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NOMENCLATURE

Meaning
Cross=gectional area of tube

Area of an orifice

Fourier coefficients, flowmeter frequency response

Component of amplitude correction, flowmeter fre-

gquency response
Coefficient for orifice outflow, g = B"Jﬁ

Capacitance per unit length, gA/a2

¥y
s

Coefficient for friction term, hj =
Orifice discharge coefficient
Momentum coefficient

Diameter of tube

Conductance, or leakage per unit length, mBAM-L
Piezometric head as a function of x and ¢
Complex number independent of time

Bed pressure head (Chapter VI)

Complex pressure-head transfer function

Mean value of head

System bulk modulus of elasticity, a :’JE7E
Laminar outflow coefficient (Chapter VI)
Inertance per unit length, l/gA

Number of discrete orifices

Subscript denoting point P

Component of phase correction, flowmeter frequency

response

ix

Dimensions

(M,L,T)

12
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Dimensions
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Q Flow as a function of x and t 11l
Q Mean value of flow 1or-1
Q' Flow corrected for phase and amplitude error 1or-t
R Resistance per unit length, n ¢ -t 1707
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Re Reynolds number, Re = VD/V
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v Mean cross=-sectional velocity as a function of x
and t LTt
ZR Complex input impedance Lo
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a Pressure~-pulse wave speed, a = J%7E- LT"'l
b Width of continuous orifice L
f Darcy-Weisbach friction factor
g Gravitational acceleration T
h' Head perturbation L
hf Frictional head loss L
h% Frictional head loss per unit length
i J-1
i Subscript
J Superscript denoting number of iterations within one
time step
k,kk Subscripts



Symbol

Length of tube

Exponent for lateral outflow,

Subscript

Exponent for friction term, h

Subscript

Meaning

]

f

NOMENCLATURE (CONT'D)

q = BH"

¢ ¢
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Flow perturbation
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Velocity components of lateral outflow

Phase velocity, or velocity of propagation
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I. INTRODUCTION

1.1l. Basis for the Study

While much literature can be cited concerning the nature of

11’13) few investi-

distributed outflow in steady-state conditions, 1’7’
gations can be found which contribute toward the general understanding
of the nature of unsteady flows in a fluid line which experiences leak-
age.,

The need for such a study, described herein, can be justified
on several bases. With advancing technology industrial fluid processes
are becoming increasingly complex. For example, the design of manifolds
is often encountered in chemical processing plants and in the manufacture
of paper; when the lateral outflow is predominant, the nature of the un-
steady flow in the system 1s analogous to the dissipation of heat in a
rod of finite length, or a plate of finite width, in that the governing
equation is parabolic in form. As a second illustration, it might be
desirable to analyze and design the longitudinal-conduit and multi=-
lateral-port system of a navigation lock.(l6) If the valve~-opening rate
is small, one encounters a mass-acceleration problem; however with rapid
valve motion, water-hammer effects must be taken into account,

The application of fluid mechanics to the study of blood flow
in the cardiovascular system has been successfully attempted in recent
years., The descending aorta in the thoracic and abdominal regions is
basically a tapered, elastic tube possessing numerous side branches
which divert the flow of blood as it journeys from its source of energy,

the heart. This energy is dissipated throughout the aorta as the blood
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travels its length and is distributed laterally into the branching arter-
ies., The mathematical synthesis of such a complex branching tree would
enhance the physical understanding of blood flow systems,

The author believes that this investigation represents the
first time unsteady flows in manifolds have been treated in a general
manner. The field of fluid transients is rapidly expanding. It is
hoped that an analysis of distributed-outflow systems will contribute

to a better understanding of the discipline.

1.2, ILiterature

The basic equations for unsteady flow through elastic conduits
including a distributed-outflow parameter have been presented by Streeter
et gl,(go) The one-dimensional equations of momentum and continuity are
reduced to hyperbolic form, applicable to the method of characteristics
solution., The authors describe flow in an arterial segment, and assume
the outflow per unit length to be proportional to the head difference
inside and outside the tube.

Recently Rudinger(l7) has presented the characteristic equations,
and has included a distributed-leakage parameter with which any type of
lateral outflow may be assumed, e.g., a number of branching tubes. If
one assumes the fluid to be incompressible relative to the distensibil-
ity of a vessel wall such as an artery, the three nonlinear equations

required for analysis are, after Rudinger,

ég%% + el +V & + A =0,

ot Ax
o oA
5X(AV)+at +X =0,

A =A(H) X, t) p)
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in which H , V, and A are the pressure head, velocity, and cross-
sectional area, respectively. The first relation is the momentum bal-
ance in which A represents the resultant of all longitudinal body and
dissipative forces. 1In the continuity equation X designates the volume
flow removed per unit length of the vessel., The third relation is the
equation of state of the vessel which represents the relationship be-
tween the crosé—sectional area, the pressure, and other parameters.

By linearizing the basic equations one can obtain analytic so-

(3)

lutions. Attinger and Anne discuss the linearized Navier-Stokes equa-
tion and the continuity equation in relation to blood-flow systems. They
include a leakage-flow parameter which is directly proportional to the

pressure:

OH 0Q
S + L vs + RQ

It
@
>

S, &
S + C >t + GH

1l
(@}

The flow is represented by Q , R 1is the viscous resistance term, L
the fluid inertance, C the capacitance, and G the parallel conduc-
tance or leakage per unit length. These linearized equations are direct-
ly analogous to the electric transmission-line equations, and, with ap-
propriate values of L , R, C and G , are valid for many types of
fluid lines as well as arterial systems. Moore(l5) presents parallel-
isms between the telegraphers equations and the equations for various
nonelectromagnetic waves,

While this thesis is primarily concerned with unsteady flow,
it is necessary to know the initial boundary-value solution in a dis=-

tributed fluid line, especially if subsequent transients in the system
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are of a high ffequency or rapidly dissipate. For most practical situa-
tions this initial condition is of a steady-state nature. A sizeable
amount of literature is available concerning the analysis of a manifold
under steady-flow conditions =-- a few pertinent references will be cited
in this discussion.

A theoretical beginning point is a study performed by McNown

(12)

and Hsu in which free streamline theory is used to determine the

characteristics of divided flow through two-dimensional conduits.

McNown<ll)

has made a detailed investigation of pipe manifold flow, com-
bining the results of experimental data with simplified theory. Included
1s a review of literature covering the stated fileld, both experimental

and theoretical. Papers by Acrivos et 3&.,(1) Horlock,(7) and Markland(lg)

are of particular interest, where for the steady-state analysis of flow
from pipe manifolds, the authors assume a distributed-outflow mechanism
in the form of a continuous slot, thereby simulating a finite number of
orifices distributed along the axis of the conduit. They simplify the

energy equation which governs flow through the ports, and combining it

with the one-dimensional forms of the momentum and continuity equations,
obtain either analytical or step-wise solutions for the distribution of

flow in the manifolds.

1.3. Objective

The primary objective of this thesis is to present a general
analysis of unsteady, nonuniform flow variations in fluid lines which
experience lateral outflow distributed along the axis of the tube.

In particular, the distributed-outflow mechanism might be a number of
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orifices, or it may be a series of lateral fluid lines branching from
the main section. Both transient and steady-oscillatory flows are con-
sidered. An original contribution is the recognition of a class of
flows which is governed by a parabolic partial differential equation.
The purpose of the experimental investigation is to observe
and analyze low-frequency oscillating flows in a manifold system, and
to verify the concomitant governing equations.
Since the equations of motion and continuity are reduced to
two different forms, viz., hyperbolic and parabolic, it is necessary
to show the range of applicability of these restricted forms once limit-

ing assumptions have been imposed,

1.4. Scope and Plan

Consideration is given to various problems assoclated with
distributed outflow, including the analysis of steady~-state conditions,
water-hammer surges, and steady-oscillating flows. Numerical solutions
are based on the following techniques: (1) the Runge-Kutta method for
steady flows, (2) the method of characteristics to solve the equations
of motion and continuity in hyperbolic form, (3) a finite-difference
method based oﬁ the Gauss-Seidel iteration coupled with the Crank-Nicolson
approximation to the second derivative(h) which solves the nonlinear
parsbolic equation, a reduced form of the momentum and continuity rela-
lations, and (k) impedance methods which provide analytical solutions
of the linearized equations for steady periodic flows.

The order of investigation is as follows:

1. Computer analysis of surges in a manifold system, compar-

ing a finite-orifice line with a continuous-orifice line,
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Fmphasis is given to the solution of the hyperbolic form
of the continuity and momentum equations. Consideration
is also given to steady-state or initial conditions.

2. The analysis of experimental data of low-frequency, oscil=~
lating flows in an orifice manifold. It is shown that the
behavior of system variables (i.e., heads and flows) can be
predicted from the developed theories, and particular at-
tention is given to the verification of the parabolic equa-
tion.

3. Synthesis of a portion of the arterial tree of a dog, where
attention is directed to the prediction of pressures and
flows for various outflow conditions.

In the appendices one will find the numerical methods necessary

to solve the hyperbolic and parabolic forms of the momentum and continuity

relations,



IT. ANALYTICAL FRAMEWORK

This chapter is devoted to a theoretical consideration of flows,
both steady and unsteady, in a fluid line experiencing distributed out-
flow. The general equations of momentum and continuity including a leak-
age term are presented., Relations are developed for flow in a manifold,
both for a line possessing a number of discrete orifices, and for a line
which contains a continuous orifice. By means of imposed limiting as-
sumptions, the governing equations for the continuous-orifice system re-
duce to either hyperbolic or parabolic form. In addition, impedance re-
lations which include leakage are given in a form applicable to a manifold
system.

Throughout the remainder of this thesis, a manifold system re-
fers to a tube with either one or a series of orifices distributed along
its longitudinal axis, and the orifice may be circular or a continuous
slot,

2.1. Equations of Motion and Continuity for a Tube Including Distributed
Outflow

The general momentum and continuity relations including leak=-
age have recently been presented by Rudinger,(l7) whose basic equations
appear in Chapter I, He does not take into account the possibility that
the leaking fluid may possess a component of axial momentum., FEarlier,
Streeter et EL.(QO) accounted for this by assuming that the fluid leav-
ing through the walls has its axial momentum reduced by contact with the
lateral tube which branches from the main conduit. These authors were
concerned with highly distensible tubing in which the fluid medium could

be considered incompressible.
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For the continuity and momentum balances, one can follow the
normal procedure in water-hammer analysis where the pressure is assumed
to be transversely uniform and to vary only along the longitudinal axis
of a conduit. In a like manner the mean cross-sectional velocity is
employed. Consider a horizontal, elastic tube contalning a compressible
fluid. The system is experiencing lateral outflow per unit length, des-
ignated as q , which is leaving a control volume with an axial velocity
component v , and at an angle 6 +to the horizontal, Figure 1. After
neglecting the differential terms of higher order, the equation of mo-

tion in the axial, or x-direction for one-dimensional flow is

9P sx - TomDdx = 0 (DAVQ) &x + o (pAVEX)

A S x St

(1)
+ Cﬁ pgq Vox ,

in which A 1is the cross=-sectional area, p the piezometric pressure,
To the wall shear stress, D the inside tube diameter, p the fluid
density, and V 1is the mean fluid velocity. The time and distance
parameters are t and x , respectively.

