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‘Preface

This is the thirty-third in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presently in
process of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being
in good agreement, with experiment. It is believed that by and large this
aim has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to
include nét only the standard boundary-value problems, but also such
topics as the emission and propagation of electromagnetic and acoustic
waves, and phenomena connected with ionized media.

Associated with the theoretical work is an experimental program
which embraces (a) measurement of antennas and radar secatterers in ordef
to verify data determined theoretically; (b) investigation of antenna
behavior and cross section problems not amenable to theoretical solution;
(c) problems associated with the design and development of microwave

absorbers, and (d) low and high density ionization phenomena.

Ke M. Siegel
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Abstract

If a short plane-wave pulse comprising the single harmonic frequency
¢ is incident on a‘perfectly conducting sphere, there is a significant
tail to the back-scattered pulse for the frequency in the resonance region

of the sphere. For very large spheres, there is negligible tail to the

return pulse..
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Introduction

Scattering of pulses by perfectly conducting bodies has been
(1)

considered for the electromagnetic case by Keller and other authors,
and for the acoustic case by Friedlander(z), However, the investiga-
tion centered around the propagation of the diffracted and reflected
wave fronts and the zone immediately behind these fronts.

In this report, we are interested in a different aspect of the
probleme An incident plane wave pulse of time-length T , comprised of
a single harmonic frequency «w, is incident on a perfectly conducting
sphere of radius a. We place an observer in the back-scattering direc-
tion at a fixed distance from the center of the sphere. The observer
then measures the variation of the back-scattered pulse with respect
to time. Besides measuring the initial parts of the received reflected
and diffracted wave fronts, the observer measures the field far behind
these wave fronts.

There are several questions to be answered. For a given fixed wave-
length of the incident pulse, what sizes of spheres will produce a return
pulse with a significant tail, i.e. pulse length of back-scattered pulse
much longer than that of the incident pulse? Is this tail significantly

affected by varying the distance of the observation point from the sphere?

l. Received Pulse:

In considering the back-scattered or received pulse, we will just

consider the electric field component.
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Since the back-scattered field for the c.we. case is known exactly,
we will use the relationship that the pulse solution can be derived from
the c.we solution V(wher'e both satisfy the same boundary conditions on the
diffracting body), by an inverse Laplace transform.

Consider an incident pulse of pulse length T and frequency ¢, prop-
agating in the direction of the positive z-axis. The electric field is

then given by

0 t L zfe
i A ikz-iwt
_h,:l: i e %t zfc £t Lz/c +T (1.1)
0 zfc+ TLt

This can be expressed in terms of an inverse Laplace transform

b+ 100 ts (s +iw)T
e [l—e

. 1 .
E =1 S E (£2) as (1.2)
Tl 44w (s+1iw)
ikz

where Eo(k) =e .

The scattered field in the back-scattering direction is given by

b +1i o0
1

2T i

r

oA bs [1. e—(s+iw)1:]
- =X

(s+iew)

—

B (3 ds  (1.3)
b -1 o00.
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s
where E (k) is the back-scattered field for the CewW. case, i.c.

By 3, (ka) 1 [ke n Do) [xe 5, )]

hg]‘)(ka) kR [ka hr(ll)(ka)] '

S(1)_ S .0
E (k)...—Z (-1)"(n+1/2)

n=1

(1e4)

For t € (R-2a)/c, the integrand of (1.3) vanishes exponentially
as |s| approaches oo for R (s) > 0. Hence we may formally extend the
line integral by an integfal along an infinite semi~circle to the right
of the line K(s) > b, and equate the resulting contour integral to the
sum of residues of the poles in the enclosed region. But there are no
poles enclosed, since by definition of.‘ the inverse Laplace transform,
the line K (s) = b is taken to the right of all the poles of the integrand.

Thus we see that the line integral (1.3) is zero; hence
r
E=0 t < (R-2a)/c.

We wish to examine the time variation of the return pulse, the
time being measured from the initial part of the return pulse at a par-
ticular fixed observation point R.

Let T be the time measured from the initial part of the return

pulse:
t=(R-2a)/c+T (1.5)
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Define:
b+ i oo
exp |T+ (R - 2a)/c| s .
2 (s +1iw) c
b-1ioo

This expression vanishes for T < 0. Hence we have

-iwT

F(T)-e F(T -T) for T2 T

F(T) TLT. (1.7)

The remaining problem is to compute F(T).
The discussion below will distinguish between two cases:
(1) 0 T K 2a/c and (ii) 2a/c K T. For case (i) we will use an

approximate method, and for case (ii) an exact method.

2. Calculation of F(T) for 0K T 2a/c

The physical significance of this time zone is that the contribution
to the return pulse at the observation point, R,in the back-scattered
direction is due purely to the reflected waves alone, without contribu-
tions from the geometric shadow region.

Hence we can represent the return pulse in this time zone by an

approximation representing the reflected waves. This can be done by
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obtaining, and solving, a set of ™iransport equations® for electro-

(2)

magnetic waves, as is done in Friedlander =’ for sound waves; or
using the Kline-Luneberg expansion, and the Tauberian theorem which
states that, if

b+ i oo

ts
1 e g(s) ds
2qMmi

flt) =

b-1o0

and we replace g(s) by the asymptotic expression for large s, then
the resulting transform is an asymptotic expression for £(t) valid
for small t.
Now, if we use the Kline-Luneberg expansion for the back scattered

field for a hammonic time-dependent field, we have (see Appendix A)

ik(R-2a) 3 a, aq
B (k)= —2 ' 1+ + + . o e (2.1)
(2R-a) ° [ ka (ka)2 (ka)3 ¥ ].

with i 2(R-2)?
(2R - a)?

a (R - a) (2R - 4Ra +382)

