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ABSTRACT

The quasi-geostrophic, baroclinic instability problem has been solved
using two different boundary conditions at the earth's surface, approximated
by a constant pressure surface. A simplified boundary condition, w = O at
p = po, has been used in earlier investigations. The more realistic boun-
dary condition of w = 0 at p = po is used in this study. Comparisons are
made between the speed of propagation of the waves and the instability of
the zonal flow for the two boundary conditionms.

Four different simple cases are considered. 1In all cases a linear
profile with respect to pressure of the basic zonal wind is used. The first
case excludes the effects of the variation of the earth's rotation (the beta
effect) and the effects of the static stability parameter. These effects
are added to the model, one by one, in the second and the third cases. The
last case includes both of these effects in a two-level, quasi-geostrophic
model,

The first case shows a reduction of the phase speed and an increase of
the instability for all wavelengths, when we use the more realistic boundary
condition. When the beta effect 1s included, we find an increase in the in-
stability at relatively short waves, while the effect of the static stability
turns out to be an increase of the instability in an intermediate band of
wavelengths. Due to the fact that there is only a small region in common

for the two bands where an increase in instability is found, we find that

vi



the improved boundary condition results in stabilization almost everywhere
in the model where both effects are included.
The major effect of the improved lower boundary condition is the sig-

nificant reduction of the retrogression of the very long waves.
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1. INTRODUCTION

The purpose of this paper is to describe the results of some studies of
baroclinic instability. The baroclinic instability problem has been treated
by numerous authors. A comprehensive bibliography of such studies is given
by Derome and Wiin-Nielsen (1966). Common to all the studies is the assump-
tion that the vertically averaged flow is nondivergent. This assumption is
usually incorporated in the study in one of two different ways. If height
is used as the vertical coordinate it is customary to consider a model of
finite height bounded below by a flat rigid plate simulating the surface of
the earth and above by another rigid plate simulating the presence of a very
stable stratosphere. The vertical velocity, w = dz/dt, is zero at both of
the two boundary surfaces, and if the flow is assumed to be incompressible,
it follows that the vertical mean flow is nondivergent. On the other hand,
if pressure is used as the vertical coordinate it is customary to use the
boundary conditions w = dp/dt = 0 for p = O (the outer boundary of the atmos-
phere) and p = po, where pO is a standard surface pressure for the atmos-
phere. Under these conditions it follows from the continuity equation that
the vertical mean flow, averaged with respect to pressure, is nondivergent.

In this study we shall use pressure as the vertical coordinate, The
boundary condition w = O for p = pO is introduced in theoretical studies
for mathematical convenience. It is, however, conceivable that some modi-

fications of the results of baroclinic instability studies will appear if



the boundary condition at the lower boundary is replaced by a more realistic
condition. It 1s the purpose of this study to investigate the importance of
the lower boundary condition for the stability characteristics of the large-
scale atmospheric flow. It is known that a change in the lower boundary con-
dition will create significant changes in the speed of propagation of atmos-
pheric waves, especially if the waves have a large wavelength (Eliasen and
Machenhauer, 1969; Wiin-Nielsen, 1970a, 1970b). The main effect is created
by the nonvanishing, vertical mean divergence in the model. While the ver-
tical mean divergence is crucial for the explanation of the speed of propa-
gation of very long transient atmospheric waves, i1t may only have minor
effects on the stability characteristics of the flow because the very long
waves are either stable or weakly unstable due to the stabilizing influence

of the rotation of the earth.



2. BOUNDARY CONDITIONS

The boundary condition at the outer boundary of the atmosphere will be
w =0 for p =0. The condition at the lower boundary is w = O if we con-
sider a flat earth. We make the approximation that the condition w = O can
be applied to a constant pressure surface close to the ground (Phillips,
1963). The condition can therefore be written in the form

@ _ 3 + v v +(D§Q = 0, p=0p (2.1)

& = 3t T 3t dp o

where g is the acceleration of gravity, ¢ = gz the geopotential, ; the hori-
zontal wind and w = dp/dt. (2.1) takes a particularly simple form if the

flow is considered to be quasi-geostrophic. Under this condition we get:

el
= = 2.2
® Pxgr P =P, (2.2)
where we have made use of the hydrostatic assumption, and where p is the den-
sity. If we assume that the perturbations are of the form exp(ik(x - ct))

we get from (2.2)

A .
w = -ike=— @, p=7p (2.3)

A
where & and @ are the amplitudes of the vertical velocity and the geopoten-

tial, respectivity, R the gas constant and TO the temperature at p = po.



