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ABSTRACT

A NEURAL NETWORK MODEL OF HUMAN
PATTERN RECOGNITION

by
Bruce Alan Whitehead

Chairman: Stephen Kaplan

A mechanism for human pattern recognition must not only detect, it
must infer. The pattern recognition system must sample an unreliable,
noisy environment in such a way that the information in each sample
focuses further sampling upon those features most likely to contribute
further significant information. When this cumulated partial informa-
tion becomes significant, the system must then infer the remaining
features to complete the pattern.

Formal modeling theory allows such a mechanism to be expressed in
terms of rigorously connected neural and psychological constructs.
Briefly, (i) consistency between neural and psychological formulations
of the model is shown as a mathematical homomorphism; (ii) simulation
of the model yields behavioral predictions; and finally (iii) these
predictions are tested (and confirmed) in a human pattern recognition
experiment.

The model is based on Hebb's [1949] theory of the neural reverb-
eratory circuit (termed a cell assembly or netlet) as the fundamental
neural unit of cognition. A quantitative transition function for such
a circuit is derived from the transition function of individual
neurons. The components of the resultant lumped model are thus cell
assemblies rather than individual neurons. With this change in scale,
neural networks large enough to produce psychological behavior may

feasibly be modeled and simulated.



The central hypothesis identifies this neural network mechanism
with the psychological construct of schema [Attmeave, 1957; Posner and
Keele, 1968] , the internal representation of an object or concept.
Simulation of the neural network structure then predicts a property of
the schema not previously investigated. This property concerns the
information stored in the schema about its constituent psychological
features. The prediction is that, in addition to a central tendency
and range for each feature, the schema contains information about the
environmental correlations between features.

This prediction is tested with human participants in a pattern
recognition experiment. By isolating the effect of feature-correlation
information, the design differentiates the predictions of the neural
network model from those of other currently accepted models. The
effect predicted by the neural simulation--in which feature-correlation
information influences the pattern recognition decision--is confirmed

in the experimental results.
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CHAPTER 1
INTRODUCTTON

How can a system of simple, rule-governed components exhibit
intelligent behavior? To answer this question for electronic
components, one must design such a system -- the goal of artificial
intelligence research. To answer the question for neural components,
one must understand a design that evoiution has produced. Our
central concern here will be to understand the existing neural
design, but such a design is bound to appear quite arbitrary unless
we know the problems that the design is solving.

0f course, when a problem is solved, it's not a problem any
more. In that sense, a successful design covers its own tracks, and
it is difficult to see the problems that the design is solving.
Designs produced by evolution are often prime examples of this.
After millions of years of fine tuning, such designs may operate so
gracefully and effortlessly that one is deceived into thinking that
easy problems are being solved. For example, perceiving the objects
right in front of you does not seem to be a problem at all -- there
they are. Only the experience of surgical patients who have been
blind since birth and see for the first time as adults [reviewed by
Hebb, 1949] convinces people that ordinary perception is a
sophisticated process that takes months to learn.

Observing a successful design at work may obscure the problem
being solved, but by the same token trying to create such a design

yourself may make the problems painfully obvious. "Anything looks



easy until you try it", and artificial intelligence researchers have
tried. Their experience, gleaned from long hard effort, has given
artificial intelligence (AI) research two qualities:

(i) Skepticism for any claims not accompanied by working models;
and

(ii) Appreciation of the fundamental problems that must be solved
by any design for intelligence.

The first gives AI a type of 'show me" rigor that is sometimes
difficult to attain in cognitive psychology -- though we will try to
attain it here. The usefulness of the second quality to psycholo-
gists depends upon a conviction that certain inescapable problems
must be solved in order for any system, neural or electronic, to be
intelligent. Although the solutions to the problems may be very
different in the two cases, the problems themselves should be the
same.

This conviction rests upon the observation that the two fields,
cognitive psychology and AI -- employing different assumptions,
different methods, and different sources of data -- are nevertheless
converging to the same list of fundamental problems. First let us
hear from Patrick Winston of MIT, a leading spokesman for the Al
community, Winston's recent [1977] book identifies the crucial
problems as knowledge representation, search, constraint
exploitation, and control mechanisms. Xnolwedge representation is
the question of how to code knowledge into the system in such a way
that any piece of this knowledge can be efficiently accessed when it
is needed. The organization or structure of knowledge as coded in

the system is termed a knowledge base. For a human or computer



attempting to make a living in the world, the knowledge to be coded
concerns the physical and cultural environment in which it operates.

The other fundamental problems listed by Winston all arise
because, out of the total knowledge represented in an intelligent
system, only a small part is appropriate for guiding the system's
behavior at any time. Thus, in any particular situation, cues about
that situation must somehow guide a search through the knowledge
base to find knowledge appropriate to the situation. Winston
divides this task into three problem areas: design of the search
process in general, exploitation of constraints from the knowledge
base to narrow down the search, and control mechanisms which
evaluate the type of search needed and adjust the search process
accordingly.

Cognitive psychologists, relying on completely different
sources of data, have come to quite similar conclusions about the
basic problems that must be solved in the design of an intelligent
system. The idea that the operation of the brain might be
explicable in terms of knowledge representation and search appears
as early as the work of William James [1892]. James conceives of
the knowledge base as an associative network:

In mental terms, the more other facts a fact is associated with
in the mind, the better possession of it our memory retains.
Each of its associates becomes a hook to which it hangs, a means
to fish it up by when sunk beneath the surface. Together, they
form a network of attachments by which it is woven into the
entire tissue of our thought. [p. 161]
He also considers the problem of search through this network:
In short, we make search in our memory for a forgotten idea, just

as we rummage our house for a lost object. In both cases we
visit what seems to us the probable neighborhood of that which



we miss., We turn over the things under which, or within which,
or alongside of which, it may possibly be; and if it lies near
them, it soon comes to view. But these matters, in the case of
a mental object sought, are nothing more than its associates.
The machinery of recall is thus the same as the machinery of
association, and the machinery of association, as we know, is
nothing but the elementary law of habit in the nerve-centers.

[p. 157]
Even the particular questions of how the search is constrained by
the content of the knowledge base, and how it is guided by control
mechanisms, are considered in James' chapters '"Association'" and
"Memory' respectively.,

The attempt to understand the human information processing
system in terms of the fundamental problems it is solving is even
more explicit in present-day cognitive psychology. Michael Posner,
for example, has written a textbook [1973] divided into two sections,
statics and dynamics of cognition. The statics section is concerned
with the representation of knowledge, with a chapter '"Representation
in Memory" and others investigating mental structures to represent
particular kinds of information. The dynamics section, on the other
hand, addresses the use of this knowledge to guide behavior. One
chapter is devoted to search strategies, with a subsection showing
how the representational structure constrains the search. Another
chapter investigates control mechanisms (such as conscious attention)
which adjust processing to fit particular situations and focus it on
particular parts of the knowledge base.

We have seen that artificial intelligence and cognitive
psychology are close to agreement on the fundamental problems that
must be solved in the design of an intelligent system: Knowledge

representation, search, constraint exploitation, and control



mechanisms. These two fields also share a common conceptual frame-
work in which these problems can be carefully stated. This framework
seeks to describe the system in terms of the knowledge being
represented, independently of the physical structures in which the
knowledge is coded. The relations among different items of knowledge
defines the structurc of the knowledge base, while the operations
performed on items of knowledge defive how the knowledge base is
processed. This conceptual framework provides a language for
explaining how the fundamental problems described above may be

solved in the physical design of an intelligent system. Thus, the
knowledge representation problem should be answered in terms of the
knowledge base structure, which is in turn reducible to the physical
structure of the system. The other three problems -- search,
constraint exploitation, and control -- should be answered in terms
of knowledge base processing, which is in turn reducible to the
physical transition function of the system.

The central concern of this dissertation will be the knowledge
representation problem. In attempting to show how the design of the
brain solves this problem, however, we will consider not only the
structure of the knowledge base, but also the information processing
functions that such a structure must be able to perform. Since the
design of the brain is ultimately neural, our approach will be to
make a rigorous connection between two different descriptions of the
human information processing system: a description in terms of
knowledge base structure and processing, and a description in terms

of neural structure and processing.



Our proposed mechanism will be based upon a theory put forth by
Hebb [1949] and further developed by Milner [1957] and Kaplan [1973],
in which each object or concept in a person's knowledge base is
represented by a neural reverberatory circuit. Associations between
various objects or concepts in the knowledge base are then coded as
excitatory connections between the corresponding neural circuits.
While Hebb, Milner, and Kaplan have each argued that human
intelligence can be explained in these terms, their arguments have
been mainly verbal. Our specific task here will be to develop a
mathematically rigorous technique for connecting theories of what
the brain is accomplishing (in terms of knowledge base structure and
processing) with theories of how the brain works (in terms of neural
structure and processing). Chapters 2, 3, and 4 will develop this
technique in general, for any hypothesis in which the components of
the knowledge base are neural reverberatory circuits. Chapters 5
and 6 will then apply this technique to a particular pattern

recognition task, yielding model predictions which are empirically

tested.



CHAPTER 2

INTUTTIVE DESCRIPTION OFF THE
MODELING TECHNIQUE

How do we recognize the identity of the features of a man,
whether we see him in profile, in three-quarters face, or in
full face? How do we recognize a circle as a circle, whether
it is large or small, near or far; whether, in fact, it is in

a plane perpendicular to a line from the eye meeting it in the
middle, and is seen as a circle, or has some other orientation,
and is seen as an ellipse? How do we see faces and animals and
maps in the clouds, or in the blots of a Rorschach test? All
these examples refer to the eye, but similar problems extend to
the other senses, and some of them have to do with intersensory
relations. How do we put into words the call of a bird or the
stridulations of an insect? How do we identify the roundness

s ?
of a coin by touch? [Wiener, 1948]

A polyp would be a conceptual thinker if a feeling of 'Hollo!
thingumbob again!' ever flitted through its mind. [James, 1892]

Wiener and James have described an essential characteristic of
intelligence -- the ability to recognize the same object or concept
even if its detectable features differ from one instance to the next.
Psychologists often refer to this processing as stimulus equivalence,
emphasizing the equvalence-classing operation which maps many
particular stimuli into the same generic object or concept.
Computer scientists usually refer to this process as pattern
recognition.1

The reason that stimulus equivalence or pattern recognition is

essential to intelligence is well explained by Anderson [1977]:

1Pattern classification is perhaps a better though less common term
for the case considered here (and in most of the literature) in
which the set of features and the set of categories or equivalence
classes remain constant throughout the process. Feature integration
is an equivalent psychological term for this case.



Situations rarely repeat exactly. One of the most useful
functions of a nervous system would be to be able to learn from
varying and noisy experience. In particular, the system might
seek to reduce the immense number of possible inputs into a
relatively few equivalence classes, which can be manageably
associated with learned responses: this is food, this is danger,
this is a friend.
In other words, this equivalence classing is crucial if behavior in
new situations is to be based on experience -- experience similar to,
but not identical with the new situation. Additionally, equivalence
classing vastly reduces the amount of information that must be stored

in the knowledge base, since

(i) only generic objects and concepts need be represented in the
knowledge base structure; provided that

(1i) the processing associated with the knowledge base performs
the desired equivalence classing, i.e. each particular
stimulus is mapped into the appropriate generic
representation,

These suggestions about knowledge base structure and processing are
so far based on functional arguments: how the knowledge base ought
to be organized for intelligent behavior in an unreliable environ-
ment. There is also psychological evidence, to be reviewed in
Chapter 5, that human knowledge is organized in this manner.

The goal of our modeling enterprise is to develop the
suggestions above into a hypothesis that not only agrees with
functional arguments and psychological data, bmt is also solidly
based on the properties of individual neurons.

Hypothesized neural mechanisms which operate on the retinal
image without analyzing its content (size normalization, for example)

are not in themselves sufficient to account for human pattern

recognition, Neither is the hypothesis that an object can be



recognized on the basis of a set of essential or critical features
which are always reliable indicators of the object's presence. As
Kaplan [1976] points out, the environment is just not that
cooperative. Both the environment in which human information
processing capability evolved and the present human environment are
characterized by uncertainty and by the need to make reasonable
inferences on the basis of partial information. Not only must an
object or concept be recognized from unreliable features, but the
neural activity corresponding to a single feature is variable in
itself, due to the stochastic nature of individual neurons.

Human pattern recognition therefore requires an equivalencing
mechanism: a mechanism by which the different neural activities
that signify a feature become equivalent at some level of processing,
and in turn a mechanism by which different subsets of features that
indicate the same object become equivalent at a deeper level of
processing, This is precisely the function of Hebb's cell assembly
mechanism (Fig. 1). In Hebb's mechanism, the different neural
activity patterns that signify a given feature are all part of the
same reverberatory circuit, and once the activation of this circuit
is sufficient to achieve self-sustaining reverberation, it does not
matter which particular activity pattern started the process. (The
reverberatory circuits which detect sensory features are shown as
solid circles in Figure 1.) Detectors for the different features of
an object are in turn connected together into a network; and in
different instances, different subsets of the features will activate

the network. (Depending upon which feature detectors are active and



i0

Sensory
feature
input

Network for Network for

recognition recognition of

of an object a more abstract
concept

FIGURE 1. Neural stimulus equivalencing.
Each circle represents a netlet (a

strongly interconnected reverberatory
circuit).

S

/



11

how strongly they are connected to the others, the activation of
undetected features may range from lowering their threshold, in
search of environmental support, to '"filling in'" such features even
without environmental support.) If the interaction of feature
elements for a given object is sufficient to produce sustained
activity in the solid-circle network, then the object is recognized.

This network representation of an object may itself become a
feature in the recognition of more abstract patterns, as shown in the
dotted-circle network. (The dotted circles are reverberatory cir-
cuits just like the solid circles, except that the features they
detect are not sensory features, but rather the more abstract
features that arise from the first level of processing.) We will use
the term netlet [Harth, Csermely, Beck, and Lindsay, 1970] to refer
to such a reverberatory circuit, which detects a sensory or abstract
feature. Our netlet is synonymous with Hebb's cell assembly.

This mechanism may be iterated to further levels of processing,
where the activity in a pattern-recognition network at one level is
detected as a single feature at some deeper level. Milner [1974] has
shown how such a mechanism might begin with the elementary feature
detectors (such as line and edge detectors) found by Hubel and
Wiesel [1962].

Figure 1 should not be taken to mean that netlets are spatially
localized in the brain. Anderson [in press, 1977] has shown
mathematically that even if netlets overlap considerably, so that an
individual neuron may belong to more than one netlet, the netlets can

still be "tuned" so as to remain functionally separate units.
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Anderson shows that this tuning will automatically result from a
simple contiguity learning rule, similar to that proposed by Hebb.
Anderson also points out that any model which involves
distributed processing, in which the functional units are not
spatially distinct, would be hard to test by neurophysiological
methods. A netlet spread out over a volume of cortex, tangled up
with and even sharing neurons with other netlets, would be difficult
to find, let alone do experiments on. Anderson therefore suggests
that "the verification of some of these physiologically based
distributed systems may be through the properties of the global
system; restated, in terms of the 'psychology' of the whole system."
We are therefore faced with the problem of generating psycho-
logically testable predictions from a neural model. Unfortunately,
psychological behavior is, as Anderson points out, a global property
of the system, depending upon the complex interaction of a huge
number of neurons. So a neural model capable of generating psycho-
logical predictions would have to be a pretty big model. Now of
course computers are big and powerful, and in principle capable of
simulating an arbitrarily large neural model -- as long as we specify
every detail precisely. But in practice, a theory of the type we are
considering is a conceptual framework, focusing on underlying
principles but leaving many details unspecified. Such a conceptual
framework is really a whole clasé of models with the same structure
but with different parameter settings. When we ask whether the
conceptual framework is sufficient to account for the observable

properties of human pattern recognition, we are really asking whether
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there exists some particular combination of parameter settings for
which the model will generate the expected behavior.

In this light, the parameter-adjusting phase of a simulation is
essentially a search process. The set to be searched is the set of
all reasonable parameter settings, a set which grows exponentially
with the number of parameters. Moreover, expectations for the model
usually cannot be formalized rigorously enough to let the computer
do the search alone. In such cases, human judgment is a necessary
part of the search algorithm.

There is thus an upper bound on the number of parameters one can
work with in a manageable simulation, and hard experience [notably
that of Finley, 1967] has confirmed that this upper bound is not
large. It is true that human judgment can substantially improve the
efficiency of the search process, but only if one can understand what
the model is doing and interpret the results. If the model isn't
behaving as expected, one must be able to follow its inner workings
closely enough to figure out what went wrong and what changes are
likely to fix it. Thus we are faced with a definite limitation on
the size and number of parameters we can work with in any single
model, Yet we wish to model a neural system complex enough to
generate psychologically observable behavior.

The solution is to realize that all our knowledge about a system
does not have to be represented in one big model which tries to
explain everything. Instead, we need a technique by which several
models, each emphasizing some particular aspect of the system, can

be fit together into a consistent structure. This is exactly the
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technique provided by Zeigler's [1976] theory of modeling.

Using Zeigler's conceptual framework, we will specify a base model,
whose components are neurons, and a lumped model, whose components
are netlets., The base model will formalize our hypotheses about how
the characteristics of the netlet structure can be derived from the
characteristics of the individual neurons that comprise it. The
lumped model will in turn formalize our hypotheses about how the
characteristics of human behavior (in particular, human pattern
recognition) result from this netlet structure.