2 (2R - a)*
139 1
— + 0 (— .
B3 = 21,0168 R)
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We will assume that we can analytically continue this asymptotic

is
expansion for E° in the s plane when we replace ka by —. Hence we have
c

for small T,
b+ i oo
F(T)~ ( ) —_— |14a (7~)+a2 (=<-) +] dse
2Wi 2R-a (s+iw) 1 1isa isa
T»0 b-1io00

(2.2)

Hence we have

-3 a -iWT -
F(T)ro - (—2){e le.\- i —l] + 822 [e 1T -\—in—l]
2R-a ka (ka)

a 3 . 2
+ —2 [e le-1+ 1T -Si."i’l)..]+.. (2.3)
(ka)3 12

3. Calculation of F(T) for T > 2a/c

For T 7 2a/c, we may calculate F(T) exactly, To facilitate analysis

we define the following
{Xﬁ} P=1, 25 eeey n, the zeros of h(l)(x) =0 (3.1)
n

{Yg} q =l’ 2, eeey N + 1, the zeros of [Y hil)(Y)] '= 0 (3.2)
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which are discussed in Appendices B and C. Also set

(L) ngP/y < (4P
| hy ) 3n(Xy)
L () = o /) ) (3.3)
n n [hlgl) (Xi)]
o [mYe) i Peya ] 1, ¢b]

Bn(Yn):- (3-14—)
(rifa) | 12 hfll)(Yi)]”

For T J» 2a/c the integrand of (1.6) vanishes exponentially as \sl -> 00,
for real part of s £ 0. Hence, in (1.6) we may enclose the line integral
by a contour to the left extending to infinity, and set the resulting
closed contour integral equal to 2 i times the sum of the residues en-
closed. We have then

o [T+ (r-2a)/c] Es(_i_g)

F(T) = Sum of Residues of . (3.5)
(s +ie)

The poles are at

S= - 1w

s:—i‘—q Xg’ n=l, 2 ceet pP= l, esey NN

a
"5:'..—-::L£ Yq, N=1y 2 eee: G=15 eeey n+ 1.
a 1B ’
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Hence we have

F(T) = e 1% [T + (R‘ZaVC] ES(k) - G(T, ka)

wnere
icXp
~(T + (R-2a)/¢)

n a '
o1, ka) = E; (-1)" (n+1/2) ° A ()
n=1 Z i

- p
p=1 (X - ka)
(3.6)
.o d

_ ic -

il [ Ca T (T+ (R-2a)/c) .

+ i Z Brl (Yn)
q=1 (Y: - ka)

s Pulse Return

We will consider separately the two cases T < 2a/c and
T > 2a/c. In each case, our return pulse will be divided into four

. . . . r
time zones. The time zones and appropriate expression for E  are

given as follows:
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Case (a) T ( 2a/c

Appropriate Expressions

Time-Zone E for
F(T) F(T-T)
(1) |0gT<K T /_i:x F(T) (2.3) -
(i1) |T £TKRa/c ’ix{F(T e < TR (r- 'C)} (2.3) (2.3)
(11) 28/e< TG 28/c4T | £ {FO-T TR} | (6) | (2.3)
() |22/ r <t L fr@-Tt OO} | ) | ()
Case (b) 2a/cg T
r Appropriate Expressions
Time Zone E for
F(T) F(T-7T)
(1) |ogT<28/c 1 F(r) (2.3) -
(i1) | 28/eT < T ix F(T) (3.6) -
(311)| TLTE20/c+T @X{F(T)-e_:lwq:F(T_t)} 5.6 | (@)
(1v) |2afe+ T <T | % {F<T>-e‘l‘°"F(T-7:)} (3.6) (3.6)
X .

(4.1)

(4.2)
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We will define as "head"™ of the return pulse that portion
corresponding to the time interval O $ T<T . The remainder will
be defined as the Mail®.

The question arises as to how the pulse return varies with respect
to change in size of the sphere. Consider case (a). Neglecting the
higher order terms for the present, we see that the head of the pulse

is given by

T -ieT -
B o2 ( a ) [e ol il (6 1T 1) +"] (4.3)
"X\ 2R-a ka

and the initial part of the tail (i.e., for TL T < 2a/c) is given by

T b (Gel)

r A a) &

= -1
X \ 2R-a ka

Hence for ka > 1 we see that the initial part of the tail is of
the order of al/ka of the heads The coefficient ay slowly increases
as the observation point given by the coordinate R moves away from the
sphere, and in the far field al approaches -i/2. This indicates that
the magnitude of the initial part of the tail section in comparison

to the magnitude of the head is largest in the far field.

10
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On the other hand, in the special case when the initial pulse
length 7T is such that w T is a multiple of 277, the first tem in

(ko) vanishes and we have for T T < 2a/c

E=-72 (a > LWT [543 (1 - telriwT/2) 4| o (45)
*(28-2) (ka)® | 2 (ka)

In this case, whether we are in the far or very near field is extremely
crucial when ka » l. Since a2r,§,Ja/8R as R approaches oo, 2, is a near-
field term, and does not contribute to the far field. Hence in the far

field we have

Er,’\d—/i\ a2 _:'I_:_C_J_:E (1 - in+ia)'C'/2) a + soe . (24.06)
X 2R (ka)3 | 3

Since T < 2a/c, we have w T ka. The initial part of the tail
(T & T< 2a/c) is the order of cAJ’r:/(ka)3 of the magnitude of the

head of the received pulse.
The second section of the tail, i.e. 2a/c { T < 2a/c + T, is

given by

11



THE UNIVERSITY OF MICHIGAN

2778-4-T

T Siw EI‘ + (R—2a)/c]
=x

E (k) - G(T, ka)

- wT a ‘-icaT ~-iw T 1T -j
)[ 1 l e -e ).*._f_z__(e 92 e lwr(l-l—iw’l:’—in)
2R-a (ka)2

G

+....] . (447)

which can be written in the form for ka > 1

o fon [0 2 N )J
v=1 )

~G(T ,ka) -( a ) e"i‘w‘:[—:il--wL 2 (1+iwT-iwT) + ]} .
2R-a ka (ka)?
(L48)

The first term in Equation (4.8) (apart from the phase factor) is

ES(k) + ( 2 )eik(-R'za) [11— —a—l—+ %2 5 +] (449)
2R-a ka (ka)

12
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This is the back scattered field for the c.w. case with the
reflected field component subtracted off. Hence it represents
purely the back-scattered diffracted field, i.é., the creeping
wave terms.