If the model i1s more general than the quasi-geostrophic model, we get
a more complicated condition from (2.1). Assuming that the basic state is
characterized by a zonal flow U = U(p) and a geopotential @ = @(y,p), and

that the basgic flow is geostrophic, i. e.,

o= - 2F

Ay (2.54)
we get from (2.1)
9 L 28 o0 _ 3
1 + . fUv + wap 0, D =P (2.5)

where the lower case letters denote perturbation quantities. Assuming again
that the basic state is in hydrostatic equilibrium, and that the perturba-

tions are of the same form we get:

P A
ét\):——o-[ik(U-c)QS-fUG],P:PO (2.6)

RT
o
The conditions (2.3) and (2.6) can in some cases be expressed entirely
in terms of the vertical veloclity and its first derivative at p = po depend-
ing upon the form of the perturbations and the particular model under inves-
tigation. We shall return to this question later in connection with the

various cases which will be treated in the following sections.



3. THE QUASI-GEOSTROPHIC CASE

In this section we shall consider the same quasi-geostrophic model as

was treated by Derome and Wiin-Nielsen (1966).

The basic nonlinear equa-
tions for the model are:

—aa-%—+$-v(c+f) -

dw
= f — .1
o dp (5.1)
d_ Vv > ok} g
— (D) +v V(=) r—w = 0 .
ST (5p) TV TGP rE (3.2)
where the notations are the same as in the earlier paper. Assuming as
before a basic state characterized by a zonal wind U = U(p) and pertur-
bations of the form
A ik(x - ct)
¥W(x,p,t) = W(ple (3.3)
A ik(x - ct)
w(x,p,t) = w(p)e (3.4)

where we note that both the zonal current and the perturbations have been

assumed to be independent of y, the meridional coordinate,

we get from
(3.1) and (3.2)

o ab

ik[c-U+c]<l\f-—;d = 0 (3.5)
K P

ay
. Wy oA
~ik(c - U) i ik I v+ ;. ® = 0 (3.6)



where c_ = B/ke.
R
When @ is eliminated from (3.5) and (3.6), and when we introduce the
nondimensional independent variable p, = p/pO we get the following equation

A
for w:

2A A
d w dU dw
(c-Uc=-U+tec )—+[2(c~-1) +ec — —
R 2 R - dp, dp
dp* * T
2
Cg 2 A
_—2— (C—U+CR) w = 0 (3'7)
°1

where c: = Gpi and cI = fo/k.

The boundary conditions for (3.7) are » = 0, p, = 0 and (2.3) at
p, = 1.

It is now possible to express (2.3) entirely in &. In formulating the
basic Egs. (3.1) and (3.2) it was assumed that @ = fow. From (2.3) we get

therefore

AL o _ A
w + ike T fVv = 0, p, =1 (3.8)

We may now substitute from (3.5) into (3.8) and thereby eliminate ¥
from the boundary condition. We get
cgc A
r, o 1 a0
- U+ d
RTO ¢ CR P

= 0 (3.9)

or



dw o) R A

_+ = =

i > S » 0, p, =1 (3.10)
* cI

(3.10) is the boundary condition replacing the condition ® = 0, p, =1
in the quasi-geostrophic case. In the following we shall consider various
cases which already have been solved using the simplified boundary condition
in order to see how the more realistic boundary condition effects the speed
of propagation of the waves and the stability of the zonal current. The
following cases were treated by Derome and Wiin-Nielsen (1966):

(a) 4U/dp = 0, B = const., o = const.

(b) du/dp = const. < 0, B

0, 0 = 0.

(¢) du/dp = const. < 0, B

const., o = Q.

(d) du/dp = const. < 0, B

0, o = const.

In this paper we shall consider the cases (b), (c), and (4). Case (a)
has been considered in detail by Wiin-Nielsen (1970a) together with other
cases characterized by a distribution of ¢ = o(p) corresponding to a

constant lapse rate.

3.1 THE CASE dU/dp, = const. < 0, 0 =B =0

The solution of (3.7) in this case using the simplified boundary con-
dition o = 0, p, =1 gives the result that the waves will move with a speed
equal to the zonal current at the level p, = 0.5 and that the zonal current
is unstable for all wavelengths. The general solution to (3.7) in this

case 1s



bp,) = Alp, -1+c,)” +B (5.11)

where it is assumed that the basic current has the form

ulp,) = U +U (1-p,) (3.12)
and
c - UO
Ce T T (3.13)
* UT

In order to satisfy the boundary condition at p, = 0 we must have:

(c, - 1)5 A+B = 0 (3.14)

while the boundary condition at p, =1, i.e., Eq. (3.10), leads to the con-

dition

RT Uc
2 0 T * 3
+ + = .
Shey v T im o (Aep +B) 0 (3.15)
cI o *

If (3.14) and (3.15) shall have nontrival solutions the determinant

must vanish. This condition leads to the equation

2
U1+ q)e, - 3(U

g 4 )e, +U = 0 (3.16)

T

where we have introduced the notation

The solution to (3.16) may be written in the form



o _ UT - qUo + Jb ( 1 )
* 2UT(1 +q) eUT(1+q) 5. 11

where

- 1 2
D = g U, -2qUOUT— 3(:L+L+q) Uy (3.18)

