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ABSTRACT

The general problem of tnree-dimensional inertial flow on tne spherical
earth is analysed and solved in Section 2. Tne inertial trajectory is of a
helical nature on a circular cylinder. Thne axis of tne cylinder is perpendic-
ular to tne equatorial plane on the earth. Tne radius of tne cylinder is
VEO/EQ, where Vpy 1s the component of the initial velocity parallel to the
equatorial plane. The period of the motion is 12 hr.

Section 3 containg an analysis of horigontal inertial motion on the spher-
ical earth. The equations of motion for horizontal flow are integrated in
such a way that one obtaing differential equations for the rate of change of
the longitude and the latitude. These equations can be integrated in terms of
elliptic integrals. Several speclal cases are considered in detail such as a
trajectory starting from the North Pole. The period of the motion is found
whenever such a period exists. The maximum and minimum latitudes of the iner-
tial trajectory are found.

A comparigon between the present analysis and an earlier analysis by the
author is made in Section 4 with emphasis on the effects of the so-called met-
rical terms on the inertial trajectory.

Section 5 contains a detailed analysis of the periods of the inertial
motion showing considerable differences from the elementary periodg computed
for a constant value of the Coriolis parameter. In Section 6 a number of in-
ertial trajectories, computed numerically, are shown, while Section 7 contains
an analysis of a motion influenced by both a constant gravity and a constant
Coriolis parameter.
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1. INTRODUCTION

In a recent report (Wiin-Nielsen, 1970) the author investigated inertial
flow on a beta-plane and formulated the common inertial flow problem for the
spnere altnough no general solution was given in the latter case. It is the
purpose of the present paper to report on some additional studies of more gen-
eral types of inertial flows. Investigations of this kind are of interest be-
cause of tne recent attempts to identify observed winds in the ionosphere
(Rosenberg, 1968) with a type of inertial flow analyzed by Moses (1970).

The ordinary problem of inertial flow is to find the motion (velocity and
trajectory) of a particle which is forced to move horizontally (w = O in the
local coordinate system) under the influence of the horizontal component of
the Coriolis force. If the Coriolis parameter, f = 20 sin ¢, where ( is the
angular velocity of the earth and ¢ is latitude, is assumed to be a constant
f = f,, we find the well-known inertia circle where the period is half a pen-
dulum day. The report by Wiin-Nielsen (1970) had as its purpose to generalize
this elementary solution and to provide a detailed discussion of the various
possibilities for inertial trajectories on the beta-plane.

It is somewhat artificial to resgtrict the inertial motion to be horizontal
(w = 0) at all times. We shall therefore in this paper consider the more gen-
eral case in which inertial motion 1s defined as the motion which results when
the Coriolis force is the only acting force. The general solution of this
case will be given in the next section. Furthermore, in Section 3 we shall
show some examples of horizontal inertial flow on the sphere. When we consider
the even more general case of motion influenced by the Coriolis force and grav-
ity, we shall still be able to obtain approximate solutions given in Section U
of this paper.



2. THREE-DIMENSIONAL INERTIAL MOTION

The equation for the general inertial flow is according to the definition
given in the introduction

-S>
dv

_ 2—> > )
% - QX VvV (2-1

where 3-is the three-dimensional velocity and 5 is the rotation vector of the
earth. We note that the Coriolis force acts in a plane perpendicular to the
axis of rotation. It follows therefore that the component along the axis of
rotation has a constant velocity because no component of the acceleration acts
in this direction. In order to solve (2.1) it is most convenient to introduce
a coordinate system (&,7,{) fixed relative to the earth in which the (&,q)
plane coincides with the equatorial plane while the g;gxis points along the
axis of rotation. In this coordinate system we have Q = (0,0,0), and if we
define v = (ul,ug,uB) we get the following scalar equations:

du du du
e = 20 ug, Tt = =20 ul, = 0 (2.2)

The solutions of (2.2) are elementary, and we write them in the form

ul = ulO cos 20t + u2O sin 20t
= t - i t
u2 u20 cos 20 ulO sin 20
u = u 2.5
3 30 (2.3)

in which the subscript O indicates the initial values. We may immediately in-
tegrate (2.3%) to obtain the inertial trajectory. We find

u u
10 0
£ = go + Py sin 20t +2—2Q (1 - cos 20t)
u u
20 10
= + —= - — -
n Ny t o sin 20t = (1L - cos 2at)
= + t )
C o= gt ug, (2.1)



The trajectory described by (2.k4) is, for Uz = 0, a circle in the plane
through (&,,7n,) and parallel to the equatorial plane. The equation for the
circle is obtained from the first two equations in (2.4) by an elimination of
t. We get:

2 2

u u 2 u + u
20 10 10 20
- +— + - - —— — —————————
: <§o 2Q> " o 2@> me (2.5)

The trajectory is shown in Figure 1, which also shows the position of the
center of the circle and its radius (VO/EQ) wnere Vg is the initial windspeed.
From (2.3) and (2.4) .it is furthermore seen that the period of the motion is

-g = %xgu hr = 12 hr (2.6)

When Uzq # 0 we find that the inertial trajectory is a helical spiral on
the cylinder whose cross section is the circle in Figure 1 and where the axis
is along the (-axis.

While it is easy to describe the general inertial trajectory as a helix
in the (&,n,{)-system, it is an inconvenient system in practice. We would
then prefer to use spherical coordinates (A,p,r) where A is longitude, ¢ lati-
tude, and r the distance from the center (see Figure 2).