But these two models are not independent; they are tightly
connected by the relationship of a system homomorphism. This
homomorphism means that (i) there is a correspondence between the
state spaces and transition functions of the two models; and (ii) any
simulation of the lumped model will follow the same trajectory as if
the corresponding base model had been simulated, and the resultant
base model states translated into their equivalent lumped model
states, This homomorphism is the link which allows hypotheses about
neural structure to be tested against psychological observations, as
in Figure 2.

Figure 2 might also be considered as a diagram of the
constraints we can bring to bear on a theory of human pattern
recognition. If psychological data alone is taken as a constraint,
there are many plausible theories of human pattern recognition. In
the same vein, if neurophysiological data is taken as the sole
constraint, there is another class of theories that all fit the data.

But if we can bring both sets of constraints to bear at the same
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FIGURE 2. How a neural hypothesis can be
tested in a psychological experiment.
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time, the range of plausible theories should be drastically reduced.
Thus, a more complete picture of our modeling enterprise should look
like Figure 3. For our purposes, 'properties of neurons' are the
transition functions of individual neurons and our hypotheses about
the randomness of neural interconnection, both formally incorporated
in the base model. But the lumped model is also forced to be
consistent with these hypotheses, via the homomorphism. ''"Properties
of human pattern recognition', on the other hand, refer to the
results of previous psychological experiments (reviewed in Chapter 5)
and to evolutionary arguments [Kaplan, 1976] concerning the infor-
mation processing demands which our perceptual system evolved to
meet. Chapter 5 explains how these constraints are incorporated into
the lumped model, as the hypothesized connection pattern of the
netlet system. But of course netlets are connected only insofar as
their constituent neurons are connected, so the base model is
constrained as well. In short, we will define a formal correspon-
dence from the parameters and state variables of the base model to
the parameters and state variables of the lumped model, so that
constraints on either model can be interpreted as constraints on the

other,
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CHAPTER 3
FORMAL SPECIFICATION OF THE BASE MODEL

Our lumped model will be derived from and shown equivalent to a
base model whose components are individual neurons connected in a net-
work. The base model can be formally described as a structured autom-
aton [Zeigler, 1972] M = {Q,8) such that Q = >K:BQB’ where each QB is
a nonnegative integer representing the recovery state (time since last
firing) of neuron B. The global transition function &: Q > Q is spe-
cified by a set of local transition functions 68’ where each 68 spe-
cifies the next state of neuron B according to whether a weighted sum
of inputs from other neurons exceeds the threshold of neuron B. If
we let IB denote the set of all input neighbors to B, then the trans-

ition function 68: Q8><{Qa}a€:IB} - QB is given by

. . >
0 if EaSaB A(qa) 2 TB

GB(qB’{quIQCIB}) = { (1)

ag + 1 otherwise
where the summation is over all aE:IB; SaB is the weight (synapse

strength) applied to input from neuron o, TB is the threshold of neu-

ron B; and A is the output function for any neuron, defined as follows:
)\(qB) =1 if ag = 0 (i.e. if B is firing); MqB) = 0 otherwise.

Once we develop the defining assumptions of our netlet model,
the neurons aEZIB will be indexed according to netlet of origin. The

definition of the transition function GB will be re-expressed in

18
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terms of this new indexing scheme following the statement of Condi-

tions 1-6.

Assumptions defining the structure of the base model

Harth et al. [1970] review anatomical and physiological evidence
for the existence of more or less discrete populations of intercon-
nected neurons, termed netlets. A similar aggregated unit has been
modeled by Zeigler [1975] and Anderson [1972; in press 1977]. All the
assumptions about netlets upon which our analysis is based will be

stated here, as Conditions 1-6.

Summary of Conditionms. Consider all synaptic connections from
a netlet Bj to a netlet Bk‘ Condition 1 requires the presynaptic
neurons of these synapses to constitute a random sample of Bj’ Con-
dition 2, on the other hand, requires the distribution of the corre-
sponding postsynaptic neurons in Bk to be independent of the distri-
butions of postsynaptic neurons receiving input from other netlets.
Condition 3 specifies the strengths of the synapses, and may be con-
sidered a refinement of the approximation made in either Anderson's
[1972] or Zeigler's [1975] model, in the sense that both Anderson and
Zeigler employ the following "equal influence" condition: If any
neuron Bk receives input from Bj’ then each neuron in Bk must re-
ceive input through one or more synapses of the same total strength
from Bj' That is, either Anderson's or Zeigler's conditions would
require the strength parameters “jB and va (as defined in Condition
3 below) to be constant over all neurons B in Bk’ while we only re-

quire connections to a subset Bjk of By, holding “jB and va con-

stant over this subset. Wong and Harth, while avoiding the "equal



20

influence" assumption, accomplish the same effect (that of avoiding
inhomogeneity in the input) by unrealistically requiring that at each
time step there must be a different random set of connections from Bj
to Bk' Part (ii) of Condition 3 may also be considered a refinement
of Anderson's linearity assumption. Anderson's assumption 3 is
equivalent to approximating the integral of f over its entire domain
by a single linear function, while we use a linear approximation only
over small intervals of f, resulting in a piecewise linear approxima-
tion.

Condition 4 defines the threshold of a neuron B as a stochastic
variable TB' This threshold undergoes random perturbations, but its
expected value decreases with time, via exponential decay. Condi-
tion 5 assumes that we can ignore two types of second order differ-
ences. Condition 6 specifies independence requirements on the dis-
tributions of initial recovery states, incoming synapses, and out-
going synapses, and assumes that we can use the law of large numbers.

The intent of Conditions 1-3 and 6 may become clearer if we
intuitively define the macrostate of the system to be the statistical
information which specifies, for each netlet, the proportion of its
neurons in each recovery state, without specifying exactly which
neuron is in which state. Similarly, the macrostructure of the sys-
tem specifies the total effective connection strength between any
two netlets, without specifying which neurons are involved in the
connections. The microstate and microstructure, on the other hand,
specify the recovery state of each individual neuron, and the
strength of each individual synapse. Thus, the same macrostate and

macrostructure could be realized in many different microstates and
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microstructures. The intent of the conditions above is to allow the
modeler to choose freely the macrostructure and initial macrostate,
but that within these constraints the microstructure and initial
microstate will be random, and independent of each other. With these
initial conditions, it will be possible to calculate the effects of
the microstate distribution at later time steps.

Even though the initial microstate is random and independent of
the microstructure, it will not stay that way for long. After all,
the signals coming through the input synapses to a netlet directly
affect the states of the receiving neurons in the netlet. So it
should not be surprising that the distribution of neural states over
the netlet soon becomes cprrelated with the distribution of incoming
synapses. The randomness of the initial state, however, together
with the other assumptions and approximations of Conditions 1-6, will
allow us to calculate the effect of such correlations on the subse-
quent macrostates of the network. The fact that we explicitly cal-
culate these effects of microstructure, rather than assuming them to
be negligible, is the major difference between our approach and those
of Wong and Harth [1973] or Zeigler [1975].

We will now state Conditions 1-6 in detail. The neurons in the
base model are divided into a set of netlets {B,|k€D'}. Throughout
this and the next chapter, the indices j, k, and £ will range over D'
(i.e. they will index netlets), while B will index the neurons in
some specific netlet. Lower case n will index multiple input neigh-
bors to a given neuron from a given netlet, as specified in Condi-
tion 1. Unless otherwise specified, it is understood that summa-

tions are over all values of indices for which the summated term is
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defined, and that all free indices are universally quantified in the

same way.

Definitions. The following symbols, defined more fully within
Conditions 1-6, are summarized here for quick reference.

InjB: The neurons in netlet B; having input connections to a
particular neuron B are denoted as the set {In-B, n =

1""’NjB}' The counter n thus distinguishes different
inputs to B from netlet j.

: Denotes the strength of the synpase onto neuron B from

S, .
njé its particular input neighbor InjB'

ujB: The sum of synaptic strengths from neurons in B. to

. . —Z . (o) "1..-’--

jB: The sum of squared synaptic strengths from neurons in

. . Vi, = Xs 2 = 1,...,N.q.
BJ to neuron B vJB anB for n =1, ,NJB

K Denotes the subset of neurons in Bk which receive input
I% from Bj‘

ujk: The constant value of “jB over all neurons B in Bjk'
.. . The constant value of V., over all neurons B in B...
jk iB jk

8 The threshold of neuron B, containing a noise component
EB that varies randomly at each time step.

® _: A cumulative distribution function, determined by two
parameters (recovery parameter a and variance parameter
V), as defined in Condition 4.

Condition 1. Each neuron B in Bk may have an arbitrary number
NjB 2 0 of input neighbors from each netlet Bj‘ These neighbors are
chosen randomly (with replacement) from Bj’ so that each neuron R in
Bk receives an independent random sample of input neighbors from Bj'
More precisely, the input neighbors to neuron g from netlet Bj are
given by I

=1,...,N where if we set N = max{stlj,REZD',

njg’ "

BCBk}, then {I

ig’

njg’ n=1,...,N} is a set of independent random vari-
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ables, each with range Bj and each uniformly distributed over this
range. (Note that only if 1< n < NjB does InjB index an actual in-

put neighbor in Bj; for N, < n< N, is introduced only as a

I.
B njg
notational convenience and will be assigned a synapse value of 0.)

L3 . C
Condition 2. Let Bjk'- Bk

let By which receive input from netlet By, i.e. By = {BEZBkINjB > 0}.

Then we require all such subsets Bjk of Bk to be chosen independently.

denote the subset of neurons in net-

In other words, if Bk is considered as a discrete sample space (in

which each neuron BEZBk is a sample point) then the subsets Bjk’ jED!
are mutually independent. Each subset Bjk may have arbitrary measure
bjk in B

K 0< bjk < 1. Note that the case where j = k (representing

feedback of a netlet to itself) is treated no differently; we allow
an arbitrary fraction bkk of the neurons in Bk to receive input from
within the netlet.

Condition 3. For each input neighbor InjB to neuron B, there
is a corresponding synapse strength snjB' (In neural terms, snjB
represents the excitatory post-synaptic membrane potential in neuron
B caused by the firing of the presynaptic neuron InjB') Each neuron
BE:BJ.k which does receive input from netlet j may receive this input
through one or more synapses of different strengths. Let “jB denote
the sum of all synaptic connection strengths impinging upon B from

Bj; and let v., be the sum of their squares:

B

“58 = Zns ., and v., = I (2)

s2.
njBg jB n njf

We then require that each of “jB and v., be constant over all g8 in

iB
Bjk' The constant value of Mg over all B€:Bjk will be denoted ”jk;
similarly, the constant value of va over the same subset will be

denoted vjk' (The parameters ujk and ij of the connection pattern
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will be used in calculating the meah and variance of the activity
coming through the connections.) We further require that the influ-
ence ujk of any single netlet Bj on Bk be small relative to the total
influence zjujk of all netlets havihg input to Bk; small enough to
make these two approximations: (i) the probability density f of the
sum EB - ijjk of independent random variables can be approximated
normally, where EB is the normal variate defined in Condition 4, and
each Xjk (defined in section 3 and shown independent in Lemma 6)
ranges over an interval of length ujk. (ii) the integral of f over
an interval of length L ujk can be approximated by the area L-f(x),
where x is in the interval.

Condition 4. All neurons are identical except for their thresh-
olds, which fluctuate due to random noise at each time step. If
neuron B is in state qg (where qg = 0 when the neuron fires, and in-
creases by 1 each time step the neuron does not fire), then its
threshold will be denoted by a random variable TB' Now let NB(x,v)
denote the normal cumulative distribution function with mean 0, vari-
ance v, and argument x. (The subscript B is used to emphasize that
the thresholds for different neurons B will be drawn from independent
distributions.) We now specify that P[TB <x] = ¢a’v(x)--that is,

: Reals »~ [0,1],

each TB has a cumulative distribution function @a V'
)]

where the 2-parameter distribution @a v is defined in general as

>
¢, y(X) = aNp(x-1(,0) + (1~a)NB(x—Tm,v)
%8
where a = m ® depends on the recovery state qB of the neuron, and m,
Tys T,» and v are constants, m < 1, Ty > Toe We will refer to a as
the recovery parameter of the distribution and v as the variance

parameter. In the expression above, NB(X,V) = P[c’;B < x] where {EB}



25

is a set of independent identically distributed random variables, each
normally distributed with mean 0 and variance V. Each EB represents
a random noise component of the threshold of neuron B, and is unaf-

fected by recovery state or input. From the definition of ¢a v above

s

it is clear that, given a value of the recovery parameter a, the ex-
pected threshold E(TB) is at, + (1-a)T,. Since the recovery parameter
is an exponentially decaying function mq8 of the time since last fir-
ing, we see that the expected threshold is Ty for a neuron which has
just fired, and exponentially decays towards T_ as the neuron recovers.

Condition 5. In the next section below, we will define a random
variable Xjk to represent the input from netlet B. to netlet Bk’ or
more precisely the distribution of this input over netlet Bk' We will
alsc define a random variable Tk to represent the distribution of

neural thresholds over netlet Bk’ If we let Xjk and X? represent

k
the distributions of input at two successive time steps, then we will
make the following two approximations: (i) Var(X?k-Xjk) will be
neglected with respect to Var(Xjk) and Var(X?k); and (ii)
Cov(X?k-Xjk,Tk) will be neglected with respect to Cov(Xjk,Tk) and

Cov (X?k,Tk) :

Condition 6. At the initial time step, we allow each netlet to
have an arbitrary proportion of its neurons in each recovery state.
But we require that the detailed assignment (according to these pro-
portions) of particular neurons to each recovery state be done ran-
domly, and independently for each netlet. We further require that
over each netlet, the distribution of initial recovery states with-

in the netlet, the distributions of <ncoming synapses (and their

strengths) from various netlets, and the distributions of outgoing
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synapses to various netlets must all be mutually independent distri-
butions. Finally, each netlet must contain enough neurons so that
the law of large numbers can be applied to random variables defined

on the neurons (considered as sample points) in the netlet.

Determination of model parameters. We have so far described a
model containing two types of parameters: free macrostate parameters
(to be set arbitrarily by the modeler), and randcmly determined micro-
state parameters. Since some of these parameters are constrained by
others, we present the following scheme to clarify the dependencies.
If one were to actually simulate the base model, then the parameters
should be determined in the following order:1

1. The model may contain an arbitrary number of netlets
Bk indexed by k € D'.

2. For each pair j,k of netlets such that Bj has input to
Bk’ the following macrostate parameters may be chosen

arbitrarily:

bjk: the proportion of neurons in Bk receiving
input from Bj;

ujk: The total of synaptic strengths from Bj

impinging upon any receiving neuron in

Bk; and

vjk: the total of squared synaptic strengths

1Of course the whole purpose of this chapter and the next is to make
simulation of the base model unnecessary by deriving a lumped model
which will yield the same essential information with far less com-
putational effort. From this standpoint, the scheme for determining
base model parameters has the following meaning: If one simulates
the lumped model with a particular choice of parameter settings, then
the results are the same as if one had simulated the base model with
corresponding parameter settings and randomizations determined in the
order shown here.
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from Bj impinging upon any receiving neurons

in Bk'

[}

Within each netlet B, , a collection of independent ran-

dom subsets {Bjk - BtlBj has input to Bk} is chosen,
such that the fraction of Bk's neurons in each subset
Bjk is bjk' (Condition 2)

4. For each such Bjk’ arbitrarily create many sets of posi-
tive real numbers, such that the sum of the numbers in
each set is ujk’ and the sum of their squares is ij'
(Condition 3) Create as many such sets as there are

neurons in B., .
jk

5. For each Bjk’ randomly assign a 1-1 correspondence be-
tween these sets and the neurons in Bjk' This 1-1 cor-
respondence then gives each neuron B in Bjk a set of
strengths for those of its synapses that come from Bj‘

Let NjB be the cardinality of the set of synapse strengths
assigned to each neuron 8. We then define
{SnjB’ n=1""’NjB} to be this set of synapse strengths,

taken in random order. (Condition 3)
6. For each SﬂéB defined in #5 above, randomly sample (with
replacement) a presynaptic neuron from Bj‘ Let InjB
denote this presynaptic neuron. (Condition 1)

7. For each netlet Bk’ arbitrarily assign the fraction of
its neurons to be in each recovery state at the initial

time step. (Condition 6)

8. Fill this quota for each recovery state by randomly

picking (without replacement) neurons from Bk'
The random numbers used in different steps must be generated inde-
pendently, to meet Condition 6.
Having defined InjB in Condition 1 and snjB in Condition 3, we

can now rewrite equation (1) from the beginning of the chapter so
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that the input neighbors to neuron B and their corresponding synapse
strengths are indexed according to the netlets these input neighbors
belong to. This allows us to express the transition function 68 of
each neuron B as follows:

0 if Z_.s -l(qa) 2 TB

nj njB

6B(q8,{qula€IIB}) = { (3)

dg * 1 otherwise
where in the summation above, o = InjB’ and the indices range accord-

ing to the conventions given just before Condition 1.