We see from (3.17) and (3.18) that if q = O, which corresponds to the

simplified boundary condition, we get

NE

1
¢, = 5tig (3.19)

(3.19) is the solution analyzed earlier by Derome and Wiin-Nielsen
(1966), and it is seen that one always gets an unstable solution, while the
speed of propagation is equal to the speed at the level p, = 0.5. We note
furthermore from (3.18) that if U = 0 we still get unstable solutions for
all values of the wavelength and the vertical windshear. In this case the

solution is

1 . Jgfl + hq)

% T 21+q 11w (3.20)
or
U U
T . 131 +hq)
C T Hi+re tT v (5.21)

A comparison between (3.19) and (3.20) shows that both the speed of pro-
pagation and the degree of instability are changed. TFigure 1 shows the speed
of propagation as a function of wavelength computed from (3.21) for dU/dz =

2 m sec"l km-l. The effect of the more realistic lower boundary condition



is to decrease the wave speed by very significant amounts for long waves.

C,, msec

I | ] 1 ! 1 1 1 L1 1 1 | 1

2 4 6 8 1012 14 16 1820 22 24 26 28
L, 10%km

Figure 1. Phase speed as a function of wavelength for the

case 0 =B =TU_ =0 and au/dz = 2 m sec™! kmL,

Figure 2 shows a comparison between the e-folding times computed from
(3.19) and (3.20). The results show that the effect of the improved boundary
condition is to make the zonal current more unstable for almost all wave-
lengths., It can be seen that the improved boundary condition will stabilize
the very longest waves. From (3.19) and (3.20) it can easily be shown that
stabilization will take place for all wave lengths larger than 25.5 x lOBKm,
or equivalently g > 2.

We consider next the case where UO > 0. It is seen from (3.18) that D
is no longer everywhere negative. This means that the effect of a westerly

zonal current at the surface (p* = 1) is to stabilize the zonal current.

10
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wavelength as abscissa and windshear as ordinate for the
case 0. = f = Uy = 0. Solid lines correspond to the simpli-
fied boundary condition and dashed lines to the improved
boundary condition.
. . . . -1
This effect is shown in Figure 3 for the values UO = 5 m sec and Uo =
10 m sec-l. The region below the curves indicates stability, while insta-
bility is present above the curves. It 1s also seen from Figure 3 that sta-

bility occurs only for rather small values of the windshear, and that insta-

bility would occur for observed values of the vertical windshear.
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Pigure 3. Neutral curves for the case o = 5‘= 0 for the improved
boundary condition. Stability below the curves and instability
above them.

The speed of propagation of the waves is influenced by the improved

boundary condition in essentially the same way as when UO = 0. Figure k&
-1
shows cr as a function of wavelength when UO = 10 m sec = and dU/dz =
-1 -1 . . . .
2 msec km ., We find again the reduction of the speed of propagation
resulting from the lower boundary condition.

We consider next the unstable waves in the case Uo > 0. Figure 5
presents in the customary way isolines for the e-folding time in a diagram
with wavelength as abscissa and the vertical windshear as ordinate. The
dashed lines are computed from the simplified boundary condition (w = O,

p, = 1) while the solid lines result from the improved boundary condition

12
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Figure 4. Phase speed as a function of wavelength for the case
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The horizontal line cor-

responds to the simplified lower boundary condition.
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Curves of equal e-folding time in a diagram with

wavelength as abscissa and windshear as ordinate for the case
g =B =0 and U, = 5m sec™t, Solid lines correspond to the

simplified lower boundary condition
improved condition.
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(w =0, p, = 1). Figure 5 displays essentially the same result as Figure 2
which corresponded to the case UO = 0, i.e., that the improved boundary con-
dition in the region of meteorological interest results in a destabilization
of the flow as seen from the curves for T = 0.25, 0.5, and 1 day. The curve
separating the unstable from the stable region is reproduced from Figure 3.
It is obvious that the simple statement made above cannoct be true in the
region of the neutral curve, because the model using the simplified boundary
condition will result in unstable condition, while the improved boundary con-
dition gives stability. In any case, the instability in this region is
always extremely weak 1f present at all.

In order to illustrate the difference in the degree of instability
between the two boundary conditions we have prepared Figure 6 which shows
the percentage change in the e-~folding time between the two boundary condi-
tions for UO = 0. We note from Figure 6 that the relative change is the
largest around L = 1% x lO5 km and amounts to about 15%. There is a stabili-
zation for very long waves in this case just as we found in Figure 2.

The present case which does not include the beta effect and the effect
of static stability is not very realistic from a meteorological point of
view. However, it shows probably most clearly the effects of changing the
lower boundary condition and has therefore been included in the paper. Based
upon this case we can conclude that the effect of the improved lower boundary
condition coupled with a nonvanishing zonal wind at the surface will create

a region of stability for very small values of the vertical windshear.