In Appendix E, it is shown that G(T, ka) may be split up into
two parts. One part equals the c.w. creeping wave term, and the other
transients of the order of (a/R) (ka)—l. It can be showﬁ that the
CeWe creeping wave terms of G(T, ka) cancel out those of Equation
(4+9). Hence since the remaining terms in Equation (4.8) are of
the order of (a/R) (ka)'l, we see that the section of the tail for
the received pulse for 2a/c { T< 2ac + T is of the order of (ka)ml
of the magnitude of the "head" of the pulse.

The remainder of the tail i.e., T > 2a/c + T is given by

i

E" -’i_‘x [G(T, ka) - - C5(1-T, ka)] (4410)

This is composed of the transients terms. However it can be shown
using the decomposition of G(T, ka) in Appendix E that for the far
field, we obtain c.w. creeping waves plus additional terms for the
period 2a+Mmagcl 2a+Mma+4c T. A similar analysis holds

for the near field.

13
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Now consider case (b). For simplification assume that the pulse

length T is much greater than 2a/c. The head of the pulse is given by

(1) 0g TK 2a/c

r A [ 8 -iwT & ~iT J
E —_ - i — "1 +ooo oll
P =5 ()l 2 (5.10)

(ii) 2a/fe<TgT

ol (T):fi_‘x[e'iw[”m'za)/c] E5(k) - o(T, kaﬂ . (4.12)

We see that initially (T ~0) the head of the pulse return is of
the order of (a/R), this contribution being due to the specular point.
The pulse return builds up with contribution from the geometrically
reflected waves. Then we obtain direct contribution from the shadow
region and finally the contribution due to the c.w. creeping waves.
When T approaches T, the pulse return approaches the c.w. return (for
T,sufficiently large, such that the transients are negligible). Hence
if ka is sufficiently greater than 1, the contribution from the specular
point is dominant in the head of the pulse return.

The tail of the pulse is given by
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(1) TLTL T+ ?28/c

pR(1)=T Jo it [k(R28) sy, a2,
'(0)=1 {7 [3 (42 (42

~iwt a
-G(T yka) ~— \) e 3+ 2 (141w T-1T) + oo
2B8~-a, ka (ka)2

(4413)
(1i) T t2afe (T

-jioT
Er(’l‘):- ?X E}(T, ka) -e

G(1- T, ka] . (4.14)
It can be shown that the initial part of the tail of the pulse
given by Equation (4.13), using the decomposition of G(T, ka) given
in Appendix E, behaves like the c.w. creeping wave terms (terms the
order of (a/R) (ka)l/3 exp [- (ka)l/3 constanﬁ] in the far field),
plus terms of the order of (ka)-l (a/R). Hence for large ka this
tail section is of the order of (1/ka) of the head of the pulse.
The remaining section of the tail Equation (4.14) will give us
CeWe creeping waves for a short period of time plus decaying transients

which initially are the order of (1/ka) of the head of the pulse.

15
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The tail of the pulse return is calculated for case (b). The frequency
w is taken such that ka = 1, and the distance of the observer R is given by
R/a = 200. The initial pulse length T is assumed to be sufficiently large
such that the head of the return pulse has approached the c. we return when

T= T - 0. ioeo,

@) = £ forr =T-o.

For this case ka = 1, ¢ should be greater or equal to about 10 a/c.
In Figure 1, the absolute value of the electric field for the tail
of the pulse return, normalized through division by the absolute value of

the ce We return, iec.)
r s
= |gm| / |Fw],

is plotted versus x = (T - T) —z-, where T has been defined as the time
measured from the initial part of the pulse return.

The tail may be split up into several regions. For 0 x< 2, the
tail is composed of contributions from the reflected waves other than that
reflected from the specular point, plus creeping wave terms. For the

repion 2 x << 2 4+ T, the contribution is due to all the creeping wave

terms plus some transients.

17
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In the neighborhood of the point x = 2+ 7 i.e.,
T= T+ (2a +7)/c,

there is a drop in the electric intensity. The physical reason for this,
is that'the. observer is no longer receiving the creeping wave contribution
which goes half-way around the sphere. This certainly substantiates tne
physical significance of creeping wave theory.

The distance R of the observer from the center of the sphere will
affect the tail. The xﬁain effect will be in the creeping wave contribution
which will tend to decrease as the observer moves toward the sphere. (see
Appendix F), and this becomes significant for distance R such that ka2/2R>,l.
However, for very large ka, the creeping wave terms become negligible, so
condition ka2/2R>)l can be removed for practicgl purposes. For ka in the
resonance region this condition numerically is the same as, saying R > a.

The other terms do not significantly change as R decreases provided

that R > Qe

Conclusion

For a fixed frequency e , the size of the sphere will affect the
masnitude of the return pulse. At resonant frequencies there is a sig-
nificant tail to the return pulse. At high frequencies, the tail is
negligible.

