WHICH TUBE

GIVES THE MORE ECONOMICAL

HEAT TRANSFER ?

THIS REPORT PROVIDES THE BASIC DATA TO PERMIT THE EVALUATION OF FINNED TUBES FOR USE IN CONVENTIONAL SHELL AND TUBE EXCHANGERS.

ENGINEERING RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN ANN ARBOR

PERFORMANCE OF FINNED TUBES
IN
SHELL AND TUBE HEAT EXCHANGERS

BY

RICHARD B. WILLIAMS Research Assistant

DONALD L. KATZ

Professor of Chemical Engineering

Project M592

WOLVERINE TUBE DIVISION
CALUMET AND HECLA CONSOLIDATED COPPER COMPANY
DETROIT 9, MICHIGAN

January 30, 1951

ABSTRACT

Heat transfer coefficients have been determined on three pairs of tube bundles, all 48 inches long. The bundles of a pair are identical except that plain tubes are used in one bundle and finned tubes in the other. One pair is 6 inches in diameter with 5/8-inch tubes. The other two pairs are 8 inches in diameter and have 1/2-inch and 3/4-inch tubes, respectively. The finned tubes have 19 nominal fins per inch about 1/20 inch high, with the diameter over the fins slightly less than the diameter of the plain ends. These finned tubes have from 2.07 to 2.76 times as much outside surface as plain tubes.

Heat transfer measurements were made for water, lubricating oil, and glycerine on the shell side. Several temperature levels and temperature differences were used to give a variety of viscosities and other fluid properties. Shell-side coefficients were determined by extrapolating to infinite water velocity the overall coefficients for a series of water velocities inside the tubes. These shell-side coefficients are correlated by the following equation:

$$\frac{h_0 D}{k} = C \left(\frac{DG_m}{\mu}\right)^{.65} \left(\frac{C_p \mu}{k}\right)^{.375} \left(\frac{\mu}{\mu_w}\right)^{.14}$$

The values of C depend upon the bundle and vary from 0.225 to 0.115. The pressure drop data are correlated by the methods presented by Donohue.

The heat transferred per degree of temperature difference for the clean finned-tube bundles varied from 110 per cent of that for the corresponding plain-tube bundles for water to 200 per cent for the lubricating oil. For the same mass velocity, the shell-side coefficients for the finned tubes based on the outside area are approximately 80 ± 20 per cent of the plain tube coefficients. In all cases, at the same mass velocities the pressure drop is less for the finned-tube bundles.

A study of the economics of plain versus finned tubes shows that finned tubes are more economical than plain tubes for viscous fluids with low shell-side coefficients. Example calculations are given to make a comparison of shell and tube exchanger costs for cooling lubricating oil, absorber oil, and corn sirup with water. The metal requirements for these

exchangers are computed. For the example problems, selected computations indicate savings in cost from 20 to 25 per cent and savings in metal requirements from 29 to 36 per cent when exchangers equipped with finned tubes are used.

A comparison is made of plain and finned-tube exchangers designed for the same service:

	Heat	Uo,	Sta	ndard Exch	anger Requi	red
	Transfer Btu/hr	Btu hr F sq ft	Outside Area sq ft	Size	Total Cost	Total Weight lbs
Case I Lube Oil	Oho ago	O o	m (()	a) !! ():	±=0== =)	0
Plain Finned	840,000 840,000	80. 57.7	768 978	24"x8' 18"x8'	\$3852.54 \$2899.35	5,758 3,673
Case II Absorber Oil						
Plain Finned	14,400,000 14,400,000	116. 87.5	4330 57 8 0	42"x16' 33"x16'	\$14,116 \$10,530	26,663 1 7,76 2
Case III Corn Sirup						
Plain Finned	1,500,000 1,500,000	67.1 49.0	425 565	20"x8' 16"x8'	\$_3,288 \$ 2,627	4,308 3,049

The following constants are recommended for use in Equations (4a) and (4b) 2

$$\frac{hD}{k} = C' \left(\frac{DG_m}{\mu} \right) \cdot 50 \left(\frac{C_D \mu}{k} \right)^{1/3} \left(\frac{\mu}{W} \right) \cdot 14$$
 (4b)

Elma of Emphanism	C for	Eq (4a)	C' fo	r Eq (4b)
Type of Exchanger	Plain	Finned	Plain	Finned
Shell Circle Design Bored Shell	0.19	0.13	0.34	0:23
Standard Design Bored Shell	0.14	0.098	0.25	0.175
Standard Design Unbored Shell	0.125	0.087	0.22	0.155

ACKNOWLEDGEMENTS

The courtesy of Mr. Sigmund Kopp of the Alco Products Division of the American Locomotive Company is acknowledged for supplying the Alco Heat Exchanger price book. Mr. Townsend Tinker of the Ross Heater and Manufacturing Company gave advice during the initial stages of the program. Mr. Earl L. Tyner, Mr. Ralph F. Johnson, and Mr. J. M. Gibbs assisted in the construction of the experimental equipment, in obtaining the data, and in the calculations.

ACKNOWLEDGEMENTS

The courtesy of Mr. Sigmund Kopp of the Alco Products Division of the American Locomotive Company is acknowledged for supplying the Alco Heat Exchanger price book. Mr. Townsend Tinker of the Ross Heater and Manufacturing Company gave advice during the initial stages of the program. Mr. Earl L. Tyner, Mr. Ralph F. Johnson, and Mr. J. M. Gibbs assisted in the construction of the experimental equipment, in obtaining the data, and in the calculations.

TABLE OF CONTENTS

	Page
ADSTRACT	ii
ACKNOWLEDGEMENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	x
INTPODUCTION	1
EXPERIMENTAL INSTALLATION	3
Measurements in Heat-Transfer Tests	10
PROPERTIES OF FLUIDS	13
TEST PROCEDURES AND OPERATION OF EQUIPMENT	14
CALCULATION OF SHELL-SIDE COEFFICIENTS	19
Overall Coefficients	19
Wilson Plots	50
Fin Efficiency	22
Film Coefficients from Single Overall Coefficients	23
CORRELATION OF HEAT-TRANSFER DATA	25
Plain Tubes	25
Finned Tubes	31
Effect of Clearance	34
Effect of Tube and Shell Diameter	36
Are Exponents for Dimensionless Groups Constants?	36
Correlation with Exponents from Literature	37
RECOMMENDED SHELL-SIDE COEFFICIENTS FOR FINNED TUBES	39
Finned Tubes When Plain-Tube Ferformance is Known	40

	Page
Plain Tubes with Shell-Circle Design	41
Finned Tubes for Shell-Circle Design	41
COMPARISON OF PLAIN AND FINNED-TUBE PERFORMANCE	42
Heat Transfer Per Degree Temperature Difference	42
Overall and Film Coefficients	43
CORRELATION OF PRESSURE-DROP DATA	53
ECONOMICS OF FINNED TUBES FOR SHELL AND TUBE EXCHANGERS	61
Fouling	63
Procedures for Shell-Circle Design	64
Comparison of Costs for Finned and Plain-Tube Exchangers	65
Case I, Example Design of Lube Oil Cooler	65
Case II, Absorption Oil Cooler	72
Case III, Corn Sirup Cooler	73
Case IV, Replacement of Plain Tubes by Finned Tubes in	
Corn Sirup Cooler	76
Case V, Closer Temperature Approach with Finned and Plain	
Tubes	76
WHEN ARE FINNED TUBES ECONOMICAL IN SHELL AND TUBE EXCHANGERS?	78
METAL REQUIREMENTS OF PLAIN AND FINNED TUBE EXCHANGERS	85
CONCLUSION	85
NOMENCLATURE	88
REFERENCES	91
APPENDIX	93

LIST OF FIGURES

		Page
1.	Flow Diagram of Exchanger Test Unit When Testing 8-Inch Exchanger	, 4
2.	Photograph of Experimental Installation	5
3.	Tube-Sheet Layout for 8-Inch Bundles No. 1 and 2 with 3/4-Inch Tubes	94
4.	Tube-Sheet Layout for 8-Inch Bundles No. 3 and 4 with $1/2$ -Inch Tubes	95
5.	Tube-Sheet Layout for 6-Inch Bundles No. 5 and 6 with $5/8$ -Inch Tubes	96
6.	Photographs of Bundles Removed From Exchangers	7
7.	Photographs Showing Interchangeability of Finned and Plain Tubes in Bundles	8
8.	Longitudinal Section of Finned Tubes	9
9.	Dimensions of Finned Tubes	11
10.	Sketch Showing Inside Detail of Mixing Chambers	97
11.	Orifice Calibrations with Water at 60°F for 0.993-Inch and 1.597-Inch Diameter Orifices	98
12.	Density of Fluids	99
13.	Viscosity of Fluids	100
14.	Thermal Conductivity of Fluids	101
15.	Specific Heat of Fluids	102
16.	Conditions of Tests for Bundle 4	15
17.	Wilson Plot of Data Obtained with Water on Shell Side of 6-Inch Exchangers with 5/8-Inch Finned-Tube Bundle No. 6	21
18.	Conversion Between Actual and Effective Areas for Finned Tubes of this Research, Based on Gardner's Fin Efficiencies	103
19.	Graphical Study of Data to Determine Best Values of Exponents - Preliminary Analysis for Three Fluids on Shell Side of 3/4-Inch Plain Tubes in 8-Inch Shell	28

		Page
20.	Graphical Study of the Data to Determine Best Values of Exponents and Prandtl Number for Three Fluids on Shell Side of Plain Tubes in 8-Inch Shell	29
s1.	Correlation of Heat-Transfer Data for Three Fluids on Shell Side of 3/4-Inch Plain Tubes in 8-Inch Shell	30
22.	Correlation of Heat-Transfer Data for Three Fluids on Shell Side of 1/2-Inch Plain Tubes in 8-Inch Shell	104
23.	Correlation of Heat-Transfer Data for Three Fluids on Shell Side of 5/8-Inch Plain Tubes in 6-Inch Shell	105
24.	Correlation of Heat-Transfer Data for Three Fluids on Shell Side of 3/4-Inch Finned Tubes in 8-Inch Shell	106
25.	Correlation of Heat-Transfer Data for Three Fluids on Shell Side of 1/2-Inch Finned Tubes in 8-Inch Shell	107
26.	Correlation of Heat-Transfer Data for Three Fluids on Shell Side of 5/8-Inch Finned Tubes in 6-Inch Shell	108
	Comparison of Heat-Transfer Correlations for the Six Bundles	33
28.	Correlation of Heat Transfer Data for Three Fluids on Shell Side of 3/4-Inch Plain Tubes in 8-Inch Shell Using Exponents from the Literature	38
29.	Comparison of Heat Transferred by Finned and Flain-Tube Bundles with Water on Shell Side for 8-Inch Shell, 1/2-Inch Tubes, Bundles 3 and 4	44
30.	Comparison of Heat Transferred by Finned and Plain-Tube Bundles with Water on Shell Side for 8-Inch Shell, 3/4-Inch Tubes, Bundles 1 and 2	45
31.	Comparison of Heat Transferred by Finned and Plain-Tube Bundles with Hot Oil on Shell Side for 6-Inch Shell, 5/8- Inch Tubes, Bundles 5 and 6	46
32.	Comparison of Heat Transferred by Finned and Plain-Tube Bundles with Hot Oil on Shell Side for 8-Inch Shell, 3/4-Inch Tubes, Bundles 1 and 2	47
33.	Comparison of Heat Transferred by Finned and Plain-Tube Bundles with Hot Oil on Shell Side for 8-Inch Shell, 1/2-Inch Tubes, Bundles 3 and 4	148
3 ⁴ .	Typical Overall Coefficients for Plain and Finned Tubes Based on the Outside Area of the Tube	50

		Page
35.	Typical Overall Coefficients for Plain and Finned Tubes Based on the Inside Area of the Tube	51
36.	Comparison of Convection Coefficients	52
37.	Nature of Flow Between Fins from Knudsen	54
38 .	Comparison of Pressure Drop in Exchangers for Finned and Plain-Tube Bundles with Oil on the Shell Side 8-Inch Shell, 1/2-Inch Tubes, Bundles 3 and 4 6-Inch Shell, 5/8-Inch Tubes, Bundles 5 and 6	55
39.	Friction Factor for Flow Across Tube Bundles Having Plain and Finned $3/4$ -Inch Tubes in 8-Inch Shell; $P/D = 1.25$	58
40.	Friction Factor for Flow Across Tube Bundles Having Plain and Finned $1/2$ -Inch Tubes in 8-Inch Shell; $P/D = 1.25$	59
41.	Friction Factor for Flow Across Tube Bundles Having Plain and Finned $5/8$ -Inch Tubes in 6-Inch Shell; $P/D = 1.20$	60
42.	Pressure Drop on the Tube Side of Exchangers for Water at 155-165°F	62
43.	Approximate Relationship of the Overall Coefficient Fouled and the Fouling Factor Inside Tubes for Predicting Economical Use of Finned Tubes in Shell and Tube Units	80
44.	Approximate Relationship of the Overall Coefficient Clean and the Fouling Factor Inside Tubes for Predicting Economical Use of Finned Tubes in Shell and Tube Units	81
45.	Rough Relationship for Predicting Oil Viscosities at Which	84

LIST OF TABLES

		Page
I	Dimensions of Exchanger Shells, Bundles, and Tubes	109
II	Summary of Test Conditions	16
III	Example Data and Calculation of Coefficients	110
IV	Summary of Experimental Data and Calculated Results	115
V	Equations for Inside Coefficients	24
VI	Weighted Flow Areas Shell Side	131
VII	Constants in Convection Coefficient Equation	39
/III	Design and Costs of Lube Oil Coolers, Case I	73
IX	Design and Costs of Absorption Oil Coolers, Case II	74
X	Design and Costs of Corn Sirup Coolers, Case III	7 5
XI	Design and Costs of Corn Sirup Coolers, Cases IV and V	7 7
XII	Comparison of Metal Requirements	86

PERFORMANCE OF FINNED TUBES

IN

SHELL AND TUBE HEAT EXCHANGERS

INTRODUCTION

Finned tubes are used to increase the rate of heat transfer over that obtained by plain tubes. A major requirement for the effective use of fins on the outside of tubes is that the heat-transfer coefficient on the outside must be low relative to the coefficient on the inside. Heating of air on the outside of tubes by steam inside the tubes is an example of an effective use of fins, since the heat-transfer coefficient between air and the outside of the tubes is very low relative to the steam coefficient. For this service, when the outside coefficient is about 1/100 of the inside coefficient, high fins are used to give up to 20 times as much outside surface as a plain tube. Subcooling of a refrigerant liquid by cold vapors also employs finned tubes advantageously.²

Many commercial processes employing shell and tube exchangers result in a low coefficient on the outside of tubes as compared to the coefficient inside the tubes. The introduction of tubes with plain ends and low fins, about 1/20 inch high, made it feasible to use finned tubes in standard shell and tube exchangers. These tubes provide about 2.5 times as much outside surface as plain tubes. The services in which these tubes may be used economically will have outside coefficients of

the order of 1/5 of the inside coefficient, and hence the surface ratio of 2.5 is sufficient. The condensing of refrigerants such as Freon 12 is an example of the effective use of finned tubes in shell and tube units accepted in the industry. The relatively low condensing coefficients for organic substances as compared to water-convection coefficients inside the tubes provides the necessary conditions for the advantageous use of fins. Boiling of organic liquids outside of tubes makes effective use of fins when the temperature difference is low. 6,8

The cooling or heating of viscous materials such as lubricating oils provides the necessary ratio of coefficients for the advantageous use of finned tubes in shell and tube exchangers. Armstrong 10 reported test data on a baffled shell and tube exchanger employing finned tubes for cooling a viscous oil and concluded that tubes with low fins were advantageous for this service. These data were encouraging but seemed insufficient to predict the increase in heat transfer which one would expect for various fluids in shell and tube exchangers. No direct comparison was made with plain tube exchangers of the same dimensions.

An experimental program was developed to compare heat-transfer coefficients between plain tubes and finned tubes for fluids on the shell side of shell and tube exchangers. Exchangers identical in all details except for the tubes were obtained, using the shell-circle type of design known to give efficient heat exchange. 11 The exchangers were tested by circulating water to standardize them, and then measurements were obtained using 40 SAE lubricating oil and glycerine as viscous fluids. The data were taken in a manner which made it possible to obtain the shell-side coefficients in order that they might be correlated by the usual dimensionless groups. Pressure-drop data for the shell-side fluids were measured,

since pressure drop may provide a limitation on the fluid velocity in the exchangers.

This report also includes methods of predicting the services for which these helical finned tubes are economical in standard shell and tube exchangers.

EXPERIMENTAL INSTALLATION

Equipment was installed in the Chemical Engineering Laboratory to circulate oil through two shell and tube exchangers. The exchangers are respectively 8 inches and 6 inches in diameter and the removable tube bundles are 48 inches long. The oil is cooled in the exchanger under test and is heated in the other exchanger.

A flow diagram of the experimental unit is shown in Fig. 1, while Fig. 2 is a photograph of the installation. One pumping system circulates the shell-side fluid, which passes through the shell of one exchanger to cool it and through the shell of the exchanger not under test to heat it in a continuous steady-state experiment. A second system circulates water through the tubes of the cooler under test. Steam on the inside of the tubes was used to heat the fluid in the exchanger not under test. The piping was arranged so that the cooling water could be circulated through either exchanger and the steam enter the tubes of either exchanger. This arrangement made it possible to test the tube bundle in each exchanger by operating valves.

The significant specifications for the 6-inch and 8-inch bundles are given in Table I, page 109. The plain-tube exchangers, shells and bundles, were commercial units built to the manufacturer's specifications.

FIG. I FLOW DIAGRAM OF EXCHANGER TEST UNIT WHEN TESTING 8" EXCHANGER

FIG. 2 PHOTOGRAPH OF EXPERIMENTAL INSTALLATION

The finned-tube bundles were constructed to the same specifications as the plain-tube bundles but were tubed with finned tubes supplied by the Wolverine Tube Division. One pair of bundles was tested in the 6-inch exchanger with 5/8-inch outside diameter plain Admiralty tubes in one bundle and 5/8-inch outside diameter finned tubes in the other bundle. Four bundles were used in the 8-inch exchanger; 1/2-inch copper plain and finned tubes and 3/4-inch Admiralty plain and finned tubes were tested. In all cases the bundles were identical for each pair with respect to the tube-sheet layout, number of baffles, baffle spacing, and all other dimensions. A baffle spacing of 4 inches was used in all bundles, with 9 baffles in the 8-inch bundles and 11 baffles in the 6-inch bundles. The layout of the baffles in relation to nozzles is indicated in Fig. 1.

Tube-sheet layouts for the three tube sizes are shown in Figs. 3, 4, 5, pages 94-96. It may be seen that the tubes fill the shell circle completely and are spaced inside this circle on a triangular pitch, though they do not necessarily fill this area completely.

Figs. 6 and 7 are photographs of the finned and plain-tube bundles. It may be seen that the finned tubes have plain ends similar to plain tubes. The fins have a diameter slightly less than the plain end, so that the tubes may be inserted in the bundle in a manner identical with that used for plain tubes. The finned tubes have 19 nominal fins per inch and the fins are about 1/20 inch high. Fig. 8 is a photograph of tube cross sections, showing the contour of the fins. The tubes were sectioned, mounted in bakelite, and the sections polished. The section of the tube indicates the inside of the tube to be smooth. However, when a length of tube is held to the light, small markings are observed on the inside surface corresponding to the fins. The dimensions of all tubes in a given bundle are uniform within 0.001 inch.

BUNDLE NO. 1

BUNDLE NO. 2

BUNDLE NO.4

BUNDLE NO. 5

FIG. 6 PHOTOGRAPHS OF BUNDLES REMOVED FROM EXCHANGERS

BUNDLE 1

BUNDLE

FIG. 7 PHOTOGRAPHS SHOWING INTERCHANGEABILITY OF FINNED AND PLAIN TUBES IN BUNDLES.

BUNDLE 2

BUNDLE 4

BUNDLE 6

FIG. 8 LONGITUDINAL SECTION OF FINNED TUBES

except for fin height, which varies up to 0.003 inch. The outside areas for the finned tubes are computed by assuming an idealized shape. The fin is assumed to have a rectangular section with square ends, and the root is assumed to be a semicircle, as shown in Fig. 9. The area so computed is within 2 to 5 per cent of the integrated area given by the actual contours. The tube dimensions are identified in Fig. 9, and the calculated areas for the bundles are given in Table I, page 109.

These finned tubes are manufactured from plain tubes by extruding the metal wall into a continuous helical fin. In addition to having plain ends, the tubes may also have plain sections at any desired points along their lengths.

Measurements in Heat-Transfer Tests

Measurements were made of the temperatures of the two liquid streams entering and leaving the test exchanger, the flow rates of the two streams, and the pressure drop across the shell side of the test exchanger.

This information is sufficient to permit computation of overall coefficients.

(U) in Equation (1):

$$q = UA\Delta T, \qquad (1)$$

in which q = heat transferred, Btu per hour

0 = overall coefficient, Btu per (hr)(°F)(sq ft)

A = heat-transfer area, sq ft

 ΔT = temperature difference, °F.

Temperature measurements were made with mercury-in-glass thermometers installed in thermometer wells in mixing chambers equipped with disc and doughnut baffles, as shown in Fig. 10, page 97. Shell-side fluids were

ACTUAL FIN PROFILE BUNDLE 2

IDEALIZED FIN FOR AREA CALCULATION BUNDLE 2

FIG. 9 DIMENSIONS OF FINNED TUBES

measured with thermometers graduated to 0.1°C, while the water on the tube side was measured either with these thermometers or with Beckmann thermometers graduated to 0.01°C. All thermometers are calibrated against Bureau of Standards thermometers. The mixing device was considered necessary to make sure that the fluid leaving the heat exchanger had been sufficiently mixed so that the temperature was a true average or mean bulk temperature.

Flow rates in both circulation systems were measured by sharpedged orifices installed in the 3-inch circulation lines. They were calibrated with water in both systems and with oil in the shell-side system. Bundles of 3/4-inch tubing were used as straightening vanes some 50 diameters shead of the orifice installation in the 3-inch pipe. Mercury manometers were used to indicate the orifice differential. All the orifice coefficients for water were within the range of 0.601 to 0.608 for the four orifices used. For oil, the coefficient was plotted as a function of the Reynolds number through the orifice in the range from 1000 to 20,000 and was found to lie 1.5 per cent above the curve reported from standard orifice installations. 12 The use of orifice coefficient as a function of Reynolds number resulted in individual rate curves as a function of pressure drop across the orifice for oil and for glycerine at each temperature level. For water, a single curve was used with corrections for density made by multiplying the rate by the square root of the ratio of the density at 60°F to the density at the flowing temperature. Fig. 11, page 98, gives typical calibration curves for water flowing through two different plates.

Pressure drops were obtained for the shell-side fluid by the use of mercury manometers attached to outlets on the circulation line approximately 1 inch from the exchanger nozzle. Similar measurements were made for the water on the tube side during the cooling tests with the exchanger.

PROPERTIES OF FLUIDS

Water was selected as one of the shell-side fluids because its properties are so well known that it serves as a standardizing fluid for the exchangers. It was not expected that much advantage would be observed for finned-tube bundles as compared to plain-tube bundles when cooling the water because of the high coefficient between the water and the outside of the tube. Lubricating oil, 40 SAE, was chosen as a typical viscous oil, and glycerine was selected as a second viscous fluid with properties distinct from those of mineral oil.

The viscosity and thermal conductivity of water were taken from McAdams. While the heat capacity and density were taken from steam tables. The viscosity and density were taken from steam tables.

The densities of the oil and of the glycerine were determined in the laboratory at room temperature. The changes in density with temperature were taken from the National Standard Petroleum Oil Tables 15 for the oil and from the International Critical Tables 16 for glycerine. Fig. 12, page 99, is a plot of the Janaities as a function of temperature.

Viscosities of the oil and glycerine were determined in the laboratory by Fenske pipettes at five temperatures, as plotted in Fig. 13, page 100.

The thermal conductivity of the lubricating oil was determined in the laboratory at 36°F. The value fell in the area expected for oils. A curve drawn through the experimental point with a slope equal to that of similar oils 17 is plotted in Fig. 14, page 101. The thermal conductivities for glycerine were taken from Smith 17 and are plotted on Fig. 14.

The specific heat of the lubricating oil was taken from TEMA¹⁸, while the values for glycerine were taken from the literature. These are plotted in Fig. 15, page 102.

To insure that the oil and glycerine were constant in properties during the heat-transfer tests, samples were taken at intervals to determine the density and viscosity. The oil showed no change in density from the initial value. The glycerine showed a small change in viscosity and density between the initial sample and the sample after it had been heated in operation. The change in density corresponded to a change in water content from 1.6 per cent at the beginning to 0.5 per cent during steady operation. The viscosity of the glycerine during steady operation. The viscosity of the glycerine during steady operation also corresponded to 99.5 per cent glycerine from data in the literature, ¹⁹ as shown in Fig. 13.

TEST PROCEDURES AND OPERATION OF EQUIPMENT

The six tube bundles were tested using in turn water, oil, and glycerine as the shell-side fluid, with cooling water inside the tubes. Four temperature levels for the fluids were used for some bundles and fluids, while three levels were used on others. Most of the tests used a temperature difference between the shell-side fluid and the cooling water of around 25°F. For about 10 per cent of the data, temperature differences of 50 to 55°F were employed. Fig. 16 illustrates the conditions of the tests for bundle 4, while Table II gives a similar summary of tests for all bundles.

All tests consisted of obtaining data for an overall coefficient of heat transfer under steady state. Two types of data were obtained. The first consisted of a series of consecutive measurements in which the cooling-water velocity was varied between individual tests, while the shell-side inlet and outlet temperatures as well as flow rate remained constant. This set of data was required for Wilson plots. The other type of data was individual

FIG. 16 CONDITIONS OF TESTS FOR BUNDLE 4

TABLE II

SUMMARY OF TEST CONDITIONS

Tube Bundle	Shell Side	Water	SAE 40 Lube Oil	Glycerine
	Inlet Temp., °F	177	196, 113	225, 193, 158, 122
Bundle 1 5/4-in. plain tubes in	Ψ, °F	17.8 - 11.8	9°02 - 63'9	38.4 - 24.8
8-in. shell	Flow Rate, lbs/hr	61,000 - 17,000	45,500 - 13,100	73,000 - 15,400
	Inlet Temp., °F	177	196, 113	227, 195, 157, 131
Bundle 2 5/4-in. finned tubes in	ΔT, °F	15.8 - 9.2	56.5 - 25.8	54.0 - 18.1
8-in. shell	Flow Rate, lbs/hr	61,000 - 17,100	51,000 - 13,000	78,300 - 13,400
	Inlet Temp., °F	193, 158, 122	228, 193, 158, 122	227, 194, 158, 122
Bundle 3 1/2-in. plain tubes in	ΔT, °F	22.0 - 11.2	30.3 - 18.1	29.3 - 16.4
8-in, shell	Flow Rate, 1bs/hr	72,400 - 13,300	60,000 - 13,500	70,500 - 13,600
	Inlet Temp., °F	193, 158, 122	227, 194, 158, 122	226, 195, 158, 122
Bundle 4 1/2-in. finned tubes in	ΔT, °F	16.5 - 8.1	27.2 - 16.8	27.2 - 16.9
8-in. shell	Flow Rate, lbs/hr	77,000 - 15,200	56,000 - 13,800	75,500 - 13,800
	Inlet Temp., °F	177	195, 113	227, 193, 158, 122
Bundle 5 5/8-in. plain tubes in	ΔT, °F	32.3 - 10.4	63.5 - 33.5	38.4 - 23.5
6-in. shell	Flow Rate, lbs/hr	40,000 - 11,300	42,000 - 8,600	52,000 - 14,800
	Inlet Temp., °F	177	196, 114	227, 194, 151
Bundle 6 5/8-in. finned tubes in	ΔT, ℉	15.5 - 8.8	55.4 - 23.6	53.2 - 16.1
6-in. shell	Flow Rate, lbs/hr	49,600 - 12,100	39,300 - 10,800	60,100 - 13,500

tests to give single values of the overall coefficients at selected conditions. The latter type of data was taken only after sufficient data of the first type had been accumulated to give reliable coefficients for the cooling water inside the tubes.

All measurements of an overall heat-transfer coefficient were made in similar manner once the conditions of the test had been selected. The test unit was operated for a sufficient period of time to bring it to a steady state before taking measurements. Once the flow rates for the shell-side fluid and cooling water were fixed, the controls consisted of the steam rate to the exchanger not under test and the make-up cooling-water rate to the tank in the cooling-water system. Thermoregulators were installed and were used between tests, but final control was usually manual.