However, for values of the windshear comparable to those observed in the

1k



atmosphere we find an increase in the instability.

20
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L,10%km
-0

Figure 6. DPercentage change in the e-folding time as a
function of wavelength caused by changing the boundary
condition for the case 0 =B = U, = 0 and dU/dz =

2 m sec™! km-l.

3.2 THE CASE dU/dp, = const. < 0, B = const., o = 0

The differential equation to be solved in this case is

2 A A
d w dU dw
- - U+ + - + = — = .
(¢ = U)(e -U cR) > [ 2(c - V) cp ] 0. ap 0 (3.22)
dp* * *

as seen from (3.7) by putting 0;2 = op;2 equal to zero. The solution to
(3.22) can be obtained from the paper by Derome and Wiin-Nielsen (1966), but
as shown by Wiin-Nielsen (1967), it is also possible to solve (3.22) under
the more general condition of a completely arbitrary zonal wind profile U =
U(p) in the basic state. Adopting the latter procedure we find from (3.22)

that
o
o AU - e)(U - c-cp) (3.23)

15



and therefore

® = A f%(U - ) U - ¢ - c)dp, (3.24)

where we already have incorporated the boundary condition ® = 0, p, = 0. The
phase speed ¢ is now determined from the lower boundary condition (3.10) at

p, = 1. Denoting

H
]

1
[ udp, (3.25)

and

H
1l

1.2
[, Udp, (3.26)

we find from (3.10)

¢c~-U +¢c

1 R 2
U - -c - + = I -21I1c+
( 5 c)(Ub c cR) . . [ 5 cte
e I + = .
c Iy * e ] 0 (3.27)
where q as before is
o 2
I
= —= .28
d RT_ (5.28)

Since (3.27) has a common factor of (c - UO + cR) we find one solution

to be
c = U =-c¢ (3.29)

while the remaining solution can be determined from the quadratic equation

16



2

1+ - - + + - = .
( a)e (211 Cp qUO)c (12 cRIl) 0 (3.30)
The solution to (3.30) can be written in the form
- +
o 211 CR qUO \ Jb (550
2(1 +q) 7 2(1 +q) |
where
D = (21, - ¢ +qU)% - U1 + q)(I. - c.1.) (3.32)
1 R 0 2 R1

While the formulas (3.31) and (3.32) can be evaluated for an arbitrary

wind profile we shall restrict ourselves to the profile

U = U +U(l-p) (3.33)

for the purposes of comparison. We get

1
I, = + = .3h
1 Uo 2 UT (3.34)
and
2 1.2
I, = Ug * U, Up * 3 Up
We get therefore
+ + -
AR (5.35)
2(1 + q) 2(1 + q) ’
where
1 2 2 2.2
= - =(1 + Lk + - + + + 2 .36
D 5(1 QU + 2q(c, U, * [ep” +a U ae U 1 (3.36)

The region of instability can be obtained from (3.36) by determining

the conditions under which D < 0. 1In that region we may calculate the e-

folding time from the definition:

N



ke, T =1 (3.37)

i e
and since
J-D

°i T 2T+ q) (3.38)

we obtain
L1 + 9)2
D= T (3.39)
k Te

It is seen from (3.3%6) that D is quadratic in UT and it is therefore a
straightforward matter to calculate the isolines for Te' Figure 7 is the
stability diagram where the isolines are shown in a coordinate system with
wavelength as abscissa and the vertical windshear as ordinate. The solid
lines correspond to the simplified boundary condition (w = 0, p, = 1), while
the dashed lines were computed from improved boundary condition with Uo =
10 m sec_1 (w = 0, p, = 1). It is seen that the improved boundary condition
results in an increase in instability everywhere, and that no great change
is observed in the stabilizing effect of the beta term. We may again give
a measure of the difference in instability by computing the percentage change
in e-folding time for a given windshear and surface wind. The result of such
a calculation is shown in Figure 8, computed with UO = 0 and dU/dz = 2 m
sec_l km_l. Tt is seen that the percentage change is relatively small except
when the wavelength approaches the neutral curve.

Our next concern is to investigate the speed of propagation of the waves

in this model. As a representative example we have selected a case where

18
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B # 0 and U, = 10 m sec™L. Arrangement as in Figure 2.