It is assumed that the axial component of velocity of the
outflow can be expressed as V = CﬁV , Where Cﬁ is defined as a
momentum coefficient. Since, in the manifold, the outflow is drawn
off from the fluid within the boundary layer, the magnitude of CB
will depend upon the shape of the velocity profile in addition to the
geometry of the outflow mechanism. Under steady-state conditions, var-

(7,13)

ious authors have assumed CB = 1 for orifice outflow, and for
outflow which leaves through lateral branches normal to the manifold,

they assumed CB = 0, The assumption can be validated by experimental
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Figure 1. (a) Forces Acting on Segment of Fluid. (b) Continuity
Balance on Segment of Fluid.
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investigation, but due to its detailed nature, such a study is not con-
gidered here. For the systems which are analyzed in the following chap-
ters, the effects of lateral axial momentum are minor.
The continuity balance, Figure 1, i1s expressed by the equation
.9 (PAV)®x - pgdx = 9 (pABX) . (2)
ox ot
: , . (20)
Equations (1) and (2) are basically those given by Streeter et al.,

where they assumed CB = 1 . The significance of Cg will be demon-

strated in Chapter III.

2.2, Flow in a Manifold System

A restriction is now imposed on the distributed-outflow para-
meter, namely that consideration be given only to an orifice type of
lateral outflow. This restriction will be eliminated in Chapter VI,

The study of unsteady flows in a manifold is a logical ap-
proach to the general analysis of distributed outflow. If one employs
a smooth, stiff, cylindrical manifold the outflow parameter 1s somewhat
isolated, and the use of an orifice as the outflow mechanism affords a
reasonably well-defined head-flow relationship. There is a degree of
similarity between a manifold system and a fluid line which possesses
multiple lateral tubes; in either case one must study the momentum and
energy relations of the dividing flow and account for these in the main
conduit. Differences arise in the description of the outflow parameter,
q , and in the limiting assumptions imposed upon the momentum and con-

tinuity relations,
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Consider a manifold under steady~flow conditions; the lateral
outflow can be related to the piezometric head, H , by the simplified

Bernoulli relation

q=BJH: (3)

in which B will dictate whether the orifice is finite or continuous.
For a single orifice, g, = Cy Ay JEEE-, in which C4 is the discharge
coefficient and A, 1is the orifice area. Any attempt to improve
Equation (3) by including additional terms would distract from the en-
suing analyses, and in the manifolds which are analyzed, including the
experimental models, it will be seen that it is sufficient., The reader
is directed to the references cited in Chapter I for detailed considera-
tions dealing with the nature of orifice outflow.

In addition, it is assumed that Equation (3) is valid for any
time at any given location in an unsteady flow situation. If we take
the flow in the orifice to behave in a quasi-steady manner, Equations

(1) through (3) can be combined to yield succinct, meaningful solutions.

2.2.1, Line Possessing a Finite Number of Orifices

In an actual physical situation lateral outflow might occur
atl discrete points along a manifold axis. However, if one can assume
that the number of orifices in a given length is of sufficient size,
then as a limiting condition, the manifold can be regarded as a homo-
geneous system consisting of a main tube with a longitudinal slot.
Acrivos et il'(l> relate such criteria for steady flow conditions.

Thus it seems appropriate to compare unsteady flows in a finite-orifice

system with an equivalent continuously-slotted manifold,
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Consider a cylindrical fluid line possessing 1, 2, ..., N
orifices, Figure 2, Assume that across one orifice the magnitudes of
the time rate-of-change of momentum and losses are small and can be
neglected. Then the momentum and continuity balances across one orifice
are,

Ca 9. V
L g2 2 p o '1
H2 - Hl = .é. (Vl - V2 ) - _._Ag.—__ s (4)

Cq A
Vo =V = = dA 2 Ve(Hy + Hp) . (5)
It is assumed that from one orifice the outflow is

4o = Cq Ao Ve(Hy + Hy) . (3a)

For the steady~state solution one can progress in the + x direction; in
Figure 2 at point 1 , Vli and Hli are known, and a simultaneous so=
lution of Equations (4) and (5) will give Vo, end Hp, . If

Ky = (chO/A)2 , then

: 1
VD, = comem—— qu(g + CpK )
1 2(14Kq) [ + P

2 2
g'\/Qli (2+CBK1) + 4K1(1+Kl)[2gH11+(lmCB~l/K1)V1§]], (6a)

Hp, = 5%{ (Voy - V1,2 - Hy, (6b)

Furthermore,
Vl1+l - V21 ’ (6e)
L = Hoy - Pe(Vay) (6a)
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Figure 2. Manifold Possessing a Finite Number of Orifices.
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In Equation (64), hf(v2i> is the frictional head loss in the closed

tube between orifices., Normally for fully developed flow,

2

Vof

Ax 25

ha(Vo. - —_— ——
f( 21) f D g P)

in which f 1is the Darcy-Weisbach friction factor,

Unsteady flows are handled in the following manner. Assume
values of H and V at points i-l1 and i+l to be known at time m=-1 .
To compute the four unknowns at point i1 , time m , two relations in
addition to Equations (4) and (5) are requiréd: referring to Figure 2,
these are the algebraic form of the wave equations(l9) in the closed

tube on either side of the orifice at 1 ,

v Cy = Cp Hy., a
li,m 1 2 ]_1’m ) (7 )

25 m Cz + Cy Héi,m s (7b)

g g
C, =2H + - & ho(Vo,
17 a2 m giml,m-l a £ 21~l,m—l) ’
Co = O = g/, Y (70)
Cy = - 2 H + -&n . .
3 a  Li+l,m-1 Vli+l,mwl a £(V1142,m-1)

/

In these equations one assumes the frictional head loss to be lumped at
one end of the segment Ax where the velocity is known at time m-l .

The time increment, At , is Ax/a ; in which a 1s the pressure-pulse
wave speed. In addition, it is assumed that the frictional losses be-

have in a quasi=-steady manner, e.g.,

Vv

—

2g

hf(V) = T

ol

a method which has commonly been used by previous investigators.
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The simultaneous solution of Equations (4), (5), (7a), and

(7o) is simplified by letting Iy = Hp + Hp and Ip =1Ip - H) :

Iy = 551?. [[Kf - 205(C5 - €q)]
sl

--V[Kgg - 2C2(C5 - Cl)] - 1+022 (05 - Cl)g‘ s (8a)

2 D
Ko™ In = C KoLy + (Cz + C
V. - o 1 g/ 2 [ vl ( B) l>] , (8b)

Ko \/Ip (2-Cg) - 28/Cp

v =V - Ko 14 ‘8c)
2i,m li,m 2vi

1 \ Fan

Lo = — [Vo, + 7V - (Cz + Cq)] (8a)
27 ¢, eim o g (G5 + I

_ 1

Hli)m =2 (I; - Lo) (8e)

s o

_ = = + . (8t)

Hoy =5 (L1 + Ip) |

In these equations Kp = Czh, Jé/A .

One can now proceed to evaluate system variables on a time-
distance grid. At time zero, Equations (6a) through (6d) will yield
the steady-state values of Hy , Vq , Ho , Vo , and g, at discrete
points i . At any time greater than zero, Equations (8a) through (8f)
will evaluate the heads and velocities on either side of a lateral ori-
fice, and the flow out of the orifice., The time-variable boundary con-
ditions will complete the solution; if either head or velocity is known
at the boundary, then the other can be computed. As illustration, in

Figure 2; the upstream head is given by

H = H, + Al sin(wt) ,
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in which Hg, AH and ® are known. Then substituting into Equation
(7o), V can be determined. It is assumed that no orifice exists at
the upstream end of the manifold. The downstream boundary condition is
handled in a similar manner; if a valve is located at x = [ , a gate
equation can be combined with Equation (7a) to yield H and V at that
point, If one encounters a dead end at x = [ , then V =0 and the
head can be determined from Egquation (7a).

In the use of Equations (8a) through (8f) it is convenient to
have equal time steps at each point 1 . Since At = Ax/a , and a 1is
assumed to be constant, the segment Ax must be of the same length be=-
tween each orifice and at each end of the manifold.

Equations (6a) through (6d) and (8a) through (8f) comprise a
set of nonlinear difference equations from which heads and flows in a
discrete-orifice manifold can be computed. In the following three sec=
tions the limiting case as the distances between orifices approach
zero is considered, The resulting equations are simplified in the sense

that they become differential equations.

2.2.2. The Steady=-3tate Solution

Attention 1s now directed to the continuous manifold, Figure 3.

Assume the walls of the conduit very rigid and the fluid incompressible.

Then for a cylindrical tube %. (pA) and %; (pAdx) are zero, and Equa=
X
tions (1) and (2) combine in the manner
1 op b1y VN W
= = 40 4 (2g) VT +— = 0.
5 - (2-Cg) % (9)
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K’Ho"‘AHSm(U)f)
;7/2?X\<:;7zah- —Ho

X l—AX———AX —
CONTINUOUS MANIFOLD

DETAIL OF CONTINUOUS ORIFICE

Figure 3. Manifold Possessing a Continuous Orifice.
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For steady flows OV/0t = O , and one can substitute for p the term

ogH . The frictional-loss term can be given as

hro/eD = g Wi(V) ,
in which v
n(V) = £V2 /2gD
is the head loss per unit length due to friction,
In the detail of Figure 3, the manifold contains a continuous

orifice; for such a type of lateral outflow Equation (3) can be used,

q = Cy bV eeH , (30)

where in Equation (3), B = CybN2g . The dimensions of ¢ are volume
rate per unit length., The discharge coefficient is Cg and b is the
width of the slot. When one combines Equations (9) and (3b) with the re-

duced continuity relation, i.e.,

3\1=-g: (2&)
ox A

then H 1is eliminated, and since only one independent variable, x , is
encountered the partial derivatives become total. The result is a non-

linear, second-order differential equation:
2 hi(V)
9_% + KV + Kp L

dx —_—
dx

=0, (10)

. , 2 2
in which K, = (Cqb/A) (2"06) and Ko = (Ggb/A)°g . If Z7 =V and
Zp = dV/dx , then Equation (10) can be rewritten as two first-order

differential equations,

azy
== Z,,
dx (10a)
aZs hi(Zy)

— =-K1Z7 - Ko
dx Zo
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These can readily be solved simultaneously on a computer by utilizing
a Runge-Kutta procedure.(g) This method is used to predict initial
steady-state conditions in the unsteady flow situations encountered
in Chapter III. Once V has been determined, H can be evaluated
by combining Egquations (2a) and (3b).

When the Darcy-Weisbach equation for the frictional head loss
is used, i.e., h%(V) = ng/QgD , 1t is possible to allow the friction
factor, f , to vary in a prescribed manner. For example, consider a
smooth manifold in which the flow is turbulent; for a Reynolds number
up to 100,000 the Blasius formula can be used, where f = ,316 Re”°25.
If the flow were laminar, f = 64/Re . It is tacitly assumed that the
velocity profile in the manifold is fully developed, and 1s akin to that
in a closed tube, This is reasonably valid for a finite-orifice mani-
fold which is approximated by a continuous orifice one., In the case
that additional losses would occur due to flow separation, a modified
loss term could be used in place of the Darcy-Weisbach relation.

With the steady-state equation for distributed outflow in a
continuous manifold now formulated, the next two sections relate ana-

lytic framework necessary for the calculation of unsteady flows.