For ka»1l, the initial part of the tail(i.e., in the time interval
T < T< T+2a/c)will be of the order of 1/ke of the head of the return

pulse. The remainder of the tail i.e., T > T + 2a/c, decays quite rapidly.

18
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Appendix A

Kline-Luneberg Expansion for the Back-3cattered Field

When a plane harmonic wave of frequencyw = ck is incident on a
perfectly conducting body, the portion of the scattered field due to

reflection only can be represented in the form

~ 2
E = e" [E +EX+E X +J (A1)
o T 2

If the incident radiation is being propagated in the direction
of the z-axis and is polarized in the direction of the x-axis, and
the scattering body is a body of revolution with the z-axis as sym-

metry axis, then by Schensted (Ref. 3) we have for the above field

component s
¢ [n
P . h
= [ 2 [P S 122 L ds (A.2)
n \ h h | AT P o
1 2
o] s A
E == (V-E -f* P+ 0 As
B=sn (VE DG Pre) nf (4.3)
where
z=1(p)

/ 2
defines the surface of the body and p = x2+ T e

19
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The curvilinear coordinate system (P, s, §) is described as
follows: Through each point in space (exterior to the body) there
passes a ray which has been reflected from the body:

P is the distance from the z-axis at which the ray hits the
body

s is the sum of f( £ ) and the distance along the ray from
the body to the point

@ is the angle between the xz-plane and the plane formed by
the ray and the z-axis.

The metric coefficients are defined as follows

2 2 2 2 2
il =nd ds +h d
L 4Pt 2¢2

and

2f11(s - f)
h =14 ————— (A4)
(£1)2 41

2ft (s - f)

h = pt+ — .
2 )9 (f')2+l

In addition, Schensted (Ref. 3) showed that

1t
i

0

....8.__ [_ COS¢'E\+ Sin¢z] (A05)

hl hy

20
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The problem at present is to evaluate the coefficients E in the back-
n

scattered direction, for the case when the body of revolution is the

sphere.

For a sphere of radius a, the equation of the illuminated face is

(p)=a-Va-p? (446)

and the back-scattered direction represented in the coordinate system
(ps s, @) is given by p = 0. If we use the fact that the back-scattered

field will be polarized in the same direction as the incident field, we

have that
E 1) =0
y(p =0)
(A7)
(E [ /i\ ) = O.
n 2 (f) = 0)
Thus we just have to evaluate
£ -1) (.8)
n X (f = 0)

A
E « 1 can be expanded in the form
="' x

~ o 2 L :
_I:;‘_o.l =A +§ [Bo c032¢+00]+ P [Do cos2§ +EO 4 eoe (A9)

=x o
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and it can be shown that
E
Hence for back-scattering we will require

Ab’ Al coey An,

but fof present purposes we will just compute AO, Al’ and A2.

Now it can be shown that

o A 2
E e 1 NO
B -i~v0(p)

L
L0 (P

H

Hence we have

E.e %

/_

Vz (E+T)ds+0 (Jol").
o “x

NI:J>

/hl hy R A 2
2 \% (E_l- gx) ds+0 (p°)
’hl h

H;M

A
Now in order to compute (E -1 ) we require [Vz (E e )]
2 Tx 1 Tx

22
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.€X= A+ [Bn cos2f + Cn:} +;7h [Dn cosf +En + oo (A.10)
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(A.12)
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It can be shown that if

u= [An + Pz Cn+ ))h En+-...] + cos2§ [an72'|'an>1”L +..‘] (A.15)

where A y C , B, «¢s are functions of s only, then
n n n

2 _ | 2 A L _* % 2, .3 4
Vu-l:An+J> C + P En+...] +cos2¢[Bnp tD p +] (A.16)

2
w O A 4 d 2
A= “+( A“Mc ( 2 ), (A7)
'n Os? 25 + a s D\ 2s+ a

and Cn depends upon An, Cn, En only. All the starred coefficients are

where

functions of s only.

Thus in order to compute [V2 (E ey )] we just require
-1l ~x P=0

the coefficients A1 and Cl.

Similarly it can be shown that in order to compute Al and Cl,

we require A , C , and E
o © o

These in turn are found from the expression

A AL A
Eo/_j:—_-. L -cos¢f>+sin¢¢ o i
™ Tx yh n - =1 7z
1 2
2
(£1)
= - 12 2 + cos2(f 5 L.
(£1)241 |/ by by (£1)* +1 h b

-_-_E\O+ copz YE p‘q....] + cos2f [Bop2+...] (A.18)
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Computing the coefficients, we have

[If?. fl.\] =- & (A.19)
° X p=0 (28-!-8.)

: 2 a2
[E iy = L 1 - 5 + ] (4.20)
—1 -szo AT | (2s+a) (254 2a) (2s -t-a)3

A -1 1 3a 502 34
[Eoi] = ) 5 - 3+ L - 5(A.21)
2 X p=0 16m° [ (2s +a)° (2s+2)” (2s+2)* (2s+a)

Now for back-scattering s = R - a, where R is the distance of the

observation point from the center of the sphere. Hence we have

3 B3
F=-% a  Ak(B=2a) . ", + + . (4.22)
X (2R - a) ka (ka)® (ka)’
and
L) (4.23)
1T T TR '

a(R-a) (2R2 - hRa+3a2)

= ‘. (A.24
“2 (2R-a)" )

2L
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The far field limit of the above coefficients i.e.

i 1
- -0 (=
a rnv ( )

was checked using an alternative method of computation; this method
is based upén a modified Watson transform of the Mie series [Appendix F] .