We find
£ = r cos @ cos A
N = r cos ¢ sin A
¢t = r sin o (2.7)

and the corresponding formulas with subscript zero for the initial conditions.
Normally, we will give the initial condition as (A_,p.,r,). (2.7) may then be
used to calculate (go,no,go), and (2.4) gives the functions &(t), n(t), €(t).
When we, at a given time, want to come from (&,7n,t) to (A,0,r) Wwe must use the
formulas
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2 2 2,1/2
r = (& +q+¢7) /
|
t =
an A :
tan @ = S (2.8)
2
52 +

The systems (2.4), (2.7), and (2.8) are sufficient to calculate the iner-
tial trajectory in spherical coordinates except for the fact that (2.4) re-
quires a knowledge of (ulO’HZO’uEO) in terms of the ordinary velocity compo-
nents

u = r cos @ (dr/dt)
v = r (dp/dt)
w = (dr/dt)

We find using (2.7)

- 8¢ _ . _ . +
ul v usin A - v sin ¢ cos A + W cos @ cos A
dn ‘ . : ,
u2 T *ucos A-vsingsinh +w cos ¢ sin A
u = + v cos @ +w sin @ (2.9)

(2.9) is used to compute (ulo,ueo,u O) from given initial. values of
(Ko,wo,ro) and (u,,v,,W,). The three-difiensional inertial trajectory described
in this section is entirely different from the usual horizontal trajectory ob-
tained when the horizontal component of the Coriolis force is the only force
congsidered. We shall return to this question in Section 3.



3. HORIZONTAL INERTIAL MOTION

This problem is the description of the trajectory of & particle which is
influenced by the horizontal component of the Coriolis force. It follows that
the entire trajectory will be horizontal. The problem is treated in most text-
books for the case of a constant Coriolis parameter and was analyzed by the
author (Wiin-Nielsen, 1970) for the beta-plane case. The egquations for the
spherical case are:

du . uv
-(-j-t— = 20 sino v + '—'a tan o (5']—)
dv u2
= = -2Q0 singu - Y tan o (3.2)

in which Q is the angular velocity of the earth, a the radius of the earth, and

- ar I )
w = acos ¢ T, v a = (3.3)

Introducing (3.3) in (3.1) and (3.2) we get

d ax . dp . . dndy
—_— —_— = + —
v {Fos P dt} 20 sin @ —= + sin ¢ & (3.4)
2 2
d d
22 - _og sin ¢ cos @-—E - sin ¢ cos @ -§E> (3.5)
th dat dt

The integration of (3.4) and (3.5) is by no means straightforward because
the equations are nonlinear. It is, however, possible to obtain first and
second integrals in this case as outlined below. We note first of all that
(3.1) and (3.2) imply the conservation of kinetic energy. Multiplying (3.1)
by u, (3.2) by v and, adding the resulting equations, we get:

et - -

which may be written in the form

2 2
2 [d\ d 2
cos O <§€> + é%> = C (3.7)



where

2 2
2 2 dn do
= —_— +
¢ cos ¢ <dt> <dt) (3.8)
o o
The subscript zero indicates initial conditions. (3.7) isa first integral.

We shall next write (3.4) in the form

2
d A . dop dn . do . dA do
— — = 2 + — .
cos @ sin @ == =5 0 sin o 3 T sine T (3.9)
dt
or
4 d(cos @) d\ d(cos o)
cos @ —= + 20 +2 = = 0 (3.10)
2 dt dt dt
dt
Separating the variables we find
1 d an 1 d(cos o)
dn dt [Q dt} 2 cos @ dt 0 (3.11)
Q+ =
dt
or, by integration for Q + dr/dt > 0,
d 2
1n QQ + a%) + 1n (cos@) = 1nD (3.12)
which finally gives
an 2
4+ — ) =
o+ cosp D (3.13)
where
d\ 2
= + ——
D 0 (dt)(a cos’ (3.1k)

Combining (3.7) and (3.14) we may write the first integrals in the form:

a D
el - Q (3.15)

2
cos @



and

d 2 2 [an)?
a% = i/C -coscp(az) (3.16)

' The initial conditions are given in terms of a position (A_,p.) on the
spherical earth and an initial angular velocity ((dx/dt)o,(d@/dt)og.

The system (3.15), (3.16) may be integrated in terms of elliptic integrals.
In order to see this we write (3.16) in the form

cos ¢ do

dt = & — (3.17)
: _ 2 2
(-D2 + (20D+ C7) cos o - a cosucp)l/2
Introducing the substitution p = sin ¢ in (3.17) we find
- oL
dt = = = (3.18)
JR
where
2 2 2 2 2, 2 2
R = (20D+C =D =0 ) + (20 - 20D-C )u -Quu (3.19)

The form of (3.18) combined with the fact that R, as expressed in (3.19),
is a polynomial of the fourth degree shows that (3.18) can be integrated in
terms of standard elliptic integrals, see Jahnke and Emde (1945). Substituting
from (3.18) into (3.15) we find that

an = iD———dzfi-——'Qﬁiﬁ (3.20)
(1-u%) VR Jr

The form of (3.20) indicates that A is expressible in terms of elliptic
integrals. The details of the transformations necessary to reduce (3.19) and
(3.20) to the canonical forms can be found in Abramowitz and Stegun (196k4).
Since we are interested mainly in some specific examples and in a comparison
with the p-plane cases, we shall integrate (3.15) and (3.16) numerically using
finite difference methods and the initial conditions. Examples of inertial
trajectories computed in this way will be described in Section 6. It may,
however, be interesting to consider some special cases in which the reduction
to canonical form is simple and straightforward.