Figure 8. Percentage change of e-folding as a function of wave-
length caused by changing the lower boundary condition for the case
c=0,B#0, U, = 0, du/dz = 2 m sec™! km1.
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du/dz = 2 m secnl km-l and Uo =10 m sec_l. The result of the calculation
is displayed in Figure 9, where we also have included the curves (marked s)
obtained when we have q = O. In the unstable region we have only one value
of the speed of propagation. It is seen that only minor changes are found
in the speed of propagation for this range of wavelengths when the simple
boundary condition is replaced by the improved condition. On the other hand,
in the stable region we have two values of the speed of propagation. Only
minor changes are caused by the change of the boundary condition for the
branch which correspond to positive values of cr’ and the two values for this
branch will be the same as the wavelength goes to infinity. Major changes
are found for the branch which corresponds to negative values of cr for
sufficiently long waves. When q = O it has been shown earlier that the
values of cr on the negative branch behave in the same way as nondivergent,

barotropic Rossby waves, i.e., according to the formula
c = U-c (3.40)

However, when g # 0, it is seen that the negative values of Cr are
greatly reduced in magnitude caused by the improved boundary condition.
This effect has been studied in greater detail by Wiin-Nielsen (1970, 1970b),
and it was shown that the improved boundary condition results in a much more
realistic behavior of the waves for large values of the wavelength.

In conclusion we may state that the major effect of the improved lower

boundary condition is to reduce the retrogression of the very long waves.

20



] I O I | |

{ ]
12 14 16 18 20 22 24 26 28 30
L,10%m

C,,msec”’

Figure 9. The phase speed as a function of wavelength

for the case 0 = 0, B # 0, U =10m sec™L and au/dz =

2 m sec~l km-1. Solid lines correspond to the simpli-

fied boundary condition and dashed lines to the im-

proved condition.

The stability of the flow is affected in such a way that most waves,

except the very long waves, become slightly more unstable, but the change
in e-folding time for a given value of the windshear is in no case very

large. It should finally be pointed out that the examples displayed in

Figures 7, 8, and 9 were computed for specific values of Up. Other values
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-1 .
values of U < 10 m sec = were also investigated, and the results are iden-
0
tical to those displayed here for all practical purposes indicating that the

stability is almost independent of the strength of the zonal current at the

surface (p, = 1). The most important quantityis the vertical windshear.

5.3 THE CASE dU/dp, = const. < 0, B = 0, 0 = const. > 0O

The differential equation to be solved in this case is obtained from

{(3.7) by setting cp = 0. We obtain

2
2/ A c
a - w dU dw g A
¢c-U) — +2— — - - - B
( )dp2 I, G, o2 (c-T)o = o0 (3.41)
Using again the wind profile
Uu = U +U(1-~ Rive)
RERACEE (3.42)
and defining
c - UO
% = T (3.43)
T

it was shown by Derome and Wiin-Nielsen (1966) that the solution to (3.L41)
is

® = A(st sinh(sg) - cosh (st)) + B(st cosh (st) - sinh (st))

(3.54h)
where
2
5 c
< = 5 (%.145)
c
I
and £ = p-lre, (3.16)
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The boundary conditions are

o = 0, p, =0, £ =c, -1 (3.47)
and

%*c;%ﬁ&”’mﬂ:ew* (3.48)
or

When the solution (3.44) is substituted into the boundary conditions
(3.47) and (3.49) we obtain two linear homogeneous equations in A and B. If
these equations shall have nontrival solutions, the determinant must vanish.
After considerable manipulation we obtained a quadratic equation for the

determination of c,- This equation can be written in the form:

Dgc* + ch* + DO = 0 (3.50)
where

D. = sU(1 +-l—tnh s)

2 T sq &

D =s(U-U)+U(1—;)tanhs

1 o) T T q

UT

DO = (UO - -g"s'g) (tanh s - s) (3.51)

(3.50) has been solved in a large number of cases varying the wavelength

and the vertical windshear in a systematic way. Having obtained c, through
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this procedure the e-folding time was computed from the formula:

T = — (3.52)

The result is presented in Figure 10 which shows isolines for the
e-folding time in a diagram with wavelength as abscissa and vertical wind-
shear as ordinate. Figure 10 was constructed using UO =10m sec—l. Figure
11 shows an analogous diagram computed with the simple boundary condition
w=0, p, =1. A comparison between Figure 10 and Figure 11 shows that the
ilmproved boundary condition creates a region of stability for all wavelengths
and sufficiently small vertical windshears. We note in addition that there
are significant changes in the instability for very long waves. The improved
boundary condition results in larger e-folding times, i.e., a smaller degree
of instability for the very long waves. It can also be detected from the
two figures that the reverse situation occurs for the short waves where the
improved boundary condition results in a larger degree of instability. These
differences in the instability are more clearly demonstrated by plotting the
percentage change in the e-folding time as a function of wavelength for a
constant value of the vertical windshear. Figure 12 shows this quantity
computed for the value UO =10m sec_l. It 1s seen that the degree of in-
stability is increased by about 20% for intermediste wavelengths, but de-
creased by as much as 80% for the longest wavelengths included in this study.
Similar curves are obtained for other values of Uo, but the percentage change

in the e-folding time is somewhat smaller for the smaller values of Uo-
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This effect is seen in Figure 13 which corresponds to the case U = Q.
o

| | i 11 ] i l |

i | B 1
2 4 6/8 10 12 14 16\18 20 22 24 26 28

Figure 12. Percentage change in e-folding time as a function
of wavelength caused by changing the lower boundary condition
for the case 0 # 0, B = 0, Up = 10 m sec™L, dU/dz = 2 m sec™t
km~1,