In addition the far field limit of the term a3 was calculated, yielding

139

[CATEENRN | &~ W

By =i 0 F (A25)
Table I
Zeros of h(l)(x)
n
-1.0i
* 8660254 - 1.5
+£1.754,381 - 1.838907i | -2.3221851
£2.65742 - 2.103791i | £ .867181 - 2.8962i
$3.571022 - 2.3246741 | $1.74266 -~ 3.351961 |-3.6467381
492673 - 2.515931 | £2.626274 - 3.7357051| £ .86750965-4.248361
£5.420692 - 2.625677i| 23,5171 -~ 4.0703i [£1.739 ~4a7581  |-4.97LT7861
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Table II
n Zeros of [Y hfll)(Y)] !
1| % 8660254 - 51
2|%1.807339 - .7019642i|-1.596072i
3[E2.757856 - .8428622i|% .8705692 - 2.1571381
LIE3.71478L - .95422991|%11.752303 - 2.57141 |-2.948742i
5124.676410 - 1.0476741 |%2.644316 - 2.908062i|% 8689259 -345542654]
6|£5.641635 - 1.128005i [£3.54488 - 3.195241 [21.74305 -L4.033541 |-4.2845951
7|26.609716 =~ 1.201203i (£4445256 - 3.44761 [22.6233  -Loi5Li |E .868L0
-4.+897191
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Appendix B

(1)
Zeros of h_ (x) (n integer)

From Erdelyi (Ref. 4), Watson (Ref. 5) the number and position
of the zeros of hil)(x) are given as follows:
(1) hﬁl)(x) has n zeros;
(ii) these zeros lie in the lower half of the x plane and lie symmetric

with respect to the imaginary axis.

The zeros of hﬁl)(x) for n small have been computed, and are
given in Table I.

The large zeros of hél)(x) can be estimated as follows:

We will consider just those zeros which lie on the imaginary axis
and those in the right half-plane, i.e. for real part x> 0. The

remaining zeros are obtained by symmetry.

From Watson (Ref. 5, pgs. 262-267) it can be deduced to the first

approximation (in a similar manner as is shown in Ref. 6y pgs. 218-219)

that the zeros satisfy the following equations:

n+1/2
— = cosh ¥ (B.1)
X
i(n +1/2) [Tann -7 T 4w (B.2)
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where £ is an integer lying in the range

n+1/2
2

0g £ - i\<

and

-_’gl'.<arg (-1 sinhb")(lz“ .

n+l

As a special case consider n an odd integer; we can then take L =

Set ¥ = K + 1T . Bquation (B.2) becomes
2

ifr «Z - 1/14- T 1T

[cothoc-og]-.__z-i(-—-—-——) -

2 n+l/2 2
1eBe
O( =c0th0§ Y
n+ 1/2 (1)
Thus we have X = = i ————— . This is the root of h ~“(x) which

sinh & n

is purely imaginary. However, we are mainly interested in the roots
which have the smallest imaginary part. These are given by[= 1, 2, 3,

etc. For the case £ small (B.2) becomes approximately

Tanh P =2 Y

iee. J v 0.
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Thus we have Xns (n 4+ 1/2) and the roots with the smallest imaginary

1/3 « In

part lie in the vicinity of l X-(ne4 1/2)1 ~ 0 (n+1/2)
this region we can obtain better approximations to the zeros by using
the Airy integral approximations. [Fra.nz (Ref. 7)] .

Let §_ be the zeros of the Airy integral A(q) where

T 3
Alq)= S_cos (t” - qt) dt . (B.3)
0
2X
l .
Then, if Xf represent the roots of Hili 1/2(X)= e hr(l )(X)s
we have the relationship
: =2
£ X 1/3 im/3 6 1/3 _sar/3 @
(mar/y=xfe (2’ TP (= TPl )
n 6 L x 180

where El:z have the values

£ 9
3.372134
2 5.8958L3
3 | 7.962025
Lo| 9.788127
5 | 11.457423

| 2/3
Z . a o 'IT:‘ - '—'l—" °
and for large C}Z 3 [ > (L . )]
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Thus for given (n+ 1/2), the roots in the right half plane

with the smallest imaginary part are given by

1/3 n
n+ 1/2) / e1’"'/3 3 - 1 ( +1/2

)-1/3 ~iT/3 2
2 20 6

Xfm (n4+1/2) - (

(B.5)
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Appendix C

Zeros of [Y hr(ll)(y)] '

The zeros of [:Y hgl)(Y)] ' lie in the lower half plane and
are symmetrical with respect to the imaginary axise [:Y hil)(Y{] '
possesses (n4 1) zeros. For n small the zeros are computed and
tabulated in Table II.

The large zeros may be handled in the same manner as those of
hil)(X). We will just consider here the zeros with the smallest
imaginary part. These again are found from the Airy integral approxima-
tion{:Franz (Ref. 7)] . Considering only the zeros in the right half

plane we have

L 2
AR 1/3 i1v/3 6 1/3 -im/3 3 q
I CT T Ty e

where the q‘éZ are the zeros of the derivative of the Airy integral A(q)’and

have the values ,
£ %,
1 1.469354
2 Lo68LT12
3 6.951786
I 8.889027
5 10.632519
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3 2/3
For large ¥/ s qQ, v 3 [-777_- (L - T)] / o Thus, for a particular

£

n, the zeros in the right half-plane with the smallest imaginary part

are

: 2
L n+1/2 1/3 iT/3 6 1/3 _im/3| 3 dp
Yn —(n+‘l/2) - ( 6 ) e ?Z - (n+1/2) e 'é-a-q—-','—z"o‘ .

y4
(c.1)
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Appendix D

Estimation of A (Kp), B (Yq) for large n.
n n n n

Now from (3.3) we have

hfll)(R/a ) hr(lz)(xfl)

p
A )=
nn

2 [hr(ll)(Xi)] '

and using the Wronskian relations this becomes

i hlgl)(R/a xﬁ)
A (Xp) = -
n n

(Xi)‘z {[hr(ll)(xi)] 1} 2

We will consider the zeros Xﬁ to lie in the right half-plane.

