explosions at various altitudes will require
different constants of proportionality.

A problem arises with regard to the upper boundary condition, namely
that the total kinematic energy be finite, For an isothermal stratosphere or
upper atmosphere, the excess pressure has the following functional dependence

on altitude z

¥g 4
exp - Z
2c

0 ro
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where the flat earth approximation is taken for simplication by equating r
to a, and taking g constant in the expression for B given by (74). For
Scorer's model ¥g /(2 cSZ) is greater than S for the gravity wave. Hence
the excess pressure increases exponentially with altitude. At high altitudes
the hydrodynamics equations can no longer be linearized, as the excess vari-
ables approach and even become greater than the magnitude of the unperturbed
variables. For atmosphere II, ¥g/(2c SZ) is greater than 8 for 5000 W
less than 13. In this case the excess pressure of the gravity wave increases
exponentially only for the lower frequencies. This suggests that when taking
an isothermal model for the upper atmosphere, it probably is best to start
the isothermal level above 100 or 110 km, in which case the temperature
may be taken very large, say 350° K or higher, For this case one would
expect that the excess pressure of the gravity wave attenuates with increasing
altitude except for the extreme lower frequencies., However, at high altitudes
an additional factor becomes important, namely viscosity. This should be
included in the model of a very warm isothermal layer at high altitudes.
Winds have an effect upon the gravity wave although not so much as
on the high frequency acoustical waves, Apart from jet streams, there are
good strong, steady winds at high altitudes, For instance, in the winter there
are winds of magnitudes of 50 m/sec and 100 m/sec at heights 40 and 60 km
respectively around latitudes 30° to 60°, (See Ref. 15, ) These winds can
cause an appreciable change in the phase and group velocities of the gravity

wave,
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In Part II, the effect of winds and better models of the upper atmos-

phere will be investigated.
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APPENDIX A

Simple Source Representation:

Given the inverse Laplace transform of the excess pressure in terms

of an integral over a surface z : , namely

P(a, 6, s) = — spoll2 (a) SS Gla, 0; r, 6,) n Ul

2

- pol/2 (a) S g p;l/z (r,))P(x ) n-1 A>O+ L } GdS
2]
where the variables of integration are (ro, 90), we will consider the case
where Z is a small sphere with center (RO, 0) and radius € . We will
assume in addition that the disturbance (characterized by the transform of the
normal velocity to the surface and the pressure) is spherically symmetric
about (R, €¢), in which case n-U(r ) and P(r,) are functions of s and
€ only.
We shall assume that, the velocity and the pressure satisfy the acoustic
equation at the surface Z, , in which case U and P are proportional to

c?and ¢} respectively. Retaining only the dominant terms for small €

we have

Pa, 6, s)~ — spg2 (a) p V2 (R,) Gla, 6; R, 0) SS n-U ds,

2

A-1
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fvpol/?' (a) G(a, 6; R, 0) I(s, R )

For an instantaneous velocity source at r =(50, 0, 0) at time tO we obtain

_ st
I_I'U_(.I:o’ s) = _-I_J_(ro)e ©

and g n-U(r, ) dS, = V is the volume of gas introduced

Thus for a simple point source at time ty

= _ Ya st
s, R) = sp,/2 (R)) Ve
and for t; = 0+, this becomes
1
I(s, R,) = — spo/2 (R,) V.

In the special case where the explosion is on the ground, the surfacez

is a hemisphere, and V will be the volume of gas passing through it.
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APPENDIX B

Radial Equation for the Vertical Velocity:

For the convenience of analysis set

R V5 _
iwp, Ur(r, 9, w) X (r) Pi,u _ Y, (cos ) (B.1)
then using the relationship
1/2 _
P, P (r) Py - (cos ) = P(r, 6, w) (B.2)

together with radial component of equation (13), we obtain

pr + Ap
—_—_— = - X
0 (B. 3)
But we have from Eqns. (47) and (64)
d r dg 2 2 2
- |- + [q(r)—w?taJ¢ =0 (B. 4)
dr h dr