We shall next consider the speed of propagation as influenced by the
lower boundary condition. From the solution obtained for the simplified
boundary condition at p, = 1 by Derome and Winn-Nielsen (1966) it was noticed
that the speed of propagation of the unstable waves is equal to the value of
the zonal current at p, = 0.5. As can be expected from the results given
in section 3.1 of this paper (see Figure 1 and Figure L4) we will find a
change in this aspect of the solution. Figure 14 shows the speed of pro-

-1

-1 -1
pagation for the case where UO =10 m sec ~ and dU/dz = 2 m sec ~ km . The

dashed line on the figure shows the phase speed for the case of the simplified
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Figure 13. Percentage change in e-folding time as a function of
wavelength. caused by changing the lower boundary condition for
the case 0 # 0, B = 0, Up = 0, av/dz = 2 m sec™l km-1,

L L4 1 1 1 3 1 1 1 1
2 4 6 81012 14 16 18 2022 24 26 28
L,103km
Figure 1Lk, The phase speed as a function of wavelength for the
case ¢ # 0, B=0,TUp=10m sec'l, du/dz = 2 m sec~1 km~Ll, The
dashed line gives the phase speed of the unstable waves if the
simplified boundary condition is used.
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lower boundary condition and for the region of instability. In the region
of stability there are only very minor changes in the phase speed. Analogous
changes to those displayed in Figure 14 are found for other values of the
parameters UO and du/dz. Figure 15 shows the phase speed when Uo = 0 and

the parameters are otherwise as in Figure 14. It is seen that the effect of
reducing the phase speed for long waves is created by the more realistic
lower boundary condition, but does not depend in an important way on the

surface wind speed.

C,,msec”’

| I I N N R S

1 | 1 ]
2 46 8 1012 14 16 18 2022 24 26 28
L, 10%m

Figure 15. The phase speed as a function of wavelength
for_the case 0 £ 0, B = O, Up = 0, av/dz = 2 m sec—l
km ~. The dashed line gives the phase speed of the un-
stable waves if the simplified boundary condition is
used.
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L. THE GENERAL CASE

The cases treated in the previous section are special cases each of them
excluding at least one important parameter. It is naturally desirable to
analyze a quasi-geostrophic model which includes all parameters. The general
quasi-geostrophic model having a constant vertical windshear and a constant
static stability parameter has recently been analyzed in great detail by
Garcia and Norscini (1970). They used height as the vertical coordinate,
and their model atmosphere was bounded above and below by horizontal rigid
plates at which the vertical velocity vanishes. The fundamental differential
equation which must be solved in this case is of the confluent hypergeometric
type. It can be shown that the case treated by Garcia and Norscini (1970) is
analogous to the differential Eq. (3.7) under the assumptions that U = U(p)
is a linear function of pressure, as for example given in (3.12), and that o
is equal to a constant. 1In order to see this analogy we introduce the trans-
formation

C

£ = zgﬁ;(U—c) (k.1)

into (3.7). We notice that

d g d
4 _ ,& 4 b2
dp* CI de ( )
and o o 2 )
_9_5 .8 9 (4.3)
dp, °1 ae
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Denoting

we get from (3.6) that ® must satisfy the equation

a6 do 1 2
A
e(e - 20) 22 -E(Q—Q)EE-Z(g-m) o = 0 (L.s)

Equation (4.5) is the same as the equation sclved by Garcia and Norscini
(1970), and when we furthermore note that they solve the equation with the
boundary condition that the vertical velocity vanishes at both rigid plates,
we have a complete analogy if we were to solve (L4.5) with the boundary con-
ditions & = 0 at the top and the bottom of the atmosphere. The boundary

conditions become

c
A g
= = =t = + - y
® = 0,p, =0, (=t =2—= (U +U - c) (4.6)
IT
and
A Cg
® = 0, p, =1, &=E =2- U“(UO -c) (L. 7)
IT
which also may be written in the form
A ¢ 1 1
= :O = - - - + - ‘ Z‘-,
b= 0, b, =08 =2=E[Zu - (c-(u +7U))] (k8
IT
Cg 1 1
A
= =1 = - i = U + - + - L,
e AT (e - (u_+5 U] (h9)

which is completely equivalent to the boundary conditions used by Garcia and
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Norscini (1970) when we notice that they measure the phase speed relative to
the mid-level in their model. We may therefore adopt the results for the

model treated by Garcia and Norscini (1970) when we use

2U = U (4.10)

e © op °
2__5___ o}
O 1 VI (L.11)
T T

In this paper we are mainly interested in the influence of the lower
boundary condition. If we adopt the condition w = O, p, = 1 we may, as
pointed out above, use the solution computed by Garcia and Norscini (1970)
and applying (4.10) and (4.11) to convert their results to our model.
However, if we adopt the boundary condition (3.10) which is more realistic
we can no longer use the analogy between the two solutions because of the
difference in boundary conditions.

