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INTRODUCTION

The necessity for developing effective and economical designs
for footings subjected to dynamic loads has become more important in recent
years, This has been caused primarily by the trend toward larger machines
and the detrimental effects of vibrations emanating from them in industrial
installations, and by the requirements for safety and stability of struc-
tures in regions affected by blasts or earthquakes, The problems include
the dynamic behavior of the footing supporting the source of dynamic
energy, the process whereby this energy is transmitted through soils to
adjacent structures, and the response of the structure to the dynamic
energy acting on 1ts foundation, A foundation for a precision tracking
radar, for example, has design requirements based on the dynamic force
outputs developed by motions of the radar antenna as well as requirements
to protect the entire structure from the effects of energy arriving from
external sources, The foundation of a building subJjected to earthquake
loadings must accommodate the response of the structure to external
energy arriving through the soil,

The design of foundations subjected to dynamic loads is a trial
and error procedure, Initial dimensions are selected considering such

factors as the dimensions of the equipment or structure to be supported,



the space available for the foundation, and the normal static bearing
stress. The trial design must be analyzed to determine its response to
the design dynamic loading, and then be adjusted and re~analyzed if nec-
essary.

This paper is specifically concerned with practical methods for
carrying out the required dynamic analysis. These methods employ a sys-
tem of lumped masses, springs and dashpots which is approximately equiv-
alent to the actual foundation-soil system. In such "lumped" systems,
the mass represents all of the inertia present in the actual system,
while the springs and dashpots respectively represent all of the flexibil-
ity and damping present in the actual system. The key step, of course,
is evaluation of the parameters of the equivalent lumped system. Once
this has been done, available mathematical solutions of the lumped system
can be used to estimate the response of the actual system.

This approach is by no means new; it goes back to the first
organized studies of foundation dynamics during the 1930's. What is new
i1s an increased confidence in the validity of the approaéh and in the
validity of methods for choosing numerical values for the parameters of
the equivalent lumped system. One key to the improved knowledge and
methods has been provided by the theory for the dynamic motion of a
rigid disk resting upon a homogeneous elastic half-space. This theory,
which is discussed in the companion paper by Richart and Whitman (1967)%
has sorted out the factors which influence dynamic behavior and has pro-
vided the only satisfactory method for evaluating certain of these

factors.

*
References are listed alphabetically at the end of the paper.
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The second recent development of great importance has been the
large scale field tests upon machine foundations (see the companion paper
by Maxwell, Fry and Ballard, 1967). These field tests validated both
the theoretical procedures and the laboratory and field tests needed to
measure the so-called elastic constants required by the theory.

The main emphasis in this paper is upon foundations for recipro-
cating and rotating machinery and radar towers, but the methods of analysis
and the suggestions for evaluating the parameters of the equivalent lumped
systems are generally applicable to all of the problems mentioned in the

first paragraph.

DESIGN CRITERIA
FOR MACHINE FOUNDATIONS

Steady state vibrations. Machines may have rotating or recip-

rocating parts which develop dynamic forces varying periodically with
time. Under steady state operation, forces are developed which have a
frequency equal to the operating frequency of the machine. Reciprocating
machinery also produces dynamic forces (called the secondary unbalanced
forces) which act at a frequency twice that of the machine operation.
Typical operating frequencies range from 200 cycles/minute for large
reciprocating air compressors to about 12,000 cycles/minute for turbines
and high speed rotary compressors.

Vibrations developed by operating machinery produce several
effects which must be considered in the design of foundations. The motion
of the foundation and the machine it supports must be of sufficiently
low magnitude that no structural damage occurs to the machine and its

various connections. The vibration of the foundation must also be of
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a proper magnitude and frequency that the resulting motion of the machinery
supported on the foundation does not interfere with the prescribed function
of the machine itself. As an example, the foundation of a radar tracking
tower must be extremely stable for the mechanicalvand electronic tracking
system to function satisfactorily. Finally, the vibrating machinery trans-
mits energy through the foundation into the soil and this vibratory energy
is then transmitted to adjacent machinery or buildings. In the process

of transmitting energy the soil's internal structure may be altered, re-
sulting in a progressive settlement of the surface, the foundations of
adjacent machinery may be set into oscillations which aggravate their
settlements, or the transmitted energy may set buildings or other personnel
enclosures into oscillations which may be noticeable, uncomfortable, or
intolerable to the occupants.

The design criteria, varying from a consideration of damage to
the machinery to annoyance of persons, must include both amplitude of
motion and frequency of vibration. The combination of amplitude and fre-
guency of a particular vibration is often expressed in terms of the maxi-
mum particle velocity or acceleration developed during the periodic
motion., Generally, to avoid damage to machines or machine foundations,
the maximum velocity of the vibration should not exceed 1 in/sec., or
the maximum acceleration should not exceed 0.5 times the acceleration of
gravity (Rausch, 1943). Vibrations begin to be troublesome to persons
when the maximum velocity exceeds O.l in/seco and they are noticeable to
Persons when the veloéity exceeds about 0,01 in/sec. (Reiher and Meister,
1931). At a frequency of 1000 cycles/mino these velocity criteria corres-

pond to amplitudes of motion of 0.0l1, 0.00l, and 0.000l inches, respectively.
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It should be noted that the motion which may be noticed by persons is of
the order of i/lOO of that which is likely to cause damage to machines.
Finally, to provide a stable base to support precision machinery or
calibration equipment, it 1s sometimes necessary to restrict the accelera-
ly

tion to the order of 10 ' g at relatively low frequencies.