2.2.5. Pargbolic Equation

If one considers unsteady flow in a fluid line with a con-
tinuous orifice, and assumes under specified conditions the system to
be inelastic, Equations (9), (3b) and (2a) of Section 2.2,2 remain
valid. Dividing Equation (3b) by A and equating with Equation (2a),

one gets

§l = = EQE 2\/2gH .
A

ox .
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Differentiating with respect to x leads to

OH
R 2/H1__§1{__9_d__32g_§__)
5X2 f - A g 2 Bx - A éz
Ox
hence
H (e [ar) [Py
& x Cgb| |ox Ox2

Substituting this relation into Equation (9), noting that p = pgH ,

one obtains

A, A

3t |cgp| |ox

_5.2_\1 + (e-cB) v ghi(V) =0 . (11)
Cdb 8X 2 8X

ox

Equation (11) can be classified as a nonlinear parabolic partial differ-
ential equaiion(5) with V = V(x,t) as the dependent variable. A closed
analytic solution is not available; it is possible, however, to formulate
a finite-difference technique which will provide a numerical solution.
The method of solution is based on using the Crank-Nicolson approximation
of Bgv/5x2 combined with the Gauss-Seidel iteration within one time
step., Development of the implicit finite-difference equations corres-
ponding to the system of differential equations, and a discussion of
the convergence of the numerical solution will be found in Appendix A,

In a manner similar to the steady-state analysis of Section
2.2.2, we assume the frictional head loss in the manifold to be nearly
the same as that of a closed tube; if we further allow this head loss
to behave in a quasi-steady manner, the term L4 To/pD in Equation (9),
or identically gh}i(V) in Equation (11) becomes

gny(v) = £ VUL (12)
2D
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Again it may be desirable to have f vary as a function of the Reynolds
number,

The problem encountered in Equation (11) is one of mass trans-
fer; since the walls of the manifold are assumed to be inelastic and the

fluid incompressible, there will be no storage of energy in the system.

The nature of the unsteady flow in the system 1s analogous to the dissipa-
tion of heat by conduction in a rod of finite length, or a plate of finite
width.(l5) If T represents temperature and Dy thermal diffusivity,

the temperature balance for such thermal conduction is

or o, ¥Fr
ot t o

This equation is linear and of parabolic form; it should be compared with
Equation (11).

The boundary=-value problem associated with the nonlinear para-
bolic equation requires V(x,t) to be determined in the interior region
by solving Equation (11). Equations (2a) and (3b) evaluate outflow and
heads, respectively, and the solution of Equation (10) yields time-zero
values of velocity. At the boundaries, the continuity balance, Equa-
tion (2a), provides time-variable relations which are known, since gq
is a function of H , related by Equation (3b), and H is an assumed
known function of time. If a dead end exists at the downstream end of
the system, the boundary condition is zero velocity. The boundary-value

problem is summarized:



=Po.

Variable Relation to be Solved
V(x,t) Equation (11)
V(x,0) Equation (10)
B

v(0,4t) U =VH(0,t)

x A

R

v(1,t) XZ‘Z'% H(L,t) , or V=0

The finite-difference solution to this system of equations is given in

Appendix A.

2.2.k, Hyperbolic Equations

Equation (11) can be regarded as the limit of a hyperbolic
equation which has the lines t = constant as characteristics.<5>
In order for Equations (1) and (é) to reduce to hyperbolic form,
elasticity of the fluid and/or the tube must be taken into account,
This means that in general, %— (pA) and %E (pA®x) are not equal to

X
zero, For a stiff, elastic system one can relate the cross-sectional

area and the density to the pressure head by the relation(2l>

1 a aH ,
SAte T (pAdx)= %2 T (13)

in which a 1s the pressure=-pulse wave speed, As an example, consider
a manifold of length { with 1,2, ..., N evenly distributed orifices,

each of area A, . The distributed outflow can be expressed as

q = CdAON'\/,—égE.. (3C)

i

If the total area of the orifices, AJN , is small, then the capacitance,

or elasticity of the system will be close to that of a closed tube, and
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it seems plausible that for such a system the pressure-pulse wave speed
can be approximated by a ='JE7E , K Dbeing the system bulk modulus of
an equivalent closed tube,

When Equation (13) is combined with the momentum and continuity

relations, Equatiens (1) and (2) reduce to hyperbolic form, viz.,

M v oV , q
g g; 4+ V S; + SE + ghf(V) + (CB-l) v A o, <14>
OV ., g |, OH  CH ] g
—_—— 2 V=4 =1+ 2L =0, 1
dx  af ox Ot PoA )

Note that when q = BWH , these equations minus the second term in the
continuity balance are identical to Equation (11).

The characteristic equations corresponding to Equations (14)

and (15) are
g dH av .
+ 23 fEtEitnra=0, (16)
dx
T - (Tra)=0, (17)
in which
£ = gh% (V> )
n = (cﬁ-l)v&, (18)
A i
|
- a ;
a= ax.

Well known finite-difference methods have been established for their
solution.<5’9> It is necessary to integrate along two characteristic
lines simultaneously, and it is usually sufficient to mske a first-order
approximation of the coefficients in the characteristic equations to do

so. However, the innocuous appearing term «a in Equation (16) may be
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of the same order of magnitude as either of the first two terms, % %%

or %% , and when an attempt to use a first-order approximation is made,
the solution becomes unstable. Lister(9) has presented a second-order
approximation to the coefficients, and Gray(6) has discussed the merits

of such an approximation used in conjunction with water-hammer problems.
When this method is applied, stable solutions can successfully be obtained.
Appendix B details the finite-difference methods used to solve Equations
(16) and (17). For a manifold gq = B'Jﬁ, and upon subsequent substitution
into Equation (16) and formulation of the finite-difference eguations,

V can be eliminated and H is found by solving a quadratic equation.

The boundéry-value problem relating to the hyperbolic equations
consists of solving Equations (16) and (17) in the interior region coupled
with the orifice-outflow relation q = B‘Jﬁ . The initial velocity dis-
tribution is afforded by the solution of Equation (10). At the boundaries,
if the head or velocity is a known function of time, then the other can

be computed by appropriately utilizing the characteristic equations.

Specific boundary conditions are presented in Appendix B.

2.3. Impedance Relations Including Leakage

In the previous section is was seen that for unsteady flows,
the momentum and continuity relations for a continuous manifold reduce
to one of two forms dependent upon assumed elastic properties of the
system, If one considers the manifold to be inelastic the governing re-
lations reduce to a parabolic equation; however, if one assumes some de-
gree of elasticity, either a compressible fluid or non-rigid walls, or
both, the equations become hyperbolic with the introduction of a pressure-

pulse wave speed. The elasticity of the system serves as the energy-storage
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mechanism, and the distributed orifice along with frictional shear stresses
tend to dissipate flow energy.

It would be desirable to have an analytic solution of Equations
(1) and (2) to show in what measure friction, lateral outflow, elastic
properties, and acceleration of fluid individually contribute to a dis-
tributed-outflow system such as a manifold. Such an analytic solution
is obtainable only by eliminating or approximating the nonlinear terms
in the governing equations. In this section impedance solutions are pre-
sented and a discussion is included which shows the range of applicability
of the parabolic equation.

Impedance relations including leakage can be directly paralleled
to those used in electric transmission-line theory.(l5) Streeter and
Wylie<21) have derived impedance equations for closed fluid lines. Their
results are used herein, with the inclusion of a linearized leagkage term.

Briefly, the differential equations, Equations (1) and (2), or
alternatively, Equations (14) and (15) are taken in simplified form and
averaged flow quantities are removed. The friction and distributed out-
flow terms are linearized, and the equations are solved for a sinusoidal

v éﬂ,andV'éy, are neglect=

disturbance imposed upon the system. The terms S
X X

ed; for large lateral outflow this may introduce a small error. With
Cg = 1, a reasonable assumption for orifice outflow, Equations (14) and
(15) are rewritten with head and flow as the dependent variables:

OH 1 09

5 o 5t + h%(Q) =0, (1ha)
N9, g A, T o, (152)

ox ;E ot
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N .
in which q is now the leakage term in place of q . Introducing the
substitutions H=H + h' and Q= Q+ q' , in which A, § are mean
values, and h' and q' are sinusoidal perturbations, hi(Q) and q

can be linearized:

(4 V) [a¥) (a V)
hi(Q) =C @=C @ +nc@Prlag + ...,
~ m - _m=-1
§ = BH™ = BE" + mBE ~ h' + ... .

Here frictional losses are agssumed to be proportional to a power law of

[aY
flow, (e.g., C = £/(2gDA")) and similarly, the leakage is proportional
to some power of the pressure head. The first two terms of the expansions

Q1

are retained (they are convergent for q'" < 3 and n'"< ﬁm), and the

perturbations are substituted into Equations (1ha) and (15a) resulting in

dh! Bq’

—a—-x—-+L-§G-—_+ Rq' = 0, (14b)
oq' ', ch!
—F— 4+ C = + Gh' =0 15b
o S , (15b)
in which
L= =, (19)
gA
c- &, (20)
a
R= nCQ =, (21)
¢ = mpE™t , (22)

and are respectively termed inertance, capacitance, resistance and con-
ductance., For orifice outflow, m = 1/2 . If the leakage is large it
would be more appropriate to base the resistance on an averaged mean

— -1
flow, e.g., R n ¢ (Q/E)n .
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The solutions of Equations (14b) and (15b) for steady periodic

flows are,

h'(x,t) = (Cp e77® + Cp &7%) el®t | (23)
Q'(x,t) = 2= (Cre - gp e7%) elot (24)
y = V(G + 1aC)(R + iwl) , (25)

Ze = V(R + i0L)/(G + iaC) . (26)

The complex propagation constant in y and Z, 1is termed the charac=
teristic impedance. The real part of h' and ' represent the solu=-
tion. In Equations (23) and (24), C; and Cp, are integration constants
and depend upon boundary conditions. Consider the manifold of Figure 3;
for an oscillating head input at the upstream end R , and a dead end

downstream at S , the boundary conditions are
n1(0,t) = H(0) e | and q'(4,t) =0 .

H(O) is a known complex constant. With the values of Cq and Cp
inserted, Equations (23) and (24) become

coshly(f-x)] Siwt

Bi(x,0) = H(0) cosh(y4)

b (23a>

q*(x,t)::H(O) sinh[y(£-x)] Jlot (2ha)

Z. cosh(y1)

Furthermore the input impedance is

. VA
gr o n(0,8) o _Te (27)

q'(0,t) tanh(y4)
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and the pressure=-head transfer function is given as

nt(et) L1 (28)

h'(0,t) cosh(y4)

In Chapter III, Figuresl3 and 14 show the input impedance and the trans-
fer function, respectively, versus frequency, « . It can be seen that
leakage greatly affects the frequency-response patterns (the parameter

¢ corresponds to the magnitude of leakage). Particularly, a high leak-
age can completely obliterate any response due to capacitance at a res-
onating frequency.

It can be shown(l5) that the analytical solution of the lin-
earized form of Equation (11), the parabolic relation, is exactly given
by Equation (24) or (24a) if capacitance, C , is neglected. Equations
(1ka) and (15a) are applicable to any transient-flow situation, whereas
the use of the continuity balance leading to the parabolic equation,
%¥’+ % =0 , is restrictive, and implies that the middle term

in Equation (15a) is minor compared to the remaining terms and hence

viz.,

can be neglected,
A term-by-term comparison of the continuity relation would
prove beneficial in understandingthe contribution of each one under

given conditions, Thus in Equation (15a) one can compare the three

t;rms }%%i e %%] , and |Q| , or alternatively in Equation (15b),
9gq' oh' . . _ .
lbx l, c BE_‘ , and |[Gh'| . Differentiating Equations (23) and (24)

where appropriate and substituting into Equation (15b), one gets

-2 4 i+ G =0 .
ZC
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Hence the problem is reduced to examining the terms [%—| , |ian| ,
c
and |G| . In Equations (25) and (26) it is seen that
l%—| = o+ ioc| =V62 + of 2.
c

In addition,

6| =G, and |iaC]| = aC .

These terms can be interpreted in the following manner: in Equation (15a),

o

gg , represented by |%Z| , 1s composed of contributions from elastic
X

properties, C %% , and leakage, a , represented by limCl and |G| ,

respectively. This is shown graphically in Figure 4, For small values
of w the leakage is the predominant term; as the frequency increases,
capacitance effects become larger and eventually may be egual to or
greater than the leakage effect.