As our first example we shall select the case where the particle starts
at the North Pole (mo = ﬂ/2) with an initial velocity vector of magnitude



a(d@/dt)o along the Greenwich meridian (A, = 0). We have in this case D = 0
and C = (dp/dt),. (3.15) and (3.16) become

2
dA d d 2 2

Introducing the nondimensional variable T = Ot and the notation
q = Q'l(d@/dt)o, we may write (3.21) in the form

- a
an = ¥ & (3.22)
2 2
~/sin ® - (1-97)
A new variable © is introduced through the relation
2 2 1 .
1 -q° sin® = gq (3.23)
sin o
which upon substitution in (3.22) leads to
6
- ae
o= + (3.24)

JT/2~/l - q2 sin29

or

N = ié‘(q%) - F(q,e)> (3.25)

where

S]
do

=

° JG_- q2 sin26
is the elliptic integral of the first kind. The reduction of (3.22) to (3.25)
is valid as long as g < 1 which is the same as v < Qa. This condition will
hold in the cases of meteorological interest because (Qa is equal to the wveloc-
ity of the earth's rotation at the equator (=~ 462 msec™l). Let the angle o be
defined through the relation sin o = q. We see from (%.23) that the minimum
latitude of the trajectory is n/2 - a. « is therefore the co-latitude of the
southernmost point of the inertial trajectory. Three inertial trajectories
corresponding to a = 30°, 60°, and 90° are shown in Figure 3 on a polar stereo-
graphic projection true at the North Pole., The initial velocities at the North
Pole for these trajectories are 232, L02, and L6L msec'l, respectively. It is

F(q,9) (3.26)

10



a=30°

a=60°

;_——”’ a=90°

A=90°

Figure 3. Inertial trajectories starting from the North Pole on a polar stereo-
graphic map. o indicates the maximum colatitude of the trajectory. The trajec-
tory marked ¢ = 90° will approach the equator asymptotically.

11



also of interest to calculate the time it takes to return to the North Pole in
the trajectories given in Figure 3. The period in T, i.e., Tps is according
to (3.25) and recalling that T = -A:

T = 2K(q) (3.27)

where K is the complete elliptic integral, i.e., K(q) = F(q,n/2). The value
given in (3.27) is obtained by noting that the initial point corresponds to

6 = n/2 while the value of © when the particle returns is 6 = -x/2. The period
in hours is

= = () (3-28)

We notice that the limiting value for ¢ - O is T = 12 hr which is obtained
because K(0) n/2. Increasing values of g give increasing values of T with
T >was q > 1. The values of T corresponding to @ = 30° and o = 60° are
12.88 hr and 16.47 hr, respectively.

Il

A different special case, corresponding to (dx/dt)o = -0, was solved in
the previous report, Wiin-Nielsen (1970). We shall comment on the previous
solutions in the next gection.

It is also of interest to congider some general properties of the solution.
Without solving the problem completely it is possible to find the extrema in
latitude of the inertial trajectory. At such a point we have dp/dt = 0, and
it follows from (3.16) that an extremum point is characterized by

dA
cos ¢ = T + C (3.29)

Since C > 0 we find that the plus sign will correspond to dx/dt > 0 which
is a maximum point in the northern hemisphere, while the minus sign will apply
to dx/dt < 0 or a minimum point in the northern hemisphere. Substituting from
(3.15) in (3.29) we find that the extreme values of ¢ for the inertial trajec-
tory are determined by the expression:

v 2 . n 1/2
cos @e = Z —; + cos @O + ;; cos ®O +

<

(3.30)

N -
= o

where Vg = a) is the velocity of the earth at equator and V, = aC =
(2% cos2g, (d%./dt)g + 82 (dp/dt)2)/2 ig the initial speed. (3.30) is very

12



useful in connection with numerical integrations of (3.15) and (3.16) to be
described later, because we may compute the northernmost and southernmost
points of an inertial trajectory. It is possible that the lower sign in (3.30)
will give a value of the right-hand side of (3.30) larger than unity. This
means that the inertial trajectory will cross the equator. .If so, we must have
complete symmetry around the equator as seen from (3.15) and (3.16). Table 1
contains the maximum and minimum latitudes for inertial trajectories starting
at ¢, with an initial meridional velocity v, = V, = 100 msec~i.

TABLE 1

VALUES OF MAXIMUM AND MINIMUM LATITUDES FOR
INERTIAL TRAJECTORIES STARTING AT ¢, WITH AN
INITIAL MERIODIONAL VELOCITY OF 100 msec™t

Po 90 80 70 60 50 40 30 20 10 0
Prax 90 8h.h7 75.48 66.19 57.0k U48.25 L40.10 33.06 29.23  26.08
Ppin 77.55 T71.81 62.20 51.74 L0.57 28.19 11.37 -33.06 =-29.25 -26.08

Ppax ~Po  0.00  L.h7  5.48 6.19 T7.04 8.25 10.10 13.06 19.25 26.08
©o = Ppipn 12.45 8.19 7.80 8.26 9.43 11.81 1B8.63 53.06 39.23 26.08

Equation (3.30) becomes particularly simple if we start the particle with
a zonal velocity in which case we have V, = u It is seen that (3.30) reduces

0"
to
cos QO
cos ¢, = ug (3.31)
cos @ + =
Vg
(5.51) shows that the initial latitude is & minimum latitude if Ug < 0
and a maximum latitude if ug > 0. The maximum latitude for Ug = -100 msec'l
and the minimum latitude for u, = +100 msec'l are given in Table 2 for some

o)
selected values of Py

13



TABLE 2

MAXIMUM AND MINIMUM LATITUDES FOR A PARTICLE
STARTING AT o WITH INITIAL VELOCITY

i, = -100 msec™  AND u, = +100 msec™>, RESPECTIVELY

9o 10 20 50 o 50 60 70 80 msec™t

Ouax  39-67 U3.57 L49.39 56.58 6€L.68 73.45 82.71 90.00 u, = -100
Opip -10.00 -20.00 =-30.00 1L.17 30.92 Lh.35 56.15 67.13 u, = +100

I

Il

Fquation (5.50) may naturally also be used for other purposes. If we,
for example, are interested in the limiting case where the equator is an
asymptote to the inertial trajectory we may characterize this case from (3.30)
by the relation

v \2 1 1/2
i < 0 2 0 N (5.52)

\OR o
<:|o<:

- = +cos @ + T cos O +
W o
L VE o z E

For a given initial velocity (uy,v.), Vo = (ug + Vg)l/g we may use (3.32)
to find the latitude where we have to start the particle in order to reach the
equator in an asymptotic way. If, for example, u, = O, Vb = 100 msec'l, we
find from (3.32) that we must start the particle at 27.66%, with the corre-
sponding value is 8.43° if uy = 0, v, = 10 msec L. (3.%2) may also, in special
cases, be used to calculate the initial velocity at a given latitude necessary
to reach the equator in an asymptotic way. For example, if ug = 0, v, % 0, we

find from (3.32) the initial value of v, necessary to reach the equator is

2
v = V_ sin P (3.33)

while the value of uy > 0, vy = O to obtain the same limiting case is

¢)

u, = Vg (1L - cos @O) (3.34)

The values of u, and v, calculated from (3.34) and (3.33), respectively,
are given in Table 3 as a function of latitude.

14



TABLE 3

VALUES OF (ug,0) AND (0,v,) NECESSARY TO REACH THE EQUATOR
BY INERTIAL TRAJECTORY AS A FUNCTION OF IATITUDE

® 90 80 70 60 50 4o 30 20 10 0

ug k6k.0  383.4  305.3 252.0 165.7 108.6  62.2 28.0 7.1 0.0
v 44h.0  450.0 L09.7  348.0 272.3 191.7 116.0 54.3 14.0 0.0

0

The limiting case where v, = (uO,O) and u, is such that the equator is an
asymptote may be solved in terms of elementary functions. When we introduce
p = sin ¢ in (3.17) we can write the equation in the form:

at = % du
{(c2 + 20D - p° - Q2) - (02 + 200D - 292) “2 - szu}l/g
(3.35)
where
2 2 () dn 2
¢™ = cosTp_ <E€>O; D = [0+ EE;L cos’p_ (3.36)

Introducing (3.36) in (3.35).we find after some reduction that (3.35) may
be written in the form

dy
at = + —— (3.37)
((u° - ug)([l -+ /)i - ug)] - u2}1/2
where
T = Ot (3.38)
and
p = (% (3.39)
(0]

The integration of (3.37) will of course lead to incomplete elliptic in-
tegrals in the general case, but in the special case where u, is given by

(3.34) or

0

15



1 - cos @O

cos @

we find that (3.37) reduces to

We change the variable u to a new variable © defined through
u = p sin © (3.41)
and (%.40) becomes after integration
T o= = n Qﬁm.%) (3.42)

where we have selected the minus sign in (3.37) in order to have T > O.

The solution for A can now be obtained from (%.15) giving

dTr

l-pg

1l
I

dan - at (3.43)

which can be integrated to give
Cpo S
A = A_+ tan — 1n (tan =) + arc tan (tan @ cos ©) (3.4k)
o 2 2 0
The solution for the latitude ¢ is given by (3.41) or

® = arc sin (sin ¢, sin 9) (3.L5)

(3.42), (3.44), and (3.45) give the solution for the asymptotic case. An
example of a trajectory computed from these equations is shown in Figure 4
where we have selected @, = 30° (i.e., uy, = 62.2 msec™). The numbers on the
curve give elapsed time in hours since the start of the trajectory.

16
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4, COMPARISON WITH PREVIOUS CALCULATIONS

The present analysis is a generalization of the previous case treated by
the author (1970). The spherical case was considered in the first analysis,
but the considerations were limited to the equations

du

% - 20singu (4.1)
dv .
% - 0sinev (k.2)

where the so-called metrical terms due to the convergence of the meridians on
the spherical earth were neglected as presumably small. The equations (3.1),
(3.2) and (L.1), (L.2) were thought to give essentially the same results as
long as the initial velocities are small and the inertial trajectories do not
enter the very high latitudes where tan ¢ becomes very large. However, test
calculations have shown that the metrical terms are very important at high
latitudes even for gsmall values of the velocity components..

The qualitative effects of the metrical terms on an inertial trajectory
may be seen By writing (3.1) and (3.2) in the form

du u .
at <%Q T cos %) SV (k.3)
U 20 + ———— sin ®u (L.k)
dt a cos @
or
av u
av. _ " . > >
90 <§Q ;rz;;;zé) sin @ v x K (L.5)

where E is a vertical unit vector. On the other hand, the previous calcula-
tions (Wiin-Nielsen, 1970) were based on the equation

-
dv
dt

>

= 20 sin o v xk (4.6)

(4.5) and (L.6) express the fact that the curvature of the inertial tra-
jectory is created by a force acting perpendicularly to the right in the
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northern hemisphere (and to the left in the southern hemisphere). We may now
compare (4.5) and (L4.6). Let us assume that we have carried out a calculation
satisfying (L.6) for the case Uy = 0, vy >0 at ¢ = ¢, . The result of this
calculation is given by the full curve on Figure 5 which was taken from a
numerical integration of (4.1) and (4.2) using u, = 0, vy = 100 msec™L and

¢, = TO°N. An integration of (4.3) and (4.4)=—or rather (3.15) and (3.16)—
will differ from the full curve in Figure 5 in the following way. During the
upper branch ¢>¢@, we will have a deviating force larger than before according
to (4.5). The new inertial trajectory will have a greater curvature than be-
fore as indicated by the dashed line on Figure 5. On the other hand, when the
particle has passed the initial latitude and starts to turn westward we will
have a deviating force which is smaller than in the previous case as long as
the quantity in the parenthesis on the right-hand side of (L.5) is positive,
i.e., as long as u > -20 a cos ¢®. This condition will normally be fulfilled
for meteorological motion. The result is that the curvature of the trajectory
will be smaller than before and the particle will move along the dashed curve.
The net effect of the metrical terms on an inertial trajectory is therefore
that they cause a net westward displacement per period. This result holds as
long as the metrical terms are small compared to the Coriolis force.