Transient loadings. Machines which develop intermittent force

pulses, for example punch presses or forging hammers, apply a large pulse
of energy to the foundation during each load application. The resulting
motion of the foundation transmits a primary pulse of energy into the
supporting soil, followed by periodic pulses which die out after a few
cycles. The frequency and manner of decay of these pulses depends upon
the dynamic characteristics of the machine foundation and its soil support.
Thus the timing of a series of intermittent machine loads and the damping
of the foundation system determine the resulting motions of the foundation
as well as the characteristics of the energy transmitted away from the
foundation.

One of the most difficult parts of the design procedure for
transient loadings is the evaluation of the force-time pulse which is
delivered to the foundation. Often this must be established from strain-
time or acceleration-time records obtained from measurements on similar
machines. After the input pulse has been established, the calculation
for the response of the foundation can be obtained by analyzing the
equivalent lumped system.

Foundations for radar towers. Often radar towers are supported by spread

footings of approximately circular plan. These foundations must provide

stability against excessive motions, in the rocking and torsional modes
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of oscillation, which may be caused by wind loads, inertia forces developed
by motions of the antenna, or external vibratory energy transmitted through
the soil. Thus, the response of the foundation must be evaluated for a
combination of steady-state and transient loadings.

The foundation for a radar tower is only one part of the total
system which provides structural support for the receiving system. The
antenna dish itself i1s a flexible structure with low damping which may
respond to transient pulses by vibrating at its own natural frequency.

The antenna drive system has some structural flexibility, particularly

in the bearings, and the structural tower between the drive system and
footing has low damping and some flexibility. The footing-soil system

is subjected to rotational modes of oscillation which may be analyzed
after the spring and damping constants for the equivalent lumped system
are established. From this discussion of the various flexibilities in-
volved in components of a radar tower, it is evident that an evaluation

of its dynamic response must be based on a consideration of an equivalent
system having several degrees of freedom (Fu and Jepson,.l959). Consequent-
ly, the criteria which are applied to the design of the foundation can

be understood only through consideration of the tower as a unit, and

the engineers responsible for the design of the foundation should partic-
ipate in the development of design criteria. However, the basic criterion
is still one of permissible motions and some typical values for actual
installations have been given by Horn (1964).

Effect of dynamic loading on soils. Under sustained vibratory

loads or repeated impacts the internal structure of soils may change,

thereby producing settlement of the surface or possibly a reduction in
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strength. It is well known that loose, saturated cohesionless soils are
particularly susceptible to compaction by impacts or vibrations. To
prevent settlements of loose cohesionless deposits by vibrations from
machinery, it is necessary to pre-compact the construction site either
by blasting (Lyman, 1942, Prugh, 1963), by vibroflotation (Steuerman,
1939, D'Appolonia, 1953), or by the use of a vibrating surface roller
(D' Appolonia, 1966). By each method it is planned to introduce a more
severe dynamic loading to the soil during site preparation than is ex-
pected during the operating life of the installed machines.

Laboratory tests (Florin and Ivanov, 1961, Seed and Lee, 1966)
and small scale field tests on saturated cohesionless materials have
indicated that the significant parameters governing compaction at any
point in the soil mass are (a) the initial void ratio, (b) the confining
pressure, (c) the intensity of the dynamic loading, and (d) the duration
of loading or the stress history of loadings with variable amplitudes.

There is a need for studies of compaction under conditions of
sustained dynamic loads, including random load applications, to evaluate
the effects of the four variables noted in the preceding paragraph.

The designer does have some control, however, on the amount
of vibratory energy transmitted through the soil in the neighborhood of
operating machinery. By proper design of the machine-foundation system
he can minimize the amplitude of motion of the foundation, thereby con-

trolling the amplitude of the transmitted vibrations.
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LUMPED SYSTEM PARAMETERS

In the companion paper by Richart and Whitman (1967) it has
been demonstrated that the dynamic behavior of an actual foundation can
be represented by a lumped parameter system. For a single degree of

freedom system this is described by
mz+cz+kz=Q(t) (1)

in which z, z , and 7z represent the displacement, velocity, and
acceleration, respectively, of the mass in the z-direction. The lumped
parameters are the equivalent mass, m , the effective damping, c ,
and the effective spring constant, k , which must be evaluated to re-
present the dynamic motions in the z-direction of the real system as
induced by the external force Q(t) . As illustrated in Figure 1, the
values of the equivalent masses, and effective damping and spring constants
will generally be different for each mode of motion which is excited.
However, when these parameters are established for each possible motion,
then the effects of coupled oscillations may be studied.