have from Franz (Ref. 7)

(2),,p
hn (Xn) Xi 1/3 e]_'“'/}
- 1T (T ) ]6-
[hr(ll)(xg)] ' [A'

In order to evaluate

[(R/a Yg Yig/a Yq)] [Yq o2 (Yg)] '

B (Yq) = ,
o a (1),.ay7"
(1) Z[Yn h (Yn)]

\SY)
AN

(D.1)

(D.2)

(D.B)

(Dok)
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we make use of the second order differential equation for the

spherical Hankel functions and the Wronskian relation to obtain

[Yg hiz)(‘_{g)] ' ) -21

[Yg hr(ll)(Y:)] h [_-n(n +1) - (Yg)2] [hr(ll)(‘f:)] 2

(D.5)

which is approximately [Franz (Ref. ’7)] for zeros in the right

half plane

q

Y .
e 1(T/2) (_2__)2/ e

a
(1)

3k

[#a)]? [p(n+1) - 7]

(D.6)



THE UNIVERSITY OF MICHIGAN

2778-L~T

Appendix E

Asymptotic Evaluation of G(T,ka) for Large ka

The problem is to determine the behavior of the following series

for large ka

P P
6(1 ka) Z (-1) (n+3) Z o) "(“[R'za]/c) ieXy/a

1 (X ~ka)
(E.1)
n+l q
Z B (Y ) -(T+ [R—Za] /c)icYn/a .
(Yq ~ka)

P -1 -1

Although the terms contain factors of the form (X -ka) , and (Yg -ka)
P

which certainly decrease as ka increases for most Xn and Yg, there exists

q

a large number of Xﬁ and Y such that (Xg ~ka) and (Yi -ka) are the

order of (ka)l/B. The zeros such that this is true, are those zeros

in the right half plane with the smallest imaginary parts, and are

given by n~aska. It can be shown that the terms in Equation (E.1l) above

‘ corresponding to these zeros, apart from the decaying exponential factors,
individually would be the order of a/R. However, because they contain

, . 1/3
a decaying exponential of the form expJ -(T-2a/c) (ka) constant

these terms become negligible in a very short period of time.
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Thus the problem reduces to an evaluation of G(T,ka) for
large ka for (T - 2a/c) small.
For simplification of analysis, we will consider the far field.

We will take the range of variable T to be

2afc T < 2afc +Tra/c.

We have for the far field

o ta(a )n+ 1 eimcg/a
An(X )= R(xp)3 7 (E.2)
n [h(l)(Xp)]
n n
n+l iRY:/a
a, _ a(-1) e
B (Y )= . (E.3)

q 1
RY: n(n+1l) - (Yn)ZJ [hr(l )(Yg)] 2

At present we will jlist consider those terms of expression (E.l)

corresponding to the zeros of h (X)' = 0. i.e¢: the expression

n
, 00 n -(T—2§6)icxi/a
e
— Z (-D”(m%)Z (Eol)
TR =1 p=1  p.2 (1) )2
(Xn). [Ki _ka] [Hn+%(xi)]

36



THE UNIVERSITY OF MICHIGAN

2778-4-T

1
We have defined {Xi} to be the set of n zeros of hfl )(X) =0,
but we have not identified the number p with any particular zero

as yet. The zeros{XE} lie on the curve - in Figure 1.

¥
z=X+iy
z plane
X

Xn xl

n n
X3 n
£ n .

FIGURE E-1

We shall number the zeros in succession p= 1, 2, «s., such

that

1 2
(21 - arg Xn) < (2T - arg Xn) £ (2T - arg Xi) & eee

where 0 Larg XP< 27 .
n
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Now because of symmetry

(E.5)

(n-p) -
X = - Xp

n n

where the bar denotes the complex conjugate. If n is an odd integer,

. An+l)/2 e :
there is a zero Xn which lies on the negative imaginary axis.

Define oLp(ka) by the following equation
n

~(1-28/c)icX /a
e
<L (ka) = e  (E.b)

n P2, D (1) p. |7 ]2
(Xn) (Xn - ka) Hn +l/z(xn)J

Then it follows from (E.5) that

(T-Za/c)icii/a
-e

o (ka) =

n -p 2 -p (1) ~p. 7!
(Xn) (Xn+ka) [Hn +l/2(-xn)]

2

(T-2a/c)ic X /a
e n

i

(xn) (Xn+ka) [Hn+1/2(xn)]

= K (-ka) (E.7)

n
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Hence expression (E.4) becomes

<n/2

2a R n p —p—_'
§ (-1)" (n+3) [.x (ka)+ o <-kaj
TR p=l n n
N=le2yeee
(n+1)/2
4 2 (-1) <n+2>o<n (ka) .

TR n=1,3’ooo
(E.8)

We shall split the expression (E.8) up into several terms

<n/2

Z (-1) (n+1/2) Z Y'o(p (ka) + <>(f1 (—ka)]

oo
(n+1)/2
— Z (1) (n+1/2) o« / (ka)
#Rn=l-3-5 n

00

2a : n

N Z Z; (-1)" (n+d) [«p<ka)+ap(-ka>]
"R p=1 n=N(p) n "

§ =2 i (-1)" (n+d) Z [«i(kanai(-ka)]

qrRn=N +1
P= =P n) (Eo?)

where No is an integer, and N(p) and P(n) are defined below.
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The first series in (E.9) corresponds to all but the pure imaginary

zeros of hﬁl)(x) forn=1; 25 eeeys No. The second series corresponds

to all the pure imaginary zeros of h(l)(x), forn=1, 3, 55 Ty eee o
, n

y

z=Xx+1y

FIGURE E-2

To see what corresponds to the remaining two series we must consider
1
Figure E-2. Region 1 represents the region containing the zeros of hg )(x)
forn=1y 25 eee) No but not those for n > No' The third and fourth series

in expression (E.9) correspond to the zeros in Region 2 and 3 respectively.
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For the particular p, let the zeros Xi which are contained in

Region 2 be given by

n>/N(p).