One may naturally also be interested in the trajectory which a particle
would have if it were under influence of the metrical terms as the only appar-
ent force. This problem is expressed by the equations

du _ uv

. a tan o (4.6)
2

dv u

it~ a tan ¢ (4.7)

The trajectory in this case is naturally obtained as a special case
(9 = 0) of the general solution of (3.15) and (3.16). We have now:

i _ D
at 2 (1.8)

where

C082 'g'}: -
Po \at
O (@]

)
|
VRS
ol
&1$
N
0
o)
n
RS
e}
@
o
1l

+ <%SE>2 (4.10)
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The problem, posed by (4.8) and (L4.9), can be solved in a straightforward
way. Let :

. 2 C2 - D2
L = sin ¢ and S = — (u ll)
2 .
C
Introducing (L4.11) in (4.9) we find
d
at =t ——— (4.12)

/ 2 2
CNS = pu

In (4.12) we introduce the new variable © defined through

S sin © (L.13)

‘=
il

and we get:

it = = % ae (L.14)

We may therefore write the solution in terms of the variable © as follows:

1 sin o
t = + E (e-eo) H 60 = arc sin S ? (k.15)
and
@ = arc sin [8 sin 6] (4.16)

The solution for A is obtained from (4.8) which after substitution of
(4.11) and (4.13) becomes:

doe

a = ot (4.17)

Qg

1~ 82 sinee
(4.17) may be integrated directly with the result that

arc tan {\/l -32 tan 6} - arc tan {\/l —S2 tan GC}

1-8 (4.18)
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(4.15), (4.16), and (L.18) give the complete solution to the problem. We
notice from (U.l5) that the motion is periodic with a period given by

;- & _ 2ma (4.18)

where V, 1s the initial speed and a is the radius of the earth. The motion
has a large period for ordinary meteorological velocities. For V, = 10 msec™t
we find a period of T = 46.3 days. Let us next consider a couple of examples.
Let the particle start with the conditions Ay = 0, ¢ = @y, (dr/dt), > 0, and
(d@/dt)o = 0. For these initial conditions we find S = sin @, and O, = n/2.
Figure 6 shows two trajectories, one starting at 60°N and the other at 30°N.
The trajectories cross the equator at 90° of longitude and reach their rinimum
points at 60°S and 30°S. Each of the trajectories cover a half period.

We notice that the solution given by (4.15), (4.16), and (4.18) breaks
down if the initial velocity has (dx/dt)o = 0, because in that case D = 0 and
S =1, leading to N1-82 = 0. It is, however, easy to see from (4.8) and
(L.9) that D = O results in the equations:

a4, d _ - (%
dt 03 dt ¢ dt)o (k.19)

The solutions of (L.19) are

I cp=<po+§€5>-t (1. 20)
O

indicating that the particle in this special case will travel along the merid-
ian @ = @, with a constant speed v, = a(dg/dt),.

In order to complete the comparison between the previous and the present
solutions we shall finally consider a case where it is relatively easy to ob-
tain analytical solutions in both cases., As the example we shall select the
case treated in Section 3 (Egs. (3.21) to (3.28)). If the metrical terms are
neglected we have the equations

a DN o,
= <%os ® dt> 20 sin @ = (h.21)

which can be integrated in a straightforward way to give
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D

a o Ux , - ar
at  cos ¢ 20 D €os 9, ({dt:L

+ 2%) (4.22)

which is the equivalent to (3.15). Corresponding to (3.16) we have exactly
the same equation because it expresses the conservation of kinetic energy
which is true in both cases. Considering now the case when the initial posi-
tion is the North Pole with a meridional velocity along the Greenwich meridian
we find corresponding to (3.21):

2

d d 2 2
= -20; 5% = & a% - 4o~ cos @ (4.23)
0

ar
at

Introducing the nondimensional variables T, = 20t and the notation
a, = 1/20 (dp/dt), = (dp/dr,), we find

o G -, [P s
dT* 1 dT* s q* cos @ (u,gu)

and corresponding to (3.22), we get the identical equation. It follows there-
fore that the solution of (L.2L4) is expressed by (3.25) and (3.26) with q re-
placed by q, and T by T,. We notice in particular that the period now is

o= & K(q,) = %? <%> (4.25)

* 7

corresponding to (%.28). We notice that the periods expressed in (3.28) and
(M.25) agree in the limiting case of ¢ and ¢, approaching zero. However, for
values of g different from zero there will be significant differences. Corre-
sponding to the two periods of 12.88 hr and 16.47 hr given in connection with
Figure 3 we find now the periods 12.19 hr and 12.62 hr, respectively. A ne-
glect of the metrical terms is thus not Jjustified.
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5. THE PERIOD OF INERTIAL MOTION

The period of inertial motion is usually quoted as

on 2 12
T = fo ~ 20 sin @ T sin 9 (hours) (5.1)

where fo is the value of the Cpriolis parameter at the initial latitude.
(5.1) comes from the case of constant f. The purpose of this section is to
discuss the period of the inertial motion in the general spherical case as
discussed in Section 3 of this paper. We base the discussion on equation
(3.16). 1In order to derive an expression for the period in the general case,
it is necessary to bring (3.16) into canonical form. We note that (3.16) may
be written in the form

d dA aA
5% = % \/<¢ + cos @ 5E> <? - cos @ EE> (5.2)

Substituting from (3.15) for d\/dt we find after some calculations that
we may write (5.2) in the form

cos @ do

(5.3)

2 2
Vo 2 [1
— +R cos ¢ -{ =
VE 2

2
Q[ -~ |cos @ - - R

n |+
[0S

where V, is the initial wind speed, VE = Qa the speed of the rotating earth at
the equator, and

/v \? u »
R = /Ll-\;[g + cosecpo + -v:?- cos ¢ (5.4)
E E

in which ¢, is the initial latitude, and u, is the zonal component of the ini-
tial wind.