Under steady state oscillation, the exciting function Q(t)
in Equation 1 may be expressed either as Q, sin wt , where Qg 1s a
constant, or as mj e W sin wt when the force is developed by a mass
7 with an eccentricity e rotating at an angular velocity w . The

frequency of induced dynamic force is designated by
f == (2)

and the influence of variations in exciting frequency on the response

of the system is shown by relating it to the "natural frequency' of the
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system, f, , where
1 [k
fo=—1[—
o = (3)

Figure 2a shows a typical dimensional plot of amplitude versus frequency
ratio for a single degree of freedom system excited by a rotating mass
exciter. The maximum amplitude of motion is governed by the damping
constant, c¢ , in Equation 1, but this influence is usually represented
in terms of the damping ratio, D', which relates c¢ to the "critical

damping"

Thus

D=— (5)

Figure 2b illustrates the effect of the damping ratio, D , on the maxi-
mum amplitude of oscillation. A complete discussion of the damped single
degree of oscillation system can be found in any textbook on mechanical
vibrations and does not need further elaboration here.

The next three sections provide guidance for the selection of
actual numerical values for the lumped parameters. It is important to
keep in mind the roles which these parameters play in dynamic analyses:
these roles are summarized in Figure 3. The approach to dynamic anaiysis
and to design differs depending upon the amount of damping which is pre-
sent in the system. Hence the magnitude of damping in actual foundations
is considered first in the following section. When damping is so small

that resonance must be avoided, it becomes necessary to estimate the
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Analysis Factors Required

Approximate estimate for

resonant frequency k and m
Approximate estimate for <<,fo k
motions at frequencies
well away from resonance > m
Upper limit for motion at
frequencies near resonant D and k or m

frequency

Figure 5. Summary of Parameters Required For Dynamic
Analysis.
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natural frequency, which requires that the spring constant and mass must
be known. Since it 1s easier to make a reasonable estimate for the mass,
it is considered after damping. Finally, the spring constant, which is

at the same time the most important and the most difficult parameter for

the engineer to evaluate, is discussed.

CHOICE OF DAMPING FOR EQUIVALENT LUMPED SYSTEMS

The dashpots of the lumped system represent the damping of the
s0il. There are two types of damping: the loss of energy through propa-
gation of waves away from the immediate vicinity of the footing, and
the internal energy loss within the soil due to hysteretic and viscous
effects. The use of dashpots in the lumped system does not necessarily
imply that the engineer believes that soil has viscous properties. Linear
dashpots are used in order to derive simple, useful mathematical expres-
sions for the response of the lumped system. The damping ratios are
chosen to represent an equivalent amount of damping, and not to repre-
sent a particular type of damping. In general, the damping ratios are
different for each mode of motion.

Damping due to radiation. The theory for the elastic half-

space can be used to provide estimates of the magnitude of the radiation
damping which should be included in the equivalent lumped system for a
foundation. Figure 4 gives one set of curves for equivalent damping
ratio, obtained by equating the maximum amplitudes of motion as determined
by the elastic half-space theory to that given by the damped, one-degree-
of-freedom method. The mass ratio b from the elastic half-space theory

is the key parameter, and is defined as
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m -
b = -—- for translation, and {6a)
orod
I -
b' = -—> for rotation, {(6b)
pPry
where m, = the mass of the foundation block plus machinery
I, = the mass moment of inertia of the foundation block plus ma-
chinery, evaluated about the vertical axis through the center
of gravity for torsional motion, or about a horizontal axis
through the centroid of the foundation base in the case of
rocking
o = mass density of the soil
rg = radius of the soll contact area at the foundation base,

Figure 4 shows clearly that the damping due to radiation is most important
when the mass ratio b 1s small,

The foregoing equations and charts can be used to provide esti-
mates of the radiation damping for rectangular bases by converting the
rectangular shape into an equivalent circular base., The radius of the

equivalent circular base is given by:

(
\/%; for translation
L
BI) : ,
r = e for rockin {
o 3 5 g (7)
5 BL(B2+IF)
— for twisting
_ 7
where B = width of foundation (along axis of rotation for case of
rocking)
L = length of foundation (in plane of rotation for case of
rocking)

Internal damping of soil, For dry or relatively dry cohesion-

less soils an energy loss during stress reversals i1s developed by slid-
ing between mineral particles, This loss is exhibited by a hysteresis

loop in the stress-strain relations obtained under either static or
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dynamic conditions, The magnitude of this energy loss, or damping, is
primarily a function of the amplitude of strain and the initial confining
pressure, Hardin (1965a) has developed an empirical relation for the
logarithmic decrement, & , of dry sands undergoing shearing deformations,

This may be interpreted in the form of the damping ratio as

0.2 -0,
D & 2 = k5o T gl (8)
XZ

in which 7y 1is the shearing strain and oo(lb/ftg) is the confining pres-
Xz

sure, Equation 8 is applicable within the limits of shear strain ampli-

tudes of 10'6

to lO—l‘L , Tor confining pressures between 500 and 3000 psf
and for frequencies less than 600 cps, Below 600 cps, the effect of fre-
quency is apparently negligible, and the effect of changes in void ratio
are relatively unimportant,

Test on saturated sands (Hall and Richart, 1963) have indicated
that the effect of amplitude of strain is less important than it is for
the dry condition, However, the log decrement for saturated sands was
found to be consistently greater than that for dry sands under the same
confining pressure, indicating the effect of damping resulting from rel-
ative motion between the soil skeleton and pore fluid,

Table 1 summarizes some of the available information relating
to the internal damping of solls at the level of stress changes occurring
under machine foundations, Test results given as damping capacity or
log decrement have been expressed in terms of an equivalent damping ratio,
D . From this table, it is evident that a typical value of D 1s of the

order of 0.05 for internal damping in soils.