N(p) must have the following properties:
(1) N(p) is a large integer > N
o
(i1) ¥(1) = NO+ 1

1
(iii) for a given p, N(p) must be such that h( ) (x) has at least

N(p)
2p or 2p+1 zeros, for N(p) an even or odd integer respectively.

P(n) is defined such that the fourth series of Equation (E.9) contains

the terms corresponding to the remaining zeros, not included in the other

three series of (E.9).

In'expressicn (E.9) the problem is to evaluate those terms due to

the zeros belonging to Region 2.

For these zeros, the series is slowly converging. Let us consider

then

(e 3]
2 Z Z (-l)n(n+%) [o(p(ka)+ o(p(-ka)] . (E.10)
TR n n

p=1 n=N(p)

Define the following

I (ka)= (-1)"(n+3) o(i(ka) . (E11)
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Then expression (10) becomes
Z I (ka) + Ip(-ka) . (E.12)
=1 P
Now
- n -[Tc/a—Z] i
(-1) (n+3) e,

Ip(ka)- Z . (E.13)

we) (PR (R _k){[ (1) (Xi)]'

For the present set Tc/a~2=T. We are interested inT in the
range Og?f < T .

Define {Zp(v)} as the zeros of H‘(rl) Zp(v)] = 0O where

v - Zp(v)l <

v - Z(p+l)(v)[< etce

Zl(v), Zz(v), eee are related to the zeros of the Airy integral ?11, az, ces

for v large. We see that for v=n+ 3, and P 0

Z (nd-%):X'p .
p

n
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We shall assume that Z (v) is an analytic function of v and is uniquely
defined. This can be shown to be true for ,Zp(v) - v’ ~ O(vl/s), for
which we may use the Airy integral representation which holds for
- /2L arg v 3 T/2 [Ref. 8_7 . However we must place a cut along
the real axis of v about the origin. Since the number of zeros of h‘(fl)(x)
for real v, is Mthe even integer nearest to v, unless v is an integer, in
which case the number is v% [Ref. 9] ’ Zp(v) is not defined on the cut.
N(p) has been chosen so that the necessary cut in the v plane for the func-

tion Z.p(v) is to the left of N(p). Equation (E.13) may now be written in

the contour integral form

Ip(ka) = '—%- § M
v v 2 - (1) '\®
c cosTr [Zp( )] [Zp(v) ké{} [Hv (ZP(V))]

(E.14)

s
-iTz_(v)
p dav

Let Fp(v,ka) be the integrand of (E.1l4). .

I (ka)= g F (v, ka) dv .
P P

c

Since the integrand vanishes exponentially as |v]->o-o for

Osr'f"<’ﬂ’a/c, we may set
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- g F (vyka) dv=21 i{Sum of Residues}
p _

c+c!

where ¢! is a straight line passing through the real v axis at a point
in the interval given by (N(p)-1/2, N(p) +1/2). The integrand possesses a
pole v = y , where Z (&) - ka= 0. If v =u is to the right of ¢!,

p
then

5 Fp(v, ka)dv = - j F (vy ka) dv - 2mi (Residue at v= 1)
- P
c c!

and

5 F (v, ka) dv= - IF (vy ka) dv
P 1Y

c c!
if v =p is to left of c¢'. Hence we have for ka 7 N(p)

I (ka) = - 5\ Fév, ka) dv

p
ct (E.15)

)
-iTka
T )y €

(1)
(ka) {[ (ka )] } osTru-c-l—; zp(v)

Lk
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v plane

FIGURE E-3

rly it may be shown

I (-ka) =~ {5 F(vy,-ka) dv ) . (E.16)
P p
ot

For P :1,2,3,..0 we have

iy 1/3
Yy = ka + (ka/é)l/3 el /3 Ep + 0(6/ka) / (E.17)
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where {ﬁ} are the zeros of the Airy integral. What does the residue
p

term in (E.15) represent? From (E.4), (E.9) and (E.15) the decomposition

of G(T, ka) gives us terms of the form

-ﬁka
2 a y e
+ [ — . (EolB)

R ' dz_(v)
(ka)2 [ngl)(ka)] ZCOSWU‘—R"):"

dy

Assuming that (Zp(v) - ka)possesses a simple zero at v = X we have

(1) (1)
@, (ka) & _(v) _ |4y (ka)
d ka dv dv
v=y v=)y v=y
Hence (E.18) becomes
(avd
-iTka
2 a v

. (E.19)

e
' (ka)2 [HLI)(ka) :]’ -z—v-[ Hl(ll)(ka)] cosTrV

But this is the creeping wave term for the c.w. back-scattered field

in the far zone (see Appendix F). Hence the residues are c.w. creeping

wavese.
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It can be shown that the integrals over the péth ¢! behave like

1/ka for large ka.

The remaining series in expression (E.9) are rapidly convergent
and decrease as 1/ka for large ka.

A similar discussion holds for the terms in expression (E.l) cor-
responding to the zeros Y;l of [Y hr(ll)(Y)]'zo. Thus we see that for the
far field, G(T, ka) can be decomposed into two parts for 2a<cT< 2a+ TTa.
One part equals the ce.w. creeping wave term. The other represents

rapidly decaying transients of order 1/ka.