In order to analyze the influence of the lower boundary condition on the
speed of propagation and the stability in the general baroclinic case we must
either repeat the calculation by Garcia and Norscini (1970) using the boun-
dary condition (3.10) or use another (numerical) method to obtain the desired
solutions for the (complex) phase speed. An investigation of this problem
will be described in the near future. However, for the moment we shall be

satisfied with a consideration of the two-level model.
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5. THE TWO-LEVEL MODEL

The purpose of this section is to describe an investigation of the two-
level, quasi-geostrophic model using the boundary conditions (3.8) and w =
0, p, =1, separately. Before we enter the details of the calculations it
may be useful to discuss the results which we may expect based on the pre-
vious sections of this paper. The influence of the improved boundary con-
dition is most clearly seen in the figures which display the percentage
change in the e-folding time as a function of wavelength for a given value
of the vertical windshear. Figure 6 shows that the effect of the improved
boundary condition is to destabilize the zonal current for almost all wave-
lengths when o = B = 0. However, when we go to the model where B # 0, and
o = 0 in which case we find a stabilization for disturbances with a suffi-
ciently large wavelength, we find destabilization for short waves only as
seen in Figure 8. The model with o # O and B = O predicts, on the other
he "d, stability for short waves with both boundary conditions. As seen
from Figure 12 and Figure 1% we find only destabilization in a relatively
small region (7000 < Km < L < 16000 Km) for this model. Due to the fact
that we have only a very small region in which we would expect destabiliza-
tion if we superimposed the wavelength intervals in Figure 8 and Figure 13
for the two models, we would expect that a model which has the stabilizing
effects of 0 # 0 and B # O will show a stabilizing effeét of the improved

boundary condition for most wavelengths. In the following we shall see if

33



these anticipations are true.

The vorticity equations for the two-level, quasi-nondivergent model are:

Agl N fo

oy +\ﬁ 'V@l +f) = 7 % (5.1)
655 . fO fo

St Vs T VEs ) = - Ty (5.2)

where subscripts 1, 2, 3, and 4 refer to the levels 25, 50, 75, and 100 cb,
respectively. Addition and subtraction of (5.1) and (5.2) lead, after divi-

sion by 2, tc the equations

ot f
e e R (5.3)
St P e Ve ) v ey op
55T N . fo fo
3T + v VE o+ Ve Vﬁg* +f) = T %59, (5.4)
where the subscript M is defined as
(), =200 ) +( ), (5.5)
x T 2 1 3 Lo
while the subscript T is given by
() =200 ) -( ), (5.6)
T 2 1 3 ’

The adiabatic, thermodynamic equation may be written in the

form

3k



+v, s V- =5 =0 (5.7)

When @, is eliminated between (5.7) and (5.4) and the equations are
linearized assuming a basic state characterized by the constant speeds U,

and UT we obtain assuming perturbations which depend on x and t only:

—-———ag*+U 5§*+Ba‘1’*+U5§T :i’w (58)
ot * Ox ox T Jx 2P k4
o 2 o 2 ) 2 fO
St Bp = Ml P U g g - Ml r U S T ] = e
(5.9)
where x2 is defined by the relation
2 2f02
zS = — (5.10)
2
oP
Using the boundary condition (2.2) we find that
Bwh
T (5.11)

where we have used the relation | = ¢/fo as before in this study. (5.11) is

introduced in (5.8) and (5.9). When we furthermore assume that

and that the perturbations are of the form
A dk(x - et A ik(x - ct
v, = VU e ( ), by = Ve ( ) (5.13)
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we obtain the equations

2 2
S A ] N
[(1+"§)C-U*+CR]W*-[UT+2—§]1IIT=O (5.14)
k k
2 2 2 2 2
A A+ 2 A
L= rGelu + [ +25)e- (1+55) 1,
k k k k
A
teg 1y, = 0 (5.15)
where
2
o 5
- RT_ (5.16)

The phase speed c is obtained by solving the equation resulting from
the condition that the determinant of the system (5.14) and (5.15) must
vanish if nontrivial solutions shall exist. We obtain a quadratic equation

in ¢ which easily can be solved. The equation is

2
+ + = .
A2 c Alc AO 0 (5.17)
where
2 2 L
+
A2 = (1 + EE Y (1 + A 228 ) -2 Eﬂ (5.18)
k k k
S2 X2 2 S2
A =-l(L+= ) [(L+3)U_-c 1+ (L+=+2=5) (U, -c)
2 *
1 k2 k2 R K K R
2 2 2
s A
+——2-UT+2—2-(1-——)UT (5.19)
k k k



U, - cR] [u, - cR] - (1 - ig )UT2

17
OV

(5.20)

The solution to (5.17) is calculated in a grid with the wavelength as
abscissa and the vertical windshear as ordinate. Calculations were carried
out for the case stated above and for the case, where s = 0 everywhere in
(5.18) - (5.20). The latter case is the case of the simplified lower boun-
dary condition w = 0, p, = 1. If (5.17) has a complex root, the e-folding
time was also computed.