Combined effects of radiation and internal damping. In order

to give some crude estimate of the combined effects of radiation and
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TABLE 1

INTERNAL DAMPING IN SOILS

Type Soil Equivalent Reference
D

Dry sand and

gravel 0.03 to 0.07 weissmann and Hart {1961)

Dry and
saturated sand

0.01 to 0.03 Hall and Richart (1963)
Dry sand 0,03 Whitman (1963)

Dry and satur-
ated sands and 0.05 to 0.06 Barkan (1962)
gravels
Clay 0.02 to 0.05 Barkan (1962)
Silty sand 0.03 to 0.10 Stevens (1966)

Dry sand 0.01 to 0.03 Hardin (1965)
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internal damping, the typical value of D = 0,05 for internal damping may
be added to the values of D given on Figure 4, For horizontal trans-
lation, and especially for vertical translation, internal damping appears
to be relatively unimportant when compared to radiation damping, For ro=-
tational motions, however, the radiation damping is low and the internal
damping then becomes a significant part of the total damping.

It is particularly significant that the radiation damping for
the rocking mode of oscillation (See Figure 4) has such low damping be-
cause this type of oscillation,; coupled with one or more of the transla-
tory modes of vibrationy commonly occurs in machine foundations., Because
of this low damping, the resonant frequency is an important factor to be
considered in design against rocking oscillations, whereas the resonant
frequency may be of little significance for vertical oscillations which
develop high values of radiation damping., Thus for the analysis of
coupled vibrations for which one mode of vibration is associlated with
high damping and the other with low damping, it becomes necessary to
evaluate the amplitude-frequency response curve over the entire possible
frequency range.

The foregoing comparison between the effectiveness of radiation
damping and that for internal friction damping of the soils has demon-
strated the value of the elastic half space theory in establishing radia-
tion damping for various modes of oscillation of a simplified footing.
The theory treats only footings which rest on the surface of the half
space, whereas most foundations are partially embedded. Barkan (1962),
Pauw (1952), and Maxwell, et al (1967) have reported on tests of foot-

ings partially embedded as well as for footings at the surface, In
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general, partial embedment reduces the magnitude of motions at the resonant
peaks, thus indicating greater damping, However, the influence of embed-
ment on the amplitude and frequency of oscillation depends upon the mode

of vibration and the magnitude of the motion,. For motions within the range
of design criteria for machinery, it appears that this reduction in ampli-
tude by partial embedment is of the order of 10 to 25 per cent, Therefore,
the design calculations will be on the conservative side if the footing is
considered to rest on the surface, Further field tests are needed to estab-
lish the influence of partial emhedment on the dynamic behavior of footings,
particularly in the rocking mode,

A second major discrepancy between the theoretical assumptions
and real installations lies in the assumption of a uniform elastic homo-
geneous supporting body., Often the subgrade is layered, with a hard stra=-
tum of soll or rock at a shallow depth below the footing, This stratum
will impede the radiation of energy from the footing, by reflecting part
of it back to the footing, thereby reducing the radiation damping,
Warburton (1957) has indicated that the influence of a rigid layer may be
significant if it is within about 3 footing diameters of the surface,
However, 1f such a layer is close enough to the surface to cause impor-
tant magnification of the footing vibrations through reflections, this
proximity may be used to advantage in providing a rigid support for a
pile foundation for the footing, Fach time the prototype conditions
differ from the assumptions upon which the theoretical solution was
based requires the exercise of engineering judgement on the part cof the

designer,



CHOICE OF MASS FOR EQUIVALENT LUMPED SYSTEM

Clearly the mass of the equivalent lumped system should at least
include the mass of the foundation block plus the mass of the machinery,

At first glimpse, it might appear that an additional mass term should also
be used represent the inertia of the soil underlying the foundation block,

Actually, there is no such thing as an identifiable mass of soil
which moves with the same amplitude and in phase with the foundation block,
At any instant of time, various points within the soil are moving in dif=-
ferent directions with different magnitudes of acceleration, The use of
an "effective mass" is Jjustified only to the extent that a mass larger
than that of the foundation block plus machinery is needed to make the
response curve of the lumped mass fit the response curve of the actual
system, If an "effective mass" is used, it must be regarded as a total-
ly fictictious quantity which cannot meaningfully be related to any ac-
tual mass of soil,

The simplest assumption which can be made when éhoosing the mass
of the lumped system is simply to take this mass equal to that of the
foundation and machinery, and to ignore any "effective mass" of the soil,
In the companion paper by Richart and Whitman (1967) it was indicated
that for vertical oscillations the lumped system with zero effective
501l mass established amplitudes of motions which were for all practical
purposes the same as those given by tests on actual foundations, A compari-
son of response curves from the lumped system with zero effective soil mass
and from the elastic half space theory (Lysmer and Richart, 1966) showed
gocd agreement between these curves for frequencies from zero to well

above resonance,
-20-
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Thus, for most engineering analyses it is prudent to make the
simple assumption of zero effective mass of the soil to act with the foot=-
ing, and to concentrate upon making the best possible estimates for the
damping and spring constants.