It is now apparent where one can apply the parabolic equation ==
when the outflow parameter is of such magnitude that the capacitance,
or elasticity of the system can be neglected in comparison. Thus it
is possible in a given system to have no resonance at a supposed res=-

onating frequency. Again refer to Chapter III, Figures 13 and 1k,

2.4, Chapter Summary

A set of difference equations have been developed which will
allow the comparison of unsteady and steady flows in a discrete manifold
with those in an equivalent continuous one.

Further, unsteady flows in a continuous manifold can be treated
in several ways. If the leakage parameter is large with respect to ca-

pacitance effects, the continuity and momentum relations reduce to a



-30=

Figure 4. Graphical Representation of Terms Contributing
to Continuity Balance in Impedance Relations.
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parabolic equation; i1f the converse is true, the governing equations
are hyperbolic, and true water-hammer surges may exist. These two
reduced forms (parabolic and hyperbolic) can be analytically solved
via impedance methods once they have been linearized.

Intuitively, it should be possible to deal with any type of
manifold problem using the hyperbolic equations, Equations (14) and

(15), which can be solved using the parabolic relation, Equation (11).



III. COMPUTER ANALYSTS OF DISTRIBUTED OUTFLOW IN A MANIFOLD

Attention is now focused upon the computer analysis of flows
in idealized manifold systems such as the two plctured in Figures 2
and 3. Emphasis is given to the solutions of the wave equations for
the discrete manifold, Equations (8a) through (8f), and the hyperbolic
equations and the impedance relations for the continuous manifold,
In particular, consideration is given to the simple manifold of Figure
6; more compliéated fluid systems, such as series or parallel pipes in-
cluding a manifold section, can easily be analyzed once a basic under-

standing of the transients in the manifold has been attained.

5.1, Line With a Single Orifice

The highly dissipative nature of a tube with leakage can
readily be understood by considering a simple closed line containing
a centrally-located orifice, Figure 5. V5, and Vp are initial steady-

state velocities, H, the reservoir head, a the pressure-pulse wave

O

speed, A, the orifice area, and A the area of the tube. The steady-

o
state outflow through the orifice is ¢, , and QO is the initial flow
input at the reservoir. The dimensionless parameters ¢ and ¢ indi-
cate the magnitudes of the lateral outflow relative to the inflow and
the effective orifice area relative to the tube area, respectively.
The line is assumed frictionless and the relations developed in Section
2.2.1 are used to evaluate system parameters.

The initial conditions are such that when the valve is sudden-
ly shut at the downstream end, a dimensionless pressure rise of magnitude

aV
B = —2 will begin to propagate upsteam. As the pulse reaches the

eh,
-32-
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Figure 5. Water Hammer in a Frictionless Fluid ILine Which Possesses

Centrally-Located Orifice. H, 1is the Head at the Orifice,
and Hp the Head at the Valve. The Dashed Line is the
Solution for an Equivalent Closed System.
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orifice, immediate relief of pressure is afforded, and an attenuated
wave continues to travel upstream, while a negative wave travels down=-
stream to the closed valve, Since reflections occur at the boundaries,
wave action will continue until new steady-state conditions are attained.
Figure 5 shows the pressure variations at the valve and at midpoint for
B =0.97, £ = 0.513, and ¢ = 0,00226. Friction effects are neglected,

so that the attenuation of the heads is due only to the dissipative na-
ture of the orifice. The dashed lines are the heads in an equivalent
closed, frictionless tube., If the orifice area were smaller the head

fluctuations would take longer to dampen out.

5.2, Comparison of a Discrete Manifold with a Continuous Manifold

In place of a single orifice as shown in Figure 5, suppose
that a tube now contains 1, 2, ..., N orifices. Furthermore, assume
the number and geometry of the orifices are such that one can replace
the discrete manifold with an equivalent continuous one. To show the
validity of this assumption, let us proceed to compare various flow

situations in such systems.

3.2.1. Steady-State Conditions

The steady=-state analysis of a manifold with a finite number
of orifices approximated by a continuous slot has been achieved§1’7915>
It is included here to provide a complete picture of unsteady flow in
manifolds, inasmuch as the initial conditions on such a system are
usually steady=~state in nature.

Suppose that a discrete manifold contains nine orifices and

that a continuous manifold is made equivalent by matching ¢ and ¢
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for the two systems. Now { Ybecomes the ratio of total lateral outflow
to inflow under steady=-state conditions, and ¢ is the ratio of total
effective orifice area to the area of the manifold, Figure 6,

Figure 7 shows dimensionless head and velocity distributions
along the manifolds for ¢ = ,113 and § =1.0., Hy and V, are the
head and velocity, respectively, at the upstream ends. The variables
are computed from Equations (6a) through (6d), Section 2.2.1, for the
case of the discrete manifold, and from Equation (10), Section 2.2.2 for
the continuous manifold. In one case a frictionless system is assumed,
and in the other the head loss due to friction is included, making use
of the Darcy-Weisbach relation and assuming the Blasius formuls for
f . TFor either case the resulting velocity distribution is identical;
the head distribution is altered when friction is taken into account.
For manifold systems one can assume that the axial component of momentum
leaving via the orifices possesses a velocity approximately equal to the
mainstream velocity; thus Cg = 1 in Equations (6a) and (10). It is
seen that the continuous manifold approximates the discrete one to a
fair degree. The value of .113 for the parameter ¢ is the largest
which is used in ensuing analyses, As ¢ is reduced, the steady- state

solutions of the discrete and continuous systems tend to converge.

3,2.2, Unsteady Flow Considerations

Consider the manifold of Figure 6 experiencing steady flow
with the downstream gate remaining open. Now ¢ < 1, and if the
gate is‘suddenly shut at time zero, transient pressure and velocity
waves will be initiated, and their durationsand magnitudeswill depend
upon the parameters B, £ , and @ , provided that friction is neg-

lected.,
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Ho =%
B=Lla LYoV ¢ = NCdAo
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oy R
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? = 100 cm A=1.0 cn® Hy = 100 cm HpO
a=1zx 10° cm/sec p = 1.0 gm/cm3 g = 980 cm./sec2

Figure 6., TIdealized Manifold.
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Figure 8 shows head at the valve versus time for three sets
of values of B, ¢ , and ¢ . The system variables are solved using
Equations (8a) through (8f) for the discrete manifold, and Equations
(3¢), (16) and (17) for the continuous system (see Appendix B). The
discrete manifold possesses nine orifices; hence for the equivalent
continuous one, b = .09 Cgq Ao in Equation (3¢). For ¢ = .113, the
pressure transient is rapidly attenuated; the intermediate figure, when
¢ = ,0113, shows some water-hammer effect, and for ¢ = ,00226, a true
water-hammer response is discernable,

Some discrepancy between the discrete and contlnuous systems
is seen for early time in the case where ¢ = ,113. In the discrete
manifold water hammer is taking place in the closed line between the
last orifice and the closed valve; however, the two solutions quickly
converge. For the remaining two cases of Figure 8 there is good agree-
ment between the two systems.

In the second situvation, Figure 9, the downstream boundary
condition is a dead end so that € = 1.0 and at time zero, a step-head
input with a dimensionless value of 0.2 1is ilmposed upstream, Again,
for the smaller value of ¢ , the dispersive effect of the orifice out-
flow becomes less pronounced, and the water-hammer effects take preced-
ence,

In addition to the responses of step-input functions, it would
be of value to visualize the response patterns of an oscillating-input
function, shown in Figures 10 and 11, where the idealized manifold now
possesses a dead end and is excited at the upstream end by a forced
sinusoidal~head variation. Figures 2 and 3 show the upstream boundary

condition Hp = Hy + AH sin (wt)
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In Figure 10, OAH = 0.1 Hpy , and the period of the head input
is ki/a = .00k sec.; this is the frequency at which resonance should
occur. Several interesting observations can be made. When ¢ = .113
there is very little head response at the dead end. For ¢ = ,0113, a
steady=~oscillating response is quickly attained, and a phase shift with
respect to the upstream head is evident. If no lateral outflow were pre=-
sent, the downstream head would lag the input by t/(2f/a) = 0.5, i.e.,
the phase shift would be 90 degrees. The additional lag in response is
due to the leakage. Furthermore, the outflow tends to attenuate the
amplitude of the response for this value of ¢ . In contrast, if
¢ = ,00226 , the system is in resonance -- the amplitude of the down-
stream head is increased and the phase lag is nearly 90 degrees. Hence
it can be stated that for certain values of ¢ the dissipative effects
of the lateral outflow may be of such magnitude that no storage of en=-
ergy is possible; however, when ¢ becomes sufficiently small, the
capacitance effects become significant and resonance occurs,

Head-input oscillations of a lower frequency are shown in
Figure 11. In this situation the period of oscillation is hOﬂ/a = ,04
sec., and AH = 0,2H, . For the largest value of ¢ a pronounced
phase lag between the upstream and downstream heads exist, and the dead-
end head fluctuation is attenuated. For the intermediate and smallest
values of ¢ the pressure amplitudes are transmitted to the downstream
end with no attenuation, but for ¢ = ,0113 a phase shift occurs.

For a closed tube the phase shift would be neglibible, and for the mani-
fold with a very small orifice area, i.e., ¢ = ,00226, this is also

true.
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Generally, Figures 8 through 11 show that the continuous mani-
fold is an adequate representation: of the discrete one for ¢ = ,0113
and .00226. 1In Figures 10 and 11, when ¢ = .113 , the solutions for
the two types of manifold differ by deviations in the base lines.

This may be due in part to:.the limiting assumptions imposed'upon the
corresponding governing equations presented in Chapter IT; in addition,
in the solution for the continuous system, the characteristic equations
are approximated by finite-difference relations which may introduce some
error. It should also be noted that this value of ¢ may be close to
an vpper limit for matching the two systems, beyond which the manifold
could be treated only as a discrete ane.

The effect of varying the momentum ceefficient is shown in
Figure 12, in which the solution for the continuous system, ¢ = ,113
of Figure 11, is reproduced. In this chapter it is assumed that Cg =1,
If CB = Q the solution is egsentially the szme except that there is a
base-line shift. For the two smaller values of ¢ the effect of varying
CB is negligible, which implies that the axial momentum leaving the
manifold laterally is quite small, and can be néglected.

The heads in Figures 8 through 11 have been computed under
frictionless conditions. The fluid medium is water, and for the mani-
folds described herein it is relatively inviscid. If one assumes a
quasi-steady head loss, hL(V) = f V|V|/2gD , it can be shown that
friction effects are negligible for values of ¢ = .,0113 and .00226 ,
Only in the case of large lateral outflow is friction significant.
This is shown in Figure 12, where for oscillating flows, its effect is

to lower the base line of the downstream head oscillation. If the fluid
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medium is relatively viscous, frictional losses will become significant,
and if the flow is laminar, they will have a dispersive effect upon the

predicted response patterns.(25)

3.3. Impedance Solutions

A broader picture of oscillating flows in a manifold system
can be provided by utilizing impedance relations. Equations (27) and
(28) give the input impedance and the pressure-head transfer function,
respectively, of a dead-end continuous manifold with a forced, oscilla-
ting head input:

Zic

ZR = ———— , (27)
tanh(y14)

1
R = =, 28
i cosh(y1) (28)

These functions are shown for various values of ¢ in Figures 13 and
14, Again the idealized manifold of Figure 6 is used as the represent-
ative system, ]ZR] and V,p are the amplitude and phase of the input
impedance, respectively; in a similar manner IHR| and WHR are the
amplitude and phase of the transfer function. Even though they are a
manifestation of the linearized wave equations, the results agree quite
well with the solutions of the nonlinear equations shown in Figurés 10
and 11,

As an example, consider the oscillations in Figure 10, where
¢ = ,0113 and w = 1571 radians per second. The upstream and down-
stream head oscillations are replotted in Figure 15 along with the up-
stream flow. With Q.= 5.0 ml/sec, and Hy, = 100 cm , it is séen

that Vpm % 40° , [ZR| & 60 sec/cm® , A - 115° , and |HR| X .75 .