Stochastic properties of the base model

Let us consider each netlet B as a discrete sample space, and
each neuron B in Bk as a sample point in this space. Any property
defined on each neuron in the sample space may then be considered to
be a random variable. Now a random variable is simply a quantity
that takes a value at each point in the sample space, so we are doing
nothing new by redefining each neuronal variable in equation (3) as a
random variable. The translation into random variables, however,
allows us to use the notation and methods of probability theory,
which will be convenient in our derivation.

First, the variable InjB giving the input neighbors to a neuron
B is translated into the random variable Hnjk’ giving the input neigh-
bors for any neuron in netlet Bk‘ The recovery state q of a neuron
in any netlet Bj having input to By is translated into the random
variable Rj over netlet Bj' Thus the recovery state q, of an input
neighbor o = In.

B
the synapse strengths s

becomes the random variable Rj(Hnjk). Similarly,

to a neuron B in Bk becomes the random

njg

variable Snjk over netlet Bk’ and the threshold T, becomes the random

B
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variable Tk' Finally, the recovery state of neuron B after the appli-

cation of the transition function § will be translated into the random
. Y . . .

variable Rk' With these translations, equation (3) can be restated

AR (H ) 2 Ty

R

$ nj njk
k (4)

R, + 1 otherwise

{0(—‘:92 .S
k

This equation gives us a way of dividing up the total input to netlet
Bk according to netlet of origin (even though any neuron B in Bk may
receive input from more than one netlet). The input received in Bk
from any netlet j is given by the term Znsnjk.A(Rj(Hnjk» for that
particular j. Therefore let us represent this term (for any j) as a
single random variable Xjk (see Fig. 4). We can then rewrite equa-
tion (4) as

Lemma 1.
k

Rk + 1 otherwise

R

5 iO#ﬂiZijkZT
K=

If we further define Xk = ijjk’ then Lemma 1 simply says that those
neurons for which the total input X

’ exceeds the threshold T, will be

I k

the neurons that fire.
We can now derive a new distribution which combines the vari-

ances in input and threshold over any netlet B, , taking account of

k,
the covariance. More formally, define a random variable Zk = Xk - Tk'
If we could find the distribution of Zk’ then we could calculate the

new probability of firing
8
P[Ry=0] = P[X 2T,] = P[Z,20] (5)
by Lemma 1 and the definitions of Xk and Z,. Therefore our approach

will be to find the distribution of Zk, and to use the parameters of
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Netlet L

Netlet k

Input
'(_1 “k
Input
Kjk
Sample
Sample

Synaps2 strengths Si

Synapse strengths Sii’

kk
Netlet j°

FIGURE 4. Xk is a random variable over netlet
k whose value at any sample point (neuron) in
the netlet is the total input arriving at that
point. Xk can be expressed as the sum of com-

ponent random variables X .,y etc., each
i’k

X
iy
representing the contribution from a particular

netlet j. Thus each Xjk

from netlet j as this input is distributed over

represents the input

netlet k. (At any point in netlet k, the value
of Xjk depends upon which neurons Hnjk from
netlet j are sampled, and upon the synapse values

Snjk for each.)
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this distribution as the state variables for the lumped model.
Finding the distribution of Zk is essentially a matter of com-

bining the between-neuron variance in the input X, with the within-

k

and between-neuron variances in the threshold Tk' This statistical
calculation is carried out in the appendix. The results shown there

are

Lemma 2. P[Tk<x]

Rk
@A’v(x) where A = E(m )

R
Lenma 3. P[Z,2z] = @, |, (E(X)-2) where A = E(m Ky and v =

Vv o+ Var(Xk) - ZCov(Xk,Tk).

Lemmas 2 and 3 are similar in form to (and were derived from) the
threshold distribution P[T8<x] = @a,v(x) of Condition 4. But while
Condition 4 specified a probability distribution for a single neuron,
Lemmas 2 and 3 specify distributions over a whole netlet Bk'2 Cor-
respondingly, while a and v in Condition 4 are parameters of a single
neuron, A and V' in Lemma 3 are statistical parameters of the netlet.
These statistical parameters will soon become the state variables of

the lumped model.

2Using the law of large numbers (according to Condition 6) probabili-
ties over the netlet are then interpreted as actual proportions of
neurons in the netlet.



CHAPTER 4
DERIVATION OF THE LUMPED MODEL

Let us recapitulate the development thus far. We began the pre-
vious section by considering the neurons in a netlet as points in a
sample space. Thus, the fact that different neurons have different
recovery states and different input connections could be represented

by defining the random variables R, , S

x> Hhjke

states, input connections, synapse strengths, and thresholds, respec-

njk’ Tk for recovery
tively. Lemma 1 then gives the new recovery state as a random vari-
able Rf over the netlet. But the purpose of our lumped model will
not be to keep track of the value of these random variables at every
neuron in the netlet, but rather to save just enough information
about each netlet to calculate the fraction of its neurons that will
fire on the following time step. Equation (5) shows how this frac-
tion (expressed in our notation as the probability of firing over the
netlet) depends upon the distribution of Zk’ where Zk = Xk (repre-
senting total input) - Tk (representing threshold).

Expressed in our notation, the rerandomization assumption of
Wong and Harth {1973, p. 80] and the equal influence assumption of
Zeigler [1975, p. 391] are both essentially equivalent to assuming
that, over each netlet Bk’ the random variables Xk and Tk are inde-
pendent (i.e. uncorrelated). More descriptively, this is assuming

that the differences in threshold Tk (due to differing recovery

32
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states over the netlet) remain uncorrelated with the differences in
input Xk received at different places in the netlet. Wong and Harth
express this as a model in which the input connections to a netlet
are rerandomized at each time step. Zeigler obtains a mathematically
equivalent assumption by requiring that if netlet Bk receives any in-
put from netletBj, then every neuron in Bk must have a similar input
connection from Bj'

In contrast with these two approaches, we will not assume that
X and Tk are independent. Instead, the covariance between Xk and Tk
will be accounted for in our derivation of the lumped model. To see
how this covariance will be used to represent the microstructure of
each netlet Bk in our lumped model, let us look back at Lemma 3. As
we have seen, this lemma expresses the stochastic threshold of the
netlet in the same form as the original probability distribution for
a single neuron's threshold. Thus, the only items of information
about the microstate of the netlet needed to calculate its subsequent
activity are

(1) RECOVERYk = E(mRk), the mean of the recovery parameter ]

over the netlet; (©)
(ii) E(Xk), the mean (over different neurons) of the total
input received by a neuron;
(iii) Var(Xk), the variance in input over the netlet; and
(iv) COVARIANCEk = Cov(Xk,Tk), the covariance between the (7)

distributions of input and threshold over the netlet.

Items (i) and (iv) have been given the names RECOVERYk and

COVARIANCEk because they will be state variables in the lumped model.
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Items (ii) and (iii), on the other hand, will be derived in terms of

the ACTIVITY of all netlets having input to netlet B, , where the

k’
state variable ACTIVITY will be defined in equation (13) below. Our

lumped model will thus have three state variables, ACTIVITY,, RECOV-

k’

ERYk, and COVARIANCE,, for each netlet Bk in the system. The inter-

k’
action between netlets in the lumped model will be represented by

fixed parameters CONNECTjk

strength and the variability of the synaptic connections from any net-

and CONNECTSij, representing the total

let Bj to any netlet Bk' (If there are no connections from Bj to Bk’

then CONNECT.
jk

We will begin by deriving CONNECTjk

information about synaptic connections given in Condition 3 of the

and CONNECTSQ) will both be 0.)

and CONNECTSQjk from the

base model. (The role of these parameters in the transition function
of the lumped model will be shown in Lemma 5 below and Lemma 7 in the
appendix.) Let us consider the distribﬁtion of the synapse strengths
from any netlet Bj to any netlet Bk' This distribution is represented

formally as the distribution over B, of the random variables Snjk’

k
1 Sn SN, defined in the previous section. (Recall that n indexes
the multiple input neighbors to each neuron.) We need to know the
sums of the first and second moments ZnE(Snjk) and ZnE(Sﬁjk) of this
distribution in order to calculate items (ii) and (iii) above, the
mean and variance of the input Xk' Using the definition of Snjk and
Condition 3 of the base model, we obtain

ZnE(S E(Z_S

njk) - n njk)
= E(Znsnjlejk)P[Bjk] + E(ZnsnjklBk—Bjk)(l—P[Bjk])

= E(Znsnjﬁ)bjk + O-(l—bjk)
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= ujkbjk (8)
where each “jk and bjk is a fixed parameter of the base model as spe-
cified in Conditions 2 and 3. The same reasoning applied to S;jk
rather than Snjk yields

2 - 2 =
ZnE(Snjk) = E(ZnsnjB)bjk = vjkbjk' (9)

The two summed moments just calculated will be the only information
about the neuronal connections required by the lumped model. Accord-
ingly, we define the following two fixed parameters of the lumped

model in terms of the original base model parameters:

CONNECTy = jybsy (10)

CONNECTSQjk ijbjk (11
Finally, we note that the proportion of neurons firing (ex-

pressed as a probability over the netlet Bk) is

P[R, =0]

P[k(Rk)=1] by the definition of A

ER] (12)

since A(R,) is a discrete {0,1} variate. So we define

ACTIVITY, = P[R,=0] = E(A(R,)) (13)

to represent the mean firing activity over netlet Bk at any given

time step.

Derivation gf.the transition function

In order to derive a transition function for the system in
terms of netlet variables, we need a notation which distinguishes be-
tween a current state of the system and its successor state. We will

distinguish the successor state by a superscript 6 (as in the begin-
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ning of this section). In other words, given any state q of the base

model and its successor state §(q), the variables ACTIVITYk, RECOV-

ERYk, and COVARIANCEk refer to the system in state q, while ACTIVITYi
RECOVERYi, and COVARIANCEi refer to the system in state 8(q). Thus,

if the variables without superscripts are defined as above, then

ACTIVITYi = P[Rﬁ=0] (14)
8
§ Rk
RECOVERY, = E(m ¥), and (15)
COVARIANCEG = C XG T8 16)
k - OV( k’ k) (

where Ri, Xi, and Ti are defined at the beginning of this section.

Using this notation, we see that the current recovery state and
the mean, variance, and covariance of input to a netlet are suffi-

cient to calculate its subsequent ACTIVITY:

5 8
ACTIVITY, = P[R}=0]
= P[z,20]
= 2, (X)) (17)

where A = RECOVERYk and V' =V + Var(Xk) - 2°COVARIANCEk, obtained by
substituting the definition of these variables into Lemma 3.

Now in order to write a transition function for ACTIVITY solely
in terms of the three desired state variables (ACTIVITY, RECOVERY,
and COVARIANCE), we must resolve the input term E(Xk) into the state
variables of netlets from which this input originates. Part of this
derivation will depend upon an induction argument applied to the ini-
tial distribution of recovery states specified in Condition 6. Since
this argument is peripheral to our derivation of the lumped model,

it is given in the appendix. The result shown there is



Lemma 4. The recovery states of neurons in a netlet are independent
of their output synapse weights. More precisely, for any
n, j, and k, Rj(Hnjk) is independent of Snjk (where by the
definition of H_.,, R.(H_.,) represents the states of the
njk’> jY njk
set of neurons whose output synapse weights are Snjk: see

figure 4).

Using this lemma, we can calculate

E(X

W) = SER)

B Sy MRy (B 1)) by def. of X,y

anE(Snjk)'E(A(Rj(Hnjk))) by Lemma 4

L _.E(S_.,.)+ACTIVITY. since H_., is uniform
nj  ‘njk J njk

"

Z.CONNECT,, ACTIVITY., (18)
j jk j

using equation (8) and the definitions of CONNECTjk

The formula for E(Xk) can now be substituted into equation (17) to

and ACTIVITYj.

obtain the transition function for ACTIVITY in our lumped model.

(See Figure 5.)

6 .
Lemna 5. ACTIVITY' = @, (2, CONNECT

RECOVERYk, Vo= oyt Var(Xk) - 2'COVARIANCEk, and the

'ACTIVITYj), where A =

definition of the 2-parameter distribution ¢ is given

in Condition 4.

Note that the input term (i.e. the summation) in Lemma 5 is a
weighted sum of signals from other netlets, analogous to the weighted
sum ansnjsx(qa) in the transition function for an individual neuron

(equation 1). But now consider the function which translates this
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AN

CONNECT . . Netlet k
ik

ACTIYXTYk
RECOVERYk
C()\r"ARL-\A\'CE,K

CONNECT
LLNNLLij.L

LON\ELTkk

Each of the variables shown for

netlets j and k contributes to the new ac-
tivity (ACTIVITY&) calculated for netlet k.

The exact formula is shown in Lemma 5.
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total input into output. In the case of an individual neuron

(Fig. 6a), this function is a sharp threshold. If the input exceeds
the threshold, the output is 1; otherwise the output is 0. But in
the case of a netlet (Fig. 6b) the sharp threshold is replaced by a
sigmoid function--the function QA,v' of Lemma 5. This sigmoid func-
tion represents the combined effect of the differing thresholds of
neurons in the netlet.

While the ACTIVITY of a netlet will be the main variable of
interest at the level of psychological constructs, we have seen that
two other state variables, RECOVERY and COVARIANCE, must be included
in our lumped model. The purpose of these two additional variables
is to maintain sufficient information about the microstructure of a
netlet to calculate subsequent ACTIVITY accurately. Of course, once
we include these two variables in our lumped model, we must derive
their transition functions, just as we derived a transition function
for ACTIVITY. The crucial step here will be to express the transi-
tion functions for RECOVERY and COVARIANCE solely in terms of the
three state variables we have defined. In other words, we must show
that the three variables form a self-contained lumped model: that
knowing the ACTIVITY, RECOVERY, and COVARIANCE for each netlet, we
can calculate not only the subsequent ACTIVITY, but also the subse-

quent RECOVERY and COVARIANCE.

First we will derive the transition function for RECOVERY:

9
RECOVERY(S E(mRk) by eq. (15)

k

5
P[Ri=0] ‘Em®) + P[Ri#O] 'E(mRk'Ri#O)

1
P[Rﬁ=0] + P[Ri#O]’E(mRk+ ) by Lemma 1
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INPUT

FIGURE 6a. Input-output function for an individual
neuron g with threshold 1%.

ourpur

FIGURE 6b. Input-output function for a netlet with
mean threshold E(Tk).
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ACTIVITY

R
+ (l—ACTIVITYi)-mE(m ky by eq. (14)

ACTIVITY

O X O

m-(l—ACTIVITYi)RECOVERYk by eq. (6)

Thus, given the ACTIVITYk, RECOVERYk, and COVARIANCEk of each netlet
$

(at a given time step) one may calculate the ACTIVITYi K

for the next time step, where ACTIVITYi is calculated according to

Lemma 5 and then its value is used in the calculation of RECOVERYi

and RECOVERY

above. The constants m, v, and CONNECTjk appearing in Lemma 5 and
equation (19) are fixed parameters obtained from the base model ac-
cording to Condition 4 and equation (10).

It remains to derive the transition function for COVARIANCE.
Since this derivation is tedious and does not introduce any essential
concepts, it is given in the appendix. Rather than expressing CO-
VARIANCEi completely in terms of the state variables (which would
make the formula below even longer) we make use of quantities already

$

calculated in the expression for ACTIVITYk:

§_ 1 ] , 8
COVARIANCE, = SAT(1+m'RECOVERY,)®',  (E(X|))" (Var(¥,) +

Var(X,)) + m(1-ACTIVITYS) - COVARIANCE,
where the parameters A and V' still have the same values as in
Lemma 3: A = E(mRk) = RECOVERYk, and V' = v + Var(Xk) - 2°COVARI-
ANCEk. The probability density function ¢' is simply the derivative
of the cumulative distribution function ¢ defined in Condition 4.
The appearance of quantities such as ACTIVITYi and Var(Xﬁ) in
the formula above means that the formula is useful only if the tran-

sition function is calculated in a certain order. Such a computa-

tional sequence is spelled out in the next section.
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Formal specification of the lumped model

The results of the previous two sections can now be brought
together into a concise specification for the lumped model we have
derived. The components of the lumped model are netlets. Briefly,
each netlet is a group of neurons with the property that input con-
nections to the netlet (both from itself and from other netlets) are
distributed randomly over the neurons within the netlet. (This is
spelled out more precisely in Conditions 1-6 of Chapter 2.) Beyond
these conditions, the derivation is not committed to any particular
functional interpretation of the netlet structure, and our netlets
could be used to model functional units such as Mountcastle's (1957)
columnar response units, Hubel and Wiesel's (1962) feature detectors,
Konorski's (1967) gnostic units, John's (1967) reverberatory cir-
cuits, or the cell assemblies of Hebb (1949) and Milner (1957, 1974).
These theories share a common hypothesis--that the functional units
of perception, association, and action are not the stochastic re-
sponses of individual neurons, but rather the more reliable statis-
tical responses of neural aggregates.

The state of each netlet k is specified by 3 real numbers:
ACTIVITYk, representing the proportion of neurons in the netlet that

are firing; RECOVERY, , representing the mean recovery state of neu-

k’

rons in the netlet; and COVARIANCE, , representing the inhomogeneity

k)
in recovery state over the netlet due to the fact that inputs from
different sources arrive at different places in the netlet. (More

technically, COVARIANCEk is the covariance between the distribution

of inputs and the distribution of recovery-state thresholds over the
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netlet.)