L7



THE UNIVERSITY OF MICHIGAN

2778-4~T

Appendix F

C.W. Near-Zone Back~Scattering from Large Spheres

If a plane harmonic wave of the form

i ikz -iwt
E=% e (F.1)
=7 =

is incident on a large perfectly conducting sphere of radius a, the

back scattered field is given by [Ref. 10, P 56&]

W 00 .
et Lot Z (4" (a+1/2) [a +1 bn] (F.2)
n=1
where h(l)(kR)jn(ka)
a 2 (F.3)

" W (a)

_ [kR hr(ll)(kR)]' [ka jn(ka)]'

kR [ka hr(ll)(ka)] '

b (Fob)

n

-iwt
Henceforth we will drop the time factor e * o Using the series
expansion
-ikR 00 n
e =2 Z (-1) (n+1/2) j (xR) (F.5)
n

n=0

48



THE UNIVERSITY OF MICHIGAN

2778-4~T
we obtain
B(k) = (1 + 1)+ 1 eikR - 2ika ) _i_ e—ikR _e—ikR (F.6)
1 2 kR 2kR
where
w‘ . n .
l: Z (-i) (n+1/2) [Jn(kR) - an(k)] (F.7)
n=0
t
kR j,.(kR
12=§.i (-1)" (n+1/2) L J:R )] -b (k)4 . (F.8)
n=0
Now we have
: 2
. \/’; o3/LTTi S ey [Hf, ) w) 1 (ca) - 1 ) Hfrz) (ka)_] N
1 Yor 2 cos v vmr/2 (1)
o] 2 e Hv (ka)
o g v
12= 2 2 (kR) C cos v U * (F.())

VxR H(Z)-(kR) ' Vka Y§(l)(ka) . VKR Hf,l)(kR) , Vv ka H§2>(ka) '
v M dv
, iy /2 [‘/ka Hfrl)(ka)] '
e
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where C is the contour surrounding the poles v = 1/2, 3/2, 5/2, «as

as shown in Figure F-4.

FIGURE F-4

It can be shown that

CS:-_- g —§ (F.10)

2 1

where D is the contour surrounding the polesof the integrand (i.e.,
for I1 the zeros of Hsl) (ka) ), and Dl is a line integral extending
through the origin of the v_plane. The line integral can be replaced
by the integral containing the even part with respect to v of the

integrand, and this in turn can be replaced by twice the integral

extending from the origin to infinity.
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Hence we have

_1/5
H(z)(kR) Hil)

mw 3/h1Tl v sin vIr [v

L=+ [—
2 VT2 (ka)
v

(ka)-Hil) (kR)HS,z) (ka)]

(2)

- 3 v (1
3/411'1 Z 7, e 3/2 v, H?e)(kR) Hg, (ka)
== (F.11)

(1)

(ka)

1/3
Z 1 T/3 q+0 ( 1
£ (ka)

_ (1) i
where x:z are the zeros of I-IV (ka)= 0, and ¥ Z-—ka+ 1/3);

and g
y4

Let us first consider the residue portion of Equation (F.1l). The

are the zeros of the Airy integral and O </5( v/2.

dominant part is the term

LT T 3/2
1y, ™32 (kR) . (F.12)
v

L

N i, T 3/2 : .
Since Vv, lie above the real axis, e is a decaying exponential.

£ _ 1/3
The decaying exponent is of the order of q/Z (ka) « Now in the far field

expression (F.12) behaves like

i%, T03/2 2 ikR - iV, /2 - i 7T /4
2 2 Ty
T kR
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2
and in the region where kR »>1 and ka /R nv0(1l), expression (F.12)

is

exp{ 1%, T -1 41 (kR+1a2/28) + 1 (a/R) (kaf6) eiqu
mT kR L

2

and in the very near field as R —> a, it becomes the order of

ei Y T 3/2

Essentially for very large spheres, the residue terms are more
important in the far field than near field in the direction of back-
scattering. Physically this is what we expect. To reach a point in
the near zone the diffracted waves must creep a greater distance around
the sphere, and since their attenuation depends upon distance travelled
as a surface wave, the diffracted waves represented by ﬂhe residue
terms must be attenuated more in the near zone..

We will now consider the integral portion of (F.11). It can be
shown that the integrand has a saddle point at v= 0. We can now
approximate this integral in the vicinity of the saddle point. This
can be done in the same manner as is done in the paper by Scott (Ref. 11).
We will then obtain a portion of the field corresponding to the incident

wave plus the geometrically reflected wave.
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Now, omitting the residue terms

o o~ B V2
-1 ~ikR v sinvTm  S5on
ey o — e 2ikR av
1 2(kR) cos v
o

e
cosv T

00 e~y8 1
ikR-2ika vsinvTr V2 1 -
G 5 TV T AR 4

ika  2ikR

-1 4

TP o0 & P 2[1 1 ]
v
e dv

e 1
v - —— +0 (—). (F.13)

If we evaluate I2 in the same manner as Il, then substitute Il,
and I into expression (F.5)s we will obtain the diffracted waves

2
(residue terms) which we can ignore, plus the geometrically reflected

wave ioeo’ »

s, ikR-2ika a 1 ] -
E = - %{ e (2R-a) 140 (E)"' . (Fplh)
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We can evaluate the higher order terms in the integrals of I and 12,
1

by Scottts method, but for the near field it is easier to use the

Kline-Luneberg method. We obtain (Appendix A)

N 2
A elkR-Zlka a - I 2(R~-a) o ( 1 \
= “x (2R-a) ka (2R-2)? (ka)?

For very large ka, E_S behaves like the back-scattered field from a
parabola of revolution with semi-latus rectum L= a/2.
Now when R-»a, _I_E_S approaches a plane wave
s A eikR—Zika

E— -1
X
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