ViR

These values are in agreement with those of Figures 13 and 14 for the

same system,
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The impedance and transfer function diagrams show the spectrum
of phase and attenuations when a leakage term is included in a closed=~
end fluid line. If the leakage term is of sufficient size, capacitance
effects seem to have little or no impact, and no resonance occurs at the
supposed resonating frequency, in this case 1571 radians per second.

As ¢ decreases, the capacitance terms come into play, and the response
curves approach those of a closed system, where ¢ =0,

If a friction term is included in the impedance analysis, it
will affect only the response of the manifold when ¢ = ,113 , and at
small frequencies, since the mean flow input is quite large (about
55 ml/sec). The frictional effects for smaller values of ¢ are negli=-
gible for the system of Figure 6.

It is material to further discuss the frequency response curves
for the case of ¢ = ,113 , since this system is very much like the mani-
folds whose experimental data is discussed in Chapter V.

The pronounced phase lags at low frequencies for both the in-
put impedance and transfer function are due to inertial effects coupled
with distributed outflow. The physical situation which is taking place
can be explained in a fundamental manner by referring to the fluid line
with one orifice shown in Figure 5, Section 3.1. Suppose that ihitial
steady-state conditions exist and the downstream gate is always closed;
at time zero a small step head is imposed at the upstream end., When the
pressure wave reéches the midpoint, immediate relief is afforded by the
orifice; the flow out of the orifice is increased and the head at that

point is suddenly reduced*, This will create a gradient which will

* A small velocity perturbation will accompany the step head; it is
assumed that this increase i1s small, and hence the orifice will re-
main “'starved".
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accelerate the flow in an attempt to reach new steady-state momentum
and continuity balances. However, a finite amount of time is required
to accelerate the plug of fluid between the upstream end and the ori-
fice, and if after a small time increment, the upstream head is again
increased, the response at the orifice will be such that it is con-
stantly attempting to equilibrate with the upstream conditions. This
same situation is true for a manifold, either discrete or continuous,
and takes place in a less interrupted manner,

Thus in Figure 9, when ¢ = ,0113 , the downstream pressure
response to a step-head input does not immediately balance when the
pressure wave reaches the dead end, but attains equilibrium when the
fluid has accelerated sufficiently to compensate for the increased out=
flow required by the higher head. And in Figure 14 a pronounced phase
lag and attenuation exist due to this phenomenon.

Another way which transients in leaking lines can be visual-
ized is to recognize the existence of traveling waves.(l5> First con-
sider oscillating flows so that the impedance relations can be utilized,

The propagation constant, 7y , was shown in Chapter II to be

y = V(R + ial)(G + iaC). (25)

The coefficient of the imaginary part of oy is termed the phase
constant, In turn, the phase velocity or velocity of propagation, vp P
is defined as the frequency of oscillation, w , divided by the phase

constant; it is the velocity with which one must move along the mani-

fold to observe a stationary head or velocity.
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If, for a given frequency, the leakage is sufficiently large

and frictional losses are minor, i,e,, G >>wC and wL >>R,

y % \fielG = /‘L’E_LE (L+ 1), (25a)

and the phase velocity becomes

v = m‘ ) (29)

These conditions are valid at low frequencies for the idealized manifold
where ¢ = .113 . (In contrast, the phase velocity for a frictidnlessy
closed fluid line is merely the pressure-pulse wave speed.) An inter-
esting result is that Vp is frequency dependent.

Consider the idealized dead-end system in which flow is os=
cillating with a frequency o = 157 rad/sec . If ¢ = .113 , from
Figure 14 the phase lag between upstream and downstream pressure fluc=
tuations is Ypp x - 80° . If the period of oscillation is .O4 seconds,
and [ = 100 cm , then the velocity of propagation is 112 m/sec° This

condition is shown in Figure 11, In comparison, v can be computed

P
from Equation (29)., Here, L = 1.02X10-3 sec2/0m3 , and G = 2,5X1073
cm/sec (recall G = m B ﬁm_l), and consequently, v, =111 m/sec .

Such traveling waves exist because of the large amount of en=-
ergy input required to "feed" the orifices., It is of interest to note
that the input impedance for ¢ = ,113 in Figure 13 is nearly identical
to the characteristic impedance of the system except for very low fre-
quencies.

If a step-input function is imposed on a manifold system, the

wave becomes highly distorted and its corresponding front is difficult

to define., This is illustrated in Figure 16 which shows a spatial
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distribution of heads for various time when d = ,113 . This figure

should be compared with its corresponding head-versus-time curve in

Figure 8. This type of wave response is similar to those found in tran-

sient diffusion problems.(l5>



Iv. EXPERIMENTAL STUDY OF A MANTFOLD SYSTEM

Chapter II relates several analytical methods which are avail-
able for predicting unsteady heads and flows in a manifold. In Chapter
IIT it is seen that if a manifold is experiencing oscillating flows, the
leakage parameter strongly dictates the nature of the flow. A laboratory
investigation was initiated to analyze such a system in which high leak~
age and low frequencies were exhibited. The motivation was twofold:
verification of the theory for a continuous manifold was in order, and
furthermore, it was hoped that by observing such a system, one would come
closer to understanding the nature of flows in more complicated systems

such as a branching arterial tree.

L,1. Mechanical Arrangement

A schematic of the experimental arrangement is shown in Figure
17. A continuous flow supply is provided by the head difference between
the upstream and donwstream constant-head reservoirs, while the fluid os-
cillator induces a sinusoidal component to the flow as it enters the up-
stream end of the manifold. The downstream gate valve may be open or
closed. A trough returns the spent fluid to a sump, and a small centri-
fugal pump 1lifts the fluid to the upstream reservoir to complete the
cycle, A portion of the system is shown in Plate I. Tygon¥ and rubber
tubing serve as supply and drainage lines., System variables are record-
ed at three locations: flow and head at the upstream end of the manifold,

head at the midpoint, and head at the downstream end.

* A trademark of U. S. Stoneware, Akron, Ohio.
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Plate I. Experimental System.

L

Plate ITT. ¥luid Oscillstor.
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The fluid oscillator is shown in Plate II. It is essentially
a cam-driven piston oscillating in a fluid chamber. The piston diameter
is 2.0 in., and its stroke is approximately 0.216 in. The range of os-
cillation varies from O to about 9 cps.

Two test manifolds were used; their characteristics are given
in Table I, They were fabricated from extruded acrylic tubes, approxi-
mately 1/2 in. inside diameter by 1/16 in. thickness by 6 ft. length.
Sharp-edged orifices were machined along the axis of the tube. Extreme
care was taken so that tolerances were minimized and no burrs remained
on the interior surfaces.

The system was constructed in such a manner that the manifolds
could be interchanged; a flange containing an "0" ring seal at each end
of a manifold can be secured to an upstream or downstream acrylic block.
The flowmeter probe is adjacent to the upstream block, and the gate valve
is fastened to the downstream block.

Piezometer rings were fused to the manifolds, and to the rings,
pressure transducers were connected, Plate III. Four radial holes of
1/32 in. diameter were drilled symmetrically about the tube circumference.
The ring was slipped in place and welded to the tube.

The flow capability of the system is such that mean Reynolds
numbers range from O to 15,000 for a closed tube. Tap water was used
as the fluid medium; enough electrolytes were present so that the flow-
meter could be calibrated. Throughout the experiment, the density of

the water was assumed to be 1,0 gm/cmB.
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L ,2, Recording of Data

Electronic instrumentation was used to record the data,
Piezometric heads were monitored with Sanborn Model 267B Physiologi-
cal Pressure Transducers, and a Model 201 Square-Wave Flowmeter (Caro=-
lina Medical Electronics) measured flows. Pressure-time and flow-time
curves were recorded on a Sanborn T714A Oscillographic Recording System.
A four-channel oscilloscope was used for monitoring purposes.

The pressure transducers were statically calibrated in two
ways: first by a known voltage supplied by the recording system, which
in turn was verified by loading the transducers with actual static pres-
sures, The calibration factors remained quite stable; however, some
base-line shift was discernable. The flowmeter was calibrated by pass-
ing known volume rates through the probe and recording the corresponding
voltage outputs. The probe was quite sensitive to thermodynamic changes,
and hence, shifting of the calibration factor and base line were noticed.
A discussion of the pressure transducer and flowmeter frequency responses
are reserved for Section 5.2 of the next chapter.

Plate IV shows a typical data run recorded on the oscillograph.
Q, 1s the upstream flow, and H; , Hy, , and Hy are the upstream, mid-
stream, and downstream heads, respectively, in the experimental manifold.
Preceeding the run, care was taken to purge the entire system of air bub-
bles, and calibration and base=~line checks were made before and after
each series of runs.

Two properties of a closed tube were also evaluated. The sys-

tem bulk modulus for a closed tube was determined by measuring the change
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Run ML=0-5,

Experimental Data,

Plate TIV.
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in pressure for a corresponding change in volume; a small syringe in-
Jjected fluid into the tube. Steady-state frictional headdoss-versus-
flow data was also recorded. Figuresl8 and 19 in Chapter V show the

data for the determination of K and hf , respectively.



V. ANALYSIS OF EXPERIMENTAL DATA

The preceeding chapter described experimental equipment and
procedures which were used to obtain oscillating pressures and flows in

a manifold system. Attention is now drawn to the analysis of the data.

5.1. Properties of a Closed Tube

For the solution of the hyperbolic equations, it is necessary
to define a pressure-pulse wave speed. It was proposed in Chapter II,
that if the capacitance effects of a manifold were similar to those of
a closed tube, then the wave speed, a , is given by JE7E', K being
defined as the system bulk modulus of elasticity. In Chapter III this
assumption was utilized, and it was seen that the hyperbolic equations
would predict flows in a manifold even if elastic effects were minor,

The determination of K for an acrylic closed tube similar
to those from which the experimental manifolds were fabricated is shown
in Figure 18. It is about twenty-five per cent lower than the theoreti-
cally computed value. The discrepancy may be due to small air bubbles
entrapped in the tube. No refinement was attempted, since the knowledge
of an accurate wave speed is not critical -- recall that the analysis
is mainly one of surging flows and capacitance effects are minor. 1In
Figure 18, K = 1.505 x 102 dyn/cm2 , and if p = 1.0 gm/cm? , the
corresponding value of the wave speed is a = 388 m/sec.

The steady-state frictional head loss in the manifolds is
likened to that of a closed tube; this enables the determination of an
empirical head-loss-versus-flow relation, Figure 19. The manifolds were
designed so that the effects of friction would be minimized, and as a

result it was difficult to obtain accurate data.

-6l
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The scattering of the data may be due to several causes:
(1) the relatively short length of tube (150 cm) between pressure meas-
urements, (2) neglection of inlet conditions, (3) inaccurate recording
of the small head gradients, and (4) transition effects at low Reynolds
numbers. A least-squares analysis of the data determined the constants
for the head-loss relation. The maximum flows encountered in the ex-
periment were about 150 ml/sec, and the corresponding head loss per unit

length is 0.127 cm/cm.

5.2. Frequency-Response Analysis

So that an accurate description of the experimental pressures
and flows can be obtained, it is necessary to know instrumentation fre-
quency response. In the process of recording data, the pressure trans-
ducers contain a finite amount of fluid which possesses inertia, and
the flowmeter has response lag due to its electronic filtering circuits.

A representative pressure transducer was calibrated, and the
frequency-response analysis described by McDonald(lo) was performed,
Figure 20. The transducer is underdamped (damping factor = .0k), and
at 25 cycles per second the response is flat. The natural resonating
frequency is approximately 149 cycles per second, a frequency well
above those of significance in this study.