The data tabulated for a single overall coefficient consisted of the four temperatures for the shell-side fluid and cooling water entering and leaving the test exchanger and of the manometer readings to give the flow rates and pressure drops for the shell and tube-side fluids. Table III, page 110, gives actual data recorded for run 26, which consisted of four overall coefficients, since it was of the first type described. Four recordings of the temperatures and manometer readings were made at about one-minute intervals. The flow rates were such that the contents of the exchanger were changed several times in a minute. Also, the heat transfer was large as compared to the heat capacity of the exchanger. Therefore, the short test period was considered as satisfactory when the inlet temperatures and flow rates were essentially constant.

The recordings for runs of the second kind, in which individual overall coefficients were determined, varied from those for Wilson plots;

ten consecutive readings were taken at one-minute intervals instead of the four readings.

A summary of the experimental data and calculated results is given in Table IV, page 115. All the pertinent data used in the calculations are given, including the heat transfer on both the tube side and the shell side. There are 208 runs, which represent approximately 490 determinations of overall heat-transfer coefficient, since Wilson-plot data with four overall coefficients each were taken on about half of the runs reported. The dimensionless groups used in correlating the data are also included in Table IV.

Bundles 1, 2, 5, and 6 were obtained at the time the installation was made and were tested with water, oil, and glycerine in turn. Bundles 3 and 4 were procured later and were tested with glycerine, water, and oil in turn. The run numbers in Table IV indicate the exact order of the tests.

The tests may be considered as applying to clean tubes. Water deposited a thin film removable by touch or washing. The inside of the tubes was cleaned with a stiff brush and dilute hydrochloric acid at the beginning of a series of tests for each bundle with each fluid. The outside of the tubes was cleaned after tests with water on the shell side. The tubes were rinsed by pumping dilute hydrochloric acid solution containing a detergent through the shell side.

When changing fluids, it was necessary to clean the circulating system. Water was removed by draining and filling with oil or glycerine and operating the shell-side system at temperatures above 212°F. Glycerine was removed by circulating water. Oil was removed by circulating a kerosenewater-detergent emulsion at elevated temperatures.

CALCULATION OF SHELL-SIDE COEFFICIENTS

There are two methods of computing the shell-side convection coefficients, corresponding to the two types of data. For the runs in which a series of overall coefficients was determined at constant conditions for the shell-side fluid, the shell-side coefficient is found from a Wilson plot. For the individual determinations of the overall coefficient, the cooling-water film and metal resistances were subtracted from the overall resistance by calculation to give the shell film resistance.

Overall Coefficients

Overall coefficients are computed by Equation (1). The quantity of heat transferred was measured for both the shell-side and the tube-side fluids. The hot shell-side fluid lost heat to the surroundings and therefore the computed shell-side heat transfer might be expected to be greater than the actual transfer. Likewise, the cooling water lost heat to the air between the points of temperature measurement. It was found that a difference in heat transfer between the two streams was of the order of 100 Btu per degree temperature difference between the shell fluid and the room. This difference represented from 1 to 10 per cent of the total heat transfer. It appeared logical to average the heat transferred on the two sides to obtain q, unless other runs in the series indicated that the shell-side value was in error.

The actual outside area of the exchanger is taken from Table I.

The temperature difference is the logarithmic mean difference corrected for the two passes on the water side by Fig. T-4A ir TEMA¹⁸, or else the temperature difference was computed by Equation 10, page 145 of McAdams. 13

An example calculation of the overall coefficient is given in Table III. All coefficients for each determination are recorded in Table IV.

Wilson Plots

A plot of the reciprocal of the overall coefficient as a function of the reciprocal of the water velocity to the 0.8 power is termed a Wilson plot.²⁰ An extrapolation of the line to infinite water velocity gives the resistance of the remainder of the heat-transfer path. An example calculation of the convection coefficient between the shell fluid and the cutside of the tubes is given for run 26 in Table III, page 110. The Wilson plot for these data is shown by Fig. 17. The intercept in Fig. 17 gives the resistance to heat transfer for the shell-side fluid and the metal, since the coefficient has been extrapolated to infinite water velocity. After subtracting the metal resistance from the intercept, the shell-side resistance, or its reciprocal, the shell-side coefficient, is obtained.

merit brief discussion. The Wilson plot should have as its ordinate the reciprocal of the overall coefficient and as its abscissa the reciprocal of the water-film coefficient. If all mean water temperatures in one run were the same, then the reciprocal of the 0.8 power of the water velocity would be directly proportional to the reciprocal of the water-film coefficient, when assuming that the water-film coefficient is a function of the Reynolds number to the 0.8 power. However, when the water temperature for one velocity differs from that for another, one should plot the convection coefficient with the proper variation in properties. Since the convection coefficient for water has been simplified to be a function of temperature

and velocity, ¹³ the use of N/V^{0.8} for the reciprocal of the convection coefficient gives Wilson plots with straight lines of constant slope for a given tube bundle. If this temperature correction had not been made, the lines through points of a different mean water temperature would have different slopes. It was a valuable correlation factor to know that all Wilson-plot lines for a given bundle were of the same slope.

Fin Efficiency

During heat transfer in the finned-tube exchangers, the temperature along the outside surface of the fin is higher than at the base of the fin. The procedure which has been found satisfactory for evaluating the effect of this temperature distribution is the use of a fin efficiency. The fin efficiency is defined as follows:

$$\oint \int_{0}^{a_{f}} \Delta T' d(a_{f})$$

$$\frac{\Delta T_{B} a_{f}}{\Delta T_{B} a_{f}} \tag{2}$$

where ΔT^{+} = the variable temperature difference between the bulkfluid temperature and the point fin temperature,

 $\Delta T_{\rm B}$ = the temperature difference at the base of the fin or at the root of the fin,

area of the fin,

 \emptyset = fin efficiency.

An effective area (A_e) is defined as the sum of the root area and the fin area times the fin efficiency. This effective area may be used in heat transfer equations along with the temperature differences which apply for outside surface temperatures at the root of the fin. Gardner²¹ has computed the fin efficiency for several shapes; Fig. 6 of

his paper was used with a fin of constant cross section for heat flow. These efficiencies depend upon the coefficient of heat transfer adjacent to the fin surface as well as the conductivity of the fin metal and fin dimensions. To solve problems involving fin efficiency, Fig. 18, page 103, has been prepared, which gives the ratio of the total outside area (A_O) to the effective outside area (A_e) as a function of both the outside coefficient based on the actual area and of the outside coefficient based on the effective area. The dashed curves in Fig. 18, which relate A_0/A_e to the convection coefficient (ho') based on the actual area, are required to compute the experimental data on a basis of effective fin area, while solid curves, which relate A_0/A_e to the convection coefficient (h_0) based on the effective area, are convenient to find actual exchanger sizes from computed effective areas. These curves for the low-fin tubes with 19 nominal fins per inch are the same for several sizes of tube, but are different for metals of different thermal conductivity. They do not apply to finned tubes when the fin profile is different from that of Fig. 8.

In using Gardner's procedure, it was decided that 80 per cent of the surface is fin surface and 20 per cent is root surface and represents prime surface. Reference to the sections in Fig. 8 illustrates that the entire surface could be considered as fin surface. In once case, with 80 per cent of the area considered as fin and 20 per cent as prime surface, the use of Fig. 6 of Gardner gave the same effective surface as the computation of the fin efficiency by numerical methods for the actual cross section shown in Fig. 8.

Film Coefficients from Single Overall Coefficients

After several Wilson plots had been determined for each tube bundle to make sure that the slope was determined correctly, individual

overall coefficients were used to determine shell-side coefficients. Rather than drawing a line through a single point on a Wilson plot, the equation for the water-film coefficient was determined for each bundle as listed in Table V. The constants in these equations were determined from the slopes of the Wilson-plot lines.

TABLE V EQUATIONS FOR INSIDE COEFFICIENTS

Bundle No.	Shell and Tube	Equation
1	8" 3/4" Plain	$h_{1}' = 138 (1 + .011 T) V^{0.8}$
2	8" 3/4" Finned	$h_{i}' = 58.9(1 + .011 T) V^{0.8}$
3	8" 1/2" Plain	$h_{i}' = 137 (1 + .011 T) V^{0.8}$
4	8" 1/2" Finned	$h_{i}' = 45.0(1 + .011 T) V^{0.8}$
5	6" 5/8" Plain	$h_{i}' = 129 (1 + .011 T) V^{0.8}$
6	6" 5/8" Finned	$h_{i}' = 55.5(1 + .011 T) V^{0.8}$

where h_i' = inside coefficient for water based on the actual <u>outside</u>

<u>area</u>, Btu per (hr)(°F)(sq ft outside),

T = mean bulk water temperature, °F,

V = water velocity, ft per sec.

The equations in Table V permitted computation of the shell)side coefficient by the following fomrula:

$$\frac{1}{h_0'} = \frac{1}{U_0} - \left(\frac{L A_0}{k A_{av}} + \frac{1}{h_i'}\right)$$
 (3)

In Table IV all single determinations of overall coefficients were converted to shell-side coefficients by this procedure. It was necessary to convert the h_0 ' based on the actual area to h_0 based on the effective area for these runs in the same manner as for runs having Wilson plots.

CORRELATION OF HEAT-TRANSFER DATA

The data on the plain-tube bundles were correlated first since they might be expected to follow correlations previously established by Donohue, 22 Short, 3 or Tinker. 1 The data obtained did not permit a study of baffle spacing, baffle height, or tube arrangement. The data did permit a study of Reynolds number at constant Prandtl number and of Prandtl number at constant Reynolds number. The correlations for the finned-tube data closely paralleled the correlation of the plain-tube data.

Plain Tubes

The shell-side coefficients were assumed to follow an equation of the following form:

$$\frac{h_{o}D}{k} = C \left(\frac{DG_{m}}{\mu}\right)^{m} \left(\frac{C_{p}\mu}{k}\right)^{o} \left(\frac{\mu}{\mu}\right)^{1/4}, \qquad (4)$$

in which h_0 = the film heat-transfer coefficient,

D = outside diameter of the tube,

k = the thermal conductivity of the fluid at the mean bulk temperature,

G_m = mean mass velocity, lbs per (sq ft)(hr),

\(\mu = \text{viscosity of the fluid at the mean bulk temperature, lbs} \) per (ft)(hr),

 $\mu_{\rm W}$ = viscosity of the fluid at the wall temperature, lbs per (ft)(hr),

 C_p = specific heat of the fluid at the mean bulk temperature, C,o,m = constants

The physical and thermal properties of the shell-side fluid are taken at the mean bulk temperature, with the exception of the viscosity at the tube wall.

The velocity of the fluid as it passes through the bundle between the tubes and baffles will vary. Several procedures are available for this computation. 11,22,23 After due consideration, it was decided to use a procedure recommended by Donohue, as follows:

$$G_{\mathbf{m}} = \frac{\mathbf{w}}{\Lambda_{\mathbf{m}}} \tag{5}$$

in which w = pounds of fluid flowing per hr through shell side

G_m = pounds flowing per (hr)(sq ft)

 $\Lambda_{\rm m}$ = the mean area for the shell side of the exchanger defined by Equation (6).

The mean flow area is defined as follows:

$$A_{\mathbf{m}} = \sqrt{A_{\mathbf{w}} \times A_{\mathbf{C}}} , \qquad (6)$$

in which $A_{\mathbf{W}}$ = area of the window opening in baffle minus the cross section of the tubes in the window

A_C = minimum cross-flow area through the row of tubes

nearest the center line of the exchanger and normal

to the direction of the fluid flow.

An example calculation of the mean flow area is given in Table VI, page 131. The mean flow areas for all exchangers are listed in Table I. For the eight-inch exchanger a slight modification of the calculation procedure was necessary since the two ends of the exchanger did not contain baffles spaced the same as in the center portion of the exchanger. The area of cross flow when the fluid was flowing between the baffles was different from that when it flowed across the tubes on either end. For this exchanger two values of $\Lambda_{\rm c}$ were obtained, resulting in two values of $\Lambda_{\rm m}$

for the center portion and for the end portion of the exchanger. These two values of $A_{\mathbf{m}}$ then were averaged, based on the respective length which each represented to give the final values of $A_{\mathbf{m}}$ used.

For each experimental determination of the shell-side coefficient listed in Table IV, the Nusselt number, hD/k, the Reynolds number, DG_m/μ , the Prandtl number, $C_p/\mu/k$, and the viscosity ratio, μ/μ_w , were computed and listed in the table.

A series of successive approximations was required to obtain the final correlation between these dimensionless groups. The graphs shown are the final result after much study and several approximations.

The Nusselt number was plotted against the Reynolds number for several series of runs in which the temperature level, and hence the Prandtl number, were essentially constant for the series. Fig. 19 for bundle 1 is an example of the plots obtained. It may be observed that there is a lower slope for these curves at low Reynolds numbers than at high Reynolds numbers. This means that Equation (4), with constant exponents, will not give the best correlation of the data. However, a practical correlation is required for design procedures, and an average slope of the lines on figures similar to Fig. 19 was used as the exponent for the Reynolds number. To determine the exponent for the Prandtl number, it was plotted against the product of the Nusselt number, the Reynolds number to the 0.65 power, and the viscosity ratio to 0.14 power, with Fig. 20 for bundle 1 shown as an example of the final result. The slope of this curve was used as the exponent on the Prandtl number for the final correlation by Equation (4) and plotted for bundle 1 on Fig. 21.

In the first trial of this procedure, the slope found on the graph corresponding to Fig. 21 did not agree with the average slope

selected from Fig. 19 and used as the exponent for the Reynolds number in graph corresponding to Fig. 20. This required a second trial for the graphs similar to Figs. 20 and 21. In addition, it seemed appropriate to arrive at the same values of the exponents of each dimensionless group for all bundles if the data would permit. The final values for the Reynolds number exponent, 0.65, and the Prandtl number exponent, 0.375, were used for Figs. 20 and 21 rather than the exponents used in the first trials.

The exponent for the viscosity ratio was selected as 0.14, based on its acceptance for previous correlations 11,22,23 and the data supporting it. 24 However, the data of this research verify that the best correlation requires a variable exponent for this dimensionless group as well as for the Reynolds and Prandtl numbers.

The final correlations for plain-tube bundles 3 and 5 are given by Figs. 22 and 23, pages 104 and 105. They were obtained in a manner similar to that described for Fig. 21.

Finned Tubes

The data and correlations for finned tubes paralleled those for plain tubes.

In Equation (4), D, the diameter of the tube, becomes D_e , the equivalent outside diameter. It is defined as the outside diameter of a plain tube having the same inside diameter and the same weight of metal. The values of D_e are given in Table I, page 109. In computing cross-flow area, A_c , D_e is used for tubes, but in computing the window area, A_w , the diameter over the fins is used.

The final correlations of the heat-transfer data with finned tubes are given by Figs. 24, 25, and 26, pages 106-108. The exponents for

the Prindtl number and Reynolds number have been taken as 0.375 and 0.65, the same as for the plain tubes. These values represent an average value for the several bundles, but the average values are no more restrictive in obtaining a fit between the data points and a single curve than is the assumption that the exponents are constant.

A comparison of all the data is made in Fig. 27. They are represented by a single equation (4a), except that the constant, C, in the equation varies with the exchanger bundle.

$$\frac{h_o D}{k} = C \left(\frac{DG_m}{\mu}\right)^{.65} \left(\frac{C_p \mu}{k}\right)^{.375} \left(\frac{\mu}{\mu}\right)^{.14}$$
 (4a)

The three plain tube bundles could be represented by a single equation in which C = 0.197, with the data falling within +50, -26 per cent of the curve. Similarly, an equation with C = 0.147 represents all the data on finned-tube bundles within +50, -55 per cent.

In both plain and finned-tube runs for which the cooling-water temperatures were in the vicinity of 200°F, certain discrepancies were observed. The shell-side coefficients were often high as compared to any correlation, the heat balances were more erratic, and some Wilson plots appeared to be of different slope. Two possible explanations were considered, namely, incipient boiling of the water in the tubes and vaporization in the water orifice ahead of the exchanger. Calculations of tube-wall temperature indicated that it could not have reached the boiling point of water. The orifice readings reached some 24 inches of mercury for the high flow rate of a Wilson plot. These points, at high rates, scattered more than usual, but no definite trend could be found which would prove that erroneous flow rates for the water side were obtained at these high orifice differentials.

As shown under the discussion of pressure drop, bundles 1, 3, and 2 gave the lower tube-side pressure drop and hence lower pressures at the orifice. It is quite possible that vaporization occurred in the orifice for some of the high-velocity—high-temperature conditions for these bundles.

Effect of Clearance

The effects of clearance between the tubes and baffle and between baffle and shell are likely to have a significant effect on the constants in Equation (4a) for the individual exchanger. A consideration of clearances is of no assistance in explaining the relative behavior of the plaintube bundles but it does help to explain the differences between plain and finned-tube bundles.

The clearance between the tube and the baffle, for the assembled bundles, could not be measured readily, but the difference between the tube diameter and baffle hole for the plain-tube bundles is known to be less than 0.005 inch. Measurements of shell diameters, baffle diameters, and tube diameters are listed in Table I, page 109. Since each pair of bundles was made at the same time, it may be assumed that the baffle holes for the plain and corresponding finned-tube bundles are the same diameter. From tube diameter measurements, the difference in the clearances between finned and plain tubes then becomes the difference in the cutside diameter of the tubes.

Tinker²² stated that for a particular exchanger an additional 1/64 inch in the clearance between the tube and the baffle over the minimum mechanically feasible would reduce the shell-side coefficient by 10 per cent.

It happened that one finned-tube bundle (No. 6) had the same diameter over the fins as the duplicate plain-tube bundle (No. 5). In this case the ratio of the constants in Equation (4a) was .225/.182 = 1.24. This ratio is representative of the difference between plain and finned tubes for the same clearance. Part of this ratio is due to the fact that D_e is smaller for the finned tube than D_o for the plain tube, and hence the Nusselt numbers should not be the same at a given Reynolds number if the coefficients were the same. Part of the ratio represents leakage between the fins and might be related to the baffle thickness (.065 inch for all bundles) and fin spacing (.0525 inch).

For bundles 3 and 4 the ratio of the constants is 1.47. The clearance of the finned tube is .018 inch greater than that for the plain tube in this case. In addition, the peripheral length for leakage is 130 per cent greater for this pair of exchangers than for bundles 5 and 6 because of the increased number of tubes.

Bundles 1 and 2 have .016 inch extra clearance for the finned tube compared with the plain tube and 80 per cent more peripheral length than bundles 5 and 6. Bundles 1 and 2 have a ratio of constants of 1.40.

It appears that the concepts concerning the effect of clearance or leakage are substantiated by the differences in the pairs of bundles and that the major differences in convection coefficients between plain and finned tubes found are due to differences in leakage. For finned tubes there may be two causes for the leakage: the fins may not have the same outside diameter as the plain tube and there is an inherent flow of liquid in the helical space between the fin. It would appear that if plain and finned tubes had the same clearance of the first kind, the ratio of the constants in Equation (4a) might be the same for all pairs of bundles.

Effect of Tube and Shell Diameter

A comparison of the performance of the plain-tube exchangers gives no clue as to effects of tube and shell dismeter beyond those observed in Equation (4) except that, over the range of dimensions used, they are not critical.

Bundle 5 gave the best performance but had a higher clearance between baffle and shell, and the tube diameter was undersize rather than oversize. The space between the shell-circle tubes and the shell was the lowest. The 5/3-inch tubes are intermediate between the 1/2-inch tubes of bundle 3 and 3/4-inch tubes of bundle 1. A difference between the 6-inch bundles and the 8-inch bundles which may be significant is that two more baffles were used for the 6-inch bundles. The effect of these baffles was noted in computing the flow area, $A_{\rm m}$, as shown in Table VI, page 151. However, there is no assurance that the weighting of the flow areas for the baffled section and unbaffled section compensated for the difference.

Are Exponents for Dimensionless Groups Constants?

Equation (4) was derived by dimensional analysis which specifies the dimensionless groups but does not require that the exponents are constant. The value of using the equation as compared to a graph depends upon the assumption that the exponents are constant. As a practical matter, these exponents were used as constants in the correlation presented above. However, the exponents for the Reynolds number, the Prandtl number, and the viscosity ratio could well have been variables.

Curves have been drawn through the data for the plain-tube bundles in Figs. 21, 22, and 23, and these curves represent the data better than the straight lines. Between Reynolds numbers of 50 and 50,000, the slope of the curve varies from 0.41 to 0.70. For the finned-tube bundles,

the curvature at low Reynolds numbers is not observed, but the water data, especially in Fig. 25, show a definitely higher slope than 0.65. These observations would indicate that extrapolation of these results to higher or lower Reynolds numbers might employ the curve on the graph rather than use the constant exponent. Also, it may be expedient to use one exponent for a range of Reynolds numbers and another for a different range.

The viscosity ratio was studied by Gardner and Siller 24, who observed that the exponent increased with increasing Reynolds number. The two lines for water in Fig. 25 were run at different temperatures. In Fig. 22 also, a scattering of the water data results from runs at temperature differences. These differences in the water data at high Reynolds numbers could be minimized by employing an exponent for the viscosity ratio of about 0.8, as suggested by Gardner and Siller. 24

To bring the water data to a single curve, similar arguments could be advanced for a variable exponent on the Prandtl number instead of on the viscosity ratio.

Correlation with Exponents from Literature

In order that comparisons might be made on the basis of the exponents used by Donohue, Tinker, and Short, the experimental data were plotted with these exponents according to Equation (4b).

$$\frac{hD}{k} = C' \left(\frac{DG_m}{\mu} \right) \cdot \frac{60}{c_p \mu} \left(\frac{c_p \mu}{k} \right)^{1/3} \left(\frac{\mu}{\mu} \right)^{1/4}$$
 (4b)

This changes the exponent for the Prandtl number from 0.375 to 0.333 and the exponent for the Reynolds number from 0.65 to 0.60. Fig. 28 is an example of the correlation with these exponents from the literature for

bundle 1. It may be observed that the exponents derived in this study and used in Fig. 21 yield a slightly better fit of the data to the line than do the exponents from the literature.

A similar correlation for the other bundles gave the constants C'(shown in Table VII for Equation (4b)) to facilitate comparisons between these results and others based on this form of the equation.

TABLE VII

CONSTANTS IN CONVECTION COEFFICIENT EQUATION

Bundle No.	C' in Eq. (4b)	C in Eq. (4a)
1 (Plain)	. 356	.200
2 (Finned)	. 255	.143
3 (Plain)	.302	.169
4 (Finned)	.205	.115
5 (Plain)	, 400	.2 25
6 (Finned)	. 324	.182

The convection coefficient equation recommended by Donohue for commercial exchangers with bored shells is of the form (4b) with C' equal to 0.25. Donohue's equation is plotted in Fig. 28. It may be observed that the poorest plain-tube performance for the test exchangers gave 20 per cent higher shell-side coefficients than does the recommended literature value, while the best plain-tube exchanger in these tests gave coefficients 60 per cent higher than recommended by Donohue.

RECOMMENDED SHELL-SIDE COEFFICIENTS FOR FINNED TUBES

The data are not complete in the sense that they do not provide coefficients for other exchanger designs for finned tubes. The basic data and calculations are presented in detail so that engineers in the heat-exchanger industry can arrive at their estimate of the best coefficients to

use in the light of the data obtained. However, there are those who would like to take recommended coefficients and proceed with the design.

The mechanical design of the exchangers, including clearances, baffle arrangement, etc., is important to the extent that no accurate prediction can be made without knowledge of these factors. In the case of exchangers of standard design for which the performance with plain tubes is known, these mechanical features are evaluated. The finned-tube performance can be given in terms of the plain-tube performance equation.

Finned Tubes When Plain-Tube Performance is Known

For plain-tube exchangers with known performance, the value of C' is known for Equation (4b) and the equation may be used to compute convection coefficients

$$\frac{hD_o}{k} = C \cdot \left(\frac{D_o G_m}{k}\right)^{.6} \left(\frac{C_m \mu}{k}\right)^{.33} \left(\frac{\mu}{\mu_w}\right)^{.14}$$
 (4b)

For finned-tube exchangers of the same design and clearances, this same equation may be used with D_e , the equivalent diameter, replacing D_o , and with a new value for C'. It is recommended that:

C' (finned tube) = C' (plain tube)
$$\times 0.7$$

This factor, 0.7, is the average of the values observed for bundles 1 and 2 and bundles 3 and 4. It assumes that the height of fins on the tubes are near the lower limit of the specifications. If assurance could be given that the fin height is close to the plain-tube diameter this factor could well be as high as 0.8. Due to velocity and diameter changes with finned tubes as compared to plain tubes it is necessary to compute the convection coefficient; one cannot apply the above factor

directly to the coefficient for satisfactory results.

Plain Tubes with Shell-Circle Design

For exchangers similar to those of this study, in which the shell circle was filled with tubes and relatively close tolerances were used, the absolute values of C or C' in Equations (4a) or (4b) can be used. For plain tubes from 1/2 to 1 inch in diameter, Equation (4c) may be used, as follows:

$$\frac{hD_{o}}{k} = .19 \left(\frac{D_{o} G_{m}}{M}\right) \cdot 65 \left(\frac{C_{p}}{k}\right) \cdot 375 \left(\frac{M}{W}\right) \cdot 14$$
(4c)

If desired, the corresponding form of Equation (4b) may be used:

$$\frac{hD_o}{k} = .34 \left(\frac{D_o G_m}{\mu}\right).60 \left(\frac{C_p \mu}{k}\right).33 \left(\frac{\mu}{k}\right).14$$
 (4d)

Finned Tubes for Shell-Circle Design

For <u>finned tubes</u> in similar exchangers, the coefficients are given by the following forms of Equation (4):

$$\frac{hD}{e} = .13 \left(\frac{D_{e} G_{m}}{M}\right) \cdot 65 \left(\frac{C_{pM}}{k}\right) \cdot \frac{375}{M} \cdot \frac{14}{M}$$
 (4e)

$$\frac{hD_{e}}{k} = .23 \left(\frac{D_{e} G_{m}}{\mu}\right).60 \left(\frac{C_{p} \mu}{k}\right).33 \left(\frac{\mu}{\mu}\right).14$$
 (4f)

These equations apply for tubes described in this report with 19 nominal fins per inch and from 1/2 to 1 inch in diameter.

The constants in Equations (4e) and (4f) are based on the assumption that the height of the fins on the tubes are near the lower limit of the specifications and will have large clearances. In case the fin height

is such that the diameter over the fin equals the diameter of the plain end, the values for C and C' may rise to 0.15 for Equation (4e) and 0.27 for Equation (4f) for the finned tubes.

It is appreciated that no data are available for 1-inch tubes, but there is no evidence to indicate that a significant difference may be expected.

COMPARISON OF PLAIN AND FINNED-TUBE PERFORMANCE

The correlations of heat-transfer coefficients permit quantitative calculations to compare finned tubes with plain tubes, but the relative amounts of heat transfer are not readily discernible. Comparisons will be made between the coefficients and between the heat transfer for the bundles identical except for the tubes.

Heat Transfer Per Degree Temperature Difference

The heat transferred by the plain-tube bundle could be compared directly with the heat transferred by the finned-tube bundle if the temperature level and temperature differences were the same. Since data are not available which have exactly the same temperature difference for the two exchangers, the heat transfer per degree temperature difference may be compared, provided the temperature levels and hence the physical properties of the fluids are essentially the same. The comparisons with water would show the least increase in heat transfer for finned tubes due to the high coefficients on the shell side, while the comparisons for oil will show the greatest benefit from the finned tubes. Bundles 3 and 4 will show the least improvement for the finned tubes with oil, and bundles 5 and 6 the most improvement due to the nature of the clearances between the tube and the baffle, as explained in connection with Fig. 27.

The tests with water on the shell side gave the highest rates of heat transfer. From the clearances discussed previously, bundles 1 and 2 or 3 and 4 would be expected to show the least improvement for finned tubes. However, due to the high heat-transfer rates, the conductivity of the tube metal becomes significant. Therefore, the copper tubes in bundles 3 and 4 show the greatest improvement for the finned tubes as compared to the plain tubes. Fig. 29 is a comparison of the performance of bundles 3 and 4, which show from 57 to 60 per cent more heat transfer for the finned bundle at the same mass rates for water on the tube side.

The least improvement for finned tubes is with water on the shell side of bundles 1 and 2, having Admiralty tubes. Fig. 30 gives the performance under specified conditions, with an increase in heat transfer from 11 to 18 per cent for the finned-tube bundle as compared to the plaintube bundle.

Fig. 31, for oil on the shell side of exchanger bundles 5 and 6, shows the maximum benefit found for the finned tubes. The finned tubes more than doubled the heat transfer at the higher water velocities. Figs. 32 and 33 show typical increases in heat transfer of from 60 to 70 per cent when oil is the fluid and the clearances between the tubes and the baffle are the maximum to be encountered.