The lumped model also has fixed parameters CONNECTjk

NECTSQjk to represent the connection strength from each netlet j to

and CON-

each netlet k in the model (Fig. 7). Intuitively, CONNECTjk gives
the total strength of the synapses from netlet j to netlet k, while
CONNECTSQjk is a measure of the variability in the strengths of the
different synapses that contribute to CONNECTjk. (The precise defi-
nitions of these parameters are given in Condition 3 and equations
(10) and (11).)

The state-transition function of the lumped model can now be
expressed in terms of these variables and parameters. Given the

ACTIVITY, , RECOVERY, , and COVARIANCEk of each netlet at any time

k’ k
step, the values of these variables on the following time step (indi-

9 s

cated as ACTIVITYk, RECOVERYk, and COVARIANCES) can be calculated

for each netlet k as follows:

Step 1. Calculate the mean and variance of the input to netlet k:

E(Xk)

% .CONNECT.
j N jk

'ACTIVITYj

Var(X

Zj(CONNECTSij'ACTIVITYj—CONNECT?

2
*ACTIVITY®
jk J)

")
(from equation (18) and Lemma 7).
Step 2. Calculate the new activity
8
ACTIVITY, = ®A,v'(E(Xk))
(from equation (17)), where A = RECOVERYk; V' =y o+ Var(Xk) - 2-C0-
VARIANCEk. (The constant v is the variance in the threshold of an

individual neuron due to random noise, and the 2-parameter distribu-

tion ¢ is defined in Condition 4. Briefly, ¢ is the weighted

A,v!
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CONNECT, ,
CONNECTSQ., ,
Netlet 2 22
ACTIVITY,
RECOVERY
CONNECT COVAREANCE,
CONNECTSQ
11 CONNECT,
CONNECT | 21
CONNECTSQ, , CONNECTSO,,
ACTIVITY
RECOVERY,
OVARLANG CONNECT
COVARLANCE 14 CONNECT
Netlet | CONNECTSQ, 12
CONNECTSQ
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CONNECTSQ .,
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5
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CONNECTSQSK

COVARTANCE
3

Nerlet 3

FIGURE 7. The structure of a sample network

in the lumped model.

ACTIVITY, RECOVERY,

and COVARIANCE are state variables; CONNECT
and CONNECTSQ are fixed parameters of the
lumped model derived from synaptic strengths

in the base model.
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sum AN, + (1-A)-N_ where N, and N_ are cumulative normal distribu-

tions. N, has mean T, and variance V', where the constant T, is the
expected threshold of a neuron which has just fired. N, has mean T
and variance V', where T_ is the expected threshold of a completely

recovered neuron.)

Step 3. Calculate the new recovery state

S S
RECOVERYk = ACTIVITYk K

(from equation (19)), where m is a constant (defined in Condition 4)

+ m(l-ACTIVITYi)'RECOVERY

giving the rate at which an individual neuron's threshold decays ex-
ponentially from T, towards T_. (That is, the expected threshold of
a neuron is quo + (l-mq)Tw, where q is the number of time steps
since the neuron has fired.)

Step 4. Calculate the new covariance

9

- 1 . - - 6
COVARIANGE) = 7AT(1+m'RECOVERY; )0} |\ (E(X))* (Var(X;)+Var(X,)) +

m(l-ACTIVITYi)'COVARIANCEk
(from equation (38) of the appendix), where the probability density
@A’v, is the derivative of the cumulative distribution function ®A,v'
explained under Step 2, and where Var(Xi) =

Zj(CONNECTSij°ACTIVITY§—CONNECT§k'(ACTIVITY?)Z), from Lemma 7.

Steps 1 to 4 are to be carried out for each netlet separately,
but with the provision that Step 2 must be completed for all netlets
before Step 4 can be done on any netlet. (This is because Step 2
results for all netlets enter into the calculation of Var(Xi) in
Step 4.)

This lumped model, while somewhat involved, can be simulated
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with far less computational effort than the equivalent base model.
The state of each netlet in the lumped model can be stored in 3 vari-
ables, where the base model would require a separate state variable
for each neuron in the netlet. Steps 1-4 are calculated only for
each netlet of the lumped model, while a separate calculation along
the lines of equation (1) would have to be carried out for each neu-
ron of the base model.

By carrying along not only the ACTIVITY, but also the RECOVERY
and COVARIANCE of each netlet, we have been able to construct a
lumped model which, under Conditions 1-6, is a homomorphic image of
the base model. That is, given any initial state and parameter set-
tings, the state trajectory of the lumped model will be the same as
if we had simulated the corresponding base model and tallied up the
states of the individual neurons to obtain the ACTIVITY, RECOVERY,

and COVARIANCE of each netlet at each time step.



CHAPTER 5
FUNCTIONAL INTERPRETATION OF THE LUMPED MODEL

Psychological constraints

In Chapter 2, we characterized human pattern recognition ability
in terms of stimulus equivalence. From this point of view, an object
or concept is an abstraction that applies to a whole equivalence
class of stimuli. Even though different subsets of features are
present in different instances, each stimulus in the equivalence
class is recognized as an example of the same abstraction.

This recognition ability might be accounted for by an economical
storage hypothesis: that humans do not store each particular
stimulus they see, but rather store abstract representations whose
features characterize a whole equivalence class of stimuli.

Attneave [1957] tested this idea in a study of paired-associate
learning of random shapes. Learning was aided by prior familiar-
jization with a prototype stimulus whose features showed the central
tendency of the equivalence class. Posner and Keele [1968] presented
degraded instances of an abstraction and showed that the prototype

of the abstraction (not previously presented!) was recognized more
reliably than any of the instances that were presented. Franks and
Bransford [1971] obtained the same result using a different task.
Rosch and Mervis [1975] emphasize the idea that the abstract
representation might contain no features common to all stimuli in the
class, suggesting that perceptual and cognitive abstraction are

based upon the integration of a large number of unreliable features.

47
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While these and other psychological studies have substantiated
the idea that abstract representatiomns are stored, they leave open
the question of how such a representation might be stored in the
structure of the brain. Ideally, the structure which stores the
abstraction should also do the stimulus equivalencing required for
retrieval (i.e. for recognizing instances of the abstraction). The
netlet mechanism, as discussed in the introduction and as formalized
in the base and lumped models, can meet this requirement. We
suggested in the introduction how a network of feature detectors
might serve as an equivalencing mechanism; it is now time to
introduce this hypothesis into the formal model, as a constraint on
the connection strengths between netlets (ii below). Our hypothesis
may be summarized as follows:

(i) The unit of storage is the abstract internal representation
of an object (an equivalence class of stimuli) in the
environment, The features of this representation are the
perceptual similarities among the stimuli in the equivalence
class.

(ii) This unit of storage is implemented as a neural network.

a. A network of connected feature detectors represents an
object in the environment.

b. Each feature element is a netlet, as formalized in the
base and lumped models. Thus, for each feature of the
object, there is a corresponding netlet in the model.

c. Each netlet represents and receives input from one
sensory feature. The feedback connections from a
netlet to itself are set so that the netlet will
become reverberatory if its threshold is exceeded.

d. Modeling of associations in the environment: The
connection strength from netlet j to netlet k is a
monotonic function of the degree to which the feature
that j represents predicts the feature that k represents.
Here "degree of prediction" refers to the likelihood
ratio of Bayes' theorem: the conditional probability
of feature k given feature j, divided by the unconditional
probability of feature k. This probability is taken over
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the equivalence class of stimuli in (i), weighted by
frequency of occurrence in the environment.

e. If the network representations of two different objects
are likely to be activated by the same features, then
there are inhibitory connections between the netlets
belonging to one representation and those belonging
to the other.

Item d is the mechanism for stimulus equivalence in the model. When
the network representation of an object receives input, some of its
feature detectors will receive enough input to reverberate; others
will receive partial input or none. Now each reverberatory feature
detector will facilitate each inactive feature detector in propor-
tion to its predictive validity (that is, according to the validity
with which the detected feature predicts the presence of the
undetected feature). Thus, probable but so far undetected features
will be facilitated, lowering their threshold for responding to
environmental input. And if the circumstantial evidence for a
missing feature becomes overwhelming, then it can be facilitated so
much that it becomes '"filled in'" -- active even in the absence of
environmental support.

The associative connections within a network and the inhibitory
connections between competing networks (items d and e above) will
normally force activity in the system to converge rapidly to the
best inference that can be made on the basis of the partial and
unreliable information available. When information from the
stimulus is scarce, one may consciously experience this competition

between alternative perceptual hypotheses -- for example,

approaching a fuzzy object in dim light that finally turns out to be
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a crumpled newspaper on the sidewalk.1 When stimulus information is
plentiful, on the other hand, convergence is so rapid that the

losing alternatives are never consciously experienced. In this case,
one must rely on more sensitive psychological measurements (such as
Posner's reaction-time techniquezj to show that these losing
alternatives are indeed partially activated.

Constraint d above is plausible not only because it leads to an
appropriate stimulus equivalencing mechanism, but also because such
connections could be formed automatically as the result of a simple
contiguity learning rule [Hebb, 1949; Anderson, 1972]. Milner [1957]
originally showed the advantages of incorporating inhibitory
connections (of the type suggested in constraint e above) into Hebb's
basic hypothesis.

Although developed in the context of perception, the mechanism
outlined in hypotheses (i) and (ii) above will also serve as a model
of abstraction at the cognitive level. In this case, the network
represents a concept rather than an object. The ''feature detectors"
constituting such a network do not detect features.directly from the
environment, but instead detect features that arise from perceptual

equivalencing. That is, the result of a network equivalencing

1This example was suggested by Stephen Kaplan. James' [1892] chapter
on perception provides many other examples, all suggesting that
stimulus information does not in itself constitute a perception,

but must be constructed into a perception.

2Posner, M.I. Chronometric Explorations of Mind, Fitts Memorial
Lectures delivered at the University of Michigan, September 1976,
to be published as a book. A specific example of the chronometric
method is given by Conrad [1974].
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mechanism at any level of processing may in turn be the input to a
feature detector at the next level. Milner [1974] further discusses

the possibility of such a hierarchical organization.

Pilot simulations

Model building is an effort to produce a structure that
satisfies a series of constraints and expectations. The constraints
are imposed by the necessity of consistency with models at other
levels; expectations for the model are based upon previous obser-
vations of the system, together with an underlying idea about the
function of the system. These expectations ultimately concern the
behavior of the model over time. Since the behavior of a model is
usually not obvious from its structure, model building is a process
of successive approximation: trying a structure; seeing if the
behavioral expectations are met; modifying the structure (within the
given constraints); and repeating the cycle.

Model testing is an effort to see if the model meets new
expectations which it was not explicitly designed to meet. Generally
these arise in the context of new experiments. Except for this
difference in the type of expectation, model testing proceeds by the
same 4-step successive approximation cycle just given for model
building.

Despite this conceptual similarity between model building and
model testing, most disciplines have rigorous standards only for
model testing. Thus, a model is judged solely on the basis of a few

critical experimental tests designed specifically for that model.



Rigorous model building, on the other hand, would be an attempt to
translate other sources of knowledge about the system (such as
experimentally validated models at other levels) into constraints
upon the model being built, Rigorous model building is difficult,
and understandably rare, but the reward is an enormous increase in
the size of the data base upon which one's model is based. (See
Figure 3 in Chapter 2.)

Thus, the emphasis is on computer simulation, which allows the
behavioral consequencesrof a model to be precisely determined -- not
only for generating experimental predictions, but also for carefully
evaluating the model against the constraints and expectations of
rigorous model building. The simulations discussed below were based
upon the lumped model of Chapter 4. The first step (as in most
simulations) was the adjustment of parameters to obtain reasonable
behavior, within the constraints of hypothesis (ii) of the previous
section. The previous section also outlines, in a less formal way,
the behavioral expectations that guided model building. Altogether,
3 versions of the model were developed, each simulating a different
pattern-recognition task. The first two versions simulated
experiments drawn from the literature [Franks and Bransford, 1971;
Reed, 1972], while the third simulated a new task. The predictions
of the third version were then tested in a psychological eXperiment.

The third version of the model was based upon the parameter
settings obtained by fitting the first two versions to the data of
experiments they simulated. In addition, the whole idea for the

third version was based upon a specific finding from the second
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simulation., This finding concerned the discriminability of two
hypotheses, the network hypothesis discussed here and an alternative
viewpoint of feature independence [Reed, 1973] illustrated in

Figure 8, Several types of pattern recognition models, including
discriminant analysis, summation of cue validities, and distance
models with various metrics, all assume feature independence, in
which each feature makes an independent additive contribution to the
global decision. This is in contrast to the network model (Fig. 1)
discussed in the previous section, in which active feature detectors
may facilitate partly active detectors, depending upon the
connections between them.

These two alternative models seem quite different, yet the
simulation showed them to yield almost identical predictions for
Reed's [1972] experiment. It seemed that this lack of discrimin-
ability between the alternative models might be due to the fact that
in Reed's experiment, only four features were used to distinguish
the patterns. (This small number of features is typica; for the
studies on which the feature-independence hypothesis is based.)

For this reason, a new pattern recognition task with a larger number
of unreliable features was constructed. The purpose of this task
was to differentiate the feature-network hypothesis from the feature-
independence hypothesis. Both the simulation of this task and the
empirical test of the simulation predictions are discussed in the

next chapter.
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Sensory Independent Recognition based on
feature feature linear summation of
input detectors feature information

FIGURE 8. The feature-independence hypothesis
(to be contrasted with the neurally based
hypothesis that we introduced in Figure 1 and
developed formally in Chapters 3 and 4). The
feature independence hypothesis asserts that
the information from each feature makes an
independent additive contribution to the global
recognition decision.



CHAPTER 6
HUMAN PATTERN RECOGNITION: AN EMPIRICAL DEMONSTRATION

A controlled experiment can be viewed as a restriction or
simplification of the natural setting for the behavior studied.
Stimuli, procedures, and other factors must be extracted from the
natural setting and standardized so that the results of the experi-
ment can be rigorously attributed to the factors being manipulated.
The danger, of course, is that the restrictions and simplifications
may result in behavior that is not representative of the natural
setting.

One way of minimizing this danger is put forth by Brunswick
[1956]. Brunswick maintains that the context of an experiment -- all
the factors not manipulated in the design -- should be viewed as a
sample from a population of possible contexts. Normally one studies
a psychological process in the laboratory with the idea that the same
process occurs in real-world behavior. More specifically, the
process is presumed to occur in a variety of real—world1 contexts,
and these constitute the population over which we wish to generalize.
The point is that any behavioral experiment must sample contexts just

as it samples participants, and in each case the results are (at

1We will loosely use the term '"'real world" to refer to the natural
setting for a behavior, acknowledging with Runkel and McGrath [1972]
that both natural settings and experiments yield real behavior, so
"matural setting" is more precise terminology.

55
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least in the privacy of the investigator's own mind) generalized to a
more inclusive population. The researcher should therefore give at
least some thought to the representativeness of context as well as
participant samples.

Of course the ideal way to get a representative sample is to
draw it randomly from an explicitly specified population. For
participant samples, this ideal is even approachable in high-budget
survey research. But for context samples, an unbiased random
selection is probably never realized. For one thing, a single
experiment only samples one or a few contexts, so many experiments
are needed to establish a context sample of any size. (This is why
there are no critical experiments in psychology, but instead a
concept of validity based on converging evidence from different
experimental contexts.) Even so, the necessity for standardization,
measurement, and control severely constrains the type of context that
can be studied, and so precludes fair sampling of natural-setting
contexts.

The impossibility of fair sampling of experimental contexts does
not mean the issue should be ignored; it means that one should do the
best one can. If a sample must be biased, it should at least be
biased intelligently. In most experiments, the representativeness of

the context depends upon implicit assumptions about the process being
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studied.2 The implicit argument is that, for the process being
studied, the experimental context captures the essential properties
of the natural setting, in spite of the differences between the two.3
Of course if one suspects that some essential factor of the
natural setting has not been adequately sampled in previous experi-
mental contexts, then one should design contexts that sample new
values of this factor. That is precisely the motivation for the
present study, As described in the previous section, there is a
specific empirical question which would differentiate our network
model from a large class of alternative models of feature integra-

tion. The setting for the question is a task in which people learn

2Representativeness of the participant sample also depends upon such
assumptions, if one follows the usual practice of sampling intro-
ductory psychology classes (as we do here). We also sample only
one sex. Such restrictions increase the likelihood of significant
results for the population sampled (internal validity), but the
assumption that the process would not differ qualitatively in a
larger population (external validity) is usually a bit shaky. Our
study assumes that the basic neural mechanism for perception is the
same over a quite large population, but certainly does not assume
that parameters of the perceptual process (such as speed, accuracy,
feature weightings) are so generalizable.