Hence from (B. 3) substitute - [Jﬁ + A ﬂh—‘j in place of f' h™ in

(B.4) and repeating the procedure after differentiation we obtain

dr! x

w? r?
— AX —§ [—wzﬁaz + —————] =0 (B.5)
dr
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Setting I’ X =1

This reduces to

pr-ay
— =

Eliminate § from (B.8) and (B.3) to obtain

"o ﬂ! (. —A2 -A' + A _Q/_' = - ho
¥ a ¥ Y [ a \P r?
Settingq) = o2 M we obtain

2
M"' + M - ._.3_<£'> + a' + 1201' — A _AZ
4 \ ¢ 20

where now from (B.1), (B.6), and (B.10) we have

U, = P

2.2 2.2 M
\/ r /e X8 ) (cos 0)

2 : -
po(r) r i =72

(B.6)

(B.7)

(B. 8)

(B.9)

(B.10)

(B.11)

(B.12)
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APPENDIX C

©
Evaluation of the Integrals: Fn(q) = f w2t nexp i [wq - w3] dw
0

From Franz (Ref. 12) we have the relation

(0 0]
3 5/ in/3 - in/3
- - / 3
oV 777 45 = /2 277 A ([E—2 A [=—2) (c.1)
m 41/3 41/3
(0}

where

(0 0]
i -7
Alx) = % g d7 el [Xf ] (C.2)

However we may express A(x) in terms of the usual Airy integral Ai(X)’ by

the relation

-1/3 -1/3
Alx) = — 3 T Ai(—3 X) (C.3)

where Ai(X) =1 cos &t + tB/BJ dt (C.4)
T

Hence the integral (C.1) may be given in the better known notation

@ 3 32 5/3 -1/6 i
g o2 &0 0T 4 =7r/ 2/ ; / A, <6217T/3}> Ai(y) (C.5)



THE UNIVERSITY OF MICHIGAN

2886 -1 -T

-im/3 -1/3
where y = —e / a(12) /
Performing the transformation

—q e11r/3
inf6
o =we
Equation (C.5) may be written in the form
32 5/3 -1/6 -iqf12 2i7/3
2 3 e

Fla = A{y) A, (e y)

with
-1/3
y = — (12) / q

From Miller (Ref. 13) we have
2i7/3 1 i47/3

with

(C.6)

(C.7)

(C. 8)

(C.9)

(C.10)

1 1,3 | L3
By) = = - =t  + yt|+ sin|=1t> + yt|tdt
) = {eXp[ ; Y] [3 y]}

o

hence (C. 8) becomes

32 2/3 -1/6 in/4 '
F(q) = P Afy) [Ai(y) - iBi(y)]

C-2

(C.11)

(C.12)



THE UNIVERSITY OF MICHIGAN

2886 -1 -T

The other integrals Fn(q) may be evaluated from Fo(q) by differentiation

with respect to q,ie!

n
. 4 F (q)
Folg) =15 —2— (C.13)
dg
-n/3 anO(q)
= (12) i m
dy

In particular we obtain

32 -1/2 '
Fla) = ﬂ/ 5 / e137r/4: [ZAi(y) A'i(y) -~ i{Ai(y)Bi(y)

+ Ai(y) B'i(yg}

A . : - A : . .

reduces to

32 -1/2 i37/4 L )
Fi(g) =7 23 e Ai(y) Aly) — 1{Ai(y)Bi(y) +—2;} .15

In addition we obtain
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2 -1/3 i5q/4

Fp(q) = 2(x3/3) (12)

The remaining Fn(q) may be expressed in terms of F,, F,;, Fy by the

relation

_ -1/3
Fn(q) = ozn(lZ)

where the functions a/n(q), Bn(q) and z;n(q) are given in the table below

e

' 2 2
(Al) + y(Ai)

. L.

+ ¥,(12)

i" F (@) + B, (12)

-(n-1)3 (n-1)

1

-(n - 2)3 (n -2)

Fy ()

n @, Bn Yn
3 2 4y 0
4 0 6 4y
5 8y 16y2 10
2
6 28 80y 16y
2 3
7 32y 108 + 64y 112y
9 3
8 288y 672y (220 + 64y )

(C.16)
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