Overall and Film Coefficients

The overall coefficients of heat transfer may be compared for a given temperature level of the fluid. If the actual outside area is used, it should be remembered that the finned-tube bundles have from 2.06 to 2.77 times as much surface as the plain-tube bundles. On the other hand, if the inside areas are used the finned-tube bundles have only from 0.78

to 0.65 times as much inside surface as the plain-tube bundles. Figs. 34 and 35 show typical overall coefficients for glycerine and oil, based on the outside and on the inside areas of the tubes.

The magnitude of the overall coefficients observed is worthy of consideration. For example, with water on the shell side of bundle 5, run 16, an overall coefficient of 1222 Btu per (Hr)(°F)(sq ft) was observed. This coefficient requires film coefficients of 2500 or more and indicates that fouling was extremely small or entirely absent. For finned tubes, run 28 gives an overall coefficient of 792 Btu per (hr)(°F)(sq ft outside). This coefficient, based on the outside fin area, requires film coefficient of about 3000.

The convection coefficients on the shell side are of interest. These coefficients are compared on the basis of the outside area. For the finned tubes, the effective outside area is used rather than the actual outside area since any inefficiency in the fin should not be allowed to detract from the convection coefficient. For water on the shell side of Admiralty finned tubes, the fin efficiency was as low as 70 per cent, and the effective area is this fraction of the actual area for the fins, which constitute 80 per cent of the surface, i.e., the effective area may be only 76 per cent of the actual area. For oil and glycerine, the fin efficiencies seldom dropped below 95 per cent, and the actual outside area approximates the effective area. Fig. 36 compares typical convection coefficients plotted as a function of mass flow rate on the shell side. When convection coefficients for finned tubes are the same as for plain tubes, it follows that the fluid between the fins must be interchanged with fluid in the main stream as rapidly as the fluid adjacent to a plain-tube wall.

An explanation for the similarity between the convection coefficients for finned and plain tubes may be found in the paper by Knudsen and Katz. 25 Knudsen studied the heat transfer and fluid flow in annuli containing finned tubes. He observed that the fluid enters the space between the fins and forms eddies, as shown in Fig. 37. These eddies appear to be responsible for replacing the fluid between the fine when flow is turbulent and parallel to the tube. In cross flow, it is understandable that the fluid enters the space between the fins.

The results of this study indicate that at very low Reynolds numbers the plain-tube coefficients do not decrease as rapidly as the finned-tube coefficients because the fluid probably does not enter the space between the fins at these low velocities. On the other hand, at very high Reynolds numbers, the coefficients for the finned tubes may exceed those for plain tubes because of the extra turbulence caused by the fins.

CORRELATION OF PRESSURE-DROP DATA

Pressure-drop data were observed for the shell-side fluid on all runs and recorded in Table IV, page 115. For the same fluid rate and temperatures, the pressure drop for the finned-tube bundle was less than for the plain-tube bundle. This statement applies for all three fluids and the three pairs of bundles. Typical pressure-drop data for the shell-side fluid are plotted in Fig. 38. It is appreciated that the flow rates in the exchangers under test exceeded flow rates normally used in commercial operation. Mass rates up to 1.5 million pounds per sq ft per hour were obtained with pressure losses up to 12 psi. Flow rates in large exchangers with a pressure drop limit of 12 psi would attain mass rates of 200,000 to 500,000 lbs per sq ft per hour. The

THIS PHOTOGRAPH IS OF DYE INJECTED IN WATER FLOWING IN THE ANNULUS BETWEEN A HELICAL FINNED TUBE AND A PLASTIC OUTER TUBE

FIG. 37 NATURE OF FLOW BETWEEN FINS FROM KNUDSEN

greatest difference for finned and plain tubes occurs between bundles 3 and 4 because these two differed the most in their clearances, while bundles 5 and 6 have the least difference in pressure drop, corresponding to the small difference in clearance.

Reference to Figs. 6 and 7 will show that there is more space for the shell-side fluid to flow in cross flow in the case of the finned tubes as compared to the plain tubes. Also, the inherent leakage through the helical space between the fins at the baffle will reduce the pressure drop for the finned-tube bundle.

An analysis of pressure-drop data divides the total pressure drop into the following items ^{22,23}: (1) enlargement and contraction loss at the nozzles, (2) loss during flow through baffle windows, and (3) friction loss during flow across tubes. The enlargement and contraction loss for the nozzles was taken as the kinetic energy of the fluid in the exit nozzle; the inlet kinetic energy was assumed to be dissipated. The loss during flow through a window was assumed to follow the equation of Donohue ²²:

$$(P_1 - P_2)_w = \frac{2.9 G_w^2}{10^{13} sp gr}$$
 (7)

where $(P_1 - P_2)_W = \text{pressure drop per baffle window, lbs/sq in.}$ $G_W = \text{mass velocity at } A_W, \text{lbs/(hr)(sq ft)}$ $\text{sp gr} = \text{specific gravity referred to water at } 60^\circ\text{F}$ or the density in g/cc

Short²³ related pressure loss at baffle windows to the velocity squared and a function of the product of the Reynolds number through the window and the square root of the Prandtl number. Even for this more complex relationship, considerable scattering occurred for the data obtained by Short. Equation (7) is adopted because of its simplicity and the demonstration by Donohue that it was essentially as good as the more complex relationship. The total baffle loss is the pressure drop per baffle times the number of baffle windows.

The friction loss of flow across tubes may be expected to follow a friction-factor curve such as was used by Donohue²². The friction factor is related to pressure drop as follows:

$$(P_1 - P_2)_c = \frac{1.07 \text{ f n G}_c^2}{10^9 \text{ g}_c \rho} \left(\frac{\mu}{\mu_W}\right)^{-0.14}$$
 (8)

where f = friction factor

n = the minimum number of rows of tubes the fluid passes
in flowing from one window to the next

 G_c = mass velocity at A_c in cross flow, lbs/(hr)(sq ft)

 ρ = fluid density, lbs/cu ft

 $g_c = 32.2$, conversion factor

 $(P_1 - P_2)_c =$ pressure drop per baffle space due to friction of cross flow in lbs/sq in.

w/w = viscosity ratio between bulk temperature and wall temperature

The friction factor is a function of the Reynolds number on the shell side.

The experimental data were used to evaluate f, the friction factor, in the following manner. The outlet-nozzle kinetic energy and the total baffle loss were computed as described above. The sum of these two pressure drops was subtracted from the experimental pressure drop to obtain the pressure loss due to cross flow, $(P_1 - P_2)_c$. This value was substituted in Equation (8) for $(P_1 - P_2)_c$ and the friction factor, f, was computed for each run. These friction factors are plotted in Figs. 39, 40, and 41 for the three pairs of exchangers.

The friction factors are above those reported by Donohue²², indicating the effect of the clearance between the tubes on the shell-circle and the shell for the exchangers in these tests.

The symmetry of the curves from this study and that of Donohue would indicate that the equation for the window loss was suitable for the test exchangers. Fig. 39 is an exception in that the finned-tube exchanger has a lower pressure drop than the curve of Donohue, 22 and in some cases the experimental pressure drop was less than the sum of the kinetic energy of outlet nozzle and the computed window loss. No explanation for this can be found, but it should be noted that these bundles, 1 and 2, had a smaller window than the other bundles.

These studies indicate that when a friction factor curve is available for an exchanger with plain tubes, this curve would be conservative for computing the pressure drop for the same exchanger equipped with finned tubes.

On the tube side, the pressure drop for the cooling water was observed, but it was not recorded in Table IV. Fig. 42 gives typical pressure-drop values for the water passing through the tubes at several velocities at mean water temperatures in the range from 155 to 165°F.

ECONOMICS OF FINNED TUBES FOR SHELL AND TUBE EXCHANGERS

The only reliable procedure for evaluating the economics of finned tubes is to make designs and cost estimates of exchangers with plain tubes and with finned tubes for a given heat-transfer duty. The information required to make this comparison is (1) methods of sizing exchangers for a given duty and pressure-drop limitation and (2) methods of determining the costs of the components of exchangers. The data and correlations reported in this study serve as a basis for sizing exchangers. The Exchangers Price Section of the book, Alco Heat Exchangers,

September 28, 1950, ²⁶ will be used to determine the prices of the components of the exchangers, except for the tubes. The cost data are for shells with a working pressure of 150 lbs per sq in. The prices for plain and finned tubes were obtained from the Wolverine Tube Division of the Calumet and Hecla Consolidated Copper Company, as of December 4, 1950.

Typical problems for which finned tubes might be economical are selected to illustrate the use of the data in sizing and pricing exchangers. Some exchangers will be sized using the shell-circle design of the test exchangers. Comparisons more favorable for finned tubes could have been made if the shell-side coefficients had been obtained from the equation recommended for standard exchangers. 22

Fouling

One of the important items in heat-exchanger design is the fouling factor, which is used to provide the proper size of exchanger for a given duty when the exchanger has accumulated a specified amount of foreign material on the heat-transfer surface. The accepted procedure in this regard is set forth in the TEMA standards. It should be obvious that, if a tube is expected to foul severely on the inside, extended surface on the outside can be of little value. Finned-tube exchangers have been reported to perform on relatively dirty oil on the shell-side without undue fouling as compared to plain tubes. The end of the fin may be considerably cleaner than the surface of plain tubes. The eddies between the fins may prevent fouling in some cases. The heat-transfer services selected for design in this report require moderate fouling factors, which are used according to TEMA standards for plain tubes.

Procedures for Shell-Circle Design

The procedures for designing a shell and tube exchanger of the type tested in this study will be outlined. An example calculation will follow to illustrate the method.

In general, the length of the exchanger is specified or fixed at the maximum practical length for the service. The mass flow rate, $G_{\rm m}$, is normally selected as a starting point in the calculations. From this flow rate and the fluid properties, the shell-side coefficient is found from Equation (4e). An overall coefficient is computed from the shell-side coefficient and an assumed inside coefficient. The heat transfer area for the exchanger is computed in the first trial, which area indicates the diameter of the exchanger for a given length and tube. The number of tubes and the water requirement determines the water passes for a given water velocity, normally chosen in the range of 3 to 6 feet per second.

At this point, a second trial is made. The overall coefficient is computed from the inside coefficient and fouling factor to find a second trial area and diameter. It is necessary to go through the design again with a viscosity ratio in the shell-side film coefficient. After this part of the design is complete, the pressure drop is computed. This requires a baffle spacing and window opening based on the mass velocity relation of Equations (5) and (6) and exchanger dimensions. If the pressure drop is excessive, a lower mass-flow rate is required, and, if the pressure drop is low, a higher mass-flow rate is used.

Engineers with experience in the correlation of heat-transfer coefficients as influenced by tube size and shell diameter over and above

the effects reflected in Equation (4) may wish to employ their procedures for obtaining shell-side coefficients for plain tubes and performance of finned tubes based on the results presented in Figs. 21 through 26.

Comparison of Costs for Minned and Plain-Tube Exchangers

Five cases have been selected to illustrate the comparative performances which may be expected for finned and plain-tube exchangers when cooling viscous fluids. The first three cases represent designs for a given heat duty. The fourth case is included to illustrate that finned tubes may be used in exchangers previously equipped with plain tubes when a reduction in the temperature difference is desired. Case V is a plain-tube design to match the performance of the finned-tube unit in Case IV. The five cases are:

Case II Lube Oil Cooler, oil 25-centipcise viscosity

Case III Absorption Oil Cooler, oil 2.6-centipoise viscosity

Case III Corn Sirup Cooler, sirup 61-centipoise viscosity

Case IV Corn Sirup Cooler, Sirup 75-centipoise viscosity

Case V Corn Sirup Cooler, sirup 75-centipoise viscosity

The calculations for Case I are given completely, while the results are tabulated for the other four cases.

Case I, Example Decign of Lube Oil Cooler

Given. Resign of lubricating oil cooler for a discal engine. The tubes are to be 8 feet long. TEMA fouling factors are required.

Shell-Side Fluid. 40 SAE lubricating oil, 170 gellons per minute, in at 190°F and out at 167°F.

Tube-Side Fluid. Treated circulating vater, 600 gallons per minute, in at 160°F. Fressure loss on shell side should not exceed 12 psi.

Design of Plain-Tube Exchanger. 40 SAE oil is assumed to have properties of Figs. 12-15.

Average oil temperature = 178.5°F

Oil Properties.

 $C_p = 0.5 \text{ Btu/lb } ^{\circ}\text{F from Fig. 15}$

 $\rho = .860 \times 62.4 = 53.6 \, \text{lbs/cu} \, \text{ft from Fig. } 12$

k = .081 Btu/(hr)(sq ft)(°F/ft) from Fig. 14

 μ = 23 centipoises from Fig. 13

Oil rate in lbs/hr = $170 \times 60 \times 8.34 \times .86 = 73,100 \text{ lbs/hr}$

Heat load = 73,100 x (190 - 167) x .50 = 840,000 Btu/hr Water temperature rise = $\frac{840,000}{600 \times 60 \times 8.2}$ = 2.84°F. Water out at 162.84°F

Log mean temperature difference = $\frac{(190-162.8)-(167-160)}{\ln{(190-162.8)/(167-160)}}$ = 14.9°F Correction factor, F, from TEMA, Fig. T-4A = 0.955 for two tube passes. Mean temperature difference ($\Delta T_{\rm m}$) = 14.9 x 0.955 = 14.2

Equation (4c) with recommended value of 0.19 for C, with plain tubes.

$$\frac{h_{o}D_{o}}{k} = .19\left(\frac{D_{o}G}{\mu}\right)^{.65} \left(\frac{C_{p}\mu}{k}\right)^{.375} \left(\frac{\mu}{\mu_{w}}\right)^{.14}$$
 (4c)

A 5/8-inch (.0521-ft) O.D. Admiralty tube, 18-gauge, 0.049-inch wall on a 13/16-inch triangular pitch, will be selected for this design. A mass velocity $G_{\rm m}$ of 350,000 lbs per (hr)(sq ft) is assumed for the exchanger.

First trial solution for shell-side coefficient:

$$h_{o} \approx \frac{0.19 \times .081}{.0521} \left(\frac{.0521 \times 350,000}{23 \times 2.42} \right)^{.65} \left(\frac{0.5 \times 23 \times 2.42}{.081} \right)^{.375} \left(\frac{\mu}{\mu_{W}} \right)^{.14}$$

$$h_{o} = .295 (327)^{.65} (344)^{.375} (\frac{\mu}{\mu_{W}})^{.14}$$

$$h_{o} = 113 \left(\frac{\mu}{\mu_{W}} \right)^{.14} \text{ Btu/(hr)(°F)(sq ft)}$$

Assume an overall coefficient (U_0) of 90 Btu per $(hr)(^{\circ}F)(sq$ ft). The heat-transfer area by Equation (1):

$$A = \frac{q}{U_0 \Delta T_m} = \frac{840,000}{90 \times 14.2} = 657 \text{ sq ft outside}$$

From the Alco book, ²⁶ the smallest exchanger, 8 ft long, with more than 657 sq ft outside is a 24-inch diameter shell which was 768 sq ft with 586 tubes for a two-pass tube side. It is assumed that there would be approximately the same number of tubes in a 24-inch bundle with the shell-circle design as with regular triangle pitch.

Flow area tube side: inside flowarea, tubes 0.2181 sq in.

$$\frac{0.2181 \times 293}{144} = 0.444 \text{ sq ft}$$
water velocity = $\frac{600 \times 8.2}{60 \times 0.444 \times 61.0} = 3.03 \text{ ft/sec}$

Water convection coefficient, McAdams, 13 page 183.

$$h_i = 150(1 + 0.011 T) \frac{v^{0.8}}{d_i 0.2}$$

$$h_i = 150(1 + 0.011 \times 161) \frac{3.03^{0.8}}{0.527^{0.2}} = 1150 \text{ Btu per (hr)(°F)(sq ft inside)}$$

Computed overall coefficient:

$$U_0 = \frac{1}{\frac{1}{113} + 0.001 + \frac{.625 \times 0.001}{.527} + \frac{.625}{.527 \times 1150}} = 83.0 \text{ Btu per (hr)(°F)(sq ft)}$$

Tube wall temperature =
$$178.5 - 14.2 \times \frac{83.0}{113} = 168.0$$
°F

$$\mu_{\rm w}$$
 = 27 centipoises

$$(\frac{\mu}{\mu})^{.14} = (23/27)^{.14} = .978$$

$$h_0 = 113 \times .978 = 111 Btu per (hr)(°F)(sq ft)$$

$$U_0 = \frac{1}{\frac{1}{111} + .001 + \frac{.625}{.527} \times .001 + \frac{.625}{.527 \times 1280}} = 82.0 \text{ Btu per (hr)(°F)(sq ft outside)}$$

Heat-transfer area =
$$\frac{840,000}{82.0 \times 14.2}$$
 = 721 sq ft outside

The 24-inch bundle with 768 sq ft is sufficient for this second trial area and will be used if the pressure drop calculations are satisfactory

Baffle-Spacing Calculation. Minimum space between tubes along a diameter perpendicular to flow, 28 tubes per row:

$$\frac{24 - (28 \times 0.625)}{12} = 0.541 \text{ ft}$$

Cross-flow area equals 0.541 x baffle spacing. Baffle cut and spacing will be chosen to give

$$G_c = 210,000 \text{ and a } G_W = 590,000$$

or

$$G_{\rm m} = \sqrt{210,000 \times 590,000} = 350,000$$

Area cross flow of 210,000 lbs per (sq ft)(hr) is $\frac{73,000}{210,000} = 0.348$ sq ft

Baffle spacing = $\frac{0.348}{0.541} = 0.644$ ft

Number of baffles = $\frac{8}{0.644}$ - 1 = 11.4; 10 baffles will be used to give appropriate space at ends or 11 spaces for cross flow.

Pressure Drop. Cross flow passes about 10 rows of tubes from edge of one window to edge of next.

$$(P_1 - P_2)_c = \frac{1.07}{9} \frac{f n G_c^2}{gc\rho} \left(\frac{\mu}{W}\right)^{-.14}$$
 (8)

$$\left(\frac{D_0G_c}{\mu}\right)_c = \frac{.0521 \times 210,000}{2.42 \times 23} = 197$$
, f from Fig. 40 = 2.0

$$(P_1 - P_2)_c = \frac{1.07 \times 1.9 \times 10 \times (210,000)^2}{10^9 \times 32.2 \times 53.6 \times .978} \times 11 = 6.15 \text{ psi cross flow pressure drop.}$$

Window pressure drop:

$$(P_1 - P_2)_w = \frac{2.9}{10^{13}} \times \frac{G_w^2}{\text{sp gr}}$$
 (7)

$$(P_1 - P_2)_w = \frac{2.9}{10^{13}} \times \frac{(590,000)^2}{0.86} = 0.118 \text{ psi/baffle.}$$

Total window loss:

$$0.118 \times 10 = 1.18 \text{ psi}$$

Total pressure drop = 6.15 + 1.18 = 7.33 psi

Design of Finned-Tubing Exchanger. Since this unit will be smaller in diameter, a mass velocity (G_m) of 500,000 will be used with a G_w of 830,000 and a G_c of 300,000. Convection coefficient shell side, using recommended value for C of 0.13:

$$\frac{h_o D_e}{k} = 0.13 \left(\frac{D_e G_m}{\mu}\right)^{.65} \left(\frac{C_p \mu}{k}\right)^{.375} \left(\frac{\mu}{\mu}\right)^{.14}$$
 (4e)

 D_e for 5/8" end finned tube from Table I = 0.554 inches or .0461 feet

$$h_0 = \frac{0.13 \times .081}{.0461} \left(\frac{.0461 \times 500,000}{23 \times 2.42} \right)^{.65} (234)^{.375} \left(\frac{\mu}{FW} \right)^{.14}$$

$$h_o = 0.228 \times 414^{.65} \times 7.75 \times (\frac{\mu}{\mu_W})^{.14} = 88.9 (\frac{\mu}{\mu_W})^{.14}$$

Assume a U_o of 65.

First trial heat-transfer area = $\frac{840,000}{14.2 \times 65}$ = 910 sq ft outside.

Area of finned tube = 0.361 sq ft per ft, Table I. No. of tubes, 8 ft long = $\frac{910}{0.361 \times 8}$ = 315 tubes.

$$\frac{A_0}{A_1} = \frac{54.5}{16.7} = 3.26$$
 from Table I.

For one-pass water side, an 18-inch diameter exchanger will have 336 tubes. Tubes have 0.133 sq in. flow area based on I.D. of 0.411 inch.

Flow area for water =
$$\frac{336 \times 0.133}{144}$$
 = 0.310 sq ft
Water velocity = $\frac{600 \times 8.2}{60 \times 0.310 \times 61.0}$ = 4.34 ft/sec

Inside coefficient:

$$h_i = 150(1 + 0.011 T) \frac{v^{0.8}}{D_i^{0.2}} = \frac{416 \times 3.24}{0.837} = 1610 Btu per(hr)(°F)(sq ft)$$

Computed overall coefficient

$$U_0 = \frac{1}{88.9 + .001 + .001(3.26) + \frac{3.26}{1610}} = 60.5$$

Wall temperature (100 per cent fin efficiency) = $178.5 - 14.2 \times 60.5/88.9$ = 168.8

Viscosity ratio =
$$(\frac{\mu}{\mu_{w}})^{\cdot 14} = (\frac{23}{26})^{\cdot 14} = 0.983$$

 $h_{o} = 88.9 \times 0.983 = 87.4$

This h_o is based on the effective outside area. To convert to h_o ', based on the actual outside area, use Fig. 18, which gives A_o/A_e . In this figure the total outside conductance, including the outside fouling, should be used. This equals $\frac{1}{1/87.4 + .001} = 80.5$; from Fig. 18, $A_o/A_e \cong 1.0$. When A_o/A_e is significantly greater than one, the h_o is divided by A_o/A_e to get h_o '. In this case h_o ' \cong h_o .

$$U_o = \frac{1}{1/87.4 + .001 + .00326 + 3.26/1610} = 59.8 \text{ Btu per (hr)(°F)(sq ft)}$$

Second trial heat-transfer area, AT = 14.9 for single pass.

$$A_0 = \frac{840,000}{59.8 \times 14.9} = 943 \text{ sq ft}$$

No. of tubes =
$$\frac{943}{0.361 \times 8}$$
 = 326 tubes

The 18-inch exchanger is satisfactory.

Baffle Spacing

No. of tubes on a diameter = 20 tubes.

Minimum space between tubes =
$$\frac{18 - 20 \times .554}{12}$$
 = 0.577 ft

Area for cross flow of 300,000 is $\frac{73,100}{300,000} = 0.244 \text{ sg ft}$

Baffle spacing =
$$\frac{0.244}{0.577}$$
 = 0.422 ft

No. of baffles =
$$\frac{8}{0.422}$$
 - 1 = 18 Allow 2 baffle spaces for nozzles and use 16.

Pressure Drop

No. of rows of tubes in cross flow between boffle windows is about 6.

Total cross flow $(P_1 - P_2) = 17 \times 0.255 = 4.33 \text{ psi}$

Window loss =
$$(P_1 - P_2)_w = \frac{2.9 \times (830,000)^2}{10^{13} \times 0.86} \times 16 = 3.72 \text{ psi}$$

Total pressure drop = 3.72 + 4.33 = 8.05 psi

Pricing of Exchangers. The Alco Heat Exchanger book 26 is used for prices of exchanger components. Tube costs were furnished by Wolverine Tube Division, as follows: plain Admiralty \$0.172 per ft, finned Admiralty \$0.275 per ft, both in large quantities. A summary of the results of these calculations and the costs for the components of the exchangers are given in Table VIII.

Per cent saving = $\frac{953.29 \times 100}{4159.64}$ = 22.9%.

Case II, Absorption Oil Cooler

Given: Cool 2,000,000 gallons per day of absorption oil from 140°F to 90°F. Treated cooling water is available at 70°F and will be permitted to rise to 85°F. The oil has a molecular weight of 210 and a density of 0.875 g/cc at 60°F. TEMA fouling factors should be used, 0.002 outside and 0.001 inside. Admiralty tubes should be used.

The designs were computed in a manner similar to that of Case I for the lubricating oil cooler. The results of the calculations are given in Table IX. The shell diameters computed are 42 inches and 33 inches for the plain and finned-tube units, respectively. The cost of the plain-tube exchanger is \$14,166 - \$10,530 = \$3,586 more than the finned-tube unit. This represents a decrease of 25.3 per cent in the cost of this type of absorption oil cooler when using the finned tubes described in Table I.

Case III, Corn Sirup Cooler

Given: Cool 50 gallons per minute of 38° Be corn sirup from 200°F to 130°F. River water is available at 90°F and a 20°F rise may be used. The exchanger tubes are to be 8 feet long, 3/4-inch copper. The fouling factors are 0.002 on both sides.

A comparison of the designs and cost is given in Table X.

TABLE VIII

DESIGN AND COSTS OF LUBRICATING OIL COOLERS -- CASE I

Properties of Oil at Mean Bulk Temperature

= 23 centipoises $C_p = 0.5$ $\rho = 53.6$ $k = 0.081$			
	Units	Plain Tubes	Finned Tubes
Heat duty	Btu/(hr)	840,000	840,000
Mean temperature difference, ΔT_{m}	• _F	14.2	14.9
Shell side velocities G _m * G _C G _W	lbs/(hr)(sq ft) " " "	350,000 210,000 590,000	500,000 300,000 830,000
Shell side coefficient	<pre>Btu/(hr)(*F)(sq ft) outside</pre>	111	87.4
Water velocity, tube side	ft/sec	3.03	4.34
Water coefficient	Btu/(hr)(°F)(sq ft) inside	1150	1610
Overall coefficient	<pre>Btu/(hr)(°F)(sq ft) outside</pre>	82.0	59.8
Heat transfer area required	sq ft outside	721	943
Heat transfer area standard exchanger	sq ft outside	768	972
Exchanger dimensions Length of tubes* Diameter of tubes* (0.049" wall) Spacing of tubes* Number of tubes Diameter of shell Passes water side Number of baffles	ft inch inch inch	8 5/8 13/16 triangular 586 24 2	8 5/8 13/16 triangular 336 18 1
Shell side pressure drop	lbs/sq in.	7.33	8.05
Costs Shell Tube side Nozzles Tube sheets Baffles Tubes	Dollars "" "" "" "" "" "" "" ""	\$1158.20 508.28 307.00 911.00 467.16 808.00	\$ 893.68 398.19 307.00 480.00 388.48 739.00

\$4159.64 \$3206.35

TOTAL COST

^{*}Assumed in design procedure

TABLE IX

DESIGN AND COSTS OF ABSORPTION OIL COOLERS -- CASE II

Properties of Oil at Mean Bulk Temperature

	Units	Plain Tubes	Finned Tubes
Heat duty	Btu/(hr)	14,400,000	14,400,000
Mean temperature difference, $\Delta T_{ m m}$	$ullet_{ m F}$	30.3	30.3
Shell side velocities	lbs/(hr)(sq ft)		
G _m *	ii ,	500,000	600,000
$G_{\mathbf{c}}$	11	400,000	500,000
$G_{\mathbf{W}}$	***	625,000	720,000
Shell side coefficient	Btu/(hr)(°F)(sq ft) outside	237	240
Water velocity, tube side	ft/sec	5.21	6.30
Nater coefficient	Btu/(hr)(°F)(sq ft) inside	1140	1390
Overall coefficient	Btu/(hr)(°F)(sq ft) outside	116	87.5
Heat transfer area required	sq ft outside	4100	5430
Heat transfer area standard exchanger	sq ft outside	hh30	5780
Exchanger dimensions			
Length of tubes*	ft	16	16
Diameter of tubes* (0.65" wall)	inch	3/4	3/4
Spacing of tubes*	inch		15/16 triangula
Number of tubes		1378	882
Diameter of shell	inch	42	33
Passes water side		4	2
Number of baffles		8	11
Shell side pressure drop	lbs/sq in.	4.1	5.3
Costs			
Shell	Dollars \$	2684 \$	1645
Tube side	t 1	1278	751
Nozzles	11	507	507
Tube sheets	11	3093	1665
Baffles		859	717
Tubes	ff .	5700	5250
TOTAL COST	\$:	14116 \$	10530
Tube sheets Baffles Tubes	11	3093 859 5700	1665 717 5250

^{*}Assumed in design procedure

TABLE X

DESIGN AND COST OF CORN SIRUP COOLERS --CASE III

Properties of Sirup at Mean Bulk Temperature

M = 61 centipoises $\rho = 83.5$ k = 0.28 $C_p = 0.64$

	Units	Plain Tubes	Finned Tubes
Heat duty	Btu/(hr)	1,500,000	1,500,000
Mean temperature difference, ΔT_{m}	°F	57.0	57.0
Shell side velocities Gm* Gc Gw	lbs/(hr)(sq ft) " " "	200,000 200,000 200,000	250,000 250,000 250,000
Shell side coefficient	Btu/(hr)(°F)(sq ft) outside	121	100
Water velocity, tube side	ft/sec	3.57	3.0 8
Water coefficient	Btu/(hr)(°F)(sq ft)	11+10	1320
Overall coefficient	inside Btu/(hr)(°F)(sq ft)	67.1	48.3
Heat transfer area required	outside sq ft outside	392	545
Heat transfer area standard exchanger	sq ft outside	425	563.0
Exchanger dimensions Length of tubes* Diameter of tubes* (0.065"wall) Spacing of tubes* Number of tubes Diameter of shell Passes water side Number of baffles	ft inch inch	8 3/14 15/16 triangular 270 20 6 17	8 3/4 15/16 triangular 172 16 2 17
Shell side pressure drop	lbs/sq in.	4.0	3. 8
Costs Shell Tube side Nowzles Tube sheets Baffles Tubes	Dollars "" "" "" "" ""	\$1011 521 221 596 359 580	\$ 875 408 221 366 281 476
TOTAL COST		\$3288	\$2627

^{*}Assumed in design procedure

All prices for corn sirup coolers are based on exchangers having plain steel shells. The use of other metals for the shells would change the price of both units in a manner that would not affect the comparison adversely.