3Since there are potentially infinite number of factors to observe

or control, the choices of which factors to worry about and which to
ignore can never be given a complete explicit justification. Most
of the choices are made intuitively, with an intuition trained by
research experience and the examples of others. The need to develop
such a trained intuition may be the rcason empirical disciplines
stress the need for research experience. The common implicit
assumptions shared by a community of investigators because their
intuitions are based on similar experience is perhaps the chief
element of Kuhn's [1962] scientific paradigm. A researcher working
within such a paradigm does not attempt to communicate the intuition
and experience shared by the community. Instead, explanations
concentrate on those particular features of an experimental context
which differ from previous studies or which might be subject to
disagreement among colleagues.
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to classify a set of stimuli into categories or equivalence classes.
The stimuli vary along a certain number of well-defined feature
dimensions, and the participants make their classification decisions
on the basis of the feature information. The question is whether
the information from each feature makes a separate additive contri-
bution to the classification decision (the feature-independence
hypothesis), or whether there is interaétion between the features, as
in the feature-network hypothesis. The feature-independence
hypothesis (alternatively termed thé principle of interdimensional
additivity) was explicitly put forth by Tversky and Krantz [1969].
Their study which tested and confirmed this hypothesis, however,
utilized a task in which the stimuli varied along only three feature
dimensions. The feature-independence hypothesis is also an assump-
tion in discriminant analysis [Rodwan and Hake, 1964] and in cue
validity, proximity, average distance, and prototype models [defined,
reviewed, and tested by Reed, 1972], but in each case the supporting
evidence is based on a task with four or fewer feature dimensions.
The implicit assumption, of course, is that four features are enough
to uncover the principles of feature integration -- that adding more
features to the task would not make the results qualitatively
different.

If one's approach to understanding feature integration is not
constrained by possible neural mechanisms, then one would have no
particular reason to suspect such a qualitative change. If one's
approach Zs so constrained, on the other hand, then there is good

reason to suspect feature interactions to be much more significant
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if there are a large number of unreliable features. I don't mean to
suggest that the decision to push empirical inquiry in this particu-
lar direction is immediately obvious from neural constraints. Formal
analysis and simulation are important tools for making the link from
hypothesis to testable consequence -- provided the hypothesis is
well-constrained in the first place, In the terminology of the
previous chapter, model testing is more likely to proceed in fruitful
directions if preceded by rigorous model building.

We have so far explained why it was desirable for the present
experiment to study pattern recognition based upon a large number of
features. This was one major difference from previously sampled
experimental contexts for feature integration. Another property of
the natural setting that was represented in the experimental context
was feature correlation., It will be more convenient to discuss this
property in the next section, after developing some necessary
terminology.

Finally, representativeness of the experimental context dictated
the particular choice of stimulus. It was desired to have a task as
close as possible to pattern recognition in the natural setting
without sacrificing the careful experimental control necessary for
internal validity. One type of object that is encountered frequently
in the natural setting and which people learn to recognize is the
common residential house. Perhaps because houses are so frequent in
pictures and sketches as well as in the world, they are readily
recognized in quite simple line drawings. In an experimental design,

such drawings can be easily standardized and varied in precise
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measurable ways. Houses also seem ideal because they can be varied
along many feature dimensions and still look like houses. Once
houses with many features were chosen to be the stimulus, the ekact
number of features was set at 9 to allow correlations to be
established within three subsets of 3 features each, as discussed in
detail later in the chapter.

We have seen how simulation contributed to the experimental
design by showing what sort of empirical test might produce signi-
ficant results. The simulation also produced specific predictions
to be tested in the experiment. The simulation and predictions are
easier to understand, however, if one has a concrete picture of the
task being simulated. For this reason, we will first describe the
pattern recognition task, then explain the simulation with its
predictions, and finally show the experimental results testing these

predictions.
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Stimuli and procedures

The stimuli were line figures of houses such as those shown in
Figure 9. In order to design the houses to meet the needs of the
experiment, a computer graphics program was developed which would
accept a list of numbers giving dimensions of the house, and then
display such a house on a cathode-ray tube. The first significant
design problem was to establish 9 feature dimensions and a range of
allowable values for each dimension such that any combination drawn
from these ranges would look like a house. (For the mathematically
minded, the cross-product of the 9 feature ranges can be thought of
as a 9-dimensional hypercube, in which the coordinates of each point
specify a complete set of feature values. The problem was then that
each point in the hypercube had to specify a combination of features
that looked like a house. The initial finding of the study was that
there are a lot of points in a 9-dimensional hypercube.)

The next step was to reduce some of the ranges in order to give
the different features roughly equal saliency, but significant
results seemed most likely under such conditions. (This judgment was
again based upon simulation experience.)

Once the design of the houses was fixed, the stimuli for the
experiment were prepared by photographing the graphic display on 35mm
high-contrast transparency film. The slides were developed and
mounted with careful attention to avoiding extraneous cues such as
intensity, orientation, and unintentional markings. When projected
on a screen, the houses appeared as approximately 1 foot high by 2

feet wide black line figures on a white background.
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TABLE 1
The nine feature dimensions of the Hatfield-McCoy

recognition task. The range and normalized scale
are shown for each feature.

RANGE OF FEATURE VALUES***

FEATURE FEATURE
NUMBER DESCRIPTION Zero value on 100 value on
normalized scale normalized scale
1 Height (avg. of peak height 182 224
and wall height, units¥)
2 Steepness of roof 3 ]
(gable ht. / house width) 12 12
3 Horizontal extent of roof 9 3
overhang / house width 24 24
4 Area of left window as % 49 75
of total window area
5 Horizontal displacement of _4 12
chimney from roof peak*#* 24 24
6 Displacement of roof peak -1 7
to left of ctr. / house wid. 24 24
7 Height of each window aslz 71 121
of (area of that window)?
8 Chimney height, units* 31 81
9 Dist. from left edge of 14 34

door to door pane, units¥*

*The cathode-ray-tube display is 1024x1024 units.
*%ag a fraction of peak-to-right-wall distance
**%*%*Allowable discrete values are spaced at intervals indicated
by the denominator.
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In the training phase of the study, the participants learn to
classify a set of houses into two categories, labeled "Hatfield'" and
"McCoy" by the experimenter. Before presenting the details of the
procedure, it is best to lay out the theoretical framework used to
generate the examples of each category. The total range for each
feature is normalized to a scale of 0-100, as labeled in the column
headings of Table 1., Due to limitations of the graphics display,
some of the features (such as slopes) could only assume a discrete
set of values, which translates into a set of equally spaced points
on the normalized 0-100 scale. We will speak of the feature ranges
as continuous with the understanding that each continuous value is
rounded to the nearest of the equally spaced discrete points.

We can now show how the examples given for each category were
generated from a schema for that category. Each schema is opera-
tionally defined as a set of mean values and ranges for the set of 9
features. For clarity of exposition we will go through the schema
definitions for participant group III before presenting the design in
full generality.

Figure 10 shows the schema definitions for group III. The full
range of each feature covers the 0-100 scale just defined. The
figure is intended to show that Hatfield houses vary over the sub-
range 10-70 for each feature. More precisely, the Hatfield schema is
defined by giving a distribution for each of the 9 features. In this
case, all features are uniformly distributed with mean 40 and range
60. In the McCoy schema, on the other hand, each feature is uni-

formly distributed with mean 60 and range 60. Note that for each
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McCOY CUES
Distributions over
feature values
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FIGURE 10. Definitions of schemata
for participant group III.
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feature, the distributions defined for Hatfield and McCoy overlap, so
that no feature by itself is a reliable indicator for differentiating
the two categories.

In formal terms, we are defining a schema as a probability
distribution over the space of all possible houses., Each schema is
used to generate a random sample of houses. A Hatfield house, for
example, is generated by sampling a value for each feature using a
random number generator with mean 40 and range 60. Our definition of
such a schema is still not complete, however, because we have not
specified the joint distributions of the features. In other words,
we have not specified whether the distributions for different
features are independent or correlated. Rosch et al. [1976] argue
as follows:

The world is structured because real-world attributes do not occur
independently of each other. Creatures with feathers are more
likely also to have wings than creatures with fur, and objects
with the visual appearance of chairs are more likely to have
functional sit-on-ableness than objects with the appearance of
cats. That is, combinations of attributes of real objects do not
occur uniformly. Some pairs, triples or ntuples are quite
probable, appearing in combination sometimes with one, sometimes
with another attribute; others are rare; others logically cannot
or empirically do not occur.
The pattern recognition task here, and particularly the feature
correlations in this task, were designed to maximally differentiate
the predictions of the feature-network hypothesis from those of the
feature-independence hypothesis. We will first describe the
correlation patterns and then in the next section consider the
resultant predictions.

To complete the definitions of the Hatfield and McCoy schema, we

must specify correlations among the distributions in each. These are
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shown by dashed lines in Figure 10. Any two distributions connected
by a dashed line are specified to have a correlation of .9;
unconnected distributions are independent (have a correlation of 0).4
The distribution and correlation information that defines each schema
is also a specification for generating a random sample of houses for
each category. A uniformly distributed random number generator is
simply scaled to give the range specified for each feature. In order
to introduce the correlations, a uniform random number is chosen to
represent the common covariance in a correlated triplet. Each
feature in the correlated triplet is then determined by the sum of
this common variate and another random number generated for that
feature alone. The precise procedure (which can be used to generate
random variates with any desired correlation) is shown in the
appendix,

Figure 10 specifies the correlations among the 9 Hatfield
feature distributions, and among the 9 McCoy distributions. These
correlation patterns may be easier to visualize if we arrange the
distributions belonging to each schema in a geometrical array, as
shown in Figure 11. (Positioning of features in the array is merely
to show the correlations clearly, and has no other significance.) In
general, the pattern shown in Figure lla -- specifying a .9 correla-

tion within but independence between the feature subsets {1,2,3},

4Mathematicians will note that pairwise correlations alone do not
uniquely specify a joint probability distribution. We therefore
specify that, within a correlated triplet, the three pairwise
correlations and single triplet correlation are all accounted for
by a single common source of variance (a single random variable).
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FIGURE 11b. The McCoy schema with cor-
relation pattern B.
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FIGURE lla. The Hatfield schema with
correlation pattern A. The feature
distributions of Figure 10 are here
arranged geometrically, in order to
show the correlations more plainly.
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{4,5,6}, {7,8,9} -- will be termed correlation pattern A.
Correlation pattern B, on the other hand, specifies a .9 correlation
within but independence between the subsets {1,4,7}, {2,5,8}, {3,6,9}
When, as in Figure 11, we wish to emphasize not just the correlated
features, but also the particular distributions of these features,
then unprimed numbers will refer to distributions specified in the
McCoy schema. Thus, the correlation pattern shown in Figure 11 can
be identified simply as Hatfield-A, McCoy-B. The opposite
correlation pattern shown in Figure 12 can be identified as
Hatfield-B, McCoy-A.

In the context of the present experiment, we will always use
uniform feature distributions with a range of 60 units somewhere on
the 0-100 normalized scale. Within this context, therefore, the
Hatfield and McCoy schemata are completely specified by giving

(1) the means of the feature distributions for each schema, and

(2) the correlation pattern (A or B) for each schema.
These are the two factors manipulated in the experimental design.

Participants. The participants in the study were 108 female

undergraduates taking introductory psychology at the University of
Michigan., Participation in the research was one (and probably the
easiest) way of satisfying a course requirement of learning about
empirical research,

Design. The two-factor 3 x 2 design is shown in Figure 13.
Factor 1, with three levels, specifies the feature distribution means
within each schema. The three levels were Hatfield-30, McCoy-70;

Hatfield-40, McCoy-60; and Hatfield-50, McCoy-50. These means apply

to each of the 9 features within the schema indicated.
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FIGURE 13. Factorial design
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CORRELATION PATTERNS:
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Factor 2, with 2 conditions, specifies the correlation pattern
for each schema. The two conditions are Hatfield-A, McCoy-B (Figure
11) and Hatfield-B, MeCoy-A (Figure 12). These two conditions are
opposites in the sense that if two features of a schema are
correlated under one condition, then they are independent under the
other and vice-versa. The intuitive idea here (which will be made
rigorous in the next section's discussion of the simulation) is that
any effect due to the correlation patterns will be working oppositely
under the two conditions. On the other hand, all other effects (due
to the distributions of individual features, the comparative saliency
of the features, the labels "Hatfield" and "McCoy'", and the rest of
the experimental context) will be the same across these two
conditions.

The 3 x 2 design yields six participant groups, as shown in
Figure 13. The factors determining each group define the Hatfield
and McCoy schemata assigned to that group. Eight random samples were
drawn from each schema, using a random number generator as explained
previously. Thus, the training stimuli for each participant group
consisted of 16 houses divided into two categories, Hatfield and
McCoy. The whole set of 16 was repeated five times in different
random orders for a total of 80 slides to be presented during the
training phase. In order to minimize the effects of the particular
ordering, the sequence of 80 slides was shown to half the partici-
pants in each group in forward order and to the other half in reverse
order. There were at least 8 participants in each such half-group,

and therefore at least 16 per group.
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Training phase. Each session was conducted with 3 to 5 parti-

cipants seated in a small room with a screen for viewing the slides.
Participants were initially given the following written instructions:

Let's say you have just accepted a job as a traveling
salesman. Your territory is a remote mountainous region inhabited
by two clans, the Hatfields and the McCoys. You'll undoubtedly
get along much better in your new job if you can learn to
recognize the type of houses that Hatfields live in, and the type
McCoys live in. We're going to show you some examples of each
and ask you to try to learn them.

Altogether there will be 16 houses, 8 Hatfield and 8 McCoy.
We'll show you the whole set twice to get you familiar with them.
Then we'll show the whole set three more times (in different
orders) and ask you to guess whether each house is Hatfield or
McCoy.

We'll give you an answer sheet when it's time to start
guessing; until then, just watch. There are too many differences
between the Hatfield and McCoy houses to analyze or keep track of,
and we'd like you not to think about or analyze them. Don't
think, just look! ~—

The first 32 slides were each shown for a 6-second interval with the
experimenter saying '"Hatfield" or 'McCoy" in the middle of the
interval to identify the correct category. Participants were then
given an answer sheet with the following instructions at the top:

Now we'd like you to start guessing. For each house, please
circle H if it looks like a Hatfield, M if it looks like a McCoy.
Please try to guess quickly. After each house has been shown for
about 5 seconds, the correct answer will be announced. If you
haven't made your guess by this time, just cross out the question
and go on.

Note that your answers should go down each column. After the
first two columns are finished, we'll stop announcing correct
answers, and instead give you a lot of new houses to classify.

Some of the houses may be difficult to recognize, so don't
worry if you get them wrong. Just keep guessing as best you can.

The remaining 48 training slides were then each shown for a 13-second
interval, with the experimenter identifying the correct category in
the middle of the interval as before. All training slides were shown

in contiguous intervals, except for a brief pause to pass out the



74

answer sheets; and the test slides followed immediately, after
changing slide trays on the projector.

Testing phase. Before showing the test slides, the experimenter

said "Now you'll see some new houses, without feedback from me. You
should be ready to start column 3." 75 test slides, not previously
seen, were then shown for 7 seconds each, without comment by the
experimenter. The 75 test slides were the same for all subject
groups, and consisted of three repetitions of a set of 25 slides.
Each of these 25 houses had feature values meeting the following
conditions: Arrange the nine numbered features in the usual

geometric array

1 23

4 5 6

7 8 9
and cross out any row and any column. Give the crossed-out features
values of 50 (neutral) on the 0-100 scale. Of the four features not
crossed out, take any two in the same row or same column and give
them values of 17 (Hatfield cue). The remaining two features receive
values of 83 (McCoy cue). It is possible to construct 36 distinct
houses in this way, and 25 of these were selected in a pilot study as
having indifferent enough responses on the basis of individual

features alone to allow correlation information to affect the

response.
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recognizer

75
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sensory input
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FIGURE 14. Neural network model used in the
simulation for the Hatfield-A, McCoy-B
condition. Note that the neural connections
represent the envirommental correlations of
Figure 11. Exact connection strengths are
shown in Table 2.
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Predictions obtained from the netlet simulation

Having described the pattern recognition task in some detail,
we can now look at the simulation of this task in a netlet model.

Our model of the categorization process contains 18 netlets, 9 in
the Hatfield network and 9 in the McCoy network. (See Figure 14 and
Table 2.) Each netlet receives sensory input from one feature.
Thus, for any feature in the environment, there are two netlets --
one Hatfield and one McCoy -- receiving input from that feature, but
these two opposing netlets are maximally excited by opposite ends of
the feature range. As one would expect from Figure 10, feature
values in the middle of the range will mildly stimulate both netlets.
On the other hand, feature values towards one side or the other will
strongly stimulate the appropriate netlet and have no effect on the
other. In short, each netlet labeled 1...9,17,..9” in Figure 14 is
sensitive to the correspondingly-numbered cue in Figure 10.

We will be modeling the postulated netlet mechanism as it exists
just after the training trials. The structure of the netlet model
will reflect information obtained from the training trials, according
to hypothesis (ii) of the previous chapter. We will then simulate
the processing done by this netlet structure upon receiving each of
the test stimuli. Such processing will categorize each test stimulus
as Hatfield or McCoy; therefore, our simulation will predict the
categorizations made by humans in the experiment.

Knowledge base structure in the netlet model. The fundamental

hypothesis (ii)d of the previous chapter postulates that whenever

features are correlated in the environment, the neural
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representations of the features will become more strongly connected
in the brain. This idea that a psychological contiguity learning
rule can be derived from a neural contiguity learning rule goes back
as far as James [1892], and was carefully worked out by Hebb [1949].
Hebb begins by postulating

When an axon of cell A is near enough to excite a cell B and

repeatedly or persistently take part in firing it, some growth

process or metabolic change takes place in one or both cells

such that A's efficiency, as one of the cells firing B, is

increased. [p. 62]
He then presents a convincing argument as to the large-scale effect
of such a mechanism on the ensemble of connections between two
netlets. Stated in our terminology, the argument is that such a
fine scale neural rule, applied over the ensemble of connections over
a period of time, should produce a lumped connection strength
(between the two netlets) that is indicative of the correlation
between the environmental features represented by the netlets.