Frequency-response curves of the flowmeter were obtained by
employing a dummy-probe input modulated by an electronic sine-wave os-
cillator. The results in Figure 21 show that the amplitude begins
to drop imméaiately and the phase is highly nonlinear. It is evident
that the various harmonics of a given flow pattern will be distorted

unless the data is adjusted. This can be accomplished by subjecting
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the flow curve to a Fourier analysis and modifying each component for
phase and amplitude error.(22’23) The procedure can be performed on
a digital computer and is outlined below:
1. Data points of the flow curve are read and subjected to a
Fourier-analysis subroutine. If there are n points and

kk is the desired number of harmonics, then for the ith

data point
kk
Qj_ = A, + zz: (A cos(ky) + Bysin(ky)l ,
k=1

(30)
y=23‘fi/n,i=o,l,...,n.

A and B are Fourier coefficients. The flow curve is re-
constituted by means of Equation (30) to assure that the des-
ignated number of harmonics is sufficient to describe the curve
accurately.

2. Data points of the flowmeter frequency-response curves are read
in, and at each harmonic, a parabolic interpolation(19) is used
to evaluate the phase and amplitude corrections, respectively
designated as PHk and AMP .

5. The flow curve is then corrected by adjusting the amplitude and

phase of each harmonic, resulting in Q' , the corrected flow:
i

kk
By By

Q) = A + Z [—= cos(ky + PHy) + < sin(ky + PH.)J. (31)
Lo AP AP

The result of such an analysis is shown in Figure 25. Through-
out the analysis of the experimental data 1t was found sufficient to let

kk = 6 .,
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5.3. Analytical Verification of System Variables

How well the theory presented in Chapter II relates to actual
Physical situations can best be demonstrated by a direct comparison of
predicted and observed parameters., It was seen earlier that a discrete
manifold can be approximated by a continuous one for a wide range of
orifice geometry. In this section attention is given only to the rela-
tions pertaining to continuous manifolds.

Four sets of data are used for analysis; some pertinent para-

meters are related in Table TIT.

TABLE IT

RESUME OF EXPERIMENTAL DATA

Run No. Freq. (cps) 9 ¢
M2-C-11 2.64 0.213 1.0
M2-C-12 3.3% 0.213 1.0
M1-C-9 3.70 0.310 1.0
M1-0-5 3.03 0.310 0.603

The results of predicted heads and flows are compared with the experi-
mental data in Figures 22 through 25, In all cases the upstream bound-
ary condition for the computer solutions is taken as the experimental
head-versus-time curve -- the data points were read into the computer
and a Fourier analysis was performed to give a continuous time=-variable
curve., Six harmonics were found sufficient to describe the curve ac-
curately (compare Figure 25 with Plate IV). The downstream boundary

condition for runs M2-C-12, M2-C-1l, and M1-C-9Q is a dead end. During
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run M1-0-5, the downstream gate was open and the experimental head-
versus-time curve was used as the boundary condition.

The experimental head-input pulses are essentially composed
of one harmonic, and for the closed-end systems a qualitative reference
can be made to the impedance relations shown in Figures 13 and 14 of
Chapter III. In these figures, the system with ¢ = ,113 is similar
to the experimental manifolds. In the data, « ranges from 16.6 to
23.2 radians per second. Since ¢ is large and the frequencies are
small, capacitance effects are of minor importance., The momentum and
continuity relations reduced to either parabolic or hyperbolic form
can be used to predict system variables.

A digital computer was used to evaluate heads and flows on
the time-distance grid, First, the Fourier analysis was performed on
discrete boundary head data -~ the upstream curve, and if necessary,
the downstream one. At time zero, the initial distributions were com-
puted by means of the Runge-Kutta solution of Equation (10). Then for
times greater than zero, the solutions of either the parabolic or hyper-
bolic relations, Equations (11) or (16) and (17), were carried out, ap-
plying boundary conditions when appropriate. The finite-difference so-
lutions of these equations are given in the appendices.

Computation was continued until steady-oscillatory conditions
were attained -—-three to four flow cycles were sufficient. DNote in
Figures 22 through 25 that the time scale is relative =~ the variables
are behaving in a steady-oscillating manner. A continuity check was
made for the last cOmputéd flow cycle, and for all cases shown, the

inflow minus the outflow agreed within + 1/2 per cent.
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System variables in the finite-difference scheme were computed
and printed at quarter lengths along the tube axis. It is significant
to note that only four sections were required. Figure 22 shows a com-
parison of computed and experimental system parameters -- heads at mid-
point and thé downstream end, and upstream flow. The predicted para-
meters result from a solution of either the parabolic or hyperbolic equa-
tions. Figures 23 through 25 show similar comparisons except that only
the parabolic relation has been used.

Difficulty is encountered when attempting to predict a multiple
number of parameters in a precise manner; several factors contributing
to some discrepancies warrant mention,

First, instrumentation errors cause the data to be inaccurate-
ly recorded. Base-line shift can readily cause an error in a prescribed
head gradient, which may be the case in Figure 25 where the flow has not
stabilized, and the discrepancy in the midstream heads of all the runs
may be due to such an error. The problem of accurately recording the
flows has been discussed in Section 5.2, Secondly, the finite-difference
methods used to solve the equations are only approximations, and some
error is introduced when using them., Lastly, assumptions must be made
regarding some system parameters; even though their effects may be small,
they must be included in the list of uncertainties.

It is assumed that the axial component of momentum leaving
through the orifices has the same velocity as the mainstream -- thus
Cﬁ = 1 . The effects of letting Cﬁ = 0 are minor, Figure 23,
Generally, CB may lie somewhere between these two extremes. An in-

teresting qualitative picture of this outflow phenomenon can be seen in
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Plate V, which shows a portion of a manifold under steady-flow condi-
tions. In one case, the downstream gate is shut; the mainstream veloc-
ity is small, and consequently, the lateral outflow possesses a small
axial component of momentum. However, when the downstream gate is open,
the large mainstream velocity will substantially increase this axial
component.,

The orifice contraction coefficient, Cy , is based on a value
theoretically predicted by McNown and Hsu.(lg) For divided flows such
as orifice outflow, the limiting value of Cj as the ratio of the ori-
fice area to the main tube area approaches zero is 0.6. For the experi-
mental manifolds, the magnitude of the area ratio is such that Cgq =~ 0.6,
an assumption which is used throughout the analysis and appears to be
valid.

The frictional losses in the manifolds were assumed to be sim=-
ilar to steady-state losses in a closed tube, and the predetermined head-
loss-versus=-flow curve of Figure 19 was employed. The frictional effects
of this particular experimental system are minor; in Figure 24 can be
seen the results of neglecting the head-loss term.

Figure 25 describes the system variables when the downstream
gate is open, so that all of the flow input does not leave the manifold
laterally, but under steady-state conditions, £ = 0.603 . The flow pre-
diction is extremely sensitive to the head gradient.

Generally, the predicted curves are in agreement with the ex-
perimental data. Substantiation is given to the intuitive reasoning of
Chapter II, namely, that the hyperbolic equations will handle flows under
such conditions, but since capacitance effects are negligible, the para-

bolic relation serves equally well. Indeed, for such a class of flows,
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the hyperbolic equations seem awkward, and on the computer their solu-
tions can be time consuming. The experimental curves exhibit the trav-
eling-wave phenomena which was predicted in Chapter III. The evidence
can be seen by observing the phase relationships between the head curves
in any of the figures.

The approximate continuous manifold theory seems will suited

to predict flows in such systems as described in this chapter.



VI. SIMULATION OF A BLOOD-FLOW SYSTEM

In the introductory chapter, mention was made of the manner
in which a portion of the arterial tree, namely the thoracic and ab-
dominal aorta, could be considered as a distributed-outflow system.
One application of the theory presented in Chapter II would be to pre-
dict and analyze pulsatile pressures and flows in this major artery.

The aorta is highly flexible -- hence capacitance effects
cannot be ignored. A convenient way to solve the governing equations
of motion and continuity is to reduce them to hyperbolic form, and

utilize characteristic methods to evaluate system variables.

6.1. Nature of the Lateral Outflow

Consider the idealized model of a dog aorta shown in Figure
26. It is basically a tapered, elastic tube and possesses a number of
lateral branches -- the intercostal arteries in the thoracic region,
and primarily the celiac, mesenteric, and renal arteries in the abdom-
inal region.<lh) The length of the aorta in these areas is about 40 cm;
approximately two-thirds of it lies in the thorax. The total area of
the intercostal arteries is smaller than the area of the remaining
branches; the lateral outflow can be described to account for this.

Assume that the input impedance to the laterals is purely re-
sistive; this is tantamount to neglecting acceleration forces in them.
It may be valid for very small laterals which are highly resistive,
but will be in error for larger branches. (Experimental investigation

would help to clarify the assumption.) Let Hg be a constant bed

-81-
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pressure abt some distance from the aorta. Then the flow into the branches,
which is a summation of a mean plus a component due to pressure pulsations

in the aorta, can be expressed as an outflow per unit length,
q = K(x)[E - H] , (32)

in which K(x) 4is the outflow coefficient, and H +the pressure head in
the aorta. The coefficient accounts for the geometries and axial distri-
bution of the laterals. The outflow is assumed to be laminar, and can

be likened to flow between two parallel plates.

(20)

BEquation (32) is the same which Streeter et al. assumed in

their study. Some typical lateral data are shown in Table III.

TABLE TITT

REPRESENTATIVE LATERAL DATA

Branches Number Diam. (cm) Length (cm)
Intercostal 16 0.10 15
Celiac

Mesenteric L 0.30 5
Renal

One way in which K(x) can be distributed along the aorta is shown in

Figure 26,

6.2. Method of Solution

Equations (1) and (2) of Chapter II =-- the momentum and con-
tinuity relations -- are general, and describe the pressures and flows

in a highly flexible and nonuniform vessel such as the canine aorta.



-8l

The following assumptions regarding the system of Figure 26 are made:
1. The aorta has a linearly tapering diameter,.
2. The elastic relationship of the wall material is linear

as described by Wylie, (24)

and the bloed is incompres-
sible.

3. Flow is laminar, and the frictional losses are assumed

to be quasi-steady in nature, 1.e.,

hi(V) = 32v V/gD” . (33)

With regard to the last assumption, it 1s possible to include
a frequency-dependent friction term which has been shown to be a better

8,25)

approximation.( It is not used here due to resulting added computa-
tional procedures.
When the assumptions are introduced into Equations (1) and (2),

they reduce to

SH, ¢y, o |, 3 -
g - + V - + at + Nz V o+ (c[3 1) v 1 C 0, (34)
N g OH OH 0! q
—_— 2= |V — + — 2 =+ =2=0,
dx  a? dx ot Do A (37)

with the auxiliary equations

2
2 2 Do D HA
= -9 =2 — - o_
a aoo [l In oo g 8?0-;] p) (36>
oD
a = -"—9 ) (37)
ox

wherein ago 1s the wave speed at zero pressure, Dy and H, refer
to initial conditions, and « 1is the rate of change of Dy per unit

length., The diameter is related to the pressure head by the equation

20\ | Do 2 D Ho
H :( . [ln - + g Eago ] . (38)

D Do
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Equations (34) and (35) are combined by a linear operator to form the

characteristic equations

+EBE L I 3By, (g-1)vd|rald 2y - 0, ()
—2ay at | D2 A A Po
dx | (V+a)=0. (ko)
at -

The finite-difference analogues of Bquations (39) and (40) are
formulated with a'sécond-order approximation only for g in the last
term of Equation (39), and the remaining coefficients are approximated
by a first-order procedure., The details are not presented here -~ they
are similar to the methods given in Appendix B. Since a of Equation
(36) may vary considerably, and may even be of the same order of magni-
tude as V , the characteristics grid solution of the equations is uti-
lized.(9)

When the lateral outflow relation, Equation (32), is substituted
into the finite-difference equations, V can be eliminated, and H 1is
found by the solution of a linear equation., This manner of solving the
characteristic equations is stable for the magnitudes of outflow which

are investigated in the following section.