Case IV, Replacement of Plain Tubes by Finned Tubes in Corn Sirup Cooler

Given: In Case III, a plain-tube exchanger was designed for cooling 50 gallons of sirup per minute. The sirup leftat 130°F and the water at 110°F. Compute the performance of this exchanger when it is equipped with finned tubes.

The temperature of the sirup is now reduced to 117°F instead of 130°F, while the cooling water is maintained at an outlet temperature of 110°F. The finned tubes transfer an added 275,000 Btu per hr, as shown in Table XI.

This example cannot be used to evaluate the merit of finned tubes since it is impossible to evaluate the cost of the added cooling without further comparisons. Case V is a design of a plain-tube exchanger to match the performance of the exchanger in Case IV, i.e., the plain-tube unit of Case III when it contains finned tubes.

Case V, Closer Temperature Approach with Finned and Plain Tubes

Design a plain-tube exchanger to cool 50 gallons per minute of 38° Be corn sirup from 200°F to 117°F, with water in at 90°F and out at 110°F. Fouling factors of 0.002 to be used on both sides. Exchanger tubes are 8 feet long, 3/4-inch copper. Note that this is the performance of the exchanger with finned tubes in Case IV.

The results of the design and cost calculations are given in Table XI. It may be seen that the additional heat transfer to cool the sirup from 130°F to 117°F costs \$116.00 when employing finned tubes and \$930.00 when obtaining a larger plain-tube exchanger.

TABLE XI

DESIGN AND COSTS FOR CORN SIRUP -- COVERS CASES IV AND V

Properties of Sirup at Mean Bulk Temperature of Cases IV and V

 $\mu = 73$ centipoises $\rho = 84.0$ k = 0.28 $C_{\rm p} = 0.64$ Case IV Case V Plain Tube Plain Tube Unit Units Shell of Case to Match III, with Case IV Finned Tubes Heat duty Btu/(hr) 1,775,000 1,775,000 Mean temperature difference, ΔT_{m} 47.1 47.1 lbs/(hr)(sq ft) Shell side velocities Gm* 172,000 172,000 $G_{\mathbb{C}}$ 147,000 172,000 Gw 200,000 172,000 Shell side coefficient $Btu/(hr)(^{\circ}F)(sq ft)$ 78.3 109 outside Vater velocity, tube side ft/sec 5.6 2.68 Vater Coefficient Btu/(hr)(°F)(sq ft) 2120 1120 inside verall coefficient Btu/(hr)(°F)(sq ft) 44.2 68.2 outside leat transfer area required 885 626 sq ft outside exchanger dimensions Length of tubes* 3 ft 8 Diameter of tubes* (0.065" wall) inch 3/4 **う/**4 Spacing of tubes 15/16 triangular 15/16 triangular inch Number of tubes 398 270 Diameter of shell inch 20 24 Passes water side 6 6 Number of baffles 17 17 hell side pressure drop lbs/sq in. 3.1 4.5 osts Shell \$1158 \$1011 Dollars Tube side 581 521 Nozzles 221 221 11 Tube sheets 596 819 11 Baffles 359 475 746 Tubes 869

\$3454

\$4123

Assumed in design procedure

TOTAL COST

It might be added that the extra cooling below 130°F for 50 gallons per minute costs \$1.23 per °F for equipping with finned tubes and \$7.15 per °F when obtaining the requisite plain-tube exchanger.

WHEN ARE FINNED TUBES ECONOMICAL IN SHELL AND TUBE EXCHANGERS?

The above cases have been chosen to show typical advantages of finned tubes by selecting services where the shell-side coefficients are relatively low. A comparison of costs for services with high shell-side coefficients could result in little or no saving due to fouling factors, low fin efficiencies for high coefficients, and the slightly lower coefficients for the finned surface as compared to the plain surface, Fig. 36. A complete calculation, such as is given in Case I, is required to arrive at a definite comparison of costs.

One element of the economics is the working pressure of the exchanger. High pressures require heavy shells which are relatively expensive, and a given size reduction will save a higher per cent of the cost at higher pressures. These studies are based on working pressures of 150 pounds per sq in.

A general statement concerning the probability that finned-tube exchangers will or will not be economical can be made when the inside resistances to heat transfer and the outside resistances are known. Equation (9) gives the relationship between the clean and fouled coefficients, individual coefficients, and fouling factors.

$$U_{o} \text{ (fouled)} = \frac{1}{\frac{1}{h_{o}'} + f_{o} + \frac{L}{k} \frac{A_{o}}{A_{av}} + \frac{f_{1}}{A_{1}} \frac{A_{o}}{A_{1}} + \frac{A_{o}}{h_{1}A_{1}}}$$

$$= \frac{1}{\frac{1}{U_{o} \text{ (clean)}} + f_{o} + f_{1} \frac{A_{o}}{A_{1}}}$$
(9a)

For cases in which water flows inside of tubes at a given velocity and the metal resistance is known, the relationship between the inside resistance and the outside resistance is given by the two fouling factors and the overall coefficient on either a clean basis or on a fouled basis. Thus it is possible, at a fixed water-film coefficient and specified tube sizes, to make cost studies for plain and finned-tube exchangers as a function of the fouling factors and the overall coefficient.

Since situations arise in which either clean or fouled coefficients are known, two charts have been prepared for predicting whether finned or plain-tube exchangers are economical. Fig. 43 is based on overall coefficients for the fouled exchanger, and Fig. 44 plots overall coefficients for the clean exchanger. These charts have curves for given fouling factors on the outside and plot the fouling factor on the inside as ordinates. The curves represent the condition for equal costs of plain and finned-tube exchangers. The area above each curve represents overall coefficients for plain-tube exchangers for which cost calculations will show that plain tube exchangers are cheaper, while the area below the curve represents coefficients for which cost calculations will show that finned-tube exchangers are cheaper.

For example, Case I has a fouled overall coefficient of 87.1 for the plain-tube exchanger with $f_1 = 0.001$ and $f_0 = 0.001$. Reference to Fig. 43 shows that an overall coefficient of 87.1 is well below the curve for $f_0 = 0.001$ at $f_1 = 0.001$. In fact, all exchangers having overall coefficients in the fouled condition below 175, are more economical with finned tubes for fouling factors of 0.001. The clean overall coefficient for Case I is 110 and is well below the curve for $f_0 = 0.001$ in Fig. 43 at $f_1 = 0.001$.

FOR PREDICTING OF FINNED TUBES IN SHELL AND TUBE UNITS COEFFICIENT RELATIONSHIP OF THE OVERALL CLEAN AND THE FOULING FACTOR INSIDE TUBES FIG. 44 APPROXIMATE ECONOMICAL USE

These charts are based on specific calculations with the following data and assumptions:

- (1) Inside water coefficient = 1500.
- (2) 3/4-inch plain and finned Admiralty tubes of dimensions shown in Table I.
- (3) 24-inch diameter shell, 12-foot tubes, 4-pass plain-tube exchanger and 22-inch diameter shell, 12-foot tubes, 2-pass finned-tube exchanger.
- (4) It is assumed that the outside coefficient for finned tubes equals 80 per cent of the outside plain-tube coefficient.
- (5) Costs are those used in this study, which are \$4.65 per sq ft outside for the plain-tube exchanger(\$4495 total) and \$2.61 per sq ft outside for the finned exchanger (\$4578 total).

The curves represent the overall coefficients for the plain-tube exchanger and given fouling factors at which the exchangers of this size and equal costs transfer the same amount of heat per degree temperature difference. For Fig. 43 the computations simply involve finding the points at which $U_{\rm o}({\rm Plain\ fouled})$ divided by $U_{\rm o}({\rm Finned\ fouled})$ becomes equal to 4.65/2.61 or 1.78. The curves in Fig. 43 are terminated when the outside film coefficients begin to rise rapidly.

It is appreciated that these charts do not apply accurately for conditions other than those specified. For cases in which the exchanger diameters are lower than those given (22-24 inches), the break-even point for finned-tube exchangers will occur at lower overall coefficients. For larger sizes, the coefficients for the break-even point may be slightly higher.

The use of large fouling factors for the outside may be questioned in that such fouling might plug the spaces between the fins. Although such fouling could occur, it should not be overlooked that there is turbulence between the fins. The charts assume a uniform fouling on the outside, such as might occur for paraffin accumulation in contrast to solid accumulation, such as scale formation.

For petroleum oils used with the exchangers and conditions employed for Figs. 43 and 44, the overall coefficients are essentially a function of the oil viscosity. For a thermal conductivity of 0.078 Btu per (hr)(°F) (ft) and a specific heat of 0.48 Btu per (lb)(°F), the clean overall coefficient can be computed from the oil viscosity, an assumed velocity of 400,000 lbs/(hr)(sq ft) and the conditions specified. Thus, a chart can be drawn to indicate whether, as a function of the oil viscosity and the two fouling factors, Fig. 45, finned-tube coolers are cheaper than plain-tube coolers. This chart is based on the same assumptions and conditions as Figs. 43 and 44. For oils of viscosity higher than a given curve, finned-tube exchangers (water inside tubes) are more economical. The viscosity is taken at the mean bulk temperature.

Taking Case I as an example, the lube oil has a viscosity of 23.0 centipoises, with 0.001 fouling factor outside and 0.001 fouling factor inside. The viscosity of 23 centipoises is considerably above the 0.1 centipoise read from the chart as the viscosity at the break-even point for these fouling factors for mineral oils. Again, this chart is based on the cost ratio of 1.78 for plain surface to outside finned surface and applies to exchangers 22 to 24 inches in diameter. Small exchangers cannot tolerate the low viscosities indicated for economical use of finned tubes, while larger exchangers would break even at even

FIG. 45 ROUGH RELATIONSHIP FOR PREDICTING OIL VISCOSITIES AT WHICH FINNED TUBES BECOME ECONOMICAL IN SHELL AND TUBE UNITS.

lower viscosities than those shown.

It should be emphasized that these charts give only approximate values and are intended as "rules of thumb" for evaluating finned tubes.

They are not offered as a substitute for the design calculations.

METAL REQUIREMENTS OF PLAIN AND FINNED TUBE EXCHANGERS

The weights of heat exchangers for a given duty are of interest for three reasons:

- (1) metal requirement in times of metal shortage
- (2) weight as a factor in handling, in design of supporting structures, and for mobile equipment
- (3) shipping costs.

Any reduction in cost due to the use of finned tubes will be primarily the result of reduction in shell size, and therefore a reduction in the amount of metal used.

A comparison of the weights of the exchangers in Cases I, II, and III is given in Table XII. For these cases, approximately one third of the tube and shell metal is saved when finned tubes are employed. These weights are for operating pressures of 150 lbs per sq in.

CONCLUSION

The heat-transfer and pressure-drop experiments provide adequate data for designing exchangers to determine the relative costs for shell and tube exchangers equipped with plain tubes and with finned tubes. For uses in which the shell-side resistance, including fouling, is somewhat

TABLE XII

COMPARISON OF METAL REQUIREMENTS

	Case I Lube Oil Cooler	Case II Absorption Oil Cooler	Case III Sirup Cooler
Plain Tubes			
Weight of exchanger* less tubes, lbs	4,268	14,633	3 ,1 48
Weight of tubes, lbs	1,490	12,000	1,160
Total weight, 1bs	5 , 758	26,633	4,308
Finned Tubes			
Weight of exchanger* less tubes, 1bs	2 , 688	9,612	2,256
Weight of finned tubes, lls	985	8,150	7 93
Total weight, lbs	3 , 673	17,762	3,049
Per cent saving in tube metal Per cent saving in total exchanger	33.9 36.2	32.1 33.3	31.6 29.1

^{*}Taken as Alco shipping weights less 25 lbs per ft exchanger length allowance for skids.

higher than the inside resistance, a design calculation should be made to determine the cheaper exchanger. Cooling of mineral bils with water is a typical example in which a saving of 20 per cent in exchanger cost and of 30 per cent in metal may be realized by the use of finned tubes.

It is appreciated that the industry may desire further assurances that the fouling resistances on the shelled side of finned tubes will be similar to those on plain tubes. Also, such problems as corrosion of the fins and erosion due to the higher water volocities on the inside of the tubes may require some study under actual service conditions.

NOMENCLATURE

A = Heat-transfer area, sq ft

A = Average heat-transfer area through metal wall of tube, sq ft per ft of length

A = Flow area across the tube bundle, sq ft

A = Effective outside area of finned tube, sq ft per ft of tube

Ar = Area of fins on finned tube, sq ft per ft of tube

 A_m = Mean area for fluid flow on shell side of tube bundle, $\sqrt{A_c A_w}$, sq ft

Ao = Outside area of tube, sq ft per ft of length

 A_{W} = Flow area through baffle window, sq ft

 a_f = Area of a fin

C = Constant in heat transfer equation (4, 4a)

C' = Constant in heat transfer equation (4b)

C_p = Heat capacity, Btu per (lb)(°F)

D = Diameter of tube, ft

D_e = Equivalent outside diameter of finned tube, ft = outside diameter of plain tube having same inside diameter and same weight of metal

Do = Outside diameter of plain tube, ft

d; = Inside diameter of tube, in. (See Equation (9).)

F = Correction factor for ΔT in multipass exchangers from TEMA

G = Mass-flow rate, lbs per (sq ft)(hr)

 G_c = Cross-flow mass-flow rate at A_c , lbs per (sq ft)(hr)

 G_m = Mean flow rate, shell side, at A_m lbs per (sq ft)(hr)

 G_{w} = Mass-flow rate at A_{w} , lbs per (sq ft)(hr)

 $g_c = Conversion factor = 32.17 ft per sec^2$

h_i = Inside coefficient based on inside area, Btu per (sq ft)(°F)(hr)

hi' = Inside coefficient based on outside area, Btu per (sq ft)(T)(hr)

h o = Outside coefficient based on outside area for plain tubes and effective outside area for finned tubes, Btu per (sq ft()°F)(hr)

ho' = Outside film coefficient based on the actual outside area for finned tubes, Btu per (sq ft)(°F)(hr)

k = Thermal conductivity, Btu per (ft)(°F)(hr)

L = Length of heat-transfer path through metal wall of tube, ft

m = Exponent of Reynolds Number, Equation (4)

N = 2.31/(1 + 0.011T) for use in Wilson plots, where T = mean bulk temperature of water inside tubes

n = Number of rows of tubes crossed in cross flow between baffle windows

o = Exponent of Prandtl Number, Equation (4)

 $(P_1-P_2)c$ = Pressure drop per baffle space due to friction of cross flow, lbs per sq in.

(P₁ - P₂)w = Pressure drop per baffle window, lbs per sq in.

q = Heat transferred, Btu per hr

T = Bulk water temperature, F

ΔT = Temperature difference, F

ΔT' = Variable temperature difference between bulk fluid temperature and the point fin temperature, °F

 $\Delta T_{\rm B}$ = Temperature difference between the bluk fluid temperature and that of the base or root of a fin, ${}^{\rm e}$ F

 $\Delta T_{\rm m}$ = Log mean temperature difference times the correction factor F for a multipass tube side, from TEMA, $^{\bullet}$ F

U = Overall heat-transfer coefficient, Btu per (sq ft)(°F)(hr)

U_O = Overall heat-transfer coefficient based on the actual outside area (plain and finned), Btu per (sq ft)(°F)(hr)

V = Water velocity inside tube, ft per sec

w = Shell-side mass-flow rate, lbs per hr

 μ = Fluid viscosity at bulk temperature

 $\mu_{\mathbf{W}}$ = Fluid viscosity at tube wall temperature

 $\mu/\mu_{\rm W}$ = Viscosity ratio

 ϕ = Fin efficiency (See Equation (2).)

REFERENCES

- 1. "Heat-Transfer Through Tubes with Integral Spiral Fins" by D. L. Katz, K. O. Beatty, Jr., and A. S. Foust. Trans. ASME, 67, 1945, 665-674.
- 2. "Finned Tube Subcoolers for Refrigeration Systems" by D. L. Katz, R. E. Hope, and S. C. Datsko. Refrig. Eng., 51, 1946, 335-339.
- 3. "Condensation of Freon-12 with Finned Tubes" by D. L. Katz, R. E. Hope, S. C. Datsko, and D. B. Robinson. Refrig. Eng., 53, 1947, 211-217 and 315-319.
- 4. "Condensation of Vapors on Outside of Finned Tubes" by K. O. Beatty, Jr., and D. L. Katz. Chem. Eng. Prog., 44, 1948, 55-70.
- 5. "Condensation on Six Finned Tubes in a Vertical Row" by D. L. Katz and J. M. Geist. Trans. ASME, 70, 1948, 907-914.
- 6. "Coolers and Condenser Heat-Transfer with Low Pressure Freon Refrigerant" by W. Jones. Refrig. Eng., 41, 1941, 413-418.
- 7. "Condensation of Refrigerants on Finned Tubes" by D. B. Robinson and D. L. Katz. Heat. and Vent. Eng., 44, Nov., 1947, 84-94.
- 8. "Boiling Coefficients for Finned Tubes" by W. A. Zieman and D. L. Katz. Pet. Ref., 26, 1947, 620-624.
- 9. "Design of Finned Tube Exchangers and Condensers" by D. L. Katz and R. B. Williams. Oil and Gas Journ., 48, 1949, 245-264.
- 10. "Heat-Transfer and Pressure Loss in Small Commercial Shell-and-Finned Tube Heat Exchangers" by R. M. Armstrong. Trans. ASME, 67, 1945, 675-681.
- 11. "Shell-Side Heat-Transfer Characteristics of Segmentally Baffled Shelland Tube Heat Exchangers" by Townsend Tinker. Preprint of paper presented at the 1947 Annual Meeting, ASME.
- 12. Chemical Engineers' Handbook, 3rd ed., ed. by J. H. Perry, McGraw-Hill Company, Inc., New York, N. Y., 1950.
- 13. <u>Heat Transmission</u>, 2nd ed., by W. H. McAdams, McGraw-Hill Book Company, Inc., New York, N. Y., 1942.
- 14. Thermodynamic Properties of Steam, by J. H. Keenan and F. G. Keyes, John Wiley and Sons, Inc., New York, N. Y., 1936.
- 15. National Standard Petroleum Oil Tables, National Bureau of Standards, Circular C410, Government Printing Office, Washington, D. C., 1936.

- International Critical Tables, compiled by Clarence J. West, McGraw-Hill Book Company, Inc., New York, N. Y., 1933.
- 17. "Thermal Conductivity of Liquids" by J. F. D. Smith. Trans. ASME, 58, 1936, 719-725.
- Standards of Tubular Exchanger Manufacturers Association, 2nd ed., TEMA, Inc., New York, N. Y., 1949.
- 19. "Glycerol Viscosity Tables" by M. L. Sheely, <u>Ind. Eng. Chem.</u>, 24, 1932, 1060-1064.
- 20. "Basis for Rational Design of Heat-Transfer Apparatus" by E. E. Wilson. Trans. ASME, 37, 1915, 47-70 and 70-82.
- 21. "Efficiency of Extended Surfaces" by K. A. Gardner, <u>Trans. ASME</u>, <u>67</u>, 1945, 621-631.
- 22. "Heat Transfer and Pressure Drop in Heat Exchangers" by D. A. Donohue. Ind. Eng. Chem., 41, 1949, 2499-2511.
- 23. Heat Transfer and Pressure Drop in Heat Exchangers, by B. E. Short. Bulletin No. 4324, The University of Texas, Justin, Texas, June 22, 1943.
- 24. "Shell-Side Coefficients of Heat Transfer in a Baffled Heat Exchanger" by H. S. Gardner and L. Siller. Trans. ASME, 69, 1947, 687-694.
- 25. "Heat Transfer and Pressure Drop in Annuli" by J. G. Knudsen and D. L. Katz. Chem. Eng. Prog., 46, 1950, 490-500.
- 26. "Alco Heat Exchangers," Private Communication from S. Kopp, Alco Products Division, American Locomotive Company, Dunkirk, N. Y., Sept. 28, 1950.

FIG. 10 SKETCH SHOWING INSIDE DETAIL OF MIXING CHAMBERS

h_o outside coefficient btu/hr.°FSQ.FT. BASED ON EFFECTIVE OUTSIDE AREA A_e FIG.18 CONVERSION BETWEEN ACTUAL AND EFFECTIVE AREAS FOR FINNED TUBES OF THIS RESEARCH, BASED ON GARDNER'S FIN EFFICIENCIES

TABLE I DIMENSIONS OF EXCHANGER SHELLS, BUNDLES, AND TUBES

Quantity		8-Inch Exchanger	hanger		6-Inch Exchanger	changer
Shell Inside Diameter, in. Number of Tube Passes in Exchanger Tube-Side Connection Shell-Side Connection		7.972 2 2-1/2-inch I.P.T. 3-inch I.P.T.	2 I.D.T.		6.008 2 2-inch I.I	208 I.P.T. I.P.T.
Tube Bundle No.	П	2	3	4	5	9
Length of Tube Bundle, in. Length of Tubes in Bundle, in. Type of Tube	48 46.64 Admiralty Plain	48 46.64 Admiralty Finned	48 46.88 Copper Plain	48 46.88 Copper Finned	48 46.64 Admiralty Plain	48 46.64 Admiralty Finned
Tube Outside Diameter, in. Tube Inside Diameter, in. Tube Root Diameter, in. Tube Equivalent Outside Diameter, Fins per Inch Height of Fins, in. Fin Thickness at Midpoint, in.	0.751 0.646 in.	0.735 0.495 0.639 0.660 18.42 0.048	0.504	0.486 0.305 0.378 0.416 19.33 0.054 0.0155	0.621	0.620 0.411 0.520 0.554 18.10 0.050 0.050
Tube Outside Area, sq ft per ft Number of Tubes in Bundle Total Outside Area of Tubes, sq ft Total Inside Area of Tubes, sq ft	0.196 50 58.25 32.92	0.410 50 79.00 25.00	0.132 114 59.08 51.31	0.304 114 163.53 33.13	0.163 40 25.32 21.04	0.361 40 54.50 16.70
Baffle Outside Diameter, in. Height of Baffle Cut, in. Length of Baffled Section, in. Number of Baffles	7.933 1.94 32 9	7.933 1.94 32 9	7.930 3.07 32 9	7.930 3.07 32 9	5.956 2.03 40 11	5.956 2.03 40 11
Cross-Sectional Area for Flow Inside Tubes per Pass, sq ft Cross-Sectional Area for Flow Outside Tubes, sq ft	0.0568	0.0335	0.0575	0.0286	0.02916	0.0184

TABLE III

EXAMPLE DATA AND CALCULATIONS OF COEFFICIENTS

Run No. 26: 6-in. exchanger, Bundle No. 6 5/8-in. O.D. finned Admiralty tubes

Water shell side: 0.993-in. orifice Water tube side: 1.597 in. orifice

ORIGINAL DATA

	Temperat	ure Rea	dings,	°C	Pressure Drop Manometer Readings, Inches Hg								
	Shell	Side	Tube	Side		Shel	l Side		·	Tube	Side		
	In	Out	In	Out	Orif	ice	Exch	anger	Ori	fice	Excha	nger	
	No. 7	No. 8	No. 5	No. 6	L	R	L	R	L	R	L	R	
(a)	79.85 79.90 79.85 79.90 79.88	72.10 72.25 72.20 72.20 72.19	65.05 65.15 65.05 65.05	70.50 70.60 70.50 <u>70.55</u> 70.54	7.90 7.90 7.90 7.90 7.90	8.05 8.05 8.05 8.10 8.06	2.50 2.50 2.50 2.50 2.50	2.15 2.15 2.20 2.20 2.18	1.85 1.85 1.85 1.85	2.00 2.00 2.00 2.00 2.00	2.70 2.70 2.70 2.70 2.70	2.95 2.95 2.90 2.90 2.93	
(b)	79.90 79.95 80.00 80.25 80.03	72.00 72.25 72.30 72.20 72.19	66.85 67.15 66.95 67.00 66.99	70.65 70.90 70.70 70.75 70.75	7.85 7.85 7.95 7.90 7.89	8.05 8.05 8.05 8.10 8.06	2.50 2.50 2.50 2.50 2.50	2.20 2.20 2.20 2.20 2.20	3.80 3.85 3.85 3.85 3.84	3.90 3.90 3.90 <u>3.95</u> 3.91	5.25 5.25 5.30 5.25 5.26	5.50 5.50 5.55 5.55 5.55	
(c)	79.95 79.95 80.00 79.90 79.95	72.20 72.10 72.20 72.15 72.16	68.30 68.00 68.25 68.05	71.00 70.75 71.00 70.85 70.90	7.90 7.90 7.95 <u>7.95</u> 7.93	8.10 8.05 8.10 8.10 8.09	2.50 2.50 2.50 2.50 2.50	2.20 2.20 2.20 2.20 2.20	6.50 6.50 6.45 6.49	6.55 6.60 6.60 6.60 6.59	8.60 8.60 8.60 <u>8.60</u> 8.60	8.95 9.00 9.00 9.00 8.99	
(d)	79.95 79.80 80.05 80.15 79.99	72.10 72.20 72.35 72.15 72.20	68.85 69.05 68.80 68.80	71.00 71.20 70.95 71.00 71.04	7.90 7.90 7.85 7.90 7.89	8.05 8.05 8.00 8.05 8.04	2.50 2.50 2.50 2.50 2.50	2.20 2.20 2.20 2.20 2.20	9.95 9.95 9.90 9.90 9.92	10.05 10.10 10.10 10.10 10.09	12.90 12.85 12.85 12.80	13.20 13.20 13.20 13.20 13.20	

TABLE III, continued

CALCULATIONS FOR RUN 26a

Tube Side

Temperatures:

Water in 65.08°C Water out 70.54°C Correction +0.02°C Correction +0.37°C 70.91°C or 149.18°F (Col.2)*

Flow Rates:

Left 1.85 in. Hg Right $\frac{2.00}{3.85}$ in. Hg

From Fig. 11, flow rate at 60°F = 31,700 lbs/hr

Flow rate corrected for temperature = 31,700 x $\sqrt{\frac{\rho_{60}}{\rho_{155}}}$ = 31,700 x 0.99

= 31,400 lbs/hr (Col.5)

Shell Side

Temperatures:

Water in 79.88°C Water out 72.19°C Correction +0.68°C Correction +0.40°C 72.59°C or 177.01°F (Col.8) or 162.66°F (Col.9)

Flow Rates:

 $\begin{array}{ccc} & \text{Left} & 7.90 \text{ in. Hg} \\ \text{Right} & \underline{8.06} \text{ in. Hg} \\ \\ \text{Manometer Reading} & 15.96 \text{ in. Hg} \\ \end{array}$

From Fig. 11, flow rate at $60^{\circ}F = 24,000 \text{ lbs/hr}$

Flow rate corrected for temperature = $24,000 \times 0.99 = 23,800$

lbs/hr (Col.11)

^{*}These column numbers refer to Table IV.