On the basis of this argument, we hypothesize that, at the
conclusion of the training trials, the connection structure of the
netlet model corresponds to the correlational structure of the task
environment. In other words, if the environmental features are
correlated as in Figure 10 or 11, then we postulate that the ultimate
effect of Hebb's synaptic strengthening rule will be to produce the
connection pattern shown in Figure 14.

In more theoretical terms, the structure of the netlet model is
our postulated answer to the knowledge representation problem of

Chapter 1. In our pattern-recognition task, the knowledge to be

stored consists of the cues associated with each category, and the
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correlations among the cues. In the neural network model, each cue
is represented by a netlet which receives input from the appropriate
range of feature values. Cue correlations are represented by lumped
connections between the netlets. In short, Figure 14 can be
interpreted in two ways. On one hand, it shows the structure of a
simple but realistic neural network with a transition function
derived from the properties of its constituent neurons. On the other
hand, Figure 14 shows the structure of the knowledge base that is
coded into the neural network. From this point of view, each
component of the neural structure stands for a cue or cue correlation
in the world. Thus, the network structure of Figure 14 is a model of
the environment defined by Figure 10. (We will return to this idea
in the concluding chapter.) The precise correspondence between the
neural interpretation and the knowledge base interpretation is, of
course, made possible by the homomorphism derived in Chapters 3 and
4,

Knowledge base processing in the netlet model. A knowledge base

will not be much good unless the information it contains can be
accessed and applied to new situations. Since we do not allow a
homunculus5 to look over the new situation and decide what to pull
out of the knowledge base, it is necessary to have the neural network
itself do the processing. Let us state this requirement specifically

for the present pattern recognition task: When a new stimulus is

5A homunculus in a mechanism is an intelligent little man inside who
keeps things running smoothly, but in doing so begs the question of
explaining intelligence., In today's theories, a homunculus some-
times takes the form of a black box labeled '"central executive'.
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input to the network and the network simply follows its transition
function (laid down in Chapter 4), the result should be an
equivalence-classing operation based on information in the knowledge
base.

When we look at the neural network as an information processor,
the connections are not just sitting there representing knowledge;
they are transmitting activity from one netlet to another. This is
how the information represented in the network is put to use. More
specifically, if netlets j and k represent cues j and k in a
category, then the connection from netlet j to netlet k indicates the
degree of prediction from cue j to cue k.6 Thus, if cue j is present
in the environment at a given time, it is reasonable to infer an
increased likelihood for cue. The connection carries this partial
inference by transmitting activity from netlet j to netlet k. The
effect is that the detection of cue j lowers the threshold for
detecting cue k. If there is an ambiguous or doubtful cue in the

environment which might be cue k, then the presence of cue j

6This degree of prediction is P[klj]/P[k], or equivalently
P[j|k]/P[j], the likelihood ratio of Bayes' theorem. The lumped
connection strength is assumed to be a monotonic function of the
degree of prediction. This likelihood ratio definition, taken
alone, suggests symmetric connections (CONNECTjk = CONNECTkj),

which is the case in the Hatfield-McCoy model. If, however, one of
the correlated features consistently preceded the other in time,
then one would expect the connection representing the forward-time
prediction to be stronger -- simply because predicting the future
is of greater adaptive value than predicting the past.
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helps7 to infer that it <s cue k.

In more functional terms, the network has learned that certain
feature-combination-packages are common in the equivalent, and it
attempts to resolve stimuli into whichever feature-combination-
package is most easily inferred.8 This happens because each feature-
combination-package is represented in the neural network structure.
This structure not only represents the distribution and correlation
information about each package, but also performs the inference
operation that transforms each stimulus into the most plausible
package. This is, of course, the equivalence-classing operation we
have been taking about since Chapter 2.

This equivalence-classing or categorizing operation is the
testable consequence of our neural network hypothesis. In
particular, we are testing whether feature-correlation information
can change the categorization decision, even if feature means and
distributions are held constant.

According to the feature-independence hypothesis, the informa-
tion from each feature makes an independent additive contribution to
the categorization decision. So if feature means and distributions

are the same across Factor 2 (correlation pattern Hatfield-A, McCoy-B

7In most natural settings, it is assumed that converging facilitation
from many cues would be necessary to activate (infer) a cue with
weak environmental support. In the present experiment, there are
only 9 cues altogether and convergence from only 2 is required to
infer a strongly correlated third, but the principle is the same.

8As Bruner [1957] puts it, we tend to '"go beyond the information
given",
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versus Hatfield-B, McCoy-A in the training examples), then the
feature-independence hypothesis would not predict a significant
variance in categorization decisions attributable to this factor.

In the feature-network model, individual feature distributions
are still important, but they are not the whole story. Suppose, for
example, that on the basis of feature distributions alone a stimulus
has 2 Hatfield cues, 2 McCoy cues, and 5 neutral cues. If the
stimulus should fit the Hatfield correlation pattern better than the
McCoy pattern, it would be reasonable to categorize it as a Hatfield,
and this is exactly what the netlet mechanism would do. This is not
in itself a particularly strong prediction of the network model,
since in general the feature-independence models could come up with
a set of feature weights that would match the prediction. But if we
reverse the correlation pattern used during training and look at the
same test stimulus, any feature-independence model will still be
stuck with the same prediction.9 The feature-network hypothesis, on
the other hand, would predict that any effect due to matching
correlation patterns would be reversed by reversing the correlation
patterns used during training.

The simulation confirms this line of reasoning, and also shows
the mechanism which brings it about. Suppose, for example, that we

are simulating the Hatfield-A, McCoy-B condition of the experiment,

9This is because, under the feature-independence assumption, the

weight assigned to each feature is based only on its individual
reliability as an indicator of the category. If the individual
feature distributions each remain the same, then the individual
feature reliabilities also remain the same.
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i.e. the correlation patterns shown in Figure 11. Then our
hypothesized neural network (as developed in the knowledge base
structure subsection) is that shown in Figure 14. Let us investigate
how this network processes a particular stimulus with 2 Hatfield cues
and 2 McCoy cues. If features 1 and 2 are Hatfield cues, while 4

and 5 are McCoy cues, then netlets 1, 2, 4', and 5' will receive
strong sensory input, (Netlets in both networks for features

3, 6, 7, 8, and 9 receive an equal amount of lesser stimulation,
while the absent cues 1', 2', 4, and 5 receive none.) Now the fact
that the Hatfield cues fit the Hatfield correlation pattern (Figure
11) means that these 2 cues both have strong excitatory connections
to the third member of the triplet, netlet 3. In functional terms,
cues 1 and 2 are both good predictors of cue 3. When netlets 1 and

2 become reverberatory, their outputs both converge upon netlet 3 and
reduce its threshold so that the weak sensory input to netlet 3 is
sufficient to fire it.

In other terms, we might say that the sensory information for
feature 3 taken alone does not favor either cue 3 or cue 3', so
netlets 3 and 3' receive equal small sensory inputs. On later time
steps, however, netlets 1 and 2 become reverberatory, and the
convergent facilitation from them gives netlet 3 an edge over netlet
3'.

Since the two McCoy cues do not fit the McCoy correlation
pattern, their output does not converge upon a common third cue as
in the Hatfield network., Instead, when netlets 4' and 5' become

reverberatory, their output is dispersed among netlets 1', 2', 7',
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and 8', and none of these receiving netlets get enough of a boost to
become reverberatory. The crux of the matter is the nonlinear
threshold-like response curve for the netlet developed in Chapter 4
and shown in Figure 6b. This nonlinearity means that the network
does not simply take a weighted sum of its inputs. If two cues fit a
correlation pattern, then their combined predictive validity is
greater than the sum of the individual predictive validities. The
neural manifestation of this extra significance is that the
convergent facilitation from the two cues is enough to boost the
netlet detecting a third cue above its "threshold", into the range of
self-sustaining reverberation.

The events just described are indeed what happens in the
simulation. Once netlet 3 is boosted into reverberatory activity,
the balance is tipped in favor of the Hatfield network. 'This small
advantage is repeatedly magnified by the positive feedback of the
excitatory connections within each network, and by the mutual
inhibition between the two networks. After a few tens of time steps,
an equilibrium state is reached in which all the Hatfield netlets are
reverberatory, and all the McCoy netlets are at a low level of
activity. The simulation thus predicts that the correlation effect
would bias the participants' responses to this stimulus in the
Hatfield direction.

Now if the same stimulus is presented to participants in the
Hatfield-B, McCoy-A condition (Figure 12), then the two MeCoy cues
would fit the McCoy correlation pattern, and the responses would be

biased in the McCoy direction. (This is confirmed by simulating a
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netlet structure with connections corresponding to Figure 12.)

Due to the symmetry of the neural connection patterns, all of
the test stimuli described under Testing phase in the "Stimuli and
Procedures" section yield simulation results just like one of the
two cases above, except in cases where two Hatfield cues and two
McCoy cues are in the same column rather than the same row. In
these cases identical dynamics give the McCoy network an advantage
under the Hatfield-A, McCoy-B condition, and the Hatfield network an
advantage under the opposite condition.

Note that the simulation is predicting only the variance in
categorization decision attributable to the different correlation
patterns (Factor 2). In the actual experiment, there are many
sources of variance, such as differential feature saliency and ease
of learning the various correlations, but these factors are held
constant over the two correlation conditions.

Summary of predictions. The purpose of the simulation is to

predict the effect of training correlation patterns upon later
responses to test stimuli. For each test stimulus, the simulation
specifically predicts that one of the correlation patterns will bias
the response in the Hatfield direction, while the other will bias the
response in the McCoy direcfion. It is important that we are not
predicting the actual categorization decision, which might be
substantially affected by unequal feature saliency and correlation
saliency. Rather, we are predicting the effect of the correlation
patterns as measured by the difference in the categorization

decisions across Factor 2. Finally, this effect is being tested at
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three levels of Factor 1, the separation between means for individual
feature information alone, in which case we would expect the
correlation patterns to be less noticeable, and the learning of
these patterns to be less necessary to distinguish the two
categories during training. As the separation between feature means
decreases, the correlation information would be expected to play a
larger role during training, and hence to have a larger effect on the

response to the test stimuli.
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Results and discussion

Each group originally included at least 16 participants, two
half-groups (viewing the test stimuli in different orders) of at
least 8 participants each. The predictions of the previous section
are intended to apply not just to participants who learn the
categories well, but to all participants who learn some information
about them. For this reason, all participants who met a quite
minimal training criterion were included in the analysis. This
criterion included all participants whose final training score was
chance or better (8 or more correct categorizations out of the final
presentation of the 16 training stimuli). After imposing this
criterion, at least 7 participants remained in each half-group. All
half-groups were then brought to an equal size of 7 by randomly
excluding participants from the larger half-groups. The resultant
six groups of 14 participants each (Figure 14) were the basis of all
further analyses.

Scoring. As described in the previous two sections, all test
houses had 2 Hatfield cues, 2 McCoy cues, and 5 neutral cues. For
the purpose of scoring, the test stimuli can be divided into two
prediction classes, in which

(1) the two cues for each category are in the same row, or

(2) the two cues for each category are in the same column
where "row'" and "column' refer to the usual convention for

geometrically arranging the features:

1 2 3
4 5 6
7 8 9
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The participants' responses to the two classes of test stimuli were
then scored as follows:

(1) Hatfield
(2) Hatfield

1, McCoy
0, McCoy

0.
1.

This scoring scheme allows the simulation predictions to be stated
succinctly. The Hatfield-A, McCoy-B correlation pattern is predicted
to increase the score for each test stimulus, while the Hatfield-B,
McCoy-A pattern is predicted to decrease the score for each test
stimulus. This uniform statement of the prediction allows us to add
each participant's 75 scores and apply the prediction to the sum.
Each participant's scores will then be in the range 0-75, and the
prediction is that the scores will be significantly higher under the
Hatfield-A, McCoy-B condition than under the opposite direction.

Statietical analysis. The mean participant's total score for

each group is shown in Figure 15. The main prediction (of a
directed10 difference between mean scores of the two correlation
conditions) was tested separately at each level of Factor 1. The two
opposite-correlation groups at each level were compared with an
ordinary t-test. At the highest level of Factor 1, corresponding to
individual feature distributions with greatest separability (40
mean-mean distance) the slight difference between the two means was
not significant (p > .3). At the medium and low levels of Factor 1,
specifying separations of 20 and 0 between the feature distribution

means, the differences were significant (at p < .05 and p < .01,

10The Hatfield-A, McCoy-B mean was predicted to be greater than the

Hatfield-B, McCoy-A mean,
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CORRELATION PATTERNS:
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FIGURE 15. Experimental results.
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TABLE 3

Analysis of variance for the experimental
results shown in Figure 15.

MEAN

SOURCE OF VARIANCE df SQUARE F

MEAN 1 42380.25 -
BETWEEN PARTICIPANTS:

(1) Separation of feature means 2 82.41 5.51%%

(2) Diff. in correlation pattern 1 175.00 11.70%%%

(1) x (2) Interaction 2 70.51 4,.72%

Between-participants error 78 14.95 -
WITHIN PARTICIPANTS:

(3) Repeated measures 2 4.60 1.22

(1) # (3) Interaction 4 6.79 1.79

(2) x (3) Interaction 2 4.01 1.06

(1) x (2) x (3) Interaction 4 1.35 0.35

Within-participants error 156 3.78 -

*p €.025
*%p < .01
*%%p 2,001
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respectively) in the predicted direction. The increasing signifi-
cance of the difference with decreasing levels of Factor 1 suggests
an interaction between Factors 1 and 2, which is further investigated
in the following analysis of variance.

In addition to the between-participants Factors 1 and 2, a third
within-participants factor was suggested because the 75 test slides
consisted of 3 repetitions of a set of 25 houses. Factor 3 was thus
created by summing a participant's scores separately for each block
of 25 slides. The analysis of variance for Factors 1, 2, and 3 is
shown in Table 3. The analysis included 84 participants (6 groups of
14), therefore allowing one degree of freedom for the grand mean and
83 remaining degrees of freedom between participants. The main
effect predicted -- variance attributable to the difference in
correlation patterns -- was highly significant(df = 1, F = 11.7,

p& .001). Variance due to the different levels of separation
between feature means was also significant (df = 2, F = 5.51, p < .0D),
and there was a significant (df = 2, F = 4.72, p < .025) interaction
between the level of feature separation and the correlation factor.
Neither the repeated measures factor nor its interactions with other
factors were significant.

There was no significant correlation between the test scores and
the earlier training performance (number correct) on the last set of
training slides.

Discussion. The neural network model has apparently predicted a
set of results that would not likely be predicted before the fact by

other theories of feature integration. This does not of course imply
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that the neural network hypothesis is the only way to account for the
results, but we shall present arguments that it is the most
parsiminious and least ad hoc interpretation.

The interpretation closest to the data would consider the 9
individual features and their correlations as nothing more than
operationally defined pieces of information presented to each parti-
cipant during training. Under this interpreation, it seems clear
that feature correlation information is picked up, held, and later
used in the categorization decisions.

Disagreement over interpretation of the results is possible as
soon as one begins to treat the features as psychological
constructs -- as distinguishable units of information within the
participants' heads, not just the investigator's. Since the
hypothesis under consideration asserts that feature correlation
information is learned and later used, it is important to ask
whether an alternative dimensionalization of the feature space would
eliminate the need to learn such correlations. In other words, we
are asking whether the information previously termed 'feature
correlations' can be reasonably attributed to some set of individual
feature distributions.

More specifically, we have seen that a correlated triplet of
features in the experiment can be factored into a common source of
variance (i.e. a common random variable) and three individual
perturbations. Then why not consider each such common variate to be
a psychological feature, avoiding the need to store correlation

information? Such an explanation, taken by itself, depends upon an
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ad hoc specification of features. That is, a detector for any such
common variate (unlike a detector for any of the 9 original features)
would have to integrate information from non-contiguous loci of the
sensory array. In view of the fact [Hubel and Wiesel, 1962 and a
subsequent body of research reviewed by Thompson, 1967] that
receptive fields for the first layers of visual processing are
spatially contiguous, it would seem unreasonable to postulate
detectors for noncontiguous features a priori.

On the other hand, such noncontiguous '"common variate' features
need not be postulated a priori, but could instead be postulated as
being derived from some set of reasonable primitive features. With
this modification, however, the feature-independence hypothesis is no
longer distingﬁishable from a feature-correlation model. In fact,
the neural network we have specified would be a quite adequate
mechanism for such a two-stage primitive features->complex features-
categories recognition process. Primitive feature detectors would
simply be interpreted as netlets, and complex feature detectors as
strongly interconnected triplets of netlets.