Estimates for the "effective mass" using the theory for the half-

space. Occasionally engineers may feel that they have achieved very ac-
curate estimates for the spring constant and damping, such that it becomes
worthwhile to choose an "effective mass', Table 2 gives values of "effec-
tive mass" as developed from Hsieh (1962), MNote that the "effective mass"
is different for each mode of motion.

The mass ratio plays an important role when assessing the possi-
ble importance of "effective mass". For actual foundations, b typically
has values between 2 to 10 for translation and between 1 and 5 for rota-
tion. Thus the "effective masses" given in Table 2 are small compared to
the mass of the foundation block unless the values of b are unusually
small. Moreover, as discussed previously, foundations involving small
values of b do not have sharp resonant peaks, (especiaily for transla-
tional motions)y so that the phenomenon of resonance is of little impor=-
tance in such systems. Since one of the main reasons for choosing *the
mass of a dynamic system is to provide an estimate for the natural fre-
quency of the system; the "effective mass" is of significant magnitude
only when the mass is of little practical consequence.

Other estimates for "effective mass": Various writers in the

past have attempted to estimate the "effective mass" on intuitive grounds
or by fitting response curves for lumped systems to the response curves

of actual foundations: for example, see Crockett and Hammond (1949),
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TABLE 2
EFFECTIVE MASS AND MASS MOMENT OF INERTIA FOR

SOIL BELOW A VIBRATING FOOTING
(from Hsieh, 1962)

Effective mass or mass moment
Mode of Vibration of inertia of soil
p,:o p,:l/J-l- lJ,:l/E
Vertical translation O.5pr2 l.Oprg 2.0pr2
Horizontal translation O.2pr2 O.2pr2 O.lprg
Rocking O.Mprg | Not computed |
Torsion (about vert. axis) O.Bprg OQBprg O.Bprg
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Lorenz (1953) and Heukelom (1959). The results obtained thereby have
scattered widely, and sometimes have appeared to be unreasonable.

In the face of these difficulties, it is best to fall back
upon the conclusions derived from the theory for the half-space. This
theory correctly takes the inertia of the body into account without in-
tuitive assumptions, and has been shown to correctly predict the behavior
of actual foundations. To repeat the main conclusion from this theory:
the ficticious "effective mass" is small and it usually is best to ignore
it completely.

CHOICE OF SPRING CONSTANTS, USING THEORETICAL
EQUATIONS AND MEASURED STRESS-STRAIN RELATIONS

The spring constant is the most important of the three parameters
involved in a lumped system. The value of the spring constant affects the
frequency of the resonant peak, the magnitudes of the motions which occur
at frequencies well below the natural frequency, and (except in the spe-
cial circumstance of the eccentric mass machine) the magnitude of motions
at resonance. While much the same can be said regarding ﬁhe importance
of the mass of the lumped system, it was seen in the previous paragraph
that the proper value for this mass is known within rather narrow limits.
However, the spring constant can seldom be pinned down this closely. It
can be said that an estimate of dynamic response can be no better than
the estimate of the spring constant.

Any method for evaluating the spring constant for a particular
problem must in some way account for the following factors, some of which
are interrelated: (1) the effect of partial embedment of the footing,

(2) the dependence of the spring constant upon the initial static stress
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as well as upon the magnitude of the dynamic stress increment, (3) the
distribution of stresses over the contact area between the foundation block
and the soil, and (k4) the dependence of the spring constant upon the size
of the contact area, which in turn depends upon the variation of the mod-
ulus of the soil with depth or with the presence of»a layered soil struc-
ture.

The outline below indicates several methods which are available

for establishing reasonable values of the spring constant.

Method A Use formulas for spring constants derived from the
theory of elasticity and evaluate the elastic con-

stants either from in-situ shear wave velocity meas-

urements or from laboratory tests.

Method B Determine spring constants from small-scale plate

bearing tests using static repeated loadings.

Method C Deduce spring constants from the results of small-

scale vibrator tests.

Method D Use the concept of an elastic subgrade modulus
along with tables or charts correlating subgrade

modulus to soil type.

None of these methods is necessarily better than the others because each
involves approximations and assumptions, and considerable engineering
Judgement is required to take into account the factors listed in the
preceding paragraph. This section considers Method A of the general
methods indicated above, while Methods B , C , and D are considered

in the next section.
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Except for Method C, all of these approaches are basically the

same as those which would be used to estimate load-settlement relation-
ships for conventional, static problems. Hence the soil engineer is al-
ready acquainted with the problems involved in the application of these
approaches. The only different feature of the problem is that the spring
constants must be evaluated for the ranges of strain corresponding to the
dynamic rather than static loadings.

Formulas for spring constants: These formulas relate the spring

constants to the basic stress-strain behavior of the soil. At the present
time, such formulas must inevitably be based upon the theory of elasticity
- a reasonable assumption as long as the live load stresses are less than
one-half of the dead load stress}es.

Table 3 gives formulas for the spring constants in the case of
a rigid circular base resting upon the surface of an elastic half-space.
Table 4 gives formulas applicable to rigid rectangular bases. The formula
for the vertical spring constant is rigorous. The formula for horizontal
spring constant was obtained by assuming a uniform distribution of shear
stress over the contact area and computing the average horizontal dis-
placement of the contact area. The formula for rocking is rigorous. The
authors know of no solution for torsional motion involving a rectangular
foundation. An approximate evaluation may be made by using an equivalent
circular base having the same second moment for the contact area.