TABLE III, continued

Heat Transfer

Tube Side:

$$31,400 \times (159.58 - 149.18) = 326,000 Btu/hr$$
 (Col.6)

Shell Side:

$$23,800 \times (177.01 - 162.66) = 341,000 \text{ Btu/hr}$$
 (Col.12)
Average $334,000$

Mean Temperature Difference

L.M.T.D. =
$$\frac{(162.66 - 149.18) - (177.01 - 159.58)}{\ln \frac{162.66 - 149.18}{177.01 - 159.58}}$$

Correction for two-pass tube side, Fig. T-4A TEMA, F = 0.887*Mean temperature difference = $0.887 \times 15.30 - 13.58$ (Col.14)

Overall Coefficient based on outside area of 54.5 sq ft (Table I)

= 15.30°F

$$U_0 = \frac{q}{A \Delta T_m} = \frac{334,000}{54.5 \times 13.58} = 451 \text{ Btu/(hr)(°F)(sq ft) (Col.15)}$$

Similar calculations give the following overall coefficients for 26b, 26c, and 26d:

Run	v_o	1/U ₀		8.0 _v	1/v ^{0.8}	N	$N/V^{0.8}$
26 a	451	.00222	7.75	5.14	.194	.860	.167
26 b	524	.00191	11.03	6.83	.146	.854	.125
26 c	584	.00171	14.31	8.40	.119	.850	.101
26 d	636	.00157	17.73	9.99	.101	.847	.0855

^{*}When the F of TEMA was less than about 0.9, Equation (19), p. 145 of McAdams, was used to obtain the mean temperature difference directly, permitting the reporting of F to the third place.

TABLE III, continued

Linear Velocity of Water in the tubes of 0.0184 sq ft cross section = V

$$= \frac{31,400 \text{ (lbs/hr)} \times 0.01636 \text{ (cu ft/lb)}}{3600 \times 0.0184 \text{ (sq ft)}} = 7.75 \text{ ft/sec}$$
 (Col.7)

This velocity is taken to the 0.8 power and the reciprocal obtained as shown. A correction to bring all runs to the same equivalent water temperature of 120°F is obtained from Equation (9c), page 183 of McAdams: 13

$$N = \frac{2.32}{1 + 0.011 \text{ T}}$$

where T is the mean water temperature in °F. Then

$$N = \frac{2.32}{1 + (0.011 \times 154)} = 0.860$$

and

$$\frac{N}{v^{0.8}} = 0.167$$
 (Col.17)

The Wilson plot of the four points gives an intercept on Fig. 17 of 0.000930. Then

$$\frac{1}{h_0} + \frac{L}{K} \frac{\Lambda_0}{A_m} = 0.000930$$

$$\frac{1}{h_0!} = 0.000930 - \frac{0.0545 \times 0.361}{12 \times 64 \times 0.122}$$
$$= 0.000720$$

$$h_0' = \frac{1}{0.000720} = 1390$$
 outside coefficient based on actual outside area.

^{*}Standards Copper and Brass Research Association.

TABLE III, concluded

The desired shell-side coefficients are those based on the effective area in order that the usual temperature difference may be employed. Fig. 18 gives the conversion from actual to effective area for this tube, based on the outside coefficient computed for the actual area:

$$h_o = \frac{1}{0.000720} \frac{A_o}{A_e} = \frac{1.165}{0.000720}$$

= 1620 Btu/(hr)(°F)(sq ft effective outside area)*

TABLE IX

3/4" PLAIN TUBES IN 8" SHELL BUNDLE I

	40 H													115
	Average Shell Side Values -376 -014 Re Pr (Bu)(Pr)(\frac{1}{14}\frac{1}{14})		8 000	ង	Z/J	22	501	133	143		17.2		12.4	10.3
	hell Side		2.28	8.:9	2.28	2.26	2.30	2.35	10. 2.7		2	2	â	8
	Terage S		46500	46500	94000	80000	32400	21700	52000		क्रिय	જ	7.77	8
	M.		2 <u>8</u> 2	88	7,96.	435	88	स्र	386		ន្ទ	3.501	8	₹.
	°q		πυ	1825	2310	2740	1435	11,30	2050		161.0	133.5	116.5	8
	E. E.													
	# <u>0</u> .8		0.302 0.228 0.188 0.156	0.304 0.231 0.187 0.157	0.303 0.227 0.187 0.153	0.305 0.229 0.186 0.156	0.304 0.228 0.187 0.157	0.306 0.230 0.192 0.161	0.306 0.228 0.186 0.157		0.294 0.240 0.185 0.157	0.296 0.240 0.185 0.155	0.237 0.185 0.157	0.237 0.237 0.184 0.161
	ျာ [°]		.00157 .00134 .00125	.00159 .00137 .00124	.00145 .00121 .00109	.00138 .00106 .00006	.00172 .00149 .00137	.00191 .00159 .00159	.00152 .00127 .00114		.000. 4.000. 7.000. 7.000. 7.000.	.00862 .00874 .00822 .00796	00989 42600 42600 1000 1000	3.5.5.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.
- E	p°		657 88.3 896	2 2 2 2	88 88 7101	528 E	84258 84288	8 8 2 2 8	8838 8838		85.54 6.2.54 6.2.6.1.	4444 6445 6445 6445 6445 6445 6445 6445	101 101 100 100 100 100 100 100 100 100	8884 6555
SHELL BUNDLE	Mean temp. difference		17.2 14.8 13.9 12.9	17.5 15.2 13.7	17.5 13.6 13.6	17.8 15.6 13.8	15.6 13.8 12.8	4.22.21 8.53.11 6.00.11	17.4 12.6 12.8 5.11		22 22 25 24 20 24 30 24	5.55 5.55 5.45 5.55	33.0 32.0 30.1	#### 9.00 9.00 9.00 9.00
	Pres.		3.15 3.25 4.45 4.45	4444 4444	2.0.0.0.0 8.8.6.0.0	ఇ.ఇ.ఇ.ఇ భిళ్ళి శ్రీ	4888	\$\$\$\$ \$0000	****** *****	,	6.6.6 3.73 8.73 8.73	オカカカ	9898 8868	44444 4444
3/4 PLAIN TUBES IN 8	Heat trans. BTU per hr.	n Shell Side	426500 431000 435000 4405co	425000 431000 425000 425000	468000 459000 473000 452500	504000 516000 516000 518000	355000 365000 363000 375000	297000 298000 308000 314000	453000 426000 422000 418000	Shell Side	175000 175000 175000 176000	152000 144500 148000 145000	124500 125500 125500 125000	104400 104200 105300 102700
PLA	Shell Side	Water on	35343 35491 35739 35780	35800 35800 35800 35800	\$5100 \$5000 \$18800 \$48600	60600 61000 61000 61000	25000 25100 25100 25100	17000 17000 16900 17000	39700 39700 39700 39700	~	8888 8888 4444	32000 32000 32000 32000	6888 8888 8888	18100 18100 18100
3	2 P		12.09 12.13 12.19 12.31	11.88 11.88 11.88	9999 4884	8888 848 848 848	4444 8838	17.45 17.52 18.22 18.50			<u> </u>	88.88 7.89.1	9999 9683	11111 1288 1388 1388
	Temperature,		165.51 165.56 165.16 164.88	165.49 165.56 165.40 165.40	167.97 167.95 167.61 167.95	168.95 169.95 169.00 168.69	162.88 162.46 163.34 163.38	159.81 158.86 158.86 158.90	166.42 166.14 166.30 166.33		188.65 188.45 188.45 188.56	187.47 187.16 187.03 187.16	186.9 186.9 186.3 186.3 186.3	189.49 189.78 189.78
			17.60 17.69 17.30 17.29	177.35 177.58 177.28 177.57	177.51 177.31 177.30 177.26	177.17 177.40 177.49 177.19	177.04 177.04 178.03 178.35	176.67 177.17 177.08 177.40	177.58 176.86 177.62 176.85	•	186.93 186.93 186.93	188.98 198.98 199.199.88	92.28 93.28 93.28 93.28 93.28	88.88 8.838 8.838
	Water Velocity Ft./sec.		3.73 5.81 8.89	3.68 5.15 6.64 8.24	3.69 6.65 8.65	3.67 5.18 6.65 8.23	5.89.99 8.98.99 8.98.99	3.69 5.23 6.57 8.15	\$.00.00 \$.00 \$.00 \$.00 \$.00 \$.00		6.43 8.36 1.6	6.82.0 8.69.0 8.00.0	6.99.30 5.99.30 5.09.30	6.4.7. 6.4.8. 6.4.8.
	Heat trans.		416000 417000 428000 442000	1,22000 1,19000 1,23000 1,23000	462000 461000 476000 465000	500000 516000 522000 493000	342000 345000 343000 361000	278000 278000 288000 307000	435000 414000 422000 404000	,	17600 17700 17900 181000	146000 146000 148000 150000	132000 131000 131000 133000	108000 110000 108000 113000
100	Pounds per hr.		46530 65043 83340 103455	16000 64400 83000 103000	46100 65200 83100 105000	45800 64900 83200 103000	46100 65200 833.00 103500	46100 65400 82200 102000	45500 65000 83400 101500	3	#6600 60500 83200 102000	46200 60300 83600 103000	46200 61300 83300 102000	46200 61300 84000 98200
100	"Y Founds Files per hr.		8 6.93 4.75 88	6.5 6.5 1.0 1.0 1.0	10.02 7.06 5.72 4.43	10.7 7.93 7.93 7.93	2.2.4. 2.2.4.2.	,4.5. 5.2.2.9 6.2.2.9	፠፠፠፠ ፠፠፠፠	:	2.33 2.33 2.150 1.73	3.167 2.425 1.776 1.459	2.848 2.139 1.576 1.300	2.348 1.797 1.286 1.151
	Temperature,		157.68 158.86 158.85 159.33	157.59 158.59 159.10 160.20	159.22 160.78 160.93 162.27	159.64 160.77 161.87 162.25	156.70 157.17 158.72 158.79	155.79 155.79 155.12 155.13	158.43 159.75 160.77 161.17	č	160.88 160.943 161.334 161.811	160.265 160.421 160.578 161.401	160.128 160.317 160.519 161.190	159.795 159.946 160.144 160.810
	th Tee		148.75 152.46 153.70 155.05	148.40 152.08 154.00 156.09	149.20 153.72 155.21 157.84	148.86 152.80 155.61 157.46	149.29 151.86 154.60 155.30	148.60 151.54 157.65 152.42	148.87 153.39 155.71 157.19	. !	157.105 158.014 159.184 160.032	157.098 157.996 158.802 159.942	177.280 158.187 158.945 159.890	157.447 158.149 158.858 159.659
	Ren No.		cu ·	ĸ	#	1 0	9	~	18	:	64	20	ц	52

TABLE IX

3/4" PLAIN TUBES IN 8" SHELL BUNDLE I

ſ	15	ŧ										
	e Values			čč.s	0).*).	9.63	11.0	16.0	15.2	88. ‡	3.41	£.13
	Average Shell Side Values	ል		462	57.5	273	1 97	262	1%	15t	1655	1586
	verage S	Re		304	35 ⁴	, 29 1	Ó	1170	88	105	47.8	72.8
	¥	Nu		61.5	74.1	0.00	79.8	011	90.5	63.6	0.94	53.8
		όά		∂• 6),	69.8	3.0	103.0	142.5	116.5	77.8	56.3	65.8
		Calc.										
		¥.0√		0.296 0.238 0.184 0.167	0.344 0.273 0.213 0.179	0.349 0.274 0.218 0.180	0.346 0.276 0.213 0.180	0.345 0.273 0.212 0.176	0.346 0.274 0.212 0.177	0.458 0.365 0.236 0.246	0.461 0.369 0.838	0.463 0.370 0.288 0.238
		пþ°		.01360 .01355 .01342 .01348	.01595 .01571 .01550 .01520	.01331 .01310 .01286	.01078 .01060 .01060	.00830 .00804 .00755 .007770	.00990 .00970 .00971 .00921	9440. 8740. 8740. 8760.	920. 920. 920. 920. 920.	.01/20 .02665 .01645 .01544
		n°		73.6 6.4 7.4 7.8	9.50 9.00 9.00 9.00 9.00 9.00 9.00 9.00	75.1 76.3 78.0 79.2	88 <u>4</u> 8 5.5.5.5	120.5 124.4 127.5 129.0	101.0 103.0 103.1	68.0 72.0 72.8 6.8 6.8	000°F	8000 31361
	Mean temp.	difference F		30.5 4.00. 4.1.6	61.9 29.6 57.7 57.6	61.4 60.4 58.8	62.5 61.1 60.0 78.7	25.50 25.50	63.1 60.7 59.1	36.7 36.7 38.2 9.8 9.8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38.5 37.6 37.6
	Pres			0000 8888	0.0 0.09 0.09 0.09	44.45.45 45.45.45 45.45.45	2.5.5 2.5.5 2.67	6.76 6.76 6.80	5000 5000 5000	7.57 7.57 7.64 7.69	₩₩₩ ₩₩₩	พพพพ ชื่นชื่น
		Heat trans. HTU per hr.	Shell Side	83500 83400 83800 85000	142000 140000 136000 137500	172500 173500 174000 172500	214000 215000 213000 210000	296500 296000 296000 297000	245500 245000 245000	93500 95000 93000 100300	6300 64800 64800 64800	80400 82100 80700 82900
Chall Gade	anto T	Pounds per hr.	011 on	13200 13000 13000 13100	13200 13100 12900 13000	18000 18000 18000 18100	25600 25600 25500 25500	45500 45500 45300 45300	32100 32000 32000 32000	28000 28000 27000 27700	12900 13300 13500 13100	19300 19100 19200 19500
·	Tarro	r g		12.47 12.49 12.60 12.76	21.22 21.17 20.93 20.93	18.98 19.08 19.17 18.87	16.50 16.56 16.49 16.23	12.84 12.89 12.99	33334 4114	7.16 7.31 7.47 7.83	01000 04.600 04.600	ଇ ଦୁ ଦୁ ହ ଝି ଫୁ ଛି ଅ
		Temperature,		183.58 183.49 183.38 183.65	175.30 175.04 174.61 175.39	176.41 177.15 177.40 176.76	179.28 179.19 179.05 179.35	182.94 182.68 182.32 182.71	180.75 180.55 180.64 180.43	105.44 105.73 105.80 105.91	102.24 102.56 103.01 102.52	104.47 104.86 103.96
		In Tea		196.05 195.98 195.98 196.41	196. 196. 197. 196. 196. 196.	195.39 196.23 196.57 195.63	195.78 195.75 195.54 195.58	195.78 195.48 195.19 195.63	195.91 195.66 195.75 195.40	112.60 113.04 113.27 113.74	112.7	113.45 113.45 113.85 113.85
	Water	Velocity Ft./sec.		3.70 6.88 7.53	3.70 4.88 6.63 8.18	49.4.98 81.89 1.8	7.4.6.6.4.8.2.6.1.8.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	86.4.85 8.50 8.30 8.30	86.36 86.86 87.08	86.4 86.58 8.53 8.53	86.43 86.63 86.63	8.33 8.33
		Heat trans.		87500 88100 91600 91100	155000 151000 149000 153000	181000 183000 186000 183000	21,8000 21,9000 21,9000 21,9000	292000 295000 299000 298000	242000 242000 2400000 246000	99400 101500 107000 113500	76100 77000 81600 82500	90800 95100 93600 99000
Tritte Stde	TO DOT	Pounds per hr.		46200 61300 83500 94100	46500 61400 83300 103000	45800 61500 84000 103000	46200 60800 83300 102000	46100 61000 83200 105000	46100 61100 83200 104500	46600 61900 84200 105500	46600 61200 84200 106000	46600 61600 84000 106000
Unter on White Stde	TO TOA OU	rise		1.894 1.439 1.097 0.969	3.337 2.459 1.807 1.489	3.960 2.977 2.225 1.777	4.720 3.600 2.672 2.148	6.340 4.837 3.523 2.836	5.242 3.967 2.921 2.356	2.130 1.640 1.271 1.075	1.634 1.258 0.970 0.779	0.11.25 94.45 94.45 94.45
		Temperature,		159.719 159.721 159.752 159.831	125.447 127.044 127.976 128.972	126.167 126.941 127.665 128.266	127.199 127.895 128.520 129.789	128.655 129.317 129.584 130.304	127.850 128.417 129.299 129.976	73.269 73.494 72.000 71.442	71.922 72.779 73.200 72.410	71.461 71.460 71.665 72.001
		In		157.825 158.282 158.655 158.862	122,110 124,585 126,169 127,483	122.207 123.964 125.440 126.489	122.479 124.295 125.848 127.641	122.315 124.480 126.061 127.468	122.608 124.450 126.378 127.620	71.139 71.854 70.729 70.367	70.288 71.521 72.230 71.631	69.514 69.917 70.551 71.067
		Run No.		53	₹	55	56	62	63	₫	65	98

SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS TABLE IX

	Average Shell Side Values	-375 -014 (4)(174)(174)	
	Versue	2	
	Y	Ma	
	L	°q	
		3 Price	
		¥ 0.8	
		먠	
DLE 1		°	
3/4" PLAIN TUBES IN 8" SHELL BUNDLE I		Ture, T Pounds Heat trans. drop difference of drop per hr. BTU per hr. psi	
18 Z		Pres.	
N TUBES		ture, 'T Pounds Heat trans. drop out drop per hr. BIU per hr. psi	
#PLA	1 81de	Pounds per hr.	
3/	Shel	drop	
		Temperature out	
		Ion	
		Water Velocity Ft./sec.	
		Founds East trans, Valority ise per hr. EU per hr. Ft./sec.	
	se Side	nds B	
	Water on Tube Side	186	
	Wat	emperature, T	
		Temperatu	
		I I	
		F.	

	-375 -014 (Pr / H)	_ [}											117	7
Values	18 (M)	1		17.2	23.9	31.7	22.6	15.1	8.25	5.47	9.68	n.5	4.36	2.78
Shell Side Values	Å			707	106	104	175	179	188	1 50	403	378	1340	1425
Average		İ		1210	1990	32.70	92.7.	8	313	ž	418	36	5.16	45.1
Y	¥			ş.	131	1.(3	7#1	8.3	4.8	4.74	83.5	5.76	53.6	35.4
	å	•		860	361	9/.4	ş	772	149	128	88	8 9	4	33.1
	Gel.	-		0011	1240	1245	1205	1205	835	747	92	æ	645	8 6
	*	 •		0.291	0.258	0.258	997.0	0.266	0.368	0.430	0. k 21	0.393	0.497	0.575
	≠⊢	٥		1 8400.	.00365	.00298	.00339	.00459	.00796	.00923	.00%	.00510	.00855	.01238
	ű	•		207	41z	335	8	218	125.5	108.3	172	38	117.0	80.9
	Mean temp. difference	F.		5 4. 9	25.6	26.1	28.1	8.8	24.8	28.2	28.8	29.5	38.4	37.1
	Pres.	28€		2.06	5.24	12.50	12.62	₽.	98.0	1.46	19.5	8.91	в.п	3.88
	Heat trans.	Bru per br.	on Shell 84de	195000	273000	332000	318000	228000	126000	120500	200000	221000	171000	107000
Shell Side	Pounds	Der br.	Glycerine o	27700	45000	73000	70700	40700	13500	15400	42800	32300	32300	16400
Shel	1	drop	ą,	10,28	8.87	19.9	6.91	8.62	41.41	12.55	ま.	6.13	8.91	10.88
	Temperature,	gt		218.05	219.60	221.77	186.84	184.55	178.95	145.72	149.88	152.11	113.16	110.80
	I.G.I	뒴		228.33	228,47	228.38	193.75	193.17	195.39	158.27	157.42	158.85	122.07	121.68
	Water Velocity	Ft./80c.		3.16	3.67	3.67	4.18	4.18	2.78	2,82	2.86	3.10	3.15	2,62
	Heat trans. Velocity	Brd per hr. Ft./sec.		199000	264000	338000	315000	223000	112000	000177	180000	216000	173000	000911
Water on Tube Side		per hr.		38800	45100	1,5100	52100	52100	34700	35500	36000	39000	0000†	33100
Water on	1	rise		5.14	5.90	7.50	6.05	4.28	3.24	3.22	96°†	\$.V	4.32	3.51
	- 4	out		200.44	200.98	202,80	164.93	163.87	162.72	125.20	127.11	128.98	81.18	80.85
	Ten	\$		195.30	195.108	195.30	158.88	195.58	195,48	121.98	112.13	123.44	76.86	47.09
	2	ė.		10t	105	700	£1	1	ñ	911	111	811	119	150

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS

3/4" FINNED TUBES IN 8"SHELL BUNDLE 2

	/alues	(Nu) (Pr) (Hu)	139.5	172.5	201.0	102.0	74.7	129.1		2،41	9.88	8.7	5.95	4.50
	Average Shell Side Values	<u> </u>	2.27	2.28	2.25	2.31	2,33	2.28		270]	277	283	5 8 8	₹62
	rage She	2	39800	53300	00099	56600	18400	37500						
	Ave	n Na	189 3	234 5	<i>3</i> 13 66	139 26	102. 18	175 37		103.1 975	71.5 585	58.0 469	43.0 324	32.7 227
		ਕੂ	1350	1680	1920 2	1 066	724 1	1245		151.0 1	105.2	85.2	63.0	8.74
	L	Calc.	ч	н	ñ	-	. •	ä		ដ	ä	ω	V	₹
		₩ 0.0 40.8	0.268 0.193 0.162 0.121	0.261 0.197 0.162 0.121	0.262 0.197 0.163 0.121	0.262 0.198 0.163 0.121	0.266 0.201 0.166 0.122	0.270 0.199 0.162 0.137		0.297 0.250 0.176 0.132	0.291 0.223 0.177 0.133	0.300 0.223 0.173 0.134	0.296 0.224 0.180 0.135	0.300 0.200 0.130
		ا ا	.00305 0. .00252 0. .00226 0.	00281 0. 00236 0. 00211 0. 00182 0.	.00277 0. .00226 0. .00205 0.	.00329 0. .00284 0. .00250 0.	.00370 0. .00321 0. .00296 0.	00305 0. 00262 0. 00231 0.		00983 0. 00089 0. 00850 0.	01251 0. 01200 0. 01150 0. 01082 0.	01475 0. 01410 0. 01365 0. 01310 0.	01890 0. 01808 0. 01785 0. 01740 0.	0239 0.0228 0.0229 0.0223
,		_S			8888		8888							
NOLE			328 398 445 519	355 424 775 949	361 144 1488 172	200 400 400 400 400 400 400 400 400 400	270 512 540 385	328 381 432 460		101.7 112.5 117.6	9.88.89 9.4.0.69	27.55 5.65	8882 0400	ជា <i>ភិស្ស</i> ជ សំសំសំជ
וברר פס		Mean temp. difference	15.2 11.8 10.2 9.20	15.8 13.7 10.5	15.8 12.8 11.7	15.9 10.9 9.75	5.11 6.90	4.5544 4.6.4.		55475 4.2.6.6	2 2 2 2 4 2 4 8 6 8	77.47.07 20.05 20.05	8488 2488	25.25. 20.45.55
E O AII		i di ji	3e 1.61 1.62 1.62 1.62	######################################	4.7. 4.4.73 4.67	0000 8888	0.37	1111 1165 1165	9	7.00 7.00 7.00 7.00 7.00 7.00	9 9 9 9 4 6 5 5 5	1.72 1.72 1.72	1111	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
3/4 FINNED LOBES IN 8 SHELL BONDLE		Heat trans. ETU per hr.	on Shell Side 401000 378000 367000 378000	465000	463000 452000 461000 465000	348000 355000 356000 358000	296500 295000 311000 306000	40000 416000 409000 413000	on Shell Side	474000 480000 480000	358000 357000 356000 354000	298000 304000 302000 302000	232500 232000 232500 233000	183000 181000 181000
	Shell Side	Pounds per hr.	Water 56200 56100 55900 35800	49400 49500 49500	61400 61300 60900 60600	25200 25300 25200 25200	0271 0271 0271 0271	36100 36100 36100 36100	011	50300 50800 50800 50800	32200 32000 32000 32000	25700 25700 25700 25700	1818 1818 1818 1818	13000 13000 13000
70	Shel	droj.	11.08 10.48 10.21 10.56	9.09	7.57	13.80 14.11 14.22	17.33 17.26 18.20 17.91	11.19 11.51 11.43		18.65 18.65 18.71 18.88	22.06 22.17 22.12 21.99	83.47 83.47 83.33	25.56 25.58 25.58	27.98 27.69 27.69
		Temperature, in out	166.14 166.35 166.98 166.63	167.97 168.04 167.92 167.54	169.56 169.71 169.59 169.56	163.44 163.31 163.33 162.75	160.07 159.53 158.95 159.69	165.96 165.87 166.07 165.38		177.02 177.13 176.86 176.79	173.93 173.52 173.75 173.68	172.54 172.47 172.63 172.45	170.58 170.58 170.52 170.58	168.48 168.51 168.24 168.35
		Tem	177.22 176.83 177.19	177.04 177.28 177.33	177.11 177.08 177.17 177.24	177.2% 177.26 177.44 176.97	177.40 176.79 177.15 177.60	177.15 177.38 177.38 176.81		195.67 195.78 195.57 195.67	195.99 195.69 195.87 195.67	195.57 195.94 195.96 195.75	196.14 196.05 196.10 196.17	196.38 196.11 195.93 196.02
	Unter	Water Velocity Ft./sec.	4.29 6.16 7.81	4.42 6.21 7.86 11.30	4.40 6.12 7.80	4.42 6.18 7.85 11.30	4.36 6.14 7.81 1.38	4.35 6.14 7.86 9.75		4.30 6.17 8.11 11.51	4.46 6.19 8.15 11.57	4.30 6.20 8.14 11.51	4.43 6.20 8.11 50	4.35 6.17 8.15 11.54
		Heat trans. BTU per hr.	384000 361000 348000 375000		142000 148000 143000 148000	321000 334000 334000 331000	278000 281000 291000 295000	393000 402000 392000 396000		161000 1481000 1485000 1481000	356000 357000 356000 362000	305000 311000 301000 311000	258000 241000 259000 244000	186000 188000 187000 192000
	rube Side	Pounds B	51600 45400 57500 82700	\$2600 \$7700 57900 83100	32400 45100 57400 82700	32600 45500 57800 83200	32100 45200 57500 83800	32100 45300 58000 71900		31700 45500 59800 84800	32900 45600 60100 85100	31700 45700 60000 84800	32700 45700 59800 84300	32100 45500 60100 85000
	Water on Tube Side	rise	12.15 7.96 4.04	13.64 10.01 7.88 5.33	13.66 9.93 7.72 5.42	9.85 7.35 5.78 3.98	8.67 6.21 5.00 3.52	12.23 8.86 6.75 5.52		14.36 10.56 8.11 5.67	10.82 7.83 4.26	9.60 6.80 7.02 67	7.87 7.88 890 890	2.80 3.14 8.10
		Temperature,	161.13 162.72 163.90 163.83	162.14 162.88 163.29 163.51	163.22 164.65 164.75 165.33	159.71 160.02 160.59 160.20	157.42 157.33 156.86 157.87	160.82 161.24 162.18 161.56		136.50 137.91 137.98 139.19	133.07 133.61 134.80 135.56	132.19 132.04 133.46 134.08	129.63 130.50 130.66 131.32	128.19 129.14 129.02 129.72
		In	148.9 154.76 157.86 159.29	148.50 152.87 155.41 158.18	149.56 154.72 157.03 159.71	149.86 152.69 154.81 156.22	148.75 151.12 151.79 154.35	148.59 152.38 155.43 156.04		122.34 127.35 129.87 133.52	122.25 125.78 128.87 131.30	122.59 125.24 128.44 130.41	122.36 122.22 126.66 128.43	122.39 125.00 125.92 127.45
		No.	19	50	2	22	23	62		39	04	Ľή	24	42