To put the argument in more general terms, we are considering
the possibility that the actual psychological features are different
from the 9 original features we used to operationally characterize
each house. It is quite plausible that the psychological features
are different from, but linear combinations of, the operational
features. Such a transformation would not affect our conclusions,
however; since a linear function of a linear combination is still a

linear function, and so under any such linear transformation the
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feature-independence hypothesis would still be unable to account for
the experimental results. This means that some mechanism for
storing and later using correlation information would still be
necessary. If, on the other hand, we postulate psychological
features complex enough to make the feature-independence hypothesis
work, then we would be begging the question in the sense argued in
detail in the three paragraphs preceding this one.

Let us therefore distinguish two degrees of conclusions that can
be drawn from this study. On the basis of the data alone, taken in
isolation, the conclusion must be limited to a statement about the
information taken in, held, and later used by the participants. Such
a statement appears ét the beginning of this discussion subsection.
But if our reasoning employs the additional constraint of neuro-
physiological plausibility, we can tentatively conclude that feature
correlations per se are part of the knowledge base structure. In
the absence of other proposals to account for such processing in
neural terms, the netlet model is offered as a plausible explanation

with predictive power.



CHAPTER 7
CONCLUSIONS

My hypothesis then is that thought
models, or parallels, reality...

[Craik, 1943]

To understand any biological system, it is not enough to predict
its behavior. Suppose, for example, that we had a complete and exact
"wiring diagram' of the brain, showing how each neuron behaves and
how it influences neighboring neurons. Would we then understand how
that particular connection pattern gives rise to intelligent behavior?
Understanding, in a biological contekt, means more than showing a
mechanism -- it means seeing a relationship between mechanism and
function. Within the constraints of physical and chemical laws,
biological systems are designed by natural selection. Thus they are
understood, not simply by giving the transition rule of the design,
but also by asking what the design is accomplishing. The design
could only have evolved if it makes some contribution to survival
or reproduction. This contribution is what we mean by the function
of the design [Williams, 1976].

What then is the function of the neurall design? It is to
maintain an up-to-date model of the environment, and to insure that
the appropriate parts of the model guide behavior in each new situ-
ation: That is the answer we have been driving at, though of course
we have not proven it here. What we have done is to develop a

technique by which neural structure and processing can be translated

1Cortical, to be more precise.
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into knowledge base structure and processing -- by which design can be
translated into function.

The cornerstone of this technique is the netlet. As the postu-
lated unit of neural design, the netlet is a highly interconnected
circuit capable of self-sustaining reverberation. The equivalence-
classing performed by netlets themselves and by larger networks
containing them is hypothesized to be the basic mechanism of pattern
recognition. As suggested by Milner [1974] and as sketched in Figure
1, this mechanism may be iterated so that netlets deeper in the system
(further from the sensory interface) are able to detect increasingly
abstract concepts. Thus the netlet is advanced not only as a unit
of neural design, but also as a functional unit: a component of the
knowledge base that makes intelligent behavior possible.

Our modeling technique therefore allows Craik's internal model
hypothesis to be expressed in mechanistic neural terms. Each netlet
in the brain stands for the entity (anything from an elementary
sensory feature to an abstract concept) that it detects; and the
connection between two netlets stands for the environmental associ-
ation between the entities they represent. Thus the specific synapse
strengths, both within and between netlets, form a structural code
that represents long-term information about the environment. Long-
term memory, or knowledge base structure, is nothing more than this
structure-code internal model.

Using the structural model in a particular situation, however,

requires selecting those parts of the model relevant to the situation,

This is accomplished by a second mechanism -- the activity code.
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That is, netlets representing entities being perceived (or thought
about) are distinguished simply be their activity levels? (i.e.
neuronal firing rates). Thus the activity code, like the structure
code, is a model of the environment -- a very short term model of the
actual situation at hand.

The relation between these two codes (illustrated in the simulation
of Chapter 6) is that activity flows through the structure, along the
facilitatory connections. We have characterized this flow as
knowledge base processing of the input. Activity coming from the
sensory interface is channeled by the structure into various reverber-
atory circuits. In this way, the network analyzes a new situation in
terms of those previously learned equivalence classes that are most
similar to it. This allows the previously learned associates of
these equivalence classes to come into play, since activity flows
along associative connections. In particular, those associates
receiving convergent excitation from several sources will become the
most active on following time steps. These convergent associates
represent thg predictions or actions that best fit the current
situation, on the basis of previous experience.

Thus, our general hypothesis is that thought (activity in reverb-
eratory circuits) is a simplified, equivalence-classed model of the
situation at hand, a model which can predict consequences of the
current situation, and consequences of one's imagined actions. In

short, organization of the knowledge base as an internal model allows

2 s . e . .
Activity in a circuit representing an object may be experienced as
either perceiving or imagining the object, depending upon -the
strength of activity. This explains Perky's [1910] findings.
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one to form plans. This ability to run the model ahead in one's imagi-
nation -- to think about possible consequences before they occur -- is
obviously adaptive. It was probably essential to early human survival
in an environment where the good niches were already taken. It is

undoubtedly essential to present-day human survival.

Summary. The basic neural mechanism for the internal model
hypothesis was first proposed by Hebb. The purpose of the technique
developed in Chapters 2 to 4 is to present this mechanism as a care-
fully constrained quantitative model, one which will yield precise
predictions. Using the netlet (rather than the individual neuron)
as the basic component allows simulation to be computationally
tractable, and also allows the neural network to be understood in
the functional terms of knowledge base structure and processing.

Chapters 5 and 6 show the application of the netlet model to
a particular pattern recogntion task: simulating the hypothesized
neural mechanism, and testing the resultant predictions in a psycho-
logical experient. The transition function shown in Chapter 4,
however, is not limited to this application. Under the conditions
for lumping (stated in Chapter 2), an arbitrary netlet structure can
be modeled and simulated. Thus, as the internal model hypothesis is
further developed into specific neural mechanisms, these mechanisms
may be simulated using the same netlet transition function. The

predictions obtained should allow further empirical tests of the

netlet approach to the knowledge representation problem.



APPENDIX

Derivation of Lemmas 2 and 3

From Condition 4, we have the distribution of the threshold Tk
within a single neuron, P[Tk<x|8] = P[I§x] = @a,v(x). Using laws of
probability, we can then combine the within-neuron threshold distri-
butions for all neurons f in a netlet. (In the following summations,

B ranges over B, and P{B] = 1/(number of neurons in By-)

P[T,<x] ZBP[B]P[Tk<x|B]

| _ .9
ZBP[B]Qa,v(x) where a = m

ToPIBIaNy (x-Ty,V) + (1-2)Ng(x-T,,,V)]

E(a)NB(x—To,v) + E(l-a)NB(x-Tw,v) where a = mRk

® here A = E(m K
A v(x) where A = E(m X)

b
This result is stated as Lemma 2 in the text. Next, the complement

of the cumulative distribution of Zk can be expressed

P[zkzz] P[X,-T)2z]

fo[Tk<x—z]dP[Xk§x]

R
- = k
IXQA,vX z)dP[XkSX] where A = E(m X)

AfXNB(X—z—TO,V)dP[Xka] + (1~A)foB(x-z-rw,v)dp[xksx]

A P[EB—XkS-z-TO] + (l-A)P[EB—XkS—z—Tw]

by the definition of N, in Condition 4. But by Condition 3, the dis-

B
tribution of,EB - Xk = EB - ijjk can be approximated by a normal

distribution., The mean of this distribution will be E(EB—Xk) =

E(EB) - E(Xk) = -E(Xk), and its variance V' will be expressed in

100
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P[ZkZz]
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Thus we have

A'N(E(Xk)—z-TO,V') + (l-A)N(E(Xk)—z-Tm,V')

= @A,\)' (E (Xk) "Z)

In order to find V' we need a general expression for the variance of

0] :
a,\

Variance Lemma. For any a and v (05as$1,v20) the variance of the dis-

. . . 2
tribution Qa, is v » a(l-a)(T,-7,)".

\Y

Proof. Let & be normally distributed with mean 0 and variance V.

Therefore,

Var(§)

Lemma 3.

Define a random variable T independent of £ such that T=T,
with probability a and T=T_ with probability (l-a). Then

using the definition of @a v
>

@a’v(x) = a P[Esx-1,] + (1-a)P[Esx-T_]
= P[1=T,]P[ESx-T|T=T,] + P[T=T_]P[ESx-T|T=T ]
= P[£<x-T]
= P[g+15x] .
since & and T are independent, the variance of Qa,v is

+ Var(t) = v + E(1t2) - E%(1) = v + a(l-a)(To-Ta)z.

P[Zkzz] = ¢A,v'(E(Xk)'Z) where A = E(mRk) and V' =

Vv o+ Var(Xk) - 2Cov(Xk,Tk).

Proof. The Variance Lemma applied to the previously calculated dis-

tributions for Tk and Zk yields Var(Tk) =y +
A(l—A)(TO-Tw)z and Var(Z,) = v' + A(1-A)(T0-Tw)2 using

the same value for A in each case. Therefore

v -y Var(Zk) - Var(T

)
Var(Xk~Tk) - Var(T

n

")
Var(Xk) + Var(Tk) - 2Cov(Xk,Tk) - Var(Tk)
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= Var(Xk) - 2Cov(Xk,Tk).

Derivation of Lemmas 4, 6, and 7

The microstructure of the input connections to a netlet clearly
influences the microstate of that netlet. As a result, the microstate
of the netlet will become correlated with the microstructure of the
input connections, although not with the microstructure of the output
connections (since the output connections are distributed independ-
ently of the input connections, according to Condition 6). The cor-
relation between microstate and input microstructure is formally de-
fined as the state variable COVARIANCE, and the effect of this
COVARIANCE on later macrostates of the netlet is calculated in the
next section.

We wish to show here that the effect of this correlation is
confined to the netlet in which it occurs. In other words, we wish
to show that the connections from one netlet to another carry only
macrostate information, and not additional microstate information
which might be correlated with the microstate of the receiving net-
let. In brief, we will argue that the output connections, by virtue
of their statistical independence from the input connections, carry
a random sample of the netlet's activity which is uncorrelated with
any inhomogeneities in activity resulting from the input distribution.

To make this argument more carefully, we will phrase it induc-
tively:

Inductive Assertion. At any time step, the microstate of

each netlet (i.e. the distribution of recovery states
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over the netlet) is independent of both (i) the distri-

bution over the netlet of output synapse strengths to

any other netlet, and (ii) the microstates of other

netlets.
The argument (which includes two subsequent paragraphs) will be by
induction over time steps. For the initial time step, the assertion
is given by Condition 6. Next, assuming the whole assertion to be
true at arbitrary time step t (our induction hypothesis), we must
show that it continues to hold at time step t + 1. Now the state
(i.e. complete neural state) of any netlet B at time t + 1 is deter-
mined by the states of itself and of its input neighbors at time t.
Accordingly, for any two netlets B and B', let S be the set of net-
lets having input to B, and S' the set of netlets having input to B'.
Thus the state of the netlets in S at time t will completely deter-
mine the state of B at time t + 1, and similarly for S' and B'., If
S and S' were disjoint, then by the induction hypothesis the micro-
states of all netlets in S would be independent of all those in S'.
In that case, the distributions of recovery states over B and B' at
time t + 1 would arise from completely independent sources, and could
not be correlated. The more difficult case is the case in which the
sets S and S' overlap, meaning that one or more netlets Bi have input
to both B and B'. It certainly seems conceivable that, in this case,
the microstates of B and B' might be correlated due to their common
source of input. But on more careful analysis, the input connections
to B from Bi carry information from only a sample of Bi' The input

connections to B' from Bi carry information from a different sample
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of Bi’ Now these two samples arise from two different distributions
of output synapses, and by Condition 6, these two distributions of
synapses are independent in Bi' That is, the two sets of sample
points (output synapses) are chosen independently. Furthermore,
neither of these output synapse distributions is correlated with the
distribution of recovery states over Bi at time t, by the induction
hypothesis. Thus, the distribution of the output sent from Bi to B
is independent of the distribution of output from B. to B', and
therefore the common input from Bi does not cause any correlation be-
tween the microstates of B and B' at time t + 1. This argument holds
for any netlet Bi in SNS'. We conclude that even in the case where
B and B' share one or more common input neighbors Bi’ the independ-
ence of the microstates of B and B' at time t will be preserved at
time t + 1.

Before proceeding to show that part (i) of the inductive asser-
tion also continues to hold at time t + 1, it may be best to caution
the reader that the assertion and its proof are concerned with micro-
states only, and not with macrostates. To clarify this distinction,
consider again the situation of the previous paragraph in which a
netlet Bi has one set of output synapses going to B, and another set
going to B'. In effect we have two independent samples of the over-
all activity level (proportion of neurons firing) in Bi‘ We expect
both of these samples to carry similar macrostate information; that
is, the proportion of the neurons firing in each sample will closely
approximate the proportion of neurons firing over Bi as a whole, by

the law of large numbers. But our concern here is whether there is
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a correlation between the microstates of the two samples, and because
of the statistical independence of the samples, the answer is no. In
short, the firing neurons within the first sample are distributed in-
dependently of the firing neurons within the second sample.

So far, assuming that the inductive assertion is true at time t,
we have shown that part (ii) continues to hold at time t + 1. It
remains to show that part (i) also continues to hold at time t + 1.
The distributions of output synapses to various netlets from any net-
let B do not change over time, so the question is whether the micro-
state of netlet B will become correlated with any of its output syn-
apse distributions. Since such a correlation does not exist at time
t (by the induction hypothesis), it could only arise at time t + 1 if
some trace of the distribution of the netlet's earlier output returns
as input to the netlet at time t + 1. We claim, however, that such a
trace could not be carried through any intervening netlets. More
precisely, even if the microstate of some intervening netlet at time
t were correlated with netlet B's output synapse distribution, this
correlation could not be passed from the intervening netlet back into
the microstate of netlet B. The reason is that if such a correlation
were passed, then at time t + 1 the microstates of the intervening
netlet and of netlet B would both contain traces of (i.e. be corre-
lated with) the output synapse ‘distribution of B, and therefore the
microstates of both these netlets would be correlated with each
other, contradicting the independence we have already shown (in the
previous paragraph) between the microstates of any two netlets at

time t + 1. (This argument depends upon the fact that the micro-
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state of the intervening netlet at time t affects the threshold dis-
tribution and therefore the microstate of the same netlet at time

t + 1; meaning that the microstate of the intervening netlet is
correlated with the output synapse distribution of B at time t + 1.)
We have thus demonstrated our claim that no information correlated
with the distribution of B's output synapses could be passed back
into netlet B via any intervening netlet. The only remaining possi-
bility is that such correlation information might be passed via the
synapses from B to itself. However, Condition 6 guarantees that the
distribution of neurons in B which receive input from B is independ-
ent of the distribution of neurons in B which send output to B, and
that this independence also applies to the distribution of strengths
of the synapses involved. In other words, if we take the set of syn-
apses from netlet B into itself, then the distribution of these syn-
apses over neurons in the netlet when each synapse is associated with
its presynaptic neuron is independent of the distribution of these
synapses when each synapse is associated with its postsynaptic neuron.
Therefore, since the input to B that samples the activity of B itself
is distributed independently of the sample taken (i.e. independently
of the output synapse distribution); since the microstate of B at
time t is also independent of this output synapse distribution (by
the induction hypothesis); and since the distribution of inputs from
other sources maintains this same independence (as shown in the first
part of this paragraph); we can therefore conclude that the resultant
microstate of netlet B at time t + 1 continues to be independent of

the distribution of output synapses over netlet B. In sum, we have
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shown that both parts (i) and (ii) of the inductive assertion continue
to hold at time t + 1, and therefore by induction the assertion is
true for all time steps t.

If we consider the distribution of synapses from any netlet Bj
to any netlet Bk’ then part (i) of the inductive assertion tells us
that the postsynaptic neurons (in Bk) receive a fair sample of the
activity in Bj’ fair in the sense that the synapses and their
strengths are distributed independently of the activity in Rj that
they sample, and therefore do not distort the sample. To translate
this assertion into terminology that will fit right into the deriva-
tion of Chapter 4, recall that the input xjk (defined in Chapter 3)
received by any neuron in Bk is determined by two factors: the re-
covery states Rj(Hnjk)’ 1 $n XN, of the neurons in Bj that are
sampled, and the corresponding strengths Snjk of the synapses that
do the sampling. Our assertion simply implies that these two factors,
Rj(Hnjk) and Snjk’ are independent, and this conclusion is formally
stated in Lemma 4.

Having shown the independence of the two factors that determine
a single input component xjk’ we can now proceed to show independence
between the different components Xjk of the input coming from differ-
ent netlets Bj' As we have just seen, for each netlet Bj (having
input to Bk), Xjk is determined by two independent factors, the dis-
tribution of recovery states Rj(Hnjk)’ and the distribution of the
corresponding synapses Snjk' But for different netlets Bj’ their
distributions of recovery states Rj(Hnjk) are independent by part

(ii) of the inductive assertion; and their distributions of synapse
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strengths Snjk are independent by Condition 6. Thus the input com-
ponents xjk for all j are independent.
Moreover, if we look at any of the input netlets Bj one time

step later, its microstate (i.e. distribution of recovery states)

R?(Hnjk) could not be correlated with the earlier microstate

Rj'(Hnjk) of any of the other input netlets Bj" The reason is that

the later microstate R?,(Hnjk) of Bj' is partly determined by its
earlier microstate Rj'(Hnjk)’ and therefore if the microstate of Bj

were correlated with Rj'(Hnjk)’ it would also be correlated with

8
Rj'(Hnjk)'
R?'(Hnjk) would be between two netlets at the same time step, and

would therefore violate part (ii) of our inductive assertion. There-

But this implied correlation between R?(Hnjk) and

fore R§(Hnjk) is independent of Rj,(Hnjk)for j'=j. Now we showed
in the previous paragraph that any input xjk is independent of the
other inputs Xj'k’ j' # j. This independence can now be extended to
the next time step input X?k, which depends upon the same fixed con-
nections Snjk as Xjk’ and upon the new microstate R?(Hnjk) which was
just shown to satisfy the same independence conditions as the earlier
microstate Rj(Hnjk). The conclusions of this and the previous para-
graph are stated as Lemma 6 in Chapter 4.