In many problems, the distribution of stress over the contact
areg will be different from that for a rigid base upon an elastic medium.
For example, it is often assumed that a vertically loaded footing resting

on the surface of a sand layer develops a parabolic distribution of contact
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TABLE 3

SPRING CONSTANTS FOR RIGID CIRCULAR BASE RESTING
ON ELASTIC HALF-SPACE

Motion Spring Constant Reference
e e |
hgr,
Vertical g = = Timoshenko and Goodier (1951)
1-p
32(1-p)Cr
Horizontal < = __E__fEL_JZ Bycroft (1956)
T-8u
: 8Gr2 .
Rocking k= ——-0_ Borowicka (1943)
3(1-p)
Torsion k@ = %? Grg Reissner and Sagoci (194k4)
(Note: @ = —2 )
2(1+u)
TABLE 4

SPRING CONSTANTS FOR RIGID RECTANGULAR BASE RESTING
ON ELASTIC HALF-SPACE

Motion Spring Constant Reference
e
Vertical |k = I%;E%~J§E Barkan (1962)
Horizontal | k= 2(l+p)GBX:Vﬁis Barkan (1962)
Rocking k¢ = I%; B¢ BLE Gorbunov-Possadov
(1961)

(Note: values for B,» By, and By are given
in Figure 5 for various values of IL/B)
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pressure on the base. For a circular loaded area, a parabolic distribution
of contact pressure gives a spring constant (based upon settlement at the
center of loaded area) only 59% of that for the rigid base distribution.
However, this parabolic distribution corresponds to failure conditions,
and with lower stress levels and anembedment of the footing, the pressure
distribution approaches that for the rigid base condition. The stress
distribution existing under dynamically loaded foundations are discussed
in the companion paper by Richart and Whitman (1967).

Poissons's ratio, p,  for soils usually varies only between
0.35 and 0.5 for the stress ranges encountered in dynamic loadings. Hence
uncertainty as to Poisson's ratio introduces relatively little uncertainty
into the estimate of the spring constant. The major problem is to estimate
either the shear modulus G or Young's modulus E.

Use of dynamic laboratory tests to obtain elastic constants. The

theory and practice of dynamic triaxial tests have been discussed by Wilson
and Dietrich (1960) and by Hardin and Richart (1963). Triaxial specimens
are vibrated at various frequencies until a resonant condition is obtained.
From the resonant frequency and sample length it is possible to determine
the wave velocity and the elastic modulus. By using longitudinal vibra-
tions, one obtains Young's modulus E, or by using torsional vibrations
one obtains the shear modulus G, Knowing these two moduli, it is pos-
sible to compute Poisson's ratio up, although the computed value of
is very sensitive to slight errors in E and G.

Shear wave velocities and hence values of shear modulus may also

be conveniently obtained from laboratory tests using the ultrascnic pulse

technique (Lawrence, 1965).
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In general, the modulus of soil is a function of the void ratio
cf the soil and of the confining pressure, Thus good undisturbed samples
must be obtained in the case of cohesive soils, and some measurement of
in-place void ratio must be obtained in the case of sands, Tests must
generally be carried out at several confining pressures, Lawrence (1965)
and Hardin and Black (1966) have both found that the shear modulus is re-
lated to the mean of the three principal stresses acting upon the soil
and i1s independent of the amount of static shear stress which is present,
Hall and Richart (1963) have shown that the modulus measured in dynamic
triaxial tests is influenced by the magnitude of the dynamic strains,
Consequently, the strains used in these tests should be similar to the
magnitudes of strains expected Just below the foundation in the prototype
situation,

Because in actual soil deposits the shear modulus generally
varies with depth, it 1s necessary to choose an effective value of G
for use with the theoretical analysis, For the computations described in
the paper by Richart and Whitman (1967) for correlation with the field
tests by Maxwell, et gi.(l967) the following procedure gave useful values
of G : (a) the distribution of vertical pressure caused by the weight
of the footing and machinery was computed along a vertical line extending
downward from the periphery of the footing, (b) the vertical pressure
caused by the soil overburden was also computed along this line,

(c) the minimum value of total pressure determined by adding these two
effects was determined, and this often occurred at a depth of about one
radius, and (d) this minimum &alue of pressure was used with the dynamic

soil data to establish the effective value of shear modulus,
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Use of static laboratory tests. In the case of sands, there is

impressive evidence that the modulus measured during ordinary triaxial
tests with repeated static loadings (which develop strains comparable to
dynamic strains) agrees well with the modulus as determined from dynamic
triaxial tests: see Shannon et al (1959), Whitman et al (1964), and Hardin
(1965 b).

As for cohesive soils, Wilson and Dietrich (1960) provided some
evidence of the same nature. More study is needed of this subject, but
events may prove that the elastic modulus needed to compute the spring
constants for dynamic loading can be measured satisfactorily using ordinary
triaxial testing equipment but with special techniques for evaluating small
strains. In principle, both longitudinal and torsional repeated loadings
are possible in a triaxial cell. 1In practice, it will prove easier to run
only longitudinal static loading tests, but with minor modification to
standard triaxial equipment, it is possible to incorporate the dynamic
torsional tests (Hardin, 1966).