6.3. Evaluation of System Variables

It is difficult to obtain a complete and accurate set of in
vivo data for the system which is being considered. However, by com=
bining synthesized time-variable boundary conditions with the model
aorta of Figure 26, one can, in a qualitative way, see how various as-
sumed lateral outflow conditions will affect the predicted heads and

flows,
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The boundary-value problem is formulated in the following man-
ner, At the proximal end of the aorta, the iumput flow pulse is assumed
tobearectified sine wave, shown in Figure 27. The amplitude of the pulse
is 160 ml/sec, and its pericd is 0.4 second, At the distal end, the im-
Pedance can be matched with the characteristic impedance of an equivalent,
frictionless, closed fluid line, 2. = a/gA . This approximation has

(2k)

been previously employed; with it, no significant pressure waves are
reflected from the boundary. These boundary conditions in combination
with the finite-difference analogues of the characteristic equations
solve the system variables on a time-distance grid. The initial con=-

ditions can be handled by the method described in Chapter II.

Three variations of K(x) are supposed; referring to Figure

26 they are:
K(x), cm/sec
Thorax Abdomen
(1) 0 0
(2) 0.0002 0.015
(3) 0.002 0.025

In the first case, there is no lateral outflow. Under the given steady-
state conditions, about one-third of the mean inflow leaves laterally
for case (2), and in case (3), approximately two-thirds, For the two
conditions where K(x) is greater than zero, most of the outflow will
take place in the abdominal aorta. The intermediate case might be sim-
ilar to an in vivo situation,

Figure 27 shows the steady-oscillatory solutions of heads and

flows. The system variables are plotted at the proximal, center, and
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distal points-of the aorta for the three assumptions of K(x) . In the
computer analysis, the aorta was divided into eight sections. For all

cases, the input and initial conditions are:

apo = 600 cm/sec, Q = 34 ml/sec (proximal),
Hy = 141 cm HY0, Hp = 80 cm HyO,

D, = 2.0 cm (proximal), a = - 0,025 cm/cm,

Cg = 1.0, v = 0.0k cm?/sec.

One cannot separate completely the effects of the imposed
boundary conditions from those due to lateral outflow. However, since
a major portion of the distal head curve is identical for all assumed
outflow cases, the boundary condition seems to be well defined.

The variation of K(x) 1is seen to affect the predicted para-
meters in two distinct ways: (1) the baselines of the distal flow, and
proximal and midpoint heads are lowered; (2) portions of some curves,
such as the midpoint flow and proximal head, are attenuated. There is
no gppreciable phase shifting due to lateral outflow. Since the system
is highly elastic, capacitance effects dominate the response patterns,
and any consequences due to the outflow are minor in comparison.

It is assumed that the axial component of momentum leaving
the aorta through the walls is reduced by contact with the branch,
i.e., CB = 1, If this momentum were destroyed before it left the main
tube, then Cﬁ would be zero., The same boundary value problem was
solved for this latter condition, and the results were nearly identical
to those of Figure 27.

The analysis of the variable, distributed outflow parameter

described in this chapter provides further refinement to the complex
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and intriguing problem of accurately predicting pressures and flows in
arterial systems. The next vital step would be to obtain experimental

data, and qualify some of the assumptions.



VII., SUMMARY AND CONCLUSIONS

The main purpose of this thesis is to analyze unsteady, non-
uniform flows in pipelines which are experiencing leakage. Particular
attention is given to the orifice manifold, since it provides a well-~
defined outflow relation, i.e., g =B JE , and can be applied to a
wide range of practical problems.

Relations are developed for flows in both finite and contin-
uous manifolds., For the finite system, the algebraic wave equations
are coupled with momentum and continuity balances across the orifices,
and thereby provide a set of nonlinear difference relations which al-
low the comparison of flows with those in an equivalent, continuous
manifold,

Unsteady flows in the continuous manifold can be treated in
several ways.

1. When the leakage parameter is of such magnitude that

capacitance effects can be neglected, the continulty
and momentum relations reduce to a nonlinear parabolic
equation.

2. More generally, if the elasticity of the system is in-

cluded, the governing equations become hyperbolic, and
a pressure-pulse wave speed is introduced.

5. Impedance methods provide analytical solutions of the

linearized equations for steady periodic flows, and en-

compass the two above-mentioned situations.

-90-
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The elastic properties provide energy-storage mechanisms, and the ori=-
fice outflow together with frictional shear stresses tend to dissipate
flow energy.

Numerical solutions of the nonlinear equations are based on
the following techniques: (1) the Runge-Kutta method for steady flows,
(2) the method of characteristics for the hyperbolic equations, and
(5) for the parabolic relation, a finite-difference approximation based
on relaxation methods.

Generally, the discrete manifold can be approximated by a con-
tinuous one for a wide range of orifice geometry. Several specific con-
clusions can be presented with regard to transient flows in manifolds,
and are summarized.

1. The response to step-input functions is greatly affected
by the magnitude of the lateral outflow. In the case of
large outflow, the pressure transient is highly dissipated
as it travels the length of the manifold: its corresponding
wave front 1s distorted and propagates at an unsteady rate.
This type of response is similar to those found in diffu-
sion problems. As the outflow parameter, ¢ , 1s decreased,
the dispersive effects become less pronounced; a condition
is reached where water-hammer surges take precedence, and
the pressure wave travels with the speed a :*jE7g .

2. When a dead-end manifold is excited at a frequency of pe-
riod U4f/a , resonance will not necessarily occur. The
criteria is set forth in the asymptotic solution of the

linearized continuity relation, Figure 4 of Chapter II.
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If, at a given resonating frequency, the leakage, repre-
sented by G , is the primary contributor. to the conti-
nuity balance, resonance will not take place., The dis-
sipative effects of the leakage are of such magnitude that
no accumulation of energy is possible. Conversely, if the
geometry of the system is of such a size that the effect
of flow oscillation and capacitance, iuwC , is the prime
element, flow energy accumulates in the manifold and res-
onance occurs.,

5. If the dead~end system is excited at low frequencies, and

G > aC , traveling waves are discernable, and the corres-
ponding phase velocities are frequency dependent,

A laboratory investigation of low-frequency, oscillating flows
in a discrete manifold is included. The traveling-wave phenomenon can
readily be observed. For such a class of flows, the parabolic equation
is vaiid. The problem encountered is one of mass transfer; the nature
of the flow in the system is analogous to heat dissipation in a rod of
finite length, or a plate of finite width.

As an application of the theory, a portion of the main aorta
of a dog is synthesized as a nonuniform, distributed-outflow system.
Flows are assumed to be laminar, and if the input impedance to the
branches is resistive, the lateral outflow is given as ¢q = K(x)[H-HB] .
The governing equations reduce to hyperbolic form, and attention is
directed to the prediction of heads and flows for various assumed out-
flow conditions. Since the aorta is highly distensible, capacitance

effects dominate the response patterns.
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The following items are recommended as areas for futher study:

1.

An extension of the analysis described in Chapter III to
include manifold systems which possess pronounced friction-
al losses.

In addition to the laboratory investigation described in
Chapters IV and V, it would be desirable to study the re-
sponse patterns in manifolds for a broader range of ¢ .
Various boundary conditions, such as oscillating heads or
sudden valve closure, could be imposed.

In the laboratory, model a highly elastic outflow system
which would synthesize a complex arterial tree. The
boundary conditions would be well defined, and the dis-
tributed outflow could be studied in detail. This would

lead to an in vivo investigation of an arterial system.



APPENDIX A

FINITE-DIFFERENCE APPROXIMATION OF PARABOLIC EQUATION

Equation (11) is a nonlinear parabolic partial differential

equation with V = V(x,t) as the dependent variable:

oV

N, el
ox

oV ,
- + (eacﬁ) V— + ghf(\/’) =0, (11)

ox

A )°
32

S
Cgb

Various finite-difference approximations to the derivatives can be
madegh’5318) they have been shown to be convergent for linear parabolic
equations. Little, however, is known concerning nonlinear ones£5) One
possible way to find a difference scheme which will ultimately yield a
solution is by numerical experimentation.

In his review of numerical methods for parabolic differential
equations, Douglas(h) has suggested the use of the Crank-Nicolson approxi-
mation to SQV/&X2 5 1t will be used here, coupled with the Gauss-Seidel
iteration. Reference is made to the book of Smith(lB) from which the
following finite-difference schemes are obtained,

We choose approximations to Equation (11) which will readily
yield an implicit difference equation whose solution can be obtained
for any reasonable time step., Consider the x-t plane subdivided into
rectangles with sides Ax and &t as shown in Figure 1-A, Let the in-
tegers 1 and m refer to coordinates on the finite grid; m designates
a new time and 1 distances along the space coordinate. The finite=

difference approximations at an interior point are,

XL - Vemed) (a-1)
ot At

-9l
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o 1
o Varlm - Vicm) o (4-2)

v 1

(Visl,m =2V5 m + Viol m + Vigl,m-1 -2V, m-1 + Vi-1,m-1)-
(A-3)

3x2 2(5x%)
The first two equations are derived by expanding V 1in a Taylor series
about t and x . It is assumed that V and its derivatives are single-
valued, finite, and continuous functions of x and t . The third equa-
tion is the Crank-Nicolson approximation of 52V/5X2 . Substituting these

into Equation (11) yields the difference analogue of the parabolic equation:

VimVi,m-1 AV [Visl,mVi-1,m \
At Cqb oNx
Vitl,mVim * Vi-l,mt Vitl, mam?Vi m-1% Vi-1,m-1 (A=)
2(Ax)?
P Vs
i+l,m™'i-1,m _
+(2-CB) Vim e + gh%(vi}m) = 0.

This relation is implicit, since it is necessary to simultaneously solve
for V at every point i for a given new time m .

Since Equation (A-4) is nonlinear it is expedient to use an
iterative point method as a means of solution. A systematic iteration
which has been shown to converge rapidly to the exact sclution for lin-
ear parabolic equations, termed the Gauss=-Seidel iteration, can be used.
Assume that V is known initially and has been computed through time
m ~ 1 at the interior points and along the boundaries, Figure 1-A.

Let the superscript J refer to the number of iterations within one
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j+1
time step. Equation (A-4) can be rewritten to evaluate V§Jm ) after
2
J iterations:
(3+1) (J) (3+1) (3) (3)
V(J+l) Vi,m-1F Cﬂ\[vl 1,0 Vil md Vs 21, Vigd,m + Ui J-Canp(Vi p)
i,m =
1+ cplriIth) - vid]
(A-5)
in which
2
A= O/ (Ax)°
2
G- AP L
Cdb MX
Cp = 2C3A - (2-Cg) At/2bx (A-6)
C5 = gAt )
Ui = Visam-1 ~eVi,m-1 * Vi+l,m-1

The iterative

stated in the

1.

procedure can be executed on a digital computer and is
following manner:

Of the terms on the right-hand side of Egquation (A=5),

only Vi p.1 and Ui (i =0,1,...,n) are known at the
outset; approximate the terms VgL% ” ,'Vﬁl&., Vgi%)m
using the corresponding values at time m-1 .

Calculate a new Vi y for all 1 and store; with these
new approximations, substitute into the right-hand side
of the equation.