Finally, knowing that the different input components xjk are

independent allows us to compute the variance of their sum:

Lemma 7. Var(X,) = I.(CONNECTSQ., ACTIVITY,-CONNECT?
) = 5t i ] jk

'ACTIVITY?)
To verify this formula, we first note that Xk = ijjk; and because
the separate inputs Xjk are independent, their variances are addi-

tive:
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Var(X,) = ZjVar(Xjk)

o
[
i

I [EQG)-E* ()]

Z35EG N Ry 40)) - TEA ()

= zijE(s;jk)-E(xz(Rj(Hnjk))) - ZjEZ(Xjk)

because the two factors Snjk and Rj(Hnjk) that determine each xjk are

independent by Lemma 4. Next we use the fact that the output function
X is restricted to the values 0 and 1, and therefore A®> = A. This
means that E(A%(R. (H_. = E(A(R. (H_. = ACTIVITY., so the for-
(% (R; (B 1)) = EOR (B 1)) ;
mula for variance now reads
- 2 N, _ 2
Var(Xk) = ZijE(Snjk) ACTIVITYj ZjE (Xjk)
= Z.ACTIVITY.E.E(S2.,) - Z.E*(X.
j ji ( an) j ( Jk)
= X.ACTIVITY, -CONNECTSQ., - CONNECT 2
j j jk jk

where the first term is obtained using equations (9) and (11), and

'ACTIVITY?)

the second term uses the expression for E(Xjk) obtained in the de-

velopment of equation (18).

Derivation of the COVARIANCE component of the

transition function

The state variable COVARIANCEk represents the covariance be-
tween the input and threshold distributions--in symbols, Cov(Xk,Tk).
The role of this quantity in the ACTIVITY transition function was
developed in Lemma 3 and formally given in Lemma 5.

Thus we must express the next-time-step COVARIANCEE =
Cov(Xg,Tﬁ) solely in terms of the current-step ACTIVITY, RECOVERY,
and COVARIANCE. Before plunging into the detailed formal derivation,
it might be helpful to explain our approach in intuitive terms. The

covariance between Xﬁ and Tﬁ is easiest to analyze if we divide up
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the input Xk according to netlet of origin, as shown in Figure 4 (near
the end of Chapter 3). For example, consider how the input xjk from
netlet j will be distributed over netlet k. Presumably only a small
fraction of the neurons in netlet k will receive any input from net-
let j at all, and each neuron which does receive such input will re-

ceive it from its own sample {H .. }

ik’ 1<n<N of neurons in netlet j. Fur-

thermore, the strengths Snjk of these synaptic connections may also
vary, as discussed just before equation (8). These considerations
mean that the input Xjk will tend to be distributed inhomogeneously
over netlet k; and since Hnjk and Snjk are fixed structural attri-
butes of the model, they will tend to produce the same inhomogene-
ities from one time step to the next (i.e. the same inhomogeneities
in Xjk and X?k). This is precisely why we cannot assume that X?k and
Tﬁ are independent: Each input component Xjk received by a neuron in
the netlet influences the probability of firing, and hence the next-
time-step recovery state, and hence the next-time-step threshold Ti.
This means that some trace of the inhomogeﬁeity in the input Xjk will

still be present in the next-time-step threshold T(S Thus the next-

K
time-step input X?k over the netlet will not be acting upon an inde-

pendent distribution of thresholds, but rather there will be some

degree of correspondence between the distributions of X?k ﬁ,

because both are influenced by the same structural attributes Hn

and T

jk
and Snjk‘
In more formal terminology, we are saying that part of the

variance in X?k and part of the variance in Tg are accounted for by

a common source: the distribution of the preceding input Xjk‘ xjk
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accounts for part of the variance in X?k because these successive
inputs come in through the same connections ”njk’ On the other hand,
X?k is independent of the inputs Xj'k’ j'#j, because these inputs
from other netlets come through different random connections Hnj'k

which are distributed independently over netlet k. A rigorous ver-

sion of this argument (shown.in the previous section) .demonstrated

Lemma 6. For any netlet k, the random variables Xjk (for all net-
lets j with some input neighbors to netlet k) are mutu-
ally independent. Furthermore, any X?k is independent
of all inputs Xj'k

To analyze the variance in Ti, we note from Condition 4 that the

fror. different netlets j'#j.

threshold of a neuron depends upon its recovery state dg (later trans-
lated into the random variable Rk) and upon a noise component EB un-
affected by recovery states or inputs. If we use the general nota-
tion = p( ) to mean "is a function of", then we can succinctly express
this dependence as

D= o(R),D)

p(Zj,Xj,k,Tk,g) by Lemma 1; def. of Xjk

T

= p(xjk’Tk’ Zj '#jxj 'k’g)

Thus, if we factor out the dependence of TE upon Xjk and Tk (as shown
in equation (2) below), the remaining variance will be completely
determined by the variables Xj'k’ j'#j and &; and by Lemma 6, X?k
will be independent of this remaining variance in Tk' We will use
this conditional independence to obtain equation (21).

We now proceed to divide Cov(Xk,Tk) into its components and to

factor out the common dependence in each. For any random variable Y,
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define ¥ = Y - E(Y). Using laws of probability we obtain

Cov(Xi,Tk) = E(Aﬁ i)
= EC; X ik’ T
= E(X i k)
= zj,x,tp[xJk =x,T, =t]" E(X i ilx L =X, T =t) (20)

For compactness we will let a lower case x above (within square brack-
ets or after a vertical bar) stand for the event Xjk = X in the sam-
ple space B, and similarly a lower case t above will stand for

Tk = t. Equation (20) then becomes

L. p[x,t]-s(§§ -filx,t)

§ .6
Cov(Xk,Tk) it

I o tPlotl E(X Ix t)- E(T |x t) (21)

by the conditional independence shown in the previous paragraph.
Next observe that the t in E(i§k|x,t) is superfluous, since the only
part of the variance in Tk that helps to predict i?k is that part
which is correlated with Xjk’ and we already have the condition

Xjk = X. We therefore eliminate the superfluous condition and sim-
plify:

Cov()((S

k,Tﬁ) = ZJ P[x] P[t|x]" E(X lx)'E(fﬁIx,t)

1]

zJ’xp[x]-E(ﬁjklx)ztp[tlx]'E(%ilx,t)

zJ,xp[x}-ﬁ(ifklx)-ﬁ(?ﬁlx) (22)

Now from equation (4), E(Tk) = E(mRk)T0 + [l-E(mRk)]Tm =

R Rﬁ
Teo + (To-Tm)E(m k) and therefore E(Tg) = + (To-Tm)E(m X). We can

Tm

also derive P[T£<x|x] using the same steps as in the development of
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Lemma 2, except that the summation is only over neurons § for which

RS
X., = x. This will yield E(Tilx) =T+ (To-T,)E(m kIx) and there-

jk

fore

o]

e |0 = ETolx) - (1))

8 §
[To-Tm]'[E(mRklx) - E(mRk)} . (23)

RS
We have already calculated E(m ky in equation (19). Plugging the

definitions of ACTIVITYE and RECOVERYi into that equation gives
RS R
E(n &) = P[RO=0] + mP[RO40]"E(m K) (24)
Re
The steps from equation (19) just used to calculate E(m X) can also

R
be used to calculate E(m k]x), by simply carrying along the extra

condition. Thus we have
RS
E(m klx) N P[RS=OIX] + m'P[RE#0|x]-E(mRk|x) (25)

and the difference to be evaluated in equation (23) becomes

) 5
E(mRk|x) - E(mRk) =U+V (26)
where
U = P[RO= 6.
= {Rk—le] - P[R=0] and
R R
V= nP[RA0|x]"E(m X[x) - mP[R3A0] E(m K) .

Now following the analysis just above equation (23) for ECTk)

rather than E(Tﬁ) gives
R
E(T) = 1, + ACE@ X)  and (27)
E(Tklx) =T+ AT'E(mRklx) , (28)

. . -1
where for convenience we define At = 1, - T, and AT © = 1/(1,-7,).

R R
Solving equations (27) and (28) for E(m X) and E(m X|x), respec-
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tively, yields

E(mRk)

AT'I[E(Tk)—Tw] and

R
E(m K|x) AT'I[E(Tklx]—Tm] .

Substituting these into our expression for V above, we get
-1 S $
= mAt (P[Rk#OIX]'E(Tklx) - P[R A0JE(T)) -
mAT—le(P[R$#0|X]—P[Rﬁ#O]) . (29)

Now note that P[Ri#OIx] =1 - P[Rﬁ=0]x] =1-U- P[Ri=0] =
P[RE#O] - U. If we make this substitution in equation (29), we can

then factor out the common term P[Rg#o] to obtain

\%

AT (PIROAOT - (B (T, [0)-E(T,)) - E(T |x)'U) + mAt™ 't U

mat (PIREAO] - (B(T, [0 -B(T)) - (BT, [x) 1) D)

mat ((-ACTIVITYD) “E(f, [x) - (B(T |x)-1,)"U) . (30)

Next we will evaluate

P[RE=O!X] P[Zk20|x] by eq. (3)

= @A,v.(E(Xk|x)) by Lemma 3

= @A’V,(Zj,E(Xj,k|x)) by def. of X,

- @A’v,(zj,ﬁcxj,k|xjk=x))

= 6y (B3 45E QK ) +0)

J'#]
= @A’\)v (ZJ yE(Xj 'k) +X'E(xjk))

= (I)A,\)' (E (xk)+x'E(XJk)) (31)

where the parameters A and v' have the same values as in Lemma 3:

= E(mRk), and V' = Vv + Var(Xk) - 2-Cov(Xk,Tk). Therefore
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) 8
U = P[Rk=0|x] - P[R=0]

B (32)

where the two terms were obtained from equations (31) and (17), re-

spectively. If we recall that ¢ is a cumulative distribution,

A,V!

then the expression for U above is simply the integral of the density
! 3 -

QA,V' over the interval from E(Xk) to E(Xk) + X E(Xjk). Now all the

terms we are evaluating occur within the summation Zx of equation (22)

where x ranges over the values that xjk can take with nonzero proba-

bility. Therefore we can apply approximation (ii) of Condition 3 to

obtain
U= (x-E(Xjk))'QA,v,(E(Xk)) .

With these expressions for U and V we can return to equation

(23) and substitute

§ §
E(ff x) AT'[E(mRkIX)—E(mRk)]

At (U+V)

AT*U + m(l—ACTIVITYi)-E(fklx) - m(E(T,|X) -7V (33)
which in turn can be substituted into equation (22). The result is
Cov(X6 Ta) =z P[x]'E(is |x) -AT+ (x~-E(X,,) ®' . (E(X,)) +
k* 'k jsX jk jko AV k
28 s 6y e h
I; (Plx] E(Xjklx) m(1-ACTIVITY,) E(Tklx) -
E xS . . ; .
Zj,kP[x] E(Xjklx) m(B(Tkl x)-T) (x E(Xjk) @A’v,(E(Xk)),
We will now recombine the probabilities conditional on Xjk = X that

are sunmed over the possible values of x. Simplifying each summa-

tion separately, we obtain
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A6 ~
Cov(Xk, k) O v (BOGIY TER G X )

m(1-ACTIVITY? WL E(X K ) +

mo) . (B(X)) 2, E(X Xipr [Tt (34)

Using definitions from probability theory, E(ijk-x?k) =

COV(X [Var(X i)+ Var(X, Var(X?k—Xjk)], where the last

ot = i)
term may be neglected by Condition 5(i). Thus we can approximate
E(AJSk ) in the first line of equation (34) by 2[Var(X k) +
Var(Xjk)]. We also note that inputs and thresholds are correlated
only because the threshold distribution contains a trace of the pre-
vious input distribution, and therefore the covariance between either
of the inputs ﬁ;k and ijk and the threshold Tk is completely accounted
for within the covariance of the two inputs. Thus we can replace

e

EX . Tk-Tm]) with E(?? A k) E(T T,) without losing any co-

ik Xx0 L
variance. The approximation for E(Xjk‘ jk) can thus be applied to
the first and third terms of equation (34), and these two terms can

then be combined to yield
. $
Cov(xk k) z(AT+m(E(Tk)'Tw))¢A v'(E(Xk)) Zj[Var(Xjk)+Var(Xjk)] +

m(l-ACTIVITYk) 3. E(X (35)

i’ T

Next we note that E(X +

k k) E((Xjk+AXjk)'Tk) = E(Xjk'Tk)
A ./\ A .A - 6 _

E(AXjk Tk), where the second term E(ijk Tk) Cov(Xjk xjk’Tk) can be

ignored by Condition 5(ii). Hence the summation on the second line

of equation (35) reduces to a sum of covariances

L, E(X

ZjCov(X

T kT

Cov(Xk,T (36)

K
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by the independence of the Xjk’s shown in Lemma 6. This same inde-
pendence allows us to express the summation on the top line of equa-

tion (35) as

S S
Zj[Var(Xjk) + Var(Xjk)] ZjVar(Xjk) + ZjVar(Xj

1

8
Var(Xk) + Var(Xk) . (37)
Substituting equations (36) and (37) into equation (35) yields
cov (xS, 1) = Learem(E(T, )-1 108" L (B(X)) - (Var(xS)evarx,)) +
k>'k) T2 ST WVER o ¥ k k
8
m(l—ACTIVITYk) Cov(Xk,Tk) .

Finally, recall that COVARIANCEi

Cov(Xg,Ti) and Cov(Xk,Tk) respectively. Also, we showed just after

and COVARIANCEk are defined as

R |
equation (22) that E(T,) = T, + (T,-T)E(m ¥) = T, + AT-RECOVERY,

from the definition of AT and RECOVERY; . Substituting this expres-

sion for E(Tk), we obtain

S

1 8
COVARIANCE, = 7AT(1+m'RECOVERY)®; |, (E(X,))" (Var(X)+Var(X,)) +

m(l—ACTIVITYi)'COVARIANCEk

where the parameters A and V' still have the same values as in
R
k

Lemma 3: A = E{m ) = RECOVERY,, and V' = v + Var(X

K’ K-

2-COVARIANCEk.

At this point we could expand E(Xk), Var(Xk), Var(XE), and
ACTIVITYg in terms of the state variables form which they must be
calculated, according to equation (17), Lemma 7, and Lemma 5. Such
an expansion would express the next-time-step COVARIANCE directly in

terms of the current-time-step ACTIVITY, RECOVERY, and COVARIANCE

(and the fixed parameters of the model). But since these same
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expectation and variance calculations also occur as subexpressions in

the calculation of ACTIVITYi and COVARIANCEi, it makes sense to

calculate these subexpressions as intermediate values which are then
plugged into the expressions for ACTIVITYi, RECOVERYi, and COVARI-
ANCEi. Such a computational sequence is specified in the concluding

section of Chapter 4.
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Generation of €orrelated Random Variates

Begin with three independent random variables XO’ Xl’ and X,,
where each X; is distributed uniformly over the interval from -L; to
Li. In other words, each Xi has density fi where fi(x) =1 if x

2L4

is in the interval (—Li,Li); 0 otherwise. Then the variance of each
X; is the integral of X%fi(x)dx over the interval, which turns out to
be L3/3.

Now define for i=1,2 Y; = XO+Xi’ Then the variance of Yi is

£L3+L§)/3, and the covariance of Y1 and Y, is

COV(YI’YZ) = E(X0+X1)(XO+X2)) - E(XO+X1)E(X0+X2)

2
E(XO) since each E(Xi) is 0

Var (Xo)

which makes sense since XO is the common source of variance in Yl
and YZ‘ The correlation between Y1 and Y2 is this covariance
divided by the square root of the product of the individual variances

of Yl and Y,, i.e. Cov(Yl,Yz) / (Var(Yl)Var(Yz));5

W§/3) 1 (@} + LD+ 15)/9)*

2 2 2.,.2 2.}
LO/ ((Le + Ll)(LO + Lz))”{

Now suppose that L1 = L2 = kLo. These values, when plugged into the

formula just above, yield a correlation between Y; and Y2 which is
simply 1/(1+k)2. Thus k can be varied to yield any desired correlation
between Y1 and Y2' (To be more specific, setting k = (1/c -1)% will

yield a correlation of c.)

Thus, to obtain any desired correlation c between Y1 and YZ’
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begin by generating three independent random variables XO’ Xl’ and X,

where all three are picked from uniform distributions, but the ranges

for the distributions of X1 ahd X2 are each k times the range for Xo,

1
k =((l/c)—1)4. Then Y1=XO+X1 and Y2=X0+X2 will have the desired

correlation c.
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