Figure 16 shows the percentage change in the e-folding time, defined

as

Tes - Te

To (5.21)

where Te is the e-folding time for (5.17) while Tes is the corresponding
value when s = O (simplified lower boundary condition, w = O, b, = 1). The
thich solid line is the neutral line, separating the unstable and the stable
region for the case s = O, while the other curves give the value of (5.21).
We observe that the more realistic lower boundary condition causes a stabili-
zation for most wavelengths and windshears. The only exception is in the
lower right-hand side of the diagram, where destabilization is found in a
relatively small region. For the windshears of meteorological interest we
find changes of less than 10%, but significantly larger values are found

for large windshears and large wavelengths,

Figure 17 shows the wave speed as a function of wgvelength for the two
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lower boundary conditions. This figure indicates that the only important
influence of the more realistic lower boundary condition is to decrease the
retrogression of the very long waves. A more detailed investigation of this

effect has been given by Wiin-Nielsen (1970a, 1970b).

30k
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Figure 17. Phase speed as a function of wavelength for the
two-level, quasi-geostrophic model for the case U, = 20 m
sec-1l and dU/dz = 2 m sec™! km~l. Solid lines correspond
to the simplified lower boundary condition and dashed lines
to the improved boundary condition.

59



6. CONCLUSIONS

The purpose of this investigation has been to study the effects of
changing the lower boundary condition from w = O at p = pO to w = 0 at the
same level. In the investigation we have restricted the attention to the
quasi-geostrophic model. Several special cases have been studied in order
to see the effects of the improved boundary condition.

The simplest case 1s one in which the beta effect is neglected and
where 1t is assumed that the lapse rate is adiabatic (B = 0, 0 = 0). In that
case we find that the improved boundary condition results in a destabiliza-
tion at almost all wavelengths, when the surface wind is zero (UO = 0).

When UO % O the effect of the improved boundary condition is to stabilize
all wavelengths for sufficiently small values of the vertical windshear.

In the case where B % 0 and 0 = 0 we find for both boundary conditions
a stabilization for the long waves. However, in the short wave unstable
region the result of changing the lower boundary condition is to destabilize
the waves. The improved boundary condition has also the effect to greatly
reduce the retrogression of the long stable waves.

The third case, in which B = 0 and o # O, gives the result that all
waves longer than a critical wavelength are unstable. However, we find a
considerable increase of the e-folding time for very long waves as a result

of the improved boundary condition, while a reduction in the e-folding time

ig found in an intermediate band of the unstable waves.
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The general case, in which B % 0 and 0 # 0, has not been solved in the
model with a continuous vaiiation of the basic zonal current and the static
stability parameter, because this case requires considerable amounts of cal-
culations. A later report will consider this case in detail. However, the
two-level, quasi-geostrophic model was used to make a preliminary investi-
gation of the general case. As expected from the previous case we find for
both boundary conditions a stability diagram similar to the well-known dia-

gram for the two-level model displaying a short wave cut-off due to the

effect of the static stability and a long wave cut-off due to the stabilizing
beta-effect. However, within the region of instability we find changes in
the degree of instability as measured by the e-folding time. For the greater
part of the unstable region we find a stabilization which is relatively large
for large values of the windshear and the wavelength, but small in the region
of maximum instability. A destabilization is found for moderate values of
the windshear. The major effect of the improved boundary condition on the
wave speed is a considerable reduction of the retrogression of the very long
waves.

It should be stressed that the last case should be considered as a pre-
liminary investigation. As shown in section b4 of this paper there is a
complete analogy between the general case of B = const. # O and 0 = const. #
0 considered here and the case considered by Garcia and Norscini (1970), when
one adopts the simplified boundary condition w =0, p = po. They show that

unstable solutions exist for all values of the vertical windshear and the
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wavelength although the degree of instability is very small for small values
of the wavelength and all values of the windshear and for small values of
windshear and all values of the wavelength. Since we have arrived at the
result that one of the effects of the improved boundary condition is to act
in the direction of stabilization of the very long waves, it is conceivable
that the improved boundary condition will change the stability characteris-
tics for the very long waves. In order to answer this question we must solve
the general eigenvalue problem using both boundary conditions. The result

of such an investigation will be reported later provided a suitable numerical

technique for the solution of the problem can be found.
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