Considering the form of (5.3), it is now natural to introduce the inde-

pendent variables

p = sing (5.5)
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and

T = Ot (5.6)

and we get:

I+

dt = - (5.7)

l - l -

mlh
MIH

2
_9 % - R g}
V V’ }
It is seen from (5.7) that there are the following cases to consider:

7 \2 ' 7 \°

-
no

1

i_.l

I

=}

+
oI+

=
= lo

\Y

o

k=
no

Il

'._J

I

=

I
M -

2
v
E

In this case we have

d
dtr = # L (5.8)

s

A use of the transformation

m W2 s
L= L ; k2 = _2_2;_l (5.9)
J1 - 42 ein Mo
leads to
Poly—® 1w (5.10)
H (0]

")
2 O\/l - k2 sin29 ~/l - k s1n26

(5.10) tells us that the period expressed in terms of the dimensional
quantity is

o= 2= K(k) (5.11)
uzﬂ

where K(k) is the complete elliptic integral of the first kind.
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@ 2 1 VO 2 2 1 v
2 0
v = R+—=— -1 > 0, v = 1l-|R-=—1]> 0
2 VE 2 2 VE
In this case we have
d
at = — (5.12)
[F-DE)
AP ANZ S
The transformation
W= v, cos® (5.13)
leads to
0
o) S
1 de ae
Spp—— . (5.14)
v§+v§ O\/l—k2 sin29 O\/l-k2 sin29
(5.13) and (5.14) tells us that the period is
_ L
T = ‘ K(k) (5.15)
2 2
+
Q Vl v2
v \2 vV \2
1l o 2 1 o
G 1-(r+3= = 0, b o= 1-(r-==22 > 0
2 VE 2 2 VE
In this case we have:
d
/ 2 2
M “2 M
We note from the conditions in this limiting case that
v
1L o
R = 1-37F (5.17)
E
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We find therefore

<
<

0
“2 = VE 2 - 7 (5.18)

The transformation

W= u,sin @ (5.19)
leads to
g7 = = 98 (5.20)
My sin ©
and

S
T = ﬁz {ln <%an %) - 1n <;an 2%)} (5.81)

Case 3 is therefore nonperiodic and .is indeed the case where the trajectory
approaches the equator asymptotically.

We may use the formulas (5.11) and (5.15) to compute the periods for a
couple of examples. As the first example we have selected a case where
P, = 45°N and V, = 100 msec'l. Expressing uy as ugy = V, cos ¥, where ¥ is the
angle between the wind vector and the zonal direction we find the results
listed in Table L, computed from (5.11).

TABLE L

PERIOD OF INERTTAL MOTION, MEASURED IN HOURS,

FOR @y = 45°N, V, = 100 msec™l, AND uy = V, cos ¥

¥ 0 30 60 90 120 150 180

T 22.5 21.6 19.6 17.7 16.3% 15.5 15.2

It is seen from Table L that a congiderable variation exists in the com-
puted periods depending on the initial direction of the velocity vector. The
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values in Table 4 should be compared with the elementary period computed from
(5.1). Using ¢, = 45°N we find from (5.1) that the period is about 17.0 hr.
This estimate of the period is thus almost 25% too small compared with the
period when y = O.

 The second example is selected in such a way that (5.15) applies. We use

9 = 0°, Vo = 100 msec'l. Defining ¥ in the same way as before we get the re-
sults listed in Table 5, where the period is given in hours.

TABLE 5

PERIOD OF INERTIAL MOTION, MFASURED IN HOURS,
FOR ¢, = 0°, V, = 100 msec™l, AND uy = V, cos V¥

v 0 30 60 90 120 150 180

T 347 35.2  37.7  L42.0 L9.8  65.1  w

We note first of all that we have no elementary period to compare with in
this case because T in (5.1) goes to infinity when Py > O. We may, however,
compare with the period given by Wiin-Nielsen (1970) using a beta-plane approx-
imation centered at the equator. These results, computed with the same param-
eters as in Table 5, are given in Table 6. We notice that the beta-plane ap-
proximation gives a slight overestimate of the period for small values of V
and an underestimate for large values of V.

TABLE 6

PERIOD OF INERTIAL MOTION, MEASURED IN HOURS,
PARAMETERS AS IN TABLE 5, BUT USING A BETA-PLANE GEOMETRY

v 0 ‘50 60 90 120 150 180

T 36.4 3.1 %9.1 43.0 50.0 6l.2 0

We have already found the period in the special case where the particle
starts at the North Pole, see Eq. (3.28), and where VO/VE < 1. Some additional
valueg are given in Table 7 for various values of Vo/VE-
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TABLE 7

VALUES OF THE PERIOD, MEASURED IN HOURS,
FOR A PARTICLE STARTING AT THE NORTH POLE WITH VO/VE <1l

v,/Vg ©0.0 0.1 0.2 0.3 04 05 0.6 07 0.8 0.9 1.0

T 12.00 12.05 12.12 12.28 12.55 12.88 13.38 lh;lO 15.24 17.43 o

It is also of interest to tabulate some values for the same case, where
the initial windspeed is so large that the particle goes into the Southern
Hemisphere. The formula for the period is a gpecial case of (5.15), which for
9, = /2 becomes

v

_ Lg [ _E
T - K| (5.22)
7T "‘O‘ ©
Vg

Some values are given in Table 8.