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS

BUNDLE 2	
TUBES IN 8" SHELL	
" FINNED	
3/4	

	П	9 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4															19	
	Values	u Re Pr $(Nu)(Fr)(\frac{H}{L})$		5.25	6.72	8.88	10.6	13.8	2.69	2°5	15.7	:	4.48	7.01	12.6	15.2		27.7
	hell Side	£		263	. 263	258	7 <u>5</u> 7	250	1611	1652	1691) 13	908	197	192	191	107
	verage S	Re		556	360	511	655	932	0.26	62.0	36.8		,	₹ ₹	872	1050	1205	2510
	. A	Mu		59.4	50.5	66.5	78.7	103	56.4	57.6	9.13	e G	2.0	8.8	79.8	85.0	103	
		о́н -		57.6	74.1	97.1	115.2	151	54.2	१३,६	33.0	i		` fa	845	295	320	
	_	Eg.									094	į	S &			229	229	
		₩ ⁴ 0.8		0.401 0.197 0.157 0.119	0.19/ 0.19/ 0.158	0.201 0.190 0.150 0.150	0.429 0.195 0.135 0.135	0.250 0.195 0.154 0.116	0.49/ 0.435 0.192 0.159	0.298 0.238 0.194 0.162	162.0		90,0	₩ 07.0	0.288 0.228 0.177 0.148	0.202	0.40	0.176
		ماء		.01955 .01954 .01962 .01665	.01617 .01560 .01510	.01290 .01270 .01214 .01124	01100. 01000. 01040. 01010.	47600. 00000. 00000.	.02173 .02102 .02030	0.00 0.00 0.00 0.00 0.00	-033≥	5	7000	€#300	.00602 .00565 .00543 .00519	.00516	o6 1 00°	.00372
OLE Z	-	on .		51.1 51.7 52.0 52.0	01.9 04.1 07.9	77. 80.00 84.33	88 % 98 24 % 38	106.2 115.0 119.1 124.0	3.7.4.0.0 0.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0	38.0 39.4 40.4	30.9	é	102.5	155.0	193 193 193	まれ	ð,	602
STELL BUNDLE	Veen temp	difference		28.0 27.5 27.1	16.03 17.00 17.40 17.40	26.54 27.4 2.03	4.62 20.22 20.23 20.03	6.69.6 7.69.9 7.59.80	37.1 25.3 35.6 34.8	36.7 36.7 30.7	34.4	x ?	25.0	7.17	5,444 4,00,44	53.8	54.0	6.22
מ צ	_	drop		0.04 0.65 0.57 0.57	9.93	1.00 1.00 1.00 1.00	4.50 K.K. K.K. K.L.	4 4 4 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.00 1.00 1.00 1.00	22 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.37	8	1.20	3.8	4.18 4.47 4.47	6.31	9°6	67.
JA FINNED LUBESING		Heat trans. BTU per hr.	Oil on Shell Side	106000 102000 107000 109400	139000 138000 140000	176000 177000 177000 181000	206500 208500 207500 209000	257000 258000 256000 257000	129500 127300 132500 134000	101000 105500 107000 105000	77800 Shell 34de	316000	420000	000049	66,3000 687000 683000	826000	981000	η+88000
	Spell Side	Pounds per hr.	011 on	13000 13000 13000 13000	18100 18100 18100	25700 25700 25700 25700	32300 32100 32100 31600	14600 15800 15400 15200	29500 29500 30000 30600	20100 20600 20700 20700	.84 15100	15200	24100	42100	51000 52400 52500 52400	63300	72300	71500
7	Spe	F doing		16.17 15.57 16.20 16.62	15.17 15.05 15.28	13.51 13.62 13.59 13.93	12.61 12.80 12.73 13.03	11.32 11.09 11.09	9.47 9.32 9.52 9.44	10.89 11.06 11.12 10.98	12.84	72.52 17.92	27.23	25.59	20.05 20.23 20.25 20.10	20.07	18.74	10.02
		Temperature,		180.21 180.12 179.70 179.79	180.91 180.46 181.20	182.34 182.40 182.61 181.88	183.51 183.58 183.65 183.90	185.14 185.05 184.94 185.02	103.75 103.75 103.77 103.96	102.29 102.52 102.13 102.29	100.00	162,66	166.23	74.691	174.65 175.28 174.78 174.85	175.39	175.23	216.90
		In		196.38 195.69 195.90 196.41	196.08 195.51 196.48	195.85 196.02 196.20 195.81	196.12 196.38 196.38 196.93	196.47 196.14 196.03 196.20	113.22 113.07 113.29 113.40	113.18 113.58 113.25 113.27	112.84	195,12		193.06	195.71 195.51 195.03	195.46		28.92
	Water	Velocity Ft./sec.		4.35 6.17 8.12 11.50	4.53 6.17 8.06	4.33 6.17 8.15 11.58	4.35 6.17 8.15 11.50	4.40 6.17 8.25 11.57	6.31 8.36 10.78 13.58	6.31 8.36 10.79 13.55	6.31	6.85	96.9	96.9	4.4. 7.88 9.88	6.96	96.9	6.85
		Heat trans. BrU per hr.		125000 123000 116000 118000	145000 142000 146000	177000 178000 180000 188000	206000 202000 206000 208000	249000 250000 254000 257000	139800 137500 144000 148200	117800 119400 120000 121200	86100	316000	420000	626000	658000 684000 656000 677000	817000	865000	470000
	Tube Side	Pounds per hr.		32100 45500 60000 84700	33400 45500 59400	31900 45500 60100 85200	32100 45500 60100 84700	32500 45500 60800 85100	102000 102000	46600 61800 80700 101000	0099 1 1	50500	51300	51300	32500 42800 58400 72600	51300	51300	50500
	Water on Tube Side	rise		3.90 1.93 1.39	4.29 3.11 2.16	2.38 2.38 2.88 8.89	6.413 4.439 3.431 2.461	7.658 5.500 4.175 3.030	2.225 2.225 1.798 1.453	2.525 1.931 1.489 1.201	1.847	6.25	8.20	12.19	20.23 15.99 11.23 9.32	15.90	16.81	9.32
		Temperature,		160.76 160.91 160.82 160.61	161.11 161.10 161.75	162.39 162.56 162.92 162.19	163.271 163.544 164.012 164.329	164,225 165,098 165,292 165,697	73.272 74.266 73.719 74.590	72.293 71.998 71.746 72.707	72.752	127.85	130.69	134.51	143.02 143.17 143.00 44.10	138.51	138.95	202.71
		In		156.86 158.20 158.89 159.22	156.82 157.99 159.29	156.84 158.64 159.92 159.99	156.858 159.105 160.581 161.868	156.567 159.598 161.117 162.667	70.277 72.041 71.921 73.137	69.768 70.067 70.257 71.506	70.905	121,60		122,32	122.79 127.18 131.77 134.78	122,61	122.14	193.39
		Run No.		1 11	1,5	94	1 4	84	69	70	11	47	75	92	77	78	62	89

TABLE IX

3/4" FINNED TUBES IN 8" SHELL BUNDLE 2

, Г	4	<u>.</u>]											
Average Shell Side Values	R 2	(A) (A)		16.5	7.25	09 * †	11.3	20.0	4.24	9.3 4	3.05	1.51	3.28	00° -
hell Std	Å	;		301	TT.	132	180	178	ਨ੍ ਰ	00 ₁	244	1105	1016	979
erage S	å	2		1565	8	3 98	92.5	1580	†1 7	623	133	40.8	877	182
Av	į			28.5	1.04	30.8	75.3	133	36.9	83.0	26.7	17.6	37.2	9.44
	_	ç		589	121	8.0	233	£14	£1	Ŕ	8.0	53.5	a	35
ſ	Cale.	P.			980	772		111	602	809	508	430	624	530
	×	Φ0.0		0.217 0.173 0.139 0.108	0.158	0.177	0.250 0.202 0.157 0.150	0.202	0.226	9.25₽	9.508	0.318	0.285	863.0
	-1	°		.00505 .00480 .00448 .00433	57600.	.01205	.0051 .00584 .00571 .00519	00400	.aoa	.00585	.01#p	EL33	20100.	50600.
	Þ	٥		38884 38884	108	83.0	163.6 171.0 181.5 192.8	250.	7.2%	1/1	69.5	47.0	89.2	105
	Mean temp.	ţ.		20.3 18.8 18.1	21.1	24.5	22.23 20.24 20.24 20.24	7.42	21.2	26.3	25.5	34.4	35.7	36.7
	Pres.	-		,	0.59	٠ ک	ራይ የ	9.52	1.99	4.7	1.08	1.53	3.74	8.61
	Heat trans.	BIU per hr.	Glycerine on Shell Side	350000 345000 343000 341000	180000	162000	315500 316500 315000 308000	90098	199000	355000	141000	128000	247000	306000
Shell Side			ycerine	45000 45200 45700 45600	15400	14350	46700 47000 46000 45600	78000	26800	70000	16800	13400	34900	55300
Shel	F-	drop	3	1111 8688	17.34	17.37	10.35 10.33 10.50	9.50	11.99	8.14	13.55	15.93	11.81	8.S
	persture	n out drop		214.30 214.36 214.95 216.95	207.66	176.67	183.27 183.45 183.45 183.34	184.64	145.96	149.81	143.55	114.66	119.07	121.57
	104	Ħ		22.53 22.53 22.53 23.53 23.53 23.53	225.00	194.04	193.62 193.78 193.95	194.14	157.95	157.95	157.10	130.59	131.07	130.78
	Water Velocity	Ft./80c.		10.58 10.69 10.69	6.87	7.05	4.46.7.83.99.98.98	₹.9	6.2 th	6.25	5.04	5.15	5.86	6.63
	Heat trans.	HTU per hr. Ft./sec.		316000 323000 326000 324000	180000	161000	307000 296000 301000 300000	470000	193000	343000	140000	128000	216000	304000
Tube 81de	Pounds	Der Hr.		33700 44100 57800 7800	50200	52000	32600 42500 57500 72900	21100	0009 1	00194	37200	38000	43200	9068 1
Water on Tube Side	7	rise		%4.7.4 %4.6.4.4	3.60	3.10	4844 4844	8.8	4.20	4. 2	3.78	3.37	4.97	6.23
	Temperature,	out		202.28 203.02 203.61 204.66	195.75	161.37	169.22 168.98 169.34 169.82	99.991	126.36	129.76	126.07	89.28	91.22	92.12
	Tee	ä		192.92 195.71 197.96 200.55	192.15	158.27	158.8 162.00 164.10 165.70	157.46	122.16	122.32	122.29	85.91	86.40	85.89
	E E	, 120°		8	16	8	93	ま	8	%	8	8	83	8

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS

	63	Pr (Fu)(\overline{z} r)($\frac{\mu}{\mu_{\rm b}}$)		, K)	0	50					2	١٥.	10	_			121	_
	de Valu	(Fu)		5.73	89.0	144.5	185	103	103	762	91.7	9.09	9.74	45.1	72.2	166	122	85.0
	hell S	£		2.09	2.03	2.8	2.01	₹ 8.0	2.06	2.70	2.74	2.83	2.85	3.	a. 4	3.79	ଷ.	8.
	Average	Re		10190	16700	37900	49700	24350	24150	38400	17600	10290	7290	5380	10810	30100	21400	14000
	۷	Пu		7.4.	116.1	186.2	238	133.6	134	234	133	89.0	70.1	75.2	120	270	199	140
		g°		708	1100	1777	2245	1270	1270	2130	1210	805	634	650	1055	2360	1745	1220
		Cal.			1390		1380	1370	1365	1000		1010			831	848		ā
		¥.0√		0.376 0.297 0.228 0.175	0.229	0.367 0.285 0.234 0.158	0.231	0.232	0.232	0.302	0.411 0.324 0.209 0.202	0.317	0.761 0.264 0.204	0.534 0.413 0.339 0.246	0.383	0.376	0.536 0.419 0.320 0.238	0.378
		٦٥٩		.00263 .00237 .00218 .00195	49100.	.00177 .00149 .00133	.001193	.00154	.00154	.00145	.00210 .00160 .00175	.00225	.00300 .00274 .00247	.00530 .00291 .00255	.00217	.00162	.00192 .00192 .00160	.00800
NOLE 3		°n		35 124 134 137	010	\$2°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5°5	838	650	650	700	477 250 271 657	544	8 2 2 1	54 E 8	104	620	388£	\$
FLL BU		Mean temp. difference		14.58 13.00 12.44 11.22	16.35	17.59 14.74 13.30 11.72	10.41	17.09	16.86	19.73	18.24 14.98 12.90	16.42	15.98 11.24 15.24 15.44	1,100 16.23 13.73 13.73 13.73	19.49	8.13	8.82 5.52 5.52 5.52	20.59
N 8"S		Pres. drop		0.00 4.20 4.20 5.00	1.18	6888 6888	64.0	2.25	2.26	80.5	11111 8888	47.0	0.07 7.00 7.00 7.00	\$4.00°	2.5	9.70	,,,,,,,,, 3, 3, 3, 3,	2.36
1/2" PLAIN TUBES IN 8"SHELL BUNDLE		Heat trans. BTU per hr.	on Shell Side	331000 338000 338000 336000	290000	735000 576000 580000 617000	911000	000 1/ 59	000649	816000	521000 541000 509000 503000	750000	308000 310000 314000 319000	315000 328000 324000 530000	538000	810000	562000 570000 565000 571000	000609
2"PLAII	Shell Side	Pounds per hr.	ater	14600 14600 14600 14600	56700	53600 52300 51700 51300	68500	33900	34000	68200	31900 31900 31900 31900	19100	13300 13300 13300 13300	13800 13800 13800 13800	27300	72400	32200 32000 31900	34700
2	She	drcp		88.89 88.89 88.89	22.10	10.71 11.01 11.20 12.02	13.30	19.38	19.06	11.97	16.36 16.98 15.93 15.78	22,148	23.23 23.53 23.65 23.65	88.88 88.48	19.73	11.19	10.62 10.94 11.09	17.53
		Temperature n out		170.54 170.26 170.37 170.10	171.21	182.59 182.22 181.76 180.83	180.45	175.50	174.52	145.98	141.94 142.25 141.39 142.02	135.21	44.44.4 19.19.19	9888 41.688	102.22	111.49	11111 1887 1887	104.49
				193.32 193.48 193.57 193.14	193.31	193.30 193.23 192.96 192.85	193.75	194.78	193.58	157.95	158.20 158.23 157.82 157.80	157.69	157.77 158.15 157.84 158.25	121.96 122.09 122.43 122.72	121.95	122.68	121.93 122.16 121.96 122.34	122.02
	Unther	Velocity Ft./sec.		2.69 3.58 4.99 6.91	5.00	2.5 3.66 4.54 7.01	4.88	18.4	4.87	ħ2° †	2.88 3.66 4.78 6.76	4.07	2.64 7.40 6.78	2.65 4.68 6.70	10.4	8.	2 4 5 4 5 6 5 6 8 5 6 8 5 6 8 5 6 8 6 8 6 8 6 8	80.4 4
		Heat trans.		338000 338000 342000 345000	585000	586000 594000 600000 633000	915000	000199	000059	820000	509000 501000 499000 501000	455000	305000 311000 320000 299000	318000 333000 317000 332000	526000	800000	575000 573000 566000 570000	294000
	Water on Tube Side	Pounds per hr.		33600 44700 62300 86200	62400	31600 45600 57600 87300	61100	00609	00609	53900	36200 46100 60100 85200	51100	33200 42700 57700 85100	33700 46000 58500 85200	20800	50800	31700 43300 60000 84800	51900
	Water or	rise		10.08 7.55 5.50 4.00	9.38	18.56 13.01 10.40 7.25	14.96	10.87	10.67	15.57	14.04 10.98 5.88 5.88	8.51	9.18 7.29 5.55 3.51	9.t1 7.25 7.42 3.90	10.35	15.77	18.13 13.22 9.45 6.73	11.45
		Temperature,		168.84 168.57 168.58 168.61	167.72	177.52 177.89 177.85 177.35	174.20	171.19	170.20	138.51	136.85 137.86 137.93 138.63	131.50	132.06 132.49 132.03 132.30	¥¥88 8.7.8.1.	95.76	101.59	103.48 103.48 104.86 106.20	₹ 8.
		In In		158.76 161.02 163.18 164.61	158.34	158.97 164.88 167.45 170.10	159.24	160.32	159.53	122.79	122.81 127.00 129.63 132.75	122,85	122.88 125.20 126.48 128.79	85.41 87.30 90.43 92.23	85.41	85.82	98.88 4.08.88	85.39
		₩ Mo		153	154	155	156	157	1.578	158	159	160	161	162	163	164	165	700

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS

1/2" PLAIN TUBES IN 8" SHELL BUNDLE 3

•																		
175.1	e values	$(Nu)(Pr)(\frac{\mu}{\mu w})$		8.10	14.05	22°ħ	15.1	8.81	11.8	₽.4	7.31	5.41	4.05	6.21	8.10	4.19	3.35	2.54
	Average Shell Side values	봆		191	167	167	166	272	272	173	175	550	261	550	526	1220	1330	3700
	veruge S	Re		316	099	1325	815	994	811	173	366	170	87.1	238	362	105	69.0	37.8
ľ	¥	Mu		52.8	92.5	741	98.5	76.6	102	9.14	63.1	52.8	39.7	60.7	77.2	52.4	43.9	33.8
		°q		98.5	177	279	183	147	38	80.2	121	102	76.7	118	149	102	85.2	65.7
		Calc.		1365		1245			1160	98 59	846	940	810	88		823	669	69
		₩ 70.8		0.235	0.342 0.245 0.206 0.164	0.256	0.338 0.254 0.206 0.162	0.350 0.294 0.239	0.273	0.325	0.287	0.339	0.391	0.318	0.449 0.353 0.283 0.218	0.386	0.451	0.477
		٦þ°		.0109	.00650 .00619 .00619	· 00440	.00660 .00627 .00597	.00794 .00770 .00765	.00599	.0135	.00935	.0109	.0143	.00953	.00820 .00794 .00764 .00735	orto.	.0132	.0168
		o _n		91.8	140 154 161 170	227	151 159 163 167	126 130 131	167	74.2	107	91.6	70.0	105	28 28 28 28 28	8.9	76.0	59.4
		Mean temp. difference		22.15	22.37 20.85 19.56 18.14	22.90	22.81 21.99 21.57 21.14	8.83.43 8.75.43 8.75.43	26.64	25.46	27.16	28.19	25.84	28.47	86.27.38 87.32.36 87.36	30.27	29.62	28.73
2		Pres. drop.	0	0.79	2.73	10.12	0000 6888	4444	10.79	1.03	2,66	3.88	1.77	8.52	1011 1881 1	11.73	7.54	0.61
		Heat trans. BTU per hr.	Oil on Shell Side	121000	192000 197000 195000 189000	530000	209000 207000 209000 210000	190000 190000 199000 195000	259000	108900	172000	149000	104500	170500	198000 197000 202000 201000	162000	136000	101000
	Shell Side	Pounds per hr.	0110	14200	29400 29200 29200 29400	00009	36100 36100 36100 36100	55500 35500 35500 35500	59400	1,5500	26800	26700	14100	35800	53300 53300 53300 53400	38500	26600	15200
7	Shel	orop		16.31	12.31 12.76 12.60 12.15	10.56	1011 1084 1084 1084	10.54 10.57 11.05 10.71	8.62	15.93	12.67	11.43	15.26	9.76	7.62 7.61 7.76 7.70	8.8	10.93	14.17
		Temperature,		212.00	215.28 215.46 215.64 215.64	216.99	216.99 217.53 217.18 216.75	182.83 183.18 182.70 182.53	184.19	177.55	181.02	146.64	142.90	148.62	150.33 150.57 150.22 150.46	113.36	111.34	108.37
		T ut		228.31	227.59 228.22 228.24 227.25	227.55	228.04 228.43 228.22 227.84	193.42 193.75 193.75 193.24	192.81	193.46	194.29	158.07	158.16	158.38	157.93 158.18 157.98 158.16	122.32	122.27	122.54
		Water Velocity Ft./sec.		4.20	2.5.4.0 5.4.5 5.4.5	5.71	2.61 7.72 4.85 6.51	2.96 7.66 6.39	₽.±	3.30	3.78	3.76	3.14	7. 0%	2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.05	3.31	3.12
	9	Heat trans.		121000	178000 183000 182000 175000	285000	199000 207000 208000 209000	187000 196000 199000 204000	265000	114000	172000	156000	110000	183000	209000 210000 217000 223000	163000	1,32000	101000
	Water on Tube Side	Pounds per hr.		51800	32100 45500 59500 79100	0095₁	32100 45700 59700 80100	36900 45600 59700 79600	50300	41200	47200	1,7500	39700	51200	33200 44100 58500 79800	51500	42100	39700
	Water on	rrise		2,43	2.7. 4.0.7. 2.0.0.	6.23	6.17 4.52 3.47 2.61	2.4.5.07 2.30 2.50 2.50 5.00	5.27	2.77	3.64	3.28	2.77	3.58	6.30 4.75 3.71 2.79	3.16	5.12	2.54
		Temperature,		198.10	200.93 202.33 202.95 203.41	201.99	202.24 202.79 202.31 201.90	164.82 165.11 163.81 164.38	51.491	161.31	162.22	125.53	125.27	126.50	128.68 129.09 128.61 129.09	88.89	88.29	87.77
		Temp		195.67	195.39 198.32 199.89 201.20	195.76	196.07 198.27 193.84 199.29	159.75 160.83 160.48 161.82	158.86	158.54	158.58	122.25	122.50	122.92	122.38 124.34 124.90 126.30	35.73	85.17	85.23
		Run No.		197	198	199	500	201	202	203	204	205	306	202	208	209	210	73

TABLE IX

1/2" PLAIN TUBES IN 8" SHELL BUNDLE 3

									;													
			ater on	Water on Tube Side	-				Shell	Shell Side										dS.	Shell Side	
r i	Tempe	Temperature,	4	Pounds	Heat trans, Velocity	Water Velocity	Ten	Temperature,	F *	Pounds 1	Heat trans.	Pres.	Mean temp. difference	ď	-	× 6	Calc.	ď	Mu	Re	봆	(Nu) (Pr)(UN)
Ш	£1	out	rise	per pr.	BTU per hr. Ft./sec.	. Tt./86c.	Ħ	out	drop	per pr.		psi	E.	4	°	Λ	11					
									GLyc.	erine on	Glycerine on Shell Side											
ま	194.95	199,26	4.30	37200	160000	3.02	227.34	211.05	16.31	13600	151200	49.0	20.9	126.0	46200 .	0.303	1050	143.5	35.2	280	110	6.28
29	159.39 2	202.32	6.93	34700	240500	2.82	227.55	215.49	12.06	31900	263000	2.08	22,1	193.0	.00519	0.318	1000	240	58.6	675	107.5	10.55
8	196.21	203.76	7.54	52000	392000	4.23	227.37	217.74	69.63	63800	η19000	6.81	22.0	311	.00322	0.229	1390	† 0₁	0.66	1370	106.5	17.80
95	195.62	202.03	1 η•9	52000	334000	4.23	227.73	216.23	11.50	45800	361000	3,66	22.5	261	.00383	0.229	1385	324	2.67	312	107.0	14.25
5,	159.40	164,82	5.40	52000	281000	4.17	193.55	182.01	11.54	38300	280000	3.54	25.2	188.0	.00532	0.267	1195	422	55.2	544	182.5	8.37
8	159.31	166.91	7.60	52000	395000	4.17	193.59	184.68	8.91	70500	000604	9.68	25.6	566	.00377	0.267	1195	343	84.5	865	178.5	12.85
8	160.00	71.491	4.17	31400	131000	2,52	194.31	177.24	17.07	12000	133000	0.71	22.3	100.0	.00100	0.398	798	114.5	28.2	136	190.0	ਰ . ⁴
8	159.22 1	165.06	5.71	31400	179000	2,52	193.50	180.27	13.23	20700	178000	1.2	23.8	132.5	.00755	0.398	98	159.5	₹36.4	241	187.0	5.90
8	122.31	126.79	4.22	38600	166000	3.07	158.09	143.71	14.38	18600	167000	2,16	16.4	98.5	.01015	0.394	795	112.5	28.0	77.0	435	3.19
83	122.31	127.24	4.75	47000	223000	3.72	157.71	146.05	11.66	31600	228000	4.19	26.8	143.7	96900*	0.342	930	170.5	42.2	151	423	88° 4
8	122,58 1	128.43	5.69	58800	334000	99*1	157.91	149,32	8.59	62100	332000	11.01	27.8	210	92400.	0.282	1115	98	9.49	327	£0 1	4.7
84	122,45	127.31	7,68	58800	275000	99.4	157.91		10.40	43000	273000	6.41	27.6	169.0	.00592	0.286	1115	80	50.0	215	413	2 3
જ	85.37	90.01	†9° †	43700	203000	¥.v	122,07	112,41	9.66	36200	223000	10.76	29.3	123.0	.00813	0.450	5	149.5	34.3	64.5	1365	2,61

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS

_	1	l														
,	.375 -0.1 (Wu)(Pr)(W)		o. 45	51.9	47.8	29.1	84.8	38.2	6.94	79.3	65.0	8.5	0.84	63.6	o. 18	37.6
ell S1de	占		2°.0	2.05	2.8	2.14	8.8	2.8	2.80	2.74	2.70	3.87	ਰ .	3.86	4.19	to.4
erage Sh	Re		34000	14800	13300	7000	5550	10000	13150	26800	5000	2100	9300	14800	3900	7400
AV	Mu		122	67.7	62.5	38.2	36.8	55.8	68.5	115	3.5	35.	78.0	105	39.1	62.9
	о́ч		1,400	780	720	435	ğ	615	32	1270	1030	1440	888	0111	11 0	789
	Calc. h ₁		88			849	§		570	809		돺	604		465	
	¥0.04		0.15	0.205 0.171 0.139 0.102	0.223 0.181 0.136 0.103	0.160	0.187	0.270 0.204 0.159 0.122	0.184	2/110	0.00 0.159 1.151	0.193	0.25¢	0.318 0.235 0.188 0.147	0.272	0.326 0.136 0.157
	바		. 00227	.00336 .00298 .00270	.00370 .00327 .00286 .00245	.00398	.00435	.00454 .00305 .00527 .00284	.00138	.00k72	.00354 .00298 .00296	.00259	-003/2	.00394 .00321 .00472	11500.	.00393 .00393 .00357
L	°		9	\$3.55 \$7.53	505 03 5050 5050 5050	な	230	35.75 35.75 37.85 37.85	314	397	# 33 % & # # 33 % & #	38	697.	\$ 487	8	4 7 7 8 8 8 8 9 9 8
	Mean temp. difference		13.77	12.29 10.00 8.00	12.35 10.71 9.58 8.24	8.8	11.58	13.78 11.27 10.13	14.30	15.51	4.59.4 6.99.6	17.88	15.66	35.44.51 42.61.72	15.91	15.15 10.00 10.00 10.00
L_	Pres. drop pei	a.	4.41	23.11.0 28.19.0	3333	0.87	0.27	8888	1.47	5.8¢	28888	6.18	1.33	สสสส	12.0	3333 0000
	Heat trans. HTU per hr.	텀	98900	616000 624000 610000 595000	550000 544000 548000 546000	00080 1 1	450000	519000 503000 505000 506000	728000	1010000	699000 726000 702000	1139000	701000	694000 731000 731000	414000	534000 552000 538000 541000
1 81de	Pounds per hr.	Water	70600	32900 32100 31000 30600	27700 27700 27700 27800	15100	15600	86900 86900 86900 86900	35700	71800	53100 53100 53100 53100	77000	34600	\$666 \$474 \$474 \$666	15200	27600 27600 27600 27600
Shel	B 8		14.00	18.72 19.42 19.66 19.46	19.85 19.61 19.76 19.64	27.04	27.56	19.27 11.69 18.68 18.82	20.39	14.19	4.56 13.86 13.89 13.89	14.79	20.23	ងដូដូដ នូ <i>មូរ</i> ម៉ូសូ	27.23	19.33 19.48 19.60
	peratur		178.25	174.74 174.76 174.76 174.78	173.77 173.88 173.52 173.91	165.92	130.42	138.96 139.42 139.59 139.41	137.70	143.20	244 444 9544 9564	107.35	101.95	109.09 108.68 108.43 109.79	95.11	102.63 102.16 102.92 102.74
			192.25	193.66 193.42 194.02	195.62 195.49 195.28 195.55	192.96	157.98	158.23 158.21 158.21 158.23	158.09	157.39	158.20 158.41 157.98 157.93	122.14	122,18	22.22.22 22.22.23 26.82.93	122.34	121.98 122.16 122.40 122.34
	Velocity Ft./sec.		8.06	5.58 9.38 13.89	5.10 6.79 9.45 13.10	7.79	7.81	4.84 6.81 9.10 12.64	7.85	9,46	5.15 9.15 12.45	9.19	6. %	4.0.65 9.4.65	6.11	12.83 29.83 20.83
	Heat trans		992000	617000 625000 601000 580000	542000 531000 549000 559000	103000	439000	520000 506000 511000 529000	745000	1010000	700000 727000 710000 720000	1120000	675000	678000 712000 729000 731000	000601	524000 545000 537000 541000
Tube 81de			51900	35900 45200 57900 85300	32800 42300 60700 84200	50300	20800	31500 14400 59300 82300	51200	55000	33300 44900 59600 80700	90200	43100	32200 45500 79900 79900	40100	31700 45200 60600 79900
Water on	7 r186		19.13	17.17 13.81 10.38 6.80	12.53 9.05 6.05	8.03	8.61	16.49 11.40 8.61 6.41	14.58	18.43	25.28 8.38 8.88	18.59	15.65	21.01 15.64 12.15 9.17	10.18	16.51 12.06 8.86 6.77
	persture,		177.80	176.29 175.37 175.51 175.62	175.39 175.33 174.56 174.85	167.58.	131.47	139.37 139.86 139.84 139.64	137.35	141.22	44.44 44.44 44.44	103.80	100.89	106.52 106.70 106.97 107.64	9.38	102.04 101.73 102.76 102.34
	In		158.67	159.12 161.56 165.13 168.82	158.86 162.75 165.51 168.21	159.55	122.86	122.88 128.46 131.23 133.23	122.77	122.65	122.72 127.54 132.04 134.98	85.21	85.24	85. 12.04. 14.88 14.	85.68	8888 858 758 758 758
L	F .		167	168	169	170	171	172	173	174	175	176	177	178	179	180
	Shell 81de Average Shell Side	Heater on Tube Side Hater Hater	Section of Table Side State Stat	Second S	Temperature, T Founds Maker on Tube Side Maker trans. Maker on Tube Side Maker trans. Maker on Shell Side Maker trans. Maker on Shell Side Maker trans. Maker on Shell Side Maker on Shell Side Side Maker on Shell Side Side Maker on Shell Side Side Side Side Side Side Side Side	Temperature, T Founda State can type State can ty	Participa Without Wi	Table Tabl	Table Parket on Table Parket Pa	Table Tabl	Table Tabl	Column	The control of the	State Stat		Column C