Use of seismic velocities measured in-situ. It is relatively

easy to measure the seismic dilatational wave velocity through soil. How-
ever, it is difficult to determine shear wave velocity (and hence shear
modulus) from dilatational wave velocity unless Poisson's ratio is known
very accurately. Only recently have satisfactory techniques been developed
for measuring the shear wave velocity directly: see Maxwell, et al (1966).

Typical values for modulus and Poisson's ratio. Figure 6 shows

the shear wave velocity through quartz sand as a function of void ratio
and confining pressure. These relations apply at least approximately for

both uniform and well-graded sands and for both dry and saturated sands.
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The shear wave velocity may be converted to shear modulus using the rela-

tion
¢ = p(v,)? (9)
where
vg o= shear wave velocity
and
o = mass density, based upon the total unlit weight of soil.

Figure 6 and the Equation 9 can be used to provide at least preliminary
estimates of the shear modulus through any sand. Data by Lawrence (1965)
suggest that the same curves will apply approximately for clays as well.

Figure 7 gives Young's modulus for cohesive soils as a function
of the undrained compressive strength; i.e., the maximum deviator stress
during an undrained triaxial test. The solid curve applies except for
the bentonitic clays. While much more work is needed to establish the
limits of validity of this correlation, it can at least be used for pre-
liminary estimates of Young's modulus for cohesive soils.

For a sand, whether dry or saturated, Poisson's ra*io 1s general-
ly between 0.35 and 0.4 (Whitman and Lawrence, 1964}, This ratio is very
close to 0.5 for saturated clays (Wilson and Dietrich, 1960). A value of
0.4 is a good average value for most partially saturated soils.

CHOICE OF SPRING CONSTANT, USING FIELD TESTS
AND SUBGRADE MODULUS

Plate bearing tests. Barkan (1962) cites numerous field tests

which prove that the spring constant applicable to periodic dynamic motion

is essentially equal to the ratio of increment of load to increment of
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deflection (or moment to rotation) during static repeated loading tests.
Table 5 compares the resonant frequency observed during dynamic tests
upon a foundation block with the undamped natural frequency computed
using just the mass of the foundation block plus machinery, and using
the value of k measured during a static repeated loading test upon the
same foundation block.

The key here is the use of repeated loadings. The magnitude
of the "dead load" and "live load'" stresses should be similar to those
expected under the actual foundation. The loads should not be applied
s0 slowly that consolidation and secondary compression effects are pres-
ent; 1t suffices to apply and remove the loads only as quickly as the
necessary reading may be taken - say a cycle every 10 to 20 minutes.

The chief difficulty with this approach lies in the need to
extrapolate the spring constants as measured using small bearing areas
so as to obtain values applicable to the bearing area actually to be
used. The discussion by Terzaghi (1955) and others concerning the
choice of a subgrade modulus for static loading problems applies to the
machine foundation problem as well. Depending upon whether the soil is
thought to behave as a highly cohesive or cohesionless material, one has
the choice of extrapolating k, (and presumably the other coefficients

as well) according to one of the following rules:

highly cohesive soil: ky = kg C (10a)

(c+1)@

21 % (10D)

cohesionless soil: k = k
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TABLE 5

COMPARISON OF RESONANT FREQUENCY

WITH NATURAL FREQUENCY COMPUTED ON
BASIS OF REPEATED LOADINGS

(after Barkan, 1962)

Areas of Ratio of Frequency
Foundagions at Peak Motion
Soil (£t=) fobs./fcomp.

Clay 21-86 0.86-1.21
Clay 5-16 0.99-1.0k
Sand 11-161 0.93-1.03
Loess 9-43 0.85-0.98

Avg. from 15 data points 0.97+0.062
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where

k = kz for bearing test on a plate one foot square

and

Q
il

least dimension of foundation, in feet.

The ratio kz/kzl is plotted in Figure 8 and clearly indicates that the
extrapolation can introduce considerable uncertainty.

As a final comment, 1t should be noted that it is not easy to
conduct the loading tests. The movements during the repeated loadings will
be small, and special instrumentation and care are needed for the satis-
factory measurement of such small movements.

Small-scale vibrator tests. In this approach, a small vibrator

is set upon a small plate (perhaps 12 to 30 inches in diameter) and the
frequency of excitation is varied until a resonance condition is achieved.
The spring constant is then computed from the measured resonant frequency.

The conversion from observed resonant frequency to spring con-
stant involves some uncertainties. The effective mass of the soil must
be either neglected or estimated. If a constant force type of oscillator
is used, the resonant frequency may be significantly less than the un-
damped natural frequency. With very small bases, it is difficult to keep
the accelerations to less than 0.5 that of gravity, but unless this is
done the spring constant will not correspond to prototype conditions be-
cause of non-linear effects.

Having obtained the spring constant for the small base, it still
is necessary to extrapolate this result to the prototype base. Thus, the

approach using a small vibrator suffers from all the difficulties
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described in connection with plate bearing tests. The same method that
is used to deduce a spring constant from the small vibrator results should
be used to calculate the natural frequency of the prototype foundation.

In most such tests, only vertical excitations are used. Spring
constants applicable to other modes can be estimated by taking the ratios
of the formulas in Tables 3 and L.