TABLE 8

VALUES OF THE PERIOD, MEASURED IN HOURS,
FOR A PARTICLE STARTING AT THE NORTH POLE WITH VO/VE > 1

Vé/VE .1 1.2 1.3 1l.hb 1.5 1.6 1.7 1.8 1.9 2.0 3.0 L.0 5.0 6.0

T  32.2 26.3 22.8 20.3 18.L 16._9 15.6 14.6 13.7 12.9 8.2 6.1 4.8 4.0
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6. EXAMPLES OF INERTIAL TRAJECTORIES

As pointed out in Section 3 it is most convenient to use numerical methods
to .calculate actual inertial trajectories. The equations used for this purpose
are (3.15) and the equation which results when (3.15) is substituted in (3.5).
They are:

dA D
at 2 "9
cos @
@
at K
3 :
E% = 0 cos ¢ sin ¢ -~ pe 2L (6.1)
cos”

where the variable u has been introduced in order to obtain a system of first-
order equations which are well suited for numerical integration. The quantity
D is given by (3.14) and is determined completely by the initial conditions.

The system (6.1) was integrated using a fourth-order Runge-Kutta method
with a timestep of 5 min during all of the calculations.

Figures Ta-d show inertial trajectories computed with the initial condi-
tions that u, = O and v, = 100 msec™l. The starting latitudes are 0°, 20°,
40°, and 60°N, respectively. The trajectories are plotted on a polar stereo-
graphic map with a standard latitude of 90°N. The first two trajectories
cross .the equator where the curvature changes because of the Coriolis param-
eter, while the last two trajectories (¢, = 4O°N and 60°N) stay entirely in
one hemisphere. They show the typical spiral motion with a net westward dis-
placement as discussed in Section 4 due to the combined effect of the Coriolis
and metrical terms in the basic equations.

The next example consists of a group of trajectories computed with an
initial velocity of 100 msec'l and an initial position on the equator. The
angles which the initial velocity forms with the equator were 10°, 30°, 50°,
70°, and 90°, respectively, for the five trajectories shown in Figures 8a-e.
These types of trajectories were studied many years ago by Whipple (1917)
using mathematical approximations which are equivalent to what we today would
call an equatorial beta-plane approximation.

It is seen from Figures 8a-e that the inertial trajectory shows a net

westward displacement of the particle when the angle between the initial ve-
locity and the equator is sufficiently small as in Figures 8a-b, while the
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remaining cases (Figures 8c-e) shows & net eastward displacement. Using the
equatorial beta-plane approximation one can show that the initial angle has to
be 49.32° (Wiin-Nielsen, 1970) to give a vanishing net displacement.
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7. MOTION INFLUENCED BY CORIOLIS' FORCE AND GRAVITY

We shall in this section consider some examples of motion influenced by a
(constant) acceleration of gravity and by the Coriolis' force. It is obvious
that such motion will be of greater complexity than the types of motion con-
sidered in the previous sections of this paper. To compensate for this fact
we shall restrict ourselves to rather approximate methods.

The three equations of motion for the kind of motion considered in this
section are

du

& = fvo-oew (7.1)
d

5% = -fyu (7.2)
d .
E‘Z T o-gten (7.3)

where £ = 20 sin ¢ and e = 20 cos ¢. Note that we have used the ordinary ori-
entation of the coordinate system in writing the scalar Egs. (7.1) - (7.3). The
common problem is an initial value problem where we know the initial position
(X0,¥0s2o) and the initial velocity (ug,vy,W,), and where we want to calculate
the trajectory.

The most simple problem is the one which results when the Coriolis' force
cén be disregarded altogether. 1In that case we obtain as the solution the or-
dinary parabola which most easily can be obtained by selecting thi_x-diregﬁion
along the direction of the initial horizontal velocity such that Vo = uy i

The more interesting case 1s the one where the Coriolis' force must be
taken into consideration. We shall treat the case where we will assume from
the outset that f and e can be assumed to be constants. The justification of
this assumption must be made a posteriori, but it is clear that the lateral
region covered by the motion must be small. In any case, let f = f, and e = g4
where the numerical values are determined by the initial position of the parti-
cle, i.e., £ = 20 sin ¢, and e = 20 cos @,. Under this condition it is rather
straightforward and elementary to solve the problem posed by (7.1) - (7.3).
These equations may for example be solved by forming a single equation for the
time-dependent u-component. We get from (7.1) by a differentiation with re-
spect to time:

L2



2
S ge (7.4)

dt2
The formal solution of (7.k4) is
W = ——g +C. cos 20t + C_ sin 20t (7.5)
2 1 2
Lo ‘
where Cq and Co are integration constants.

Let us for simplicity select the initial state by setting Ko = Vg = 2o =

Uy = Vo = 0, but wy > 0. Using the condition that Uy, = 0 at t = 0 we find
e
C = - T—r— g (7'6)
1 2
Lo
The initial conditions imply that
du
pr I at t =0 (7.7)
(7.7) leads to a determination of Cp with the value
C = = W
2 T 20 o
and the complete solution u = u(t) is
= £ & - .= .
u 56 26 (1 - cos(2at)) 5 Y5 sin(20t) (7.8)

The solution for v is obtained from (7.2) which upon integration gives

ef

v o=
Mo

[, gt + fd sin(20t) + W (1L - cos znt)] (7.9)

The vertical velocity is obtained by an integration of (7.3) using the ini-
tial conditions leading to

43



2 .
w o= singcpO (wg-gt) - cos Q_ <§% sin 20t - w_ cos QQt) (7.10)

The ‘actual trajectory of the particle, i.e., x(t), y(t), and z(t) are ob-
tained from integrations of (7.8), (7.9), and (7.10) using Xy = Vo = 2o = 0.
We obtain ‘

e}

cos ¢ _ :
x = = {%t - é% sin 20t - w_ (1 - cos EQti}
L 2 wb
) . g
- t - =gttt - — t) + —=— -
v sin @_ cos ¢_ {Wo 5 8 = sin(20t) 5 (1 - cos 2Qti}
290,
2 1 2 2 wo g
= 3 t - — + i t - -
z sino <yo 5 gt > cos 9\ 75 sin 20 5 (1L - cos 29t9

Lo
(7.11)

It is seen from (7.1l) that the only places on the earth where the
Coriolis' force has no effect on this type of motion is at the Poles. At
these places we have cos Py = 0 and sina$o = 1, and (7.11) reduces to

gt (7.12)

which is the solution which is obtained 1f the Coriolis' force is disregarded.