Repeat the above process J + 1 +times for all Vi,m

until desired accuracy is obtained.
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In particular, the iteration is terminated when e < epgy

where € is defined as
n
(3+1) (3)
€ = ZIVl,m - Vl,ml A (A""?)
1=0

Note that the most recent iterates are used as soon as they become avail-

able, i.e., Vg?% is replaced by ngﬁl) as it is computed.
The reduced continuity relation, viz., oV/dx = - g/A provides

a derivative boundary condition which is a time-variable known relation,
since q = Cgb JEEEV, and H is given. It is desirable to represent
BV/GX at x =0 and x = [/ in such manner as to be consistent in ac=-
curacy with Equations (A-1) through (A-3). Thus, to use a central-
difference formula such as Equation (A-2) is necessary to imagine ficti-
tious velocities V—l,m and Vpy1 p by assuming the fluid line to be

extended. Consider the left boundary condition:

Yiw =T oL S8 . (4-8)
20X A ¢

When this is combined with Equation (A-5), V.l,m can be eliminated

and Vo,m can be determined. In a similar manner, if Ap,m is a

known function of time, V, , can be found. If the line possesses a
2

dead end at n , then Vn,m = 0 ; assuming a mirror image, i.e.,

Vntl,m = - Vp-1,m » then
oV Cyb
- M = = _g'_.. \f2an,m s

20X A



2 v&
A n-l,m
_ —_— —_—2 R
or Hn,m = Cqoix IR (A-9)

Equations (A-5), (A-7), and the appropriate boundary condi-
tions are used in Chapter V to predict the flows in the experimental
manifolds. To compute the heads and lateral outflow at any point i ,
the orifice relation combined with the continuity equation in finite-
difference form can be used once Vi,m (i =0,1,...,n) has been com=
puted:

qi,m = Cdb V2g Hi’m = e __22:; (Vi+l’m -Viml,m) R (A"‘lO)

The most important property required of a difference analogue
of a differential equation is that under certain conditions its solu-
tion converges to that of the differential equation as Ax and At
approach zero. In a system such as the nonlinear one described herein,
it is difficult to isolate the errors due to inconsistency (discretiza-
tion errors) and those due to rounding off (instability). Generally,
stability and consistency imply convergence. The best argument that
the finite-difference approximations we are considering here are ap-
propriate analogues of their corresponding differential equations is
verification with the experimental data presented in Chapter V., To
further substantiate this we can demonstrate what type of total error
one might expect if the grid size, i.e., either Ax or At were al-
tered,

In Figure (2-A) is shown the solution of V(0,t) for the
experimental data of Run M2-C-12 for three grid sizes. (See Figure
23, Chapter V.) The smallest grid size is &x = 19.025 cm , At =

.01 sec, and it produces the most output. The intermediate grid,
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Ax = 38,05 cm, At = ,02 sec, deviates slightly from the finest grid for
only a portion of the flow cycle. The largest grid =-- which yields the
least information -- has O&x = 38.05 cm, At = .04 sec. It is seen

to follow the pattern of the smallest grid but shows some deviation.

In the analysis of the experimental data of Chapter V, the
intermediate grid is used. It is reasonably accurate, and the time
increment i1s small enough so that a good comparison can be made with
the recorded flow curves, see Figure 23.

Convergence and stability criteria appear to be satisfied,
since for three different grid sizes, the solutions tend to remain the

same, and they approximate the recorded flow curve,



APPENDIX B

FINITE~-DIFFERENCE APPROXIMATION OF HYPERBOLIC EQUATIONS

Consider the characteristic equations in which H = H(x,t)

and V = V(x,t) are the dependent variables:

dH dv

g -
ig‘—t' +E€+§+T]i06—o, (16)
dx |
a—t--(Via):O. (17)

Assume A and a to be constant; referring to Figure (1-B), the
finite-difference approximations are:

1. First-order accuracy,

|
o
—~
vs]
]
[
~

S (8p - Hy) + (Vp - Vg) + (&g + ngr Og)At =

1l
(@]
P
i
no
N—

g
-2 (HP - HS) + (VP - VS) + (gS + ng- ocS)At

2. Second-order accuracy,

% (HP-HR)+(VP-VR) +[% (EPﬁER) + %(nP+nR) + %(QP+QR)] At = 0,
(B-3)

= % (Hp-Hg )+(Vp-Vg) +[%=(EE*ES) + %(nf*ns) - %(aP+aS)] At =0 .
(B=4)

Equations (B-1) and (B-3) are valid along the C¥ characteristic, defined
by dx/dt =V + a ; similarly, Equations (B-2) and (B-4) are valid along
the C~ characteristic, defined by dx/dt =V - a . Now, assume a >V ,
which is a reasonable restriction for a stiff tube (recall that in the

experimental manifold a ~ 388 m/sec and the maximum velocities are about

1.15 m/sec). Then the characteristics become straight lines, and on the

-102=-
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finite grid, Equations (B-1) and (B-3) are valid on the C¥ character-
istic & = a At , while Equations (B-2) and (B-4) are valid on the
C” characteristic A x = -a At . (This simplification is not possible
when consideration is given to flows in a distensible tube.)

If we consider a continuous manifold and utilize the orifice

relation, the solution of Hp at an interior point is obtained by sub-

tracting Equation (B-4) from (B-3) and noting that op = é,qP :
a

- q, = CqHp - Cp , (B-5)
acA\t
_ A g - -
Co = (EZEJ [ & (s + Hg) + (Vg - Vg) $ (B-6)
At
—-_Q-(ER-QS'-'-T]R_T]S—FOLR-FQS)].

Now,

a,, = Cgb Veghy = BEHp , (B-7)

and combining Equations (B-5) and (B-7), one obtains

Hp = — 2[(20102 +B) -V(2c;0, + B)2 - u(alcg)Q} . (B-8)
(201)

An iterative method must be used to solve for Vp , since in
the second-order approximation gP and nP are expressed implicitly.
The first-order relations can be used to approximate Vp ; then ép
and Np based on this value are used in the second-order equations to
determine a better Vp . Note that op 1is known since Hp has been

determined. The resulting iterative solution i1s obtained by respectively
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adding Equations (B-1) and (B-2), and Equations (B-3) and (B-k4):

_ 1 g (g .g) -2t - -
Vp = 2(VR+VS) + 2€1L(HR HS) 2(gR+§S+ NNt OéS) 5 (B-9)
1 g -
Vp = é.(VR+VS) + --ga(HR He)
At o 5
- (2kp + Egt Eg + 2npt gt ngt Og- Og) . (B-10)

At the upstream boundary, if HP is a function of time, then
again an iterative procedure solves Vp . Using Equations (B-2) and (B-4)

along the C~ characteristic, one gets

Vp = Vg + £ (Hp-Hg) - At(egh ng- ag) (B-11)

- g - AL - - -
Vp = Vgt = (HP HS) é._(gP+ Bt Npt Ngm 9 as) . (B-12)

At the downstream end, if Hp i1s a function of time, then a solution
similar to Equations (B-1l) and (B-12) can be derived. As an alterna-

tive, consider Vp

It

O at the downstream end. Then Ep and Np are

zero. Let

Cq = 2he
+ a2t
(B-13)
2A \[g At .
C2= (E[EHR+VR-_2'<ER+T]R+QR):| 5

then the solution of Hp is given by Equation (B-8). At any point on

the x-t grid, the lateral outflow can be computed using Equation (B-7).
By applying the second-order approximation to the coefficients

of the characteristic equations, one is essentially utilizing the trap-

ezodial rule to integrate along each characteristic. For example, along
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the C~ characteristic the approximation of the term [ adt is

tp 1
[ odt = 5-(0@ + op) At

g

for the second-order approximation, whereas the first-order one is

For most hydraulic problems a first-order approximation is usually suf-
ficient, but in the case that lateral outflow is present, o 1in Equa-
tion (16) may introduce instability if the second-order one were not

used.



10.

i1,

12,

REFERENCES

Acrivos, A., Babcock, B. D., and Pigford, R. L. "Flow Distributions
in Manifolds," Chemical Engineering Science, 10 (1959), 112-12k,

Arden, B. W. An Introduction to Digital Computing. Reading, Massa-
chusetts: Addison-Wesley Publishing Co., Inc., 1963.

Attinger, E. 0., and Anne, A, "Simulation of the Cardiovascular
System," Annals of the New York Academy of Sciences, 128, Art. 3
(1966), 810-829.

Douglas, J., Jr. "A Survey of Numerical Methods for Parabolic
Differential Equations," Advances in Computers, Vol., 2, New York:
Academic Press, Inc., 1961.

Forsythe, G. E., and Wasow, W. R. Finite-Difference Methods for
Partial Differential Equations. New York: John Wiley and Sons,
Inc., 1960.

Gray, C. A. M. Discussion of "Water Hammer Analysis Including
Fluid Friction, by V., L. Streeter and Chintu ILai," Journal of the
Hydraulics Division, ASCE, 89, No. HYl (January, 1963), 211-21h,

Horlock, J. H. "An Investigation of the Flow in Manifolds with
Open and Closed Ends," Journal of the Royal Aeronautical Society
(November, 1956), TH9-T53.

Lambossy, P. "Oscillations Forcées d'un Liquide Incompressible
et Visqueux dans un Tube Rigide et Horizontal. Calcul de la
Force de Frottement," Helvetica Physica Acta, 25 (1953), 371-386.

Lister, M. "The Numerical Solutions of Hyperbolic Partial Differ-
ential Equations by the Method of Characteristics," Mathematical
Methods for Digital Computers, New York: John Wiley and Sons, Inc.,
1960,

McDonald, D. A, Blood Flow in Arteries., Baltimore: The Williams
and Wilkins Co., 1960,

McNown, J. S. "Mechanics of Manifold Flow," Transactions ASCE, 119
(1954), 1103-1142,

McNown, J. S., and Hsu, E. "Application of Conformal Mapping to
Divided Flow," Proceedings First Midwestern Conference on Fluid
Dynamics, Ann Arbor: Edwards Brothers, Inc., 1951.

-107-




13.

14,

15.

16.

17.

18.

19.

20,

21.

22,

25,

2k,

259

-108-

Markland, E. "The Analysis of Flow from Pipe Manifolds," Engineering,

187 (January 30, 1959), 150-151.

Miller, M. E. Anatomy of the Dog. Philadelphia: W. B. Saunders
Company, 196k,

Moore, R. K. Traveling-Wave Engineering. New York: McGraw-Hill
Book Company, Inc., 1960.

Rich, G. R. Hydraulic Transients. New York: Dover Publicatiouns,
Inc., 1963.

Rudinger, G. "Review of Current Mathematical Methods for the
Analysis of Blood Flow," Biomedical Fluid Mechanics Symposium,
ASME, New York (1966).

Smith, C. D. Numerical Solution of Partial Differential Equations.
London: Oxford University Press, 1965,

Streeter, V. L. Fluid Mechanics. New York: McGraw-Hill Book
Company, Inc., 1966.

Streeter, V. L., Keitzer, W. F., and Bohr, D. F. "Pulsatile
Pressure and Flow Through Distensible Vessels," Circulation
Research, Vol., XIII, No, 1 (July, 1963).

Streeter, V. L., and Wylie, E. B, Hydraulic Transients. New York:
McGraw-Hill Book Company, Inc., 1967 (in press).

Tolstov, G. P. Fourier Series. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1962,

Wiggert, D. C., and Keitzer, W. F. "Pulsatile Flow in Cylindrical
and Tapered Rubber Tubing," ASME Paper No. 6H~WA/HUF-1, New York
(1964),

Wylie, E. B. "Flow Through Tubes with Nonlinear Wall Properties,"
Symposium on Biomechanics, ASME, New York (1966).

Zielke, W, "Frequency Dependent Friction in Transient Pipe Flow,"
(Ph.D. dissertation, University of Michigan, 1966).