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS

BUNDLE 4	
IN 8" SHELL	
TUBES	
I/2" FINNED	

																	12	5
	Average Shell Side Values	- 345- (M)(FT)(UN)		10.0	7.55	6.80	3.77	3.97	2.64	1.71	5.49	7.00	5.15	4.32	3.14	2.06	1.01	1.34
	hell Sid	£		176	176	178	180	283	291	575	265	281	8 00	260	8	1340	1397	1400
	verage S.	Re		851	536	191	197	218	† בו	4.09	108	8	318	242	151	71.9	24°6	35.6
	A	Nu		67.5	50.7	45.7	25.4	31.1	21.0	17.2	24.8	9. 4.	†0.4	43.0	31.0	27.2	13.7	18.1
		å		156	117	105	58.6	72.5	18.8	40.5	58.5	127	т. Т.	101	72.8	64.1	32.4	42.8
		Calc.		447		769	610	599	521	455	510	655	929	266	250	¥2¢	318	
		₩ 40.8		0.140	0.201 0.157 0.122 0.0995	0.150	0.171	0.175	0.201	0,221	0.205	0,160	0.159	0.185	0.190	0.22B	0.331	0.328 0.247 0.199 0.171
		чþ°		.00761	.01084 .0101.5 .00958 .00918	.01097	.01876	.01550	.02245	.02695	.01909	64600*	.01219	.01171	.01528	.a785	.03400	.0879 .087 7230 7230
		'n		128	98.5 104.5 109.0	97.1	5.50	64.5	∓	37.1	52.4	105.2	τ , 2	85.3	6. 40	8	4.63	35.43 6.00 6.00 6.00
		Mean temp. difference °F		15.91	19.24 18.07 17.07 16.75	18.40	17.52	21.95	20.76	22.98	24.16	22.93	22.39	24.50	23.32	27.23	25.17	<i>8338</i> 3
5		Pres. drop pei	ø	5.67	9 9 9 9 9 5 5 5 5 5	1.12	75.0	1.72	о.7	1.18	2.5	0,40	у Б.	8.38	3.93	8.92	2.78	3333
		Heat trans. BUT per hr.	on Shell Side	411000	295000 294000 292000 294000	297000	150000	228000	142000	134000	199000	394000	299000	327000	265000	250000	117500	152000 153000 155000 158500
	Shell Side	Pounds per hr.	011	26000	35200 35200 35200 35200	31300	13800	25300	13900	14800	26000	55800	35800	26500	36000	43300	14800	22100 22500 22500 22700
!	Shel	g di		14.00	16.02 15.93 15.85 15.97	18.37	20.72	17.84	20.27	18.72	15.73	13.99	16.54	n.90	15.06	12.38	17.02	4444 55.44 86.98
		Temperature,		212.94	211.86 211.95 211.95	209.25	206.87	176.05	173.30	139.60	142.50	179.65	177.24	145.74	143.44	x09.17	105.39	106.93 106.93 106.88
		for		226.94	227.88 227.79 227.80 227.79	227.62	227.59	193.89	193.57	158.32	158.23	193.64	193.78	157.64	158.50	121.55	122.41	121.28 121.48 121.77 121.86
		water Velocity Ft./sec.		7.81	4.99 6.73 9.28 12.00	7.19	6.15	7.10	5.99	80.9	7.06	7.84	7.96	7.93	7.79	7.76	16.4	4.96 19.80 11.23
		Heat trans. BrU per hr.		000804	285000 288000 290000 303000	251000	155000	234000	0009ηΤ	144000	215000	397000	300000	355000	272000	249000	125000	149000 159000 169000 174000
	rube Side	Pounds		00264	31700 42800 59000 76100	45700	39100	45700	38600	39600	7,6000	50500	51300	51600	50700	50700	32100	32400 45800 60000 73300
	Water on Tube Side	rise		8.20	9.00 6.72 3.99 3.99	5.49	3.97	5.11	3.79	5.63	89.4	7.86	5.85	6.87	5.36	16.4	3.89	4.69.69.44 8.38
		Temperature,		203.50	203.92 203.73 203.81 203.74	201.00	199.65	164.32	162.90	126.46	127.67	166.86	164.88	130.12	127.13	90.19	89.58	89,68 89,7,68 89,60 20,68
		In		195.30	194.79 197.01 198.88 199.75	195.51	195.65	159.31	159.11	122,83	122.99	159.00	159.03	123.25	121.77	85.28	85.69	888₽ ସ୍ଟୈ⊱୍⊈
		Run No.		181	182	183	1 87	185	186	187	188	189	190	191	192	193	195	196

TABLE IX

1/2" FINNED TUBES IN 8" SHELL BUNDLE 4

	П																
	e Values	0-375- (Mu)(FT)(M)		10.5	6.78	3.12	1.88	3.20	7.20	88. 4	6.9	2.59	1.¥	21.5	1.42	0.945	0,660
	Average Shell Side Values	Å.		11.3	116.5	911	84	まれ	177	188	6 म	144	9	£5.	1457	1485	1303
	rerage S	Re		1015	767	1788	102	88	6 4 2	336	110	137	49.5	8	18.3	27.8	17.0 1505
	A	Mu		59.8	58.7	17.8	12.8	ਨ.2	1.84	32.5	35.6	23.4	12.2	18.7	19.0	12.8	8.97
		°ų		297	192	88.7	62,8	101	257	97	174	Ħ.	¥.	9.0	g.5	61.8	¥.3
		Calc.		805	92	665	38	828		1	55	720	Ş	510	88	†2 †	₹ 2
		¥ 0.8		٠.	0.112	0.152	0.175	0.121	0.227 0.170 0.132 0.105	0.390	0.450	a, t. 0	0.284	0.341	ο ₄ .ο	0.414	0.346
		rl°°		69400°	09900*	.01290	.01765	.01057	.0059 .00592 .00544 .00510	9 1 ,700.	.00716	.01022	.01938	.01305	.arz90	.01860	.0256
-		п°		213.5	151.4	77.8	26.6	9, 46	25242 25242	1,74	140	97.8	21.6	9.92	71.5	53.9	39.1
מינים וחייים		Mean temp. difference		20.5	20.4	18.4	21.2	4.	21.0 19.3 17.8 16.9	22.9	24.9	25.3	22.3	9,45	21.2	27.1	26.2
		Pres. drop psi	je je	5.50	1.94	† †	64.0	1.33	5.89 6.00 6.10 6.19	2.80	7.91	3.43	1.08	2.43	12.6	5.35	3.10
		Heat trans. HTU per hr.	on Shell Side	725000	527000		196000	340000	525000 533000 538000 543000	F 72000	547000	393000	182000	292000	348000	238000	167000
	Shell Side	Pounds per hr.	Glycerine	75000	42800	16300	13800	27200	73800 74100 74800 75500	00094	74200	1,2700	16200	30600	0088 1	29800	18300
3	Shel	2, T	ö	14.25	18.02	21.68	21.92	19.30	ध्यम् इह्छ	16.83	38.11	14.82	18.13	15.37	ц.%	13.48	15.32
		Temperature, 'F		211.39	206,69	203.50	173.12	175.28	183.85 183.67 183.83 183.97	177.84	146.32	143.29	139.73	143.17	109.99	108.48	107.24
		Tu		225.64	17.422	225.18	195.04	194.58	194.73 194.73 195.01	194.67	158.18	158.11	157.86	158.7	121.98	121.96	122.56
		Water Velocity Ft./sec.		4.7	8.70	7.25	7.08	11.13	4.58 9.59 4.51	11.15	11.02	10.97	5.29	7.05	9.26	7.06	5.36
		Heat trans. HTU per hr.		712000	0000617	233000	197000	342000	515000 532000 534000 543000	00096†	260000	381000	180000	302000	341000	239000	167000
	Tube 81d	Pounds per hr.		55500	55500	M6200	009£†t	71800	32100 45500 62300 82000	71900	71800	72400	¥500	1€260	00609	001/91	35300
	Water on Tube Side	rise		12.82	8.83	5.04	4.32	4.77	16.02 11.70 8.55 6.62	6.90	7.81	5.34	5.22	6.39	5.60	5.16	7. 1
		Temperature,		202.95	198.37	196.43	163.11	163.56	175.01 174.65 174.92 175.15	165.94	130.73	127.72	127.83	128.93	91.08	90.19	₹.8
		In		190.13	189.54	191.26	158.79	158.65	158.99 162.95 166.24 168.37	158.90	122.47	121.91	122.14	121.86	85.48	85.03	85.82
i		No.		125	126	127	128	129	130	131	132	133	私	135	136	137	138

TABLE IX
SUMMARY OF EXPERIMENTAL DATA AND GALCULATED RESULTS

5/8"PLAIN TUBES IN 6" SHELL BUNDLE 5

		*(A)										12	7
	Values	73)(M)		102	142	175	511	205	1.79	921	89.3	863	546
	hell Side	£		2.50	2,45	2,41	2.36	5.29	2.29	2.31	2.33	2.33	\$ 7
	Average S	Be Pr (Ru)(Pr)(H)		1,5050	20500	28400	35000	39500	5,9600	20400	14650	, 00 08 4	20000
		T.		143	138	239	88	278	243	172	136	355	338
		å		1070	1465	1800	2160	2110	1840	1305	1030	2680	8380
		हुं द्व											
		¥0.0 ₩		0.299 0.217 0.179 0.130	0.296 0.215 0.173 0.129	0.285 0.213 0.169 0.127	0.283 0.212 0.166 0.124	0.259 0.195 0.156 0.117	0.259 0.194 0.152	0.261 0.194 0.154 0.118	0.256 0.195 0.161 0.120	0.282 0.210 0.165 0.124	0.265 0.195 0.154 0.116
_		٦þ°		.00190 .00163 .00156	.00164 .00141 .00127 .0014	.00148 .00126 .00113	.00136 .00118 .00105	.00133 .00101 .000010	.00139 .00108 .000970	.00164 .00142 .00130	.00183 .00163 .00151	.00128 .00108 .000960 .000818	.00102 .00105 .000942 .000820
BUNDLE 3		Ω°		25 65 55 25 65 55 25 65 55	608 707 789 875	5888 883 893 893 893 893 893 893 893 893	735 846 950 1107	750 880 1150 1150	716 844 927 1030	610 477 883 833 833	\$\$5£	28.55 104.05 22.21	88 128 128 128 138 138 138 138 138 138 138 138 138 13
SMELL BU	·.	Mean temp. difference		88.1 86.1 87.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	30.0 25.8 21.7	28.5 24.9 24.9	28.9 24.0 20.9	16.4 12.7 10.7	15.5 13.2 11.7 10.6	15.4 13.1 10.5	14.6 12.3 10.5	23.3 24.2 20.6 20.6	16.7 13.7 10.9
٥	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1.55	9.9.9.9 8.78 8.88	5.13 5.13 5.15	5.19 5.25 5.25	25.00 25.00 25.00	1.58 1.58 1.58	3.000	8.88.2 9.99.9	8.8.8.8 34.8.8 54.54.0
3/6 FLAIN 10553 IN		Heat trans.	Shell Side	365000 383000 394000 386000	1,70000 1,74,000 1,86,000 1,85,000	576000 592000 580000 590000	620000 635000 591000 595000	320000 320000 332000 310000	285000 285000 275000 280000	24,3000 24,2000 24,5000 24,1000	208000 1199000 204000 1199000	649000 668000 640000 616000	338000 343000 340000 339000
T LAIN	Shell Side	Pounds per hr.	Water on S	11300	17000 17200 17200 17250	23800 23900 23900 23900	31500 31300 31300 31200	31100 31100 31400 31500	23800 23800 23700 23700	16550 16500 16550 16500	11950 11950 11950 11950	39600 39600 39600 39600	39900 39700 39600
6	Spel	drop	;	32.22 33.91 34.43 33.91	27.84 27.57 28.26 28.20	24.19 24.81 24.23 24.69	19.69 20.32 18.87 19.05	10.29 10.30 10.58 9.83	12.13 11.58 11.58	4.4.4.4.4.4.4.38	17.39 16.61 17.06 16.69	16.38	88.88 34.66
		mperature,		14.66 143.55 142.92 143.17	149.31 149.13 148.80 148.39	152.78 151.84 152.53 152.44	157.19 156.83 157.80 158.05	166.75 166.87 166.48 167.07	165.11 165.29 165.34 165.81	162.48 162.55 162.27 162.34	159.60 160.47 159.88 159.78	160.90 160.27 160.54 160.47	168.48 168.64 168.98 168.98
		In		176.88 177.46 177.35 177.08	177.15 176.70 177.06 176.59	176.97 176.65 176.76	178.88 177.15 176.77 17.10	177.04 177.17 177.06 176.90	177.24 177.17 176.92 177.62	177.22 177.22 177.13 176.92	176.99 177.08 176.94 176.47	177.28 177.13 176.70 176.03	176.94 177.28 177.53 177.21
	Under	Water Velocity Ft./sec.		4.4 6.4.6 40.8 11.80	4.32 6.30 8.18 11.75	4.51 6.41 1.80 11.80	4.8 4.53 1.88 1.88	4.48 6.31 8.30 11.80	4.48 6.34 11.80	4.47 6.40 8.50 11.80	4.61 6.38 8.07 11.70	4.46 6.33 11.80	4.36 6.32 11.80
		Heat trans.		382000 451000 419000 430000	451000 446000 459000 467000	527000 551000 535000 540000	581000 605000 561000 579000	304000 305000 303000 294000	272000 283000 276000 272000	229000 224000 228000 229000	198000 184000 188000 191000	671000 654000 659000 659000	356000 322000 320000 332000
	140e 21de	Pounds per hr.		28600 41000 51500 75500	27700 40400 52400 75300	28900 41100 53500 75500	28900 40600 53500 75300	28700 40400 53100 75300	28700 40600 54700 75600	28600 4,1000 5,3400 7,5500	29500 40800 51700 75100	28600 4,04,00 5,34,00 7,5600	27800 40500 53400 75700
	Water on Two Side	rise		13.35 10.99 8.14 5.70	16.29 11.07 8.75 6.21	18.26 13.41 10.00 7.16	20.12 14.92 10.69 7.63	10.6c 7.52 5.70 3.90	9.57 7.69 7.69 7.60	7.7.4.8 2.2.2.8 3.03.03	04 kg 5044	23.45 16.17 11.82 8.71	12.80 7.96 4.28
		Temperature,		136.29 135.46 135.23 136.59	138.74 139.86 140.36 140.81	159.86 140.22 142.48 145.42	142.79 143.69 147.07 148.91	159.73 160.84 161.22 162.64	159.30 160.02 160.75 161.69	157.10 158.04 158.07 158.83	155.19 156.72 156.40 156.76	145.24 146.50 149.05 150.60	161.26 162.23 163.24 163.65
		12 E		122.94 124.47 127.09 130.89	122.45 128.79 131.61 134.60	121.60 126.81 132.48 136.86	122.67 128.77 136.38 141.28	149.13 155.32 155.52 158.74	149.79 153.55 155.70 158.09	149.11 152.53 153.88 155.80	148,48 152,22 152,76 154,22	122.79 130.33 137.23 141.89	148.46 154.27 157.26 159.37
		No.		ယ	0	10	#	12	13	77	1,5	76	17

TABLE IX

_																					
	le Values	e Pr (Nu)(Pr) $\frac{-375-0.14}{(\text{Hu})}$	-	:	10.9	9.0	15.3	17.8	5.57	Ø.5		31.8	30.1	12.25	1/.%	17.5	20.1	3.23	5.93	9.70	с. п.5
	Shell Si	봆	ž	3	897	277	526	527	1603	1673		105	105	108	91	178	1.76	1365	7	ğ	žę,
	Average	Re	89	}	461	325	876	1122	55.9	30.1		2180	1940	1 09	358	ź	1257	47.2	149	Ç	514
	A	Mu	α 5		6.4%	61.6	104	121	45.2	37.3		64	159	69.5	5.75	113.5	230.5	39.9	50.8	70.1	3.76
	Ц	°q	, t	ì	115.5	8.0	162	188	71.5	59.0		2	845	230	25	374	τς. *	6 7 7	90	828	316
	L	Calc										1990		1740	1355	920	1730	884	1040	1045	1200
		₩ 40.8	0.271		0.275 0.206 0.158 0.128	0.273 0.208 0.159 0.128	0.272 0.207 0.158 0.127	0.206 0.206 0.159 0.127	0.268 0.214 0.165 0.158	0.270 0.185 0.185		0.151	0.136 0.136 0.136	0.173	0.219	0.200	0.173	0.336	0.288	O. 1888	0.248
		ᆔ	.00008	.007/20.	.00971 .00953 .00900	.01148 .01109 .01109	.007/27 .007/01 .00063	.00635 .00513 .0059 .00585	.0154 6410. 6410. 6410.	.01900 .01794 .01695		.00240	.00264 .00250 .00250	.00500	.00599	-00342	.00297	96800	40700.	. 007to	:00 1 00:
NDLE 5		on I	123.8	133.1	103.0 104.8 107.3	88.5 2.88 2.2 2.2 5.10	138.1 142.5 146.5 148.2	157.5 163.0 167.8 171.3	65.0 67.5 6.99	3, 7, 3, 6, 6, 6, 6, 6		416	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	800	167	292	337	110.8	142.2	185.2	246.5
6" SHELL BUNDLE		Mean temp. difference °F	63.0	59.0	62 2.95 4.85 4.87	60.8 50.1 57.8	62.9 61.2 59.5 9.9	63.5 61.7 50.5 59.0	88888 8888 8888 8888 8888 8888 8888 8888	337.8 33.4 4.8 33.4		25.9	44420 4040	25.2	7.97	27.9	28.3	38.4	28.5	28.7	29.5
IN 6"S		. 1	7.7. 7.7.	5.5	2444 2444	4.1.1.1 888.89	బ్బాబ్లు చ్రామ్లు స్ట్రామ్లు	13.02 13.02 13.00	6.59 6.10 6.10	2888 2888		14.86	1111 7.5.5.3.	1.42	1.79	04.6	7 1 .80	7.52	10.	6. 8	14.30
5/8" PLAIN TUBES IN		Heat trans. drop BUT per hr. psi	Shell Side 199000 201000	199000	163500 162000 161000 161000	136000 135500 134500 134000	224000 225500 225000 226000	259000 259000 259000 259000	35500 57000 56600 34900		Glycerine on Shell Side	278000	250000 242000 254000 254000	133000	122500	21,5000	249000	105000	102000	131000	181000
3"PLAIN	Shell Side	Pounds per hr.	26000	26100	18400 18400 18400 18400	13300 13300 13300 13300	32500 32500 32500 32500	\$2000 \$2000 \$2000 \$2000	14600 14800 14600 14300	88888 88888 88888	erine on	25000	00094	14800	14900	0000 1	51700	16 400	15200	56200	₩2700
2/2	She	drop	15.13	15.01	17.53 17.39 17.38 17.28	20.22 20.17 20.00 19.96	13.60 13.69 13.74 13.73	12.15 12.15 12.15 12.10	8.21 8.36 8.36	12.86 12.36 12.38	0130	7.87	55.08 85.08	13.16	12.64	8.19	7.42	10.68	10.71	8.03	6.36
		Temperature,	180.68 180.68	181.02	178.61 178.36 178.72 178.38	175.62 176.31 175.93 176.06	182.00 181.82 181.76 181.87	183.52 183.38 183.27 183.15	104.72 104.63 104.68 105.53	101.05 101.19 100.90 100.72		219.47	219.65 219.42 218.98 219.49	214.39	180.84	185.25		111.99	147.56	149.66	152.31
			195.81 195.83	196.03	196.14 195.75 196.03	195.8 196.48 196.93	195.60 195.51 195.50 195.60	195.67 195.51 195.42 195.25	112.93 113.31 113.04 113.83	113.51 113.65 113.04		227.34	227.61 227.14 227.05 227.73	277.55	195.48	193.44					158.67
	Variation.	Velocity Tt./sec.	14.97 7.00 7.00	18.50 18.50	4.88 6.98 12.50	4.93 6.90 9.55 12.50	4.93 6.90 12.55	4.93 6.90 12.55	7.14 9.39 12.90 13.51	7.14 9.45 11.30		7.21	4.08.1 4.08.1 4.01.1	6.15	5.33	5.99	7.17	5.10	1 9.4	1 9• т	5.50
		Heat trans.	193500	198000	162000 159000 161000 161000	132000 134000 131500 134000	21,5000 21,6000 21,7000 22,2000	248000 250000 254000 251000	63700 64200 62500 63600	1,7800 1,8400 1,9000 50200		266000	219000 227000 236000 253000	122000	110500	198000	234000	104000	101000	136000	181000
	Tube Side	Pounds per hr.	32300 45500	81200	31700 45300 62400 81200	32000 45300 62000 81200	32000 45300 62100 81400	32000 45300 61200 81400	46600 61300 84200 88300	46600 61800 73900 87500		15500	28000 35800 71000 72000	38800	34100	38300	η 2 900	33100	30000	30000	35500
	Water on Tube Side	rise	5.989 4.286	2.452	5.121 2.505 2.574 1.990	4.121 2.951 2.123 1.651	6.721 4.771 3.493 2.736	7.755 5.512 4.088 3.084	1.366 1.048 0.743 0.725	1.024 0.783 0.664 0.574		5.86	5.44 8.48 K	3.15	3.24	5.17	5.09	3.15	3.38	4.52	т <u>.</u> с
		Temperature,	128.284 128.808	130.660	128.320 128.320 129.256 129.476	126.729 127.568 128.466 128.907	129.200 129.836 130.736 130.271	129.861 130.412 130.941 131.704	72.932 74.210 75.180 76.339	71.508 72.909 73.627 73.387		200.17	202.69 201.83 201.18 201.60	197.38	161.85	163.74	163.74	80.53	125.94	127.18	128.68
		12 41	122,295 124,522	128,208	122,245 124,815 126,682 127,486	122.608 124.617 126.343 127.256	122.479 125.065 127.243 127.535	122.106 124.900 126.853 128.620	71.566 73.162 74.437 75.614	70.484 72.126 72.963 72.813		194.31	194.85 195.49 196.56 198.09	194.23	158.61	138.38	158.65	77.20	122.52	122,59	123.51
		No.	57		28	59	9	61	19	89		107	108	109	97	7	112	121	122	123	124

TABLE IX SUMMARY OF EXI

RESULTS	
CALCULATED	
AND	
DAT	
	MENTAL DATA AND CALCULATED RESU

		1												1:	29
	@ Values	Be Pr (Mu)(Pr)(H/h/)		83.0	106	138	176	253		7.15	9°6	12.8	6.30	8.45	1.11
	he11 810	Æ		2.37	2.33	2.31	2.30	2.25		354	569	263	88	ま	38
	rerage 8	*		12000	17100	54200	32300	51800		310	3 8	565	243	747	φ
		g		†	145	188	240	340		60.5	75.7	97.5	46.5	62.7	8.7
		å		%	1230	1620	SOHO	2900		106	132	170	81.5	011	143
		हुं ज								# LL					
		= 8; ₽		0.166 0.124 0.102 0.0858	0.168 0.124 0.102 0.0856	0.167 0.125 0.101 0.0855	0.165 0.122 0.0841	0.163 0.123 0.0998 0.0845		0.164	0.162 0.0120 0.0990 0.0834	0.161 0.120 0.0997 0.0831	0.187 0.140 0.115 0.0964	0.186 0.141 0.0954	0.184 0.139 0.113 0.0947
		٦þ°		.00258 .00232 .00211 .00197	.00210 .00210 .00197	.00222 .00191 .00171 .00157	.00202 .00175 .00156 .00142	.00187 .00159 .00142 .00126		.01093	69600 90000 90000 6900 79800	007750 007500 00700 00700	.01466 .01408 .01370 .01350	.01057 .01050 .01050	.00921 .00858 .00842 .00842
DLE 6		°		387 431 508	410 777 764 764	さななる なななる	5572 758 758 758 758	534 704 792		4.16	103.2 110.4 115.3	129.0 135.5 140.2	68.2 25.0 5.0 6.5 7.0	88888 55642	108.6 116.4 118.7 120.0
ELL BU		difference.		11.60 10.33 9.43 8.78	12.37 10.50 9.48 8.78	13.58 11.89 10.59 9.91	14.27 12.45 11.13 10.16	15.50 12.96 11.53		16.85	8449 7.8.4.6 7.9.4.6	26.45 4.65.45 5.65.45	52.8 52.7 4.00 4.4	722.5 4.0.04	47.00 5.00 7.00 7.00 7.00
HS 9		1		0.6i 0.6i 0.6i	1111	8.4.4.4. 8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	8.4.4.8. 8.4.4.8.8.8.8.8.8.8.8.8.8.8.8.8	9.6 9.6 5.6 5.7		2,68	2.55 2.55 2.55 2.55	4444 2683	1.57	0,0,0,0,0 8,8,8,8	4444 4258
5/8" FINNED TUBES IN 6"SHELL BUNDLE		Heat trans. BIU per hr.	Shell Side	248000 248000 246000 246000	285000 282000 278000 278000	341000 348000 348000 355000	396000 405000 398000 395000	457000 460000 452500 450000	Shell Side	00006	151000 148000 146000 148000	199000 192000 188000 185500	205000 206500 206000	262000 262000 277500 261000	330000 330000 328000 326000
FINNE	Shell Side	Pounds per hr.	Water on	12200 12100 12100 12100	16800 16800 16800 16800	23800 23800 23900 23800	31400 31500 31400 31500	00964 00964 00964	011 on	18500	18300 18400 18300 18300	26500 26500 26200 26100	13300 13300 13500 13500	18500 18500 18500	26200 26200 26200 26100
28,	Shell	di.oj.		20.32 20.32 20.32 20.34	16.87 16.76 16.57 16.58	14.44 14.44 14.54 18.54	12.60 12.87 12.66 12.52	9.28 9.28 9.06		47.6	16.29 15.92 15.78 15.94	14.36 14.13 14.02	30.42 30.80 30.60 30.60	27.87 28.19 27.65 28.01	2.2.4.4 8.8.8.9
!		Temperature, 'F		157.06 156.88 156.88 156.92	160.52 160.95 160.85 160.73	162.66 162.66 162.61 162.51	164.35 164.88 164.37 164.52	168.23 168.32 168.50 168.23		170.56	179.82 179.62 179.73 179.64	181.13 181.09 181.40 181.22	165.42 165.31 165.42 165.49	168.03 167.92 168.10 168.01	170.98 170.98 170.87
		Ten		177.38 177.40 177.20 177.26	177.71 177.71 177.42 177.52	17.01 177.30 177.15 177.15	176.95 177.75 177.03 177.04	177.60 177.62 177.62 177.29		180.30	195.54 195.54 195.55	195.33 195.45 195.24 195.24			135.8 135.8 13.45.8
	Water	Velocity Ft./sec.		7.85 11.25 14.34 17.92	7.70 11.13 14.17 17.70	7.75 11.03 14.31 17.73	7.98 11.28 14.31 17.90	7.98 11.20 14.23 17.70		77.7	7.82 11.22 14.30 17.72	7.87 11.26 14.19 17.85	7.94 11.31 14.31 17.75	4.52.24 5.23.29	11.22 17.73 17.78
		Heat trans.		241000 237000 240000 240000	270000 264000 262000 262000	326000 331000 326000 324000	374000 370000 378000 385000	445000 437000 434000 438000		84100	150500 150630 156000 169000	185000 188000 189000 189000	196000 202000 203000 201000	262000 269000 274000 269000	320000 327000 326000 324000
	Pube Side	Pounds 1		31700 45500 58000 72500	31200 45100 57400 71600	31400 44700 58000 71900	32300 45600 58000 72500	32300 45400 57600 71700		31500	31700 45500 57900 71800	31900 45600 57400 72300	32100 45800 58000 71900	32100 45500 57900 72100	32100 45500 57900 72000
	Water on Tube Side	7 r186		7.59 5.21 4.13 3.31	8.5 7.83 8.64 8.64	10.40 7.40 5.62 5.51	11.57 8.10 6.52 5.31	13.75 9.63 7.52 6.11		2.67	4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	7.4.6.9 5.1.8.6.9	3.4.6% 1.4.6%	8.00 10.01 1	9.5.24 9.6.85 8.
		Temperature,		156.30 156.03 156.15 156.27	158.59 159.37 159.46 159.49	159.58 159.96 160.25 160.43	160.50 161.42 161.35 161.80	162.76 163.67 164.30 164.57		160.53	163.08 163.54 163.81 163.92	163.89 163.98 164.88	128.25 128.57 129.56 130.12	130.50 130.61 131.85 132.24	132.69 133.92 134.60 134.52
		T at		148.71 150.82 152.02 152.96	149.92 153.52 154.92 155.83	149.18 152.56 154.63 155.92	148.93 153.32 154.83 156.49	149.01 154.04 156.78 158.46		157,86	158.33 160.23 161.11 161.67	158.16 159.85 161.59 162.03	122.14 124.16 126.06 127.32	122.32 124.70 127.11 128.50	122.72 126.73 128.98 130.02
		No.		45	8	56	27	88		31	32	33	₹.	35	36