The particular case chosen for investigation will result in a motion
where the particle will return to the surface of the earth after a relatively
short time. One may see this from (7.12) which applies as a lowest degree of
approximation. It follows from (7.12) that the maximum time for the particle
in the air is approximately

t ~o—— (7.13)

which is small, in general, compared to the period of the inertial motion
which is T = (2n)/(20) = 12 hr. Using this fact it is possible to simplify
(7.11) by using the approximations

(em)?

z (7.14)

sin 20t = 20t -

and

Ly



(20t)%  (eat)"
o 24

(1L - cos 2at) (7.15)

Including the first terms of (7.14) and (7.15) we will get the influence
of the Coriolis term in the lowest approximation. Introducing (7.1k) and
(7.15) in (7.11) we get after some manipulations:

= - t
X cos @O WOQ
y = 0
1 2
z = Wb - 5 gt (7.16)

As (7.16) shows we get a displacement of the particle to the west to the
first degree of approximation. One would indeed expect such a result from an
inspection of (7.1) - (7.3) which shows at the initial time that (du/dt) < O
while (dv/dt), = 0. (7.16) may be used to obtain an estimate of the displace-
ment in the westward direction at the time when the particle reaches the
ground. From the third equation we find that the elapsed time isg

2wo
t = — :
ax . (7.17)
and we find
v
Xox = " 4 cos °, 9 (7.18)
g
while the maximum height is
2
wo
Zox = g (7.19)

Table 9 shows values of T .., Xygx, and Zp .. computed for various values
of w, using @, = 45°N, g = 9.8 msec™2, and Q = 7.3 x 1072 sec™L. as expected
we find that the displacement in the x-direction is negligible when LS is
small.
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TABLE 9

VALUES OF tpays Zyays AND Xpax Fog VARIOUS VALUES OF w_. )
PARAMETERS: ¢, = 45°N, g = 9.8 msec™@, AND 0 = 7.3 x 1072 sec”

W msec™T 1 , 10 100 1000
tpaxs Sec 0.20k 2.0k 20.4 20k.1
2o 1 0.05 5.10 510.2 51020. k4
Koy M -0.2 x 1072 -0.2x 1072 - 2.15 - 2149.9

As shown by (7.11) there will be a displacement in the y-direction. In
order to calculate this distance, we must go to a higher degree of approxima-
tion. Incorporating both terms in the approximate expressions (7.1k) and
(7.15) we obtain from the second expression in (7.11) that

y = %vsin 9, cos O 0° (b &2 - gt™) (7.20)

Assuming that the value of t,,, given in (7.17) applies as a good first
approximation in this case we find that

(7.21)

(7.21) shows that Vmax Will be extremely small for small values of .w..

As an example we find that y,,. = 7.5 m for W, = 10° m using the same numeri-
cal values for the other parameters as before. This result is in agreement
with the tendency calculated from (7.2) which shows that v will be positive
when u has become negative as it will be as seen from (7.1). The second-order
correction to x,.. 1s not negligible, but can be calculated from substituting
(7.14) and (7.15) in the first equation of (7.11). We find that the corrected
value of X .. is - 716.7 m.

The motion described here ig very easy to analyze from an energetical
point of view. Initially, all the energy exists as kinetic energy in the ver-
tical velocity component. As the particle leaves the initial position the
kinetic energy of the vertical component is transformed into potenﬁial energy
and into kinetic energy of the horizontal motion. When the particle reaches
its highest position, it will have its maximum potential energy. During the
trajectory down to the earth the potential energy will decrease, while the
kinetic energy will increase with a partitioning of the energy between the
horizontal and the vertical motion. Using ky = 1/2 (u2 + v@), k, = 1/2 w2,
and p = gz we find from (7.1) - (7.3) that
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—'—h' = euw

dt

dk

X = - gw + euw

at &

ap dz

at o &g T & (7.22)

(7.22) shows that the energy conversion from k, to p is C(kw,p) = gw,
while the conversion from ki, to kh is C(kw,kh) = - euw. C(kw,p) will thus be
positive during the upward part of the trajectory and negative on the downward
part. Since w > 0 and uy < O during the upward part of the trajectory we will
get a conversion from ky to kj during the rising part of the trajectory, but
opposite after the maximum height has been reached. Figures 9a-d show the
time variation of u, v, x, and y during a particle trajectory starting at
x =y =1z =0 with the velocity u, = vy = 0, w, = 10° m, and Py = 45°N. The
trajectory has been plotted to the point where the particle reaches the ground
again., Note, that |u| is about two orders of magnitude larger than v during
the whole trajectory and consequently |x| >> y. The curves in the figures
were computed from the exact Egs. (7.11). The kinetic energy ky, is generally
small compared to the potential energy, which increases from zero to about
5 X 10° mesec~2 at the top of the trajectory (z = 51 km). At that point we
have kyp = 1k mZsec™2 which is the maximum value during the whole trajectory.
On the other hand, ky decreases from 5 x 10° mesec™d initially to zerc at the
highest point of the trajectory. As expected we find C(k,,p) and C(k,,ky)
positive as long as w > O and negative when w < 0, but these simple relation-
ships would not hold at a later stage as can be seen from Figure Qa which
shows that u will turn to negative values.

The value of ¢, = L5°N was selected because we should expect the largest
meridional displacements in the middle latitudes. We have already remarked
that x =y =0 for all t at the Poles. It is furthermore seen from the second
equation that y = 0 for all t at the equator, when the displacement will be
entirely in a direction from east to west. However, even here we find the
maximum displacement to be no larger than about 1 km.
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