Tables for spring constants. Using the concept of subgrade mod-

ulus, the spring constants for the various modes can be written in the

following form:

vertical motion: kZ = cZS
horizontal motion: ky = cXS
(11)
rocking motion: k¢ = c¢I'
torsional motion: kg = cgI”
where
S = area of horizontal contact between foundation and soil
I' = second moment of contact area about horizontal axis

through centroid of area and normal to plane of rocking
I" = second moment of contact area about vertical axis through

centroid of area.

The coefficients c, , cy , cg and cg are subgrade moduli, and are
functions of soil type, size, and to a certain extent, of geometry of the

foundation. However, these coefficients are often assumed to be functions
only of soil type. Barkan (1962) has provided the data in Table 6 for ¢

7,9

and has suggested that the remaining coefficients can be evaluated
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approximately as follows:

cg & 2c (12)

Ce A 1.5 CX

The spring constants computed on the basis of the above equations and
Table 6 can be used for preliminary design when circumstances prevent

a more thorough investigation of the stiffness of the foundation soil.

CONCLUSIONS

The objective of this paper has been to discuss the principles
and procedures which may be employed for the analysis and design of dy-
namically loaded foundations. The following statements summarize the
key points from the paper.

(a) The basic criterion regarding the satisfactory performance
of a dynamically loaded foundation is the permissible dynamic motion. It
is important that soil engineers understand the origin of the criteria
given for any particular problem in order to apply these criteria properly
and to be able to advise clients of their significance.

(b) In order to ensure that the dynamic motions meet the cri-
teria for situations involving lQW damping, it is necessary to ensure
that the natural frequencies of the foundation do not coincide with the
operating frequency. However, for cases involving high damping the fre-
quency corresponding to the ﬁaximum of the response curve has relatively
little significance.

(c) Because soil is a complex material, engineering judgement

is required to arrive at a satisfactory estimate for the dynamic motions
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TABLE 6

RECOMMENDED DESIGN VALUES FOR COEFFICIENT c,

(from Barkan, 1962)

Soil Group ton/ft2

Weak soils (clay and silty clays
with sand, in a plastic state;
clayey and silty sands; also soils
of categories IT and III with lam-

inae of organic silt and of peat)...

Soils of medium strength (clays
and silty clays with sand, close

to the plastic limit; sand).,......

Strong soils (clays and silty
clays with sand, of hard con-
sistency; gravels and gravelly

sands;loess and loessial soils.....

Rocks

Allowable static
bearing stress

1.5

1.5 -3.5

3.5 =5

Coefficient Cy

ton/ft5

95

95 - 155

155 - 310

310
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of a foundation. These judgements can be made most satisfactorily, keep-
ing the clearest line from assumption to result, within the framework of
evaluating the parameters of a lumped system which is equivalent to the
actual foundation. In addition, the use of equivalent lumped systems is
the most convenient way for analyzing coupled motions.

(d) The theory for a rigid disk resting upon an elastic half-
space has led to a major breakthrough in our understanding of the founda-
tion dynamics problem. This theory has shown the proper role of the in-
ertia of the soil, and has pointed out the important phenomenon of radia-
tion damping. This theory is the primary tool for evaluating the mass and
damping for the equivalent lumped system.

(e) Damping is provided in part by radiation damping and in
part by the internal damping of the soil. When translational movements
occur, the damping due to radiation often overshadows the internal damp-
ing and such motions are highly damped. When rotational motions occur,
the two types of damping are likely of about equal value, thus systems
with such motions have relatively little damping.

(£f) The mass of the equivalent lumped system can, with an
accuracy which is adequate for engineering purposes, simply be taken as
the mass of the foundation block plus machinery. The "effective mass'" of
the soil, which has caused so much controversy and confusion in the past,
is so small as to be of little consequence.

(g) Engineers should concentrate most of their attention upon
obtaining suitable values for the spring constants. Several methods of
obtaining spring constants have been described, and the approximations

involved in each were discussed.
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APPENDIX

LIST OF SYMBOLS
Width of foundation, along axis of rotation for rocking or normal
to direction of horizontal force.
Parameter in theory for mass supported by elastic body.
Least dimension of foundation, in feet.
Subgrade modulus for vertical motion.
Subgrade modulus for horizontal motion.
Subgrade modulus for rocking.
Subgrade modulus for torsional rotation.
Damping ratio, i.e. of damping to critical damping.
Young's modulus.
Eccentricity of unbalanced mass.
Frequency (cycles per second).
Undamped natural frequency, defined by Equation 3.
Shear modulus.

Moment of inertia of foundation block plus machinery about axis
of rotation.

Second moment of contact area about horizontal axis.
Second moment of contact area about vertical axis.
Spring constant for mode of motion under consideration.
Spring constant for vertical translation.

Value of k, in bearing test on plate 1 foot square.
Spring constant for horizontal translation.

Spring constant for rocking.

Spring constant for torsional rotation.

-47-



-48-
Length of rectangular foundation, in plane of rotation for rocking
or in direction of horizontal force.
Mass.
Eccentric mass.
Mass of foundation block plus machinery.
Radius of circular foundation.
Contact area between foundation and soil.
Displacement.
Influence coefficient for vertical spring constant.
Influence coefficient for horizontal spring constant.
Influence coefficient for rocking spring constant.
Poisson's ratio.

Mass density of soil.
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