SUMMARY OF EXPERIMENTAL DATA AND CALCULATED RESULTS TABLE IX

O	_	1#	,																	
	Average Shell Side Velues	(Mu)(Pr)(44)		13.4	15.2	2.19	1.72		16.9	4.51	11.6	9.76	7.55	5.81	8.90	[†] •:a	5	5,65	3.76	1.70
	Shell Std	Å.		. 583	ETT	1675	1691		192	8,	1 02	ਜ਼	218	1 82	Ħ	108	108	1040	1005	1100
	Versite	Re		655	791	47.5	54.0		1222	91.7	707	532	379	88	1	1709	2225	8	127	42.5
	A	age.		98.5	77	30.0	23.6		108		73.5	62.1	48.3	37.7	50.1	121	131	'n		£.4
	_	ď		173	194	53.2	41.9		004	375	272	559	178	139	187	954	96 1		155	77.5
		Calc.							1030		1020	1020	0101	1010	1340		1360	715	77.5	585
		₩ 40.8		0.184 0.138 0.114 0.0944	0.183 0.137 0.112 0.0936	0.248 0.199 0.156 0.129	0.253 0.201 0.156 0.128		0.124	0.180 0.142 0.109 0.091	0.126	0.127	0.127	0.1:38	960.0	0.133 0.075 0.066	0.095	0.180	0,178	0.221
	L	٦þ°		.00782 .00754 .00710	.006713 .00673 .00659	.0220 .0214 .0206	.0270 .0268 .0258 .0248		.00373	.00445 .00418 .00394 .00380	.00477	.00556	₩9900•	04800.	.00632	.00374 .00349 .00322 .00288	- 00302	.oto7	10	.01482
NDLE 6		ď		127.9 132.6 141.0 140.0	140.0 148.5 151.8 157.0	334 5.54 5.54 5.64	37.0 37.3 38.8 40.4		568	4 8 4 8 8 4 8	210	180	146	119	158	268 287 310 347	332	93.4	124.0	9.19
FLL BU		Mean temp. difference		54.9 53.6 50.3 50.5	55.4 52.0 50.6 49.4	35.45 25.7 24.5 3.45	35.3 35.5 33.4 4.5		52.8	00 00 00 00 00 00 00 00 00 00 00 00 00	53.2	51.9	51.2	51.6	18.8	21.5 19.8 18.2 16.1	21.8	35.7	35.9	34.2
N 6"S	L	Pres. drop pet		7.20 7.17 7.23 7.35	9.65 5.65 70	5.50 5.57 5.39 5.40	2.23.4 2.23.35 2.13.4		14.40	9.99.50 9.99.50 9.99.50	6.61	4.57	2.70	1.90	1.05	8888 44888	14.80	5.73	10.98	3.10
5/8" FINNED TUBES IN 6" SHELL BUNDLE		Heat trans. ETU per hr.	on Shell Side	38000 392000 388000 386000	425000 426000 424000 425000	87400 89600 89000 90900	67500 67100 69600 70300	Shell Side	780000	629000 638000 648000 646000	619000	514000	418000	334000	182000	315000 313000 305000 303000	396000	189000	245000	132000
FINNE	Shell Side		011 or	33300 33300 32900 32900	39200 39300 39100 39500	15500 15600 15700 16000	10600 10500 11000 11500	Glycerine on	58200	47500 48000 48100 48700	38000	30000	21900	16700	13800	46900 46100 45500 44500	00109	23500	35500	13500
2/8	Shel	Temperature, or Pounds		23.17 23.38 23.28 23.25	22.12 24.12 24.13	12.18 12.41 12.23 12.27	13.76 13.80 13.69 13.19	Glyc	20.70	20.42 20.53 20.75 20.47	25.14	56.49	29.45	31.18	19.48	8.6.9.9.0 8.6.9.9.0	9.68	13.43	o4.11	16.35
		peratur		172.76 172.72 172.47 172.83	174.61 174.58 174.39 174.56	101.03 101.34 101.61 101.03	99.68 99.77 101.01		173.91	173.44 173.16 173.39 173.26	169.65	167.13	164.08	162.23	207.86	216.23 216.36 216.50 215.71	215.79	117.61		114.51
		In		195.93 196.10 195.75 196.08	196.05 196.02 195.81 195.90	113.21 113.75 113.84 113.30	113.57 113.59 114.88		194.61	193.86 193.69 194.14 193.73	194.79	193.62	193.53	193.41	227.34	226.11 226.33 226.36 225.72	225.39	131.04	131.11	130.86
	Under	Velocity Ft./sec.		7.94 11.22 14.19 17.78	7.76 11.31 14.31 17.72	7.95 10.38 14.10 17.61	7.76 10.38 14.16 17.60			10.60 14.30 17.97	12.69	12.69	12.69	12.69	12.69	8.34 10.69 16.85 19.50	12.82	94.01	14.01	8 . 14
		Heat trans.		376000 384000 384000 386000	421000 415000 115000 1421000	89000 92100 92000 1	75100 77200 78700 177100		000 1 92	609000 620000 625000 10 631000	282000 11	504000 1;	397000 12	354000 13	174000 13	505000 10 505000 10 5110000 16	385000 13	175000 10	-	120000
	81de								-											
	Water on Tube Side	Pounds per hr.		32100 45500 57400 72000	31400 45800 58000 71800	32800 7 12800 7 72800	5 52000 1,2900 5 58500 72700		51300	32500 42900 57900 72600	51300	51300	51300	51300	51300	33700 43200 38100 78900	51900	42300	42200	32900
	Water	r186		11.72 8.43 6.70 5.36	13.43 9.06 41.7 5.87	2.716 2.147 1.579 1.233	2.745 1.800 1.346 1.060		14.85	18.72 14.49 10.80 8.69	11.58	9.8	7.74	6.52	3.40	8.55.55 8.55.58	7.42	4.14	5.74	3.6
		Temperature,		134.13 134.49 134.98 135.42	135.97 136.92 137.37 137.75	72.194 72.869 73.116 73.193	72.145		137.93	141.15 141.13 142.27 142.77	133.74	132,49	129.87	128.07	198.22	204.01 204.01 205.32 205.88	201.58	90.18	91.83	89.60
		T T		122.41 126.06 128.28 130.06	122.54 127.86 130.23 151.88	69.478 70.722 71.537 71.960	69.800 69.620 70.599 73.042		123.08	122.43 126.64 131.47 134.08	122,16	122.68	122.13	121.55	194.82	194.68 197.38 201.92	91,461	₩.04	86.09	85.96
		Run No.		37	82	72	27		8	&	& &		đ		8	48	88	101	705	103

TABLE VI

WEIGHTED FLOW AREA SHELL SILE

Example Calculations for 8-in. Exchanger with 3/4-in. Finned Tubes, Bundle No. 2

Longitudinal-Flow Area

Baffle cut 1.94., add 0.02 in. for clearance between baffle and shell.

Baffle cut based on shell I.D. = 1.96 in. Area of baffle window (Ref. 3, page 32) = 9.60 sq in. Number of tubes in window $6 + (2 \times 0.5) + 0.75 = 7.75$. Area of tubes = $\pi/4 (0.735)^2 \times 7.75 = 3.28$ sq in. Net flow area 9.60 - 3.28 = 6.32 sq in.

Cross-Flow Area

Number of tubes in row nearest to a diameter normal to the direction of flow = 8

Equivalent diameter of tube $D_e = 0.660$ in.

Cross-flow area = $(7.972 - 8 \times 0.660)4 = 10.60 \text{ sq in.}$

Geometric mean = $\sqrt{10.60 \times 6.32}$ = 8.18 sq in.

Flow area end spaces, 7.31 in. long.

Cross-flow area $7.31 \times 7.972 - 8 \times 0.660 = 19.40 \text{ sq in.}$

Geometric mean = $\sqrt{19.40 \times 6.32}$ = 11.1 sq in.

Weighted average of end spaces 14.6 in. long and baffled space, 32 in. long:

$$\frac{11.1 \times 14.6 + 8.18 \times 32}{46.6} = 9.25 \text{ sq in.} \qquad \text{or} \qquad 0.0643 \text{ sq ft, } A_{\text{m}}$$

Flow areas for all exchangers are listed in Table I.

APPENDIX II

Reproduced from Alco Heat Exchanger Price Book, with tubing prices furnished by the Wolverine Tube Division, for copies of the report distributed to students in Course CM 121 at the University of Michigan.

TEMA CLASS "R" UNIT PRICING SEQUENCE

DESIRED:

150 lb. TEMA Standard Exchanger
Size 36" dia. by 16' long
Tube size 3/4" 0.D. x 14 gauge 30% Cupro-Nickel
on triangular pitch
Tube sheets naval rolled bronze
Baffles 20 - 3/16" segment type Muntz metal
Passes shell side 1, tube side 4
Nozzles - Shell (1 - 8" dia. radial)
(1 - 8" dia. impingement)
Nozzles - channel 2 - 8" dia. radial

EXAMPLE:

l.	Price	of	shell from page 135	\$ 1,957.00
2.	Price	of	tube side from page 136	879.00
3.	Price	of	nozzles from page 137	402.00
4.	Price	of	tube sheets from page 138	2,088.00
5.	Price	of	baffles from page 139	1,414.00
6.	Price	of	tubes from page 144-46	7,899.54
				\$14,639.54

Price F.O.B. Factory

*If supports plates are also desired, select price from pages 140-43.

SHELL SIDE - STEEL (16' O" LONG) 1 PASS

			150 # STAND	ARD	300# Standard			
Nom. Size	Suggested Noz. Size	Shell Thick.	Price	Extra Per Ft.	Shell Thick.	Price	Extra Per Ft.	
1 2"	3"	3/8"	\$ 840.	\$ 6.40	3/8"	\$ 855.	\$ 6.40	
14"	3"	3/8"	920.	6.75	3/8"	920.	6.75	
16"	3"	3/8"	937	7.70	3/8"	947•	7.70	
18"	3"	3/8"	962.	8.29	3/8"	973.	8.29	
20"	4"	3/8"	1087.	9.56	7 /1 6"	1108	10.58	
22"	4"	3/8"	1168.	10.10	7/16"	1185.	11.25	
24"	6"	3/8"	1251.	11.60	1/2"	1272.	12.74	
27"	6"	3/8"	1414.	13.01	1/2"	1440.	14.34	
30"	8"	3/8"	1561.	14.19	9/16"	1623.	17.52	
33"	8"	7/16"	1645.	15.00	5/8"	1746	20.32	
36"	8"	7/16"	1957.	16.40	5/8"	2104.	22.07	
39"	10"	7/16"	2324.	17.53	11/16"	2497.	25.57	
42"	10"	1/2"	2684.	23.27	3/4"	2960.	30.40	

Above prices include shell, flanges, shell cover, 2 saddles, gaskets and bolts, 3 outside clamp rings, assemble and test, skids, seal strips and miscellaneous. For shells under 16' 0" long, deduct price per foot for shorter shell.

TUBE SIDE (4 PASS)

			J		· · · · · · · · · · · · · · · · · · ·
		150# STANDARD	300#standai	RD EXTRA	FOR 1 RIB
Nom. Size	Suggested Noz. Size	Price	Price	Channel	Float,Head
12"	3"	\$ 379.	\$ 386.	\$ 11.54	\$ 5.05
14"	3"	396.	404.	11.70	5.23
16"	3"	426.	438.	12.60	5.50
18"	3"	428.	442.	12.23	5.35
20"	1411	465.	482.	12.59	6.04
22"	4"	492.	515.	12.75	6.13
24"	6"	528.	549.	13.63	6.09
27"	6"	610.	627.	14.90	7.31
3c"	8"	705.	731.	15.48	8.07
33"	8"	775•	817.	15.60	8.34
36"	8"	879.	929.	18.23	9.35
39"	10"	1149.	1231.	18.70	12.20
42"	10"	1278.	1398.	20.03	12.71

Above prices include channel barrel, channel flanges, channel cover, floating head cover, 1 floating head closure, bolts, gaskets, and grooving.

For 2 Pass deduct one channel and floating head rib. For 6 Pass add three channel and floating head ribs.

EXCHANGER PRICES

NOZZLES

SHELL.	SIDE	NOZZLES

Nozzle Size	150#		30		
	Radial	Impingement	Radial	Impingement	
1 1-1/2 2 2-1/2 3 4 5 6 8 10 12 14	Type 53. 54. 57. 60. 65. 69. 81. 98. 116. 143. 174.	Type 107. 80. 81. 89. 105. 114. 118. 156. 200. 222. 238.	Type 53. 54. 55. 57. 60. 66. 70. 82. 100. 120. 148. 186.	Type 107. 80. 81. 90. 106. 115. 119. 159. 203. 228. 250.	

जा का ज	CITI	MOZZI ES

	15	0 井	300 井		
Nozzle Size	Radial Type	Tangential Type	Radial Type	Tangential Type	
1 1-1/2 2 2-1/2 3 4 5 6 8 10 12	32. 33. 34. 36. 39. 45. 48. 59. 74. 93.	39. 40. 41. 44. 53. 57. 75. 95. 132. 145.	32. 33. 34. 36. 39. 46. 50. 61. 77. 97.	40. 41. 42. 44. 47. 54. 58. 76. 97. 136. 160.	

TUBE SHEETS (PER PAIR)

			150#STANDA	LRD				
	STE	EL.		N.R.				
Nom. Size	5/8" Tubes	3/4" Tubes	l" Tubes	5/8" Tubes	3/4" Tubes	l" Tubes		
12" 14" 16" 18" 20" 22" 24" 27" 30" 35" 36" 39"	\$ 172. 190. 240. 278. 349. 422. 485. 645. 789. 960. 1285. 1500. 1880.	\$ 158. 163. 197. 227. 293. 341. 390. 521. 634. 775. 1024. 1195. 1500.	\$ 133. 144, 178. 191. 242. 284. 325. 434. 514. 627. 808. 931. 1172.	\$ 272. 311. 401. 480. 651. 782. 911. 1210. 1513. 1853. 2332. 2803. 3428.	\$ 257. 288. 366. 436. 596. 704. 819. 1085. 1362. 1665. 2088. 2623. 3093.	\$ 238. 272. 349. 410. 546. 651. 757. 999. 1240. 1523. 1899. 2289. 2896.		
			300井STANDA	ARD .	21 19 1 1			
	STEE	L			N.R.			
Nom. Size	5/8" Tubes	3/4" Tubes	l" Tubes	5/8" Tubes	· ·	l" Tubes		
12" 14" 16" 20" 22" 24" 27" 35" 36" 39"	\$ 178. 208. 261. 305. 379. 464. 529. 766. 1003. 1208. 1423. 1692. 2419.	\$ 164. 180. 216. 252. 383. 433. 619. 804. 976. 1145. 1368. 1930.	\$ 139. 160. 197. 217. 269. 324. 366. 502. 635. 768. 912. 1070. 1471.	\$ 315. 369. 488. 595. 762. 917. 1070. 1448. 1937. 2903. 3493. 4547.	446. 540. 704. 833. 975. 1298. 1738. 2137. 2623.	\$ 276. 324. 426. 505. 651. 774. 907. 1183. 1569. 1930. 2386. 2876. 3754.		

Above prices include a pair of tube sheets (fixed and floating), drilled, reamed, and grooved.

EXCHANGER PRICES

	SEGMENT BAFFLES										
			STEEL -	PER BAI	TLE						
	5/8" Tubes 3/4" Tubes 1" Tubes										
Size	1/8"	3/16"	1/4"	1/8"	3/16"	1/4"	1/8"	3/16"	1/4"		
12" 14" 16" 18" 20" 22" 27" 30" 356" 39"	\$6.63 7.48 8.35 9.67 11.00 12.80 13.89 19.60 25.05 30.26 33.80 42.80 47.50	\$8.21 9.46 10.34 11.11 14.10 15.99 17.79 23.55 30.00 34.95 39.90 47.40 56.40	\$9.90 11.64 13.70 14.42 17.78 22.08 23.12 33.60 43.35 48.70 57.90 68.65 82.50	\$6.34 7.10 7.88 8.93 10.28 11.90 12.86 17.85 22.95 27.65 30.30 38.75 42.75	\$7.83 8.98 9.76 10.42 13.17 14.88 16.49 21.65 27.50 31.80 36.30 42.90 50.80	\$9.41 11.02 12.90 13.54 16.64 20.53 22.05 30.15 39.70 44.50 52.75 62.20 74.40	\$6.00 6.68 7.40 8.34 9.58 11.00 11.83 16.50 20.90 25.00 27.28 34.62 38.10	\$7.45 8.45 9.15 9.73 12.27 13.75 15.18 19.80 25.05 28.75 32.65 38.40 45.20	\$8.95 10.39 12.12 12.63 15.45 18.96 19.68 28.30 36.18 40.35 47.48 55.70 66.08		
		·	MUNT	Z METAL -	- PER BAF	FLE					
Size	1/8"	3/16"	1/4"	1/8"	3/16"	1/4"	1/8"	3/16"	1/4"		
12" 14" 16" 18" 20" 22" 27" 33" 336" 342"	12.87 16.47 17.48 19.70 22.52 26.24 29.97 35.72 42.38 48.48 57.13 66.30 78.60	15.83 18.31 21.73 24.28 28.70 33.68 38.93 47.23 57.94 65.22 77.30 90.81 107.38	18.57 21.68 25.88 28.80 34.79 40.84 45.89 57.29 68.81 78.76 93.91 109.70 128.00	12.40 14.21 16.54 18.53 21.09 44.47 27.95 33.17 39.18 44.63 52.33 60.35 71.25	15.08 17.39 20.53 22.85 27.05 31.54 35.33 43.78 53.54 60.17 70.70 82.66 97.68	17.69 20.62 24.59 27.15 32.67 38.24 42.84 53.19 63.56 72.46 86.11 100.15 116.55	11.80 13.47 15.45 17.40 19.67 22.77 25.82 30.59 35.83 40.68 47.48 54.40 64.10	15.00 16.48 19.40 21.45 25.25 29.38 32.75 40.38 49.04 54.87 64.20 74.76 87.83	16.86 19.58 23.14 25.57 30.14 35.59 39.69 48.99 58.51 66.21 78.26 90.70 104.80		

Above prices include drilling, cutting, and l' length of tie rod with spacers.

EXCHANGER PRICES

LONG BAFFLES AND SUPPORT PLATES

	Expai	uid Type nding Lon es (16'10			Vapor Perfora Baffl	ted Long	Floating Head Support Pl. 1/2"			
	Stee	el	N.R.		St	eel	N.R.		Steel	N.R.
Size	Price	Extra Per Ft.	Price	Extra Per Ft.	Price	Extra Per Ft.	Price	Extra Per Ft.	Price	Price
15.	\$197	\$7.70	\$480.	\$25.42	\$61	\$.93	\$185	\$9.90	\$30.	\$43.
14"	201	7.80	509	26.77	65	.96	193	10.45	35	51.
16"	213	8.43	554	29.13	65	1.03	207	10.41	38	56
18"	206	8.13	558	29.75	62	1.04	209	11.69	40	59
20"	213	8.30	610	31.67	66	1.14	223	12.72	45	68
22"	218	8.47	639	33.46	66	1.21	2 3 2	13.27	49	75
24"	220	8.37	660	34.51	66	1.25	233	13.55	50	83
27"	249	9.52	730	41.73	73	1.37	261	15.06	58	100
30"	255	9.68	813	43.07	74	1.49	281	16.32	63	108
33"	265	9.59	870	45.79	75	1.53	286	16.85	70	122
36"	284	10.21	909	47.61	83	1.67	313	18.44	83	144
39"	288	10.45	975	51.32	86	1.78	332	19.58	98	172
42"	299	10.60	1080	56.02	87	1.87	348	20.82	114	195

STEEL 3/8" SUPPORT PLATES
(Price of One)

	Basis o	f 1 or 2 Pla	tes	Basis of 3	Basis of 3 or more Plates			
Size	5/8" Tubes	3/4" Tubes	l" Tubes	5/8" Tubes	3/4" Tubes	1" Tubes		
12"	1 2.50	11.30	9.56	12.00	10.90	9 .3 5		
14"	14.25	12.69	10.65	13.62	12.23	10.40		
16"	16.70	1 5.00	12.40	15.80	14.40	12.05		
18"	20.00	17.25	14.32	18.85	16.45	13.85		
20"	23.70	20.40	16.50	22.20	19.31	15.85		
22"	27.50	23.30	18.00	25.70	21.90	17.30		
24"	31.80	26.70	20.40	29.60	25.10	19.50		
27"	40.25	33.50	25.30	37.50	1.50	24.10		
30"	47.80	40.40	28.60	ነ ት.20	37.70	27.30		
33"	57.80	47.50	34.30	53.50	44.00	32.50		
36"	67.25	55.20	40.00	60.50	51.30	37.80		
39"	78.00	63.80	45.40	71.50	59.20	42.80		
42"	90.00	73.20	52.00	82.60	67.75	49.00		

STEEL 1/2" SUPPORT PLATES (Price of One)

	Basis of	1 or 2 Plate	3	Basis of 3 or more Plates			
Size	5/8" Tubes	3/4" Tubes	1" Tubes	5/8" Tubes	3/4" Tubes	l" Tubes	
12"	14.10	12.60	10.40	12.70	11.50	9.83	
14"	16.20	14.22	11.65	14.50	12.96	11.00	
16"	17.55	17.10	13.75	16.30	15.38	12.81	
18"	21.10	18.30	16.15	19.40	17.05	14.85	
20"	25.10	21.70	18.75	23.01	20.00	17.10	
22"	29.60	24.80	20.00	26.60	22.82	18.20	
24"	34.00	28.60	21.90	30.70	26.10	22.40	
27"	42.90	36.00	27.30	38.80	32. 90	25.50	
30"	52.20	43.40	32.30	47.00	39.40	30.00	
33"	62.20	5 1. 20	37.30	55.50	46.30	34.50	
36"	72.40	59.40	43.40	64.50	53.60	40.10	
39"	83.80	68.90	49.60	74.75	61.90	45.60	
42"	96.50	78.80	56.60	85.75	70.75	52.00	

STEEL 5/8" SUPPORT PLATES (Price of One)

	Basis of 1 or more Plates									
	Size	5/8" Tubes	3/4" Tubes	l" Tubes						
•	12"	18.30	16.38	13.58						
	14"	20.80	18.38	15.08						
	16"	25.60	22.00	17.75						
	18"	31. 30	26.50	20.80						
	20"	<i>3</i> 7 _• 50	31.80	24.10						
	22"	44.00	36.70	27.50						
	24"	51.50	42.40	31.40						
	27"	65.80	65.80 53.90							
	30"	80.25	65.30	47.00						

77.80

90.50

105.20

121.00

54.60

63.80

73.00

83.25

33"

36"

39"

42"

96.00

101.18

130.50

150.50

	TUBING CHARACTERISTICS										
O.D OF	WALL T	HICKNESS	OUTSIDE AREA	CROSS SECTION		WEIGHT PER FOOT (AVERAGE) LBS.					
TUBING	B w.G Guage	INCHES		AREA OF	INCHES	10-30 8045	4	ALUMINUM BRASS	ALUMINUM BRONZE 5%		MUNTZ METAL
5/8	18 16 14	.049 .065 .083	.164	.218 .192 .165	.527 .495 .459	.338 .435 .538	.354 .457 .564	.330 .425 .526	.323 .417 .515	•346 •447 •552	.332 .428 .529
3"	18 16 14 12	.049 .065 .083 .109	.196	.334 .302 .268 .222	.652 .520 .584 .532	.411 .532 .662 .836	.431 .558 .694 .876	.401 .520 .647 .817	.393 .510 .634 .800	.421 .546 .629 .857	.404 .524 .651 .822
/"	18 16 14 12 10	.049 .065 .083 .109	.262	.639 .594 .546 .480 .421	.902 .870 .834 .782 .732	.557 .727 .910 1.16 1.39	.584 .762 .955 1.22 1.46	.545 .710 .890 1.14 1.36	1	•572 •746 •934 1.19 1.42	.548 .715 .895 1.14 1.37

CONDENSER TUBES - HEAT EXCHANGER TUBES BASIC SCHEDULE - CENTS PER POUND LENGTHS 1 FT TO 30 FT, INCL.

	THICK	NESS O	F WALL	B.W.G. G	UAGE 4	IN INCHES	S-NET PE	R POUN	0
OUTSIDE DIAMETER IN INCHES	IO UNDER .148 TO .134 INC.	// UNDER ./34 TO ./20 /NC,	12 UNDER .120 TO .109 INC.	13 (INDER .109 To .095 INC.	IA UNIDER .095 TO .083 INC.	15 UNDER -083 TO .072 INC.	IG UNDER .072 TO .065 INC.	17 UNDER .065 To .058 INC,	IB UNIDER .058 TO .049 INC.
INC. 5/8 TO 1/4	\$.5200	\$.5200	\$.5200	\$.5200	\$.5200	\$.5200	\$.5262	\$.5262	\$.531 2
INC. 3/4 TO 1/8				.5087	.5087	.5087			
INC. 7/2 TOI	.5087	.50 87	.5087	.5087	.5087	•5087	.5087	.5150	.5200
INC. 1 To 1/4		.5 0 62	.50 62	.5062	.5062	.5062	. 5062	.5137	.5200

QUANTITY SCHEDULE

The Base Schedule Prices are subject to the following deductions and additions on account of the quantity of a single ORDER for shipment to one destination at one time.

Term "order" means the amount contained in one order for one alloy only, in varying sizes and lengths for shipment at one time to one destination.

30,000	lbs.	and	d over.			u s 8			.Less	\$.0255	per	pound
15,000											.02	per	pound
10,000	lbs.	to	15,000	lbs.	• • •	u e e		• • •	.Less		.Ol	per	pound
5,000	lbs.	to	10,000	lbs.		0 5 6		, , ,	.Less		.005	per	pound
2 ,000	lbs.	to	0 00 و 5	lbs.					.Above	e :	prices		
1,000	lbs.	to	2,000	lbs.	0 • •	0 t i			.Add		.01	per	pound
500	lbs.	to	1,000	lbs.		0 0 0		• • •	.Add		.025	per	pound
300	lbs.	to	500	lbs.					.Add		.05	per	pound
100	lbs.	to	300	lbs.			• • •	• • •	.Add		.08	per	pound
	Und	ler	100	lbs.	0 0 0		• • •		.Cons	ul-	t Mill		_

ALLOY SCHEDULE

The base prices in this schedule are subject to additional or deductions for the alloy required. All tubes of the following alloys within the range of sizes covered by the BASE SCHEDULE will be priced accordingly, regardless of their ultimate use.

Admiralty 70/29/1Base	Schedule Prices
Inhibited AdmiraltyBase	Schedule Prices
Arsenical CopperBase	Plus \$.0156 Net
Cupro-Nickel - 30%Base	Plus .1902 Net
Aluminum Brass 76/22/2Base	Plus .0706 Net
Aluminum Bronze 95/5Base	Plus .1586 Net
70/30 BrassBase	Schedule Prices
85/15 Red BrassBase	Schedule Prices
Muntz MetalBase	Less \$.0100 Net

WOLVERINE TRUFIN PRICES

COPPER - 19 Fins Per Inch

Nominal Size

Plain End Diameter	Root Diameter		Wall Thickness	Base Price Per Ft
1/2"	3/8"	x	.032"	\$.2125
5/8"	1/2"	x	.035"	.2550
3/4"	5/8"	x	.042"	.3225
3/4"	5/8"	x	.065"	•3900
3/4"	3/4"	x	.049"	.3900

ALLOYS -- 19 Fins Per Inch

Nominal Size

	Plain End Diameter	Root <u>Diameter</u>		Wall Thickness	Base Price Per Ft
85-15 Red Brass 70-30 Cupro-Nickel 70-30 Cupro-Nickel Admiralty	3/4" 3/4" 3/4" 3/4"	5/8" 5/8" 5/8" 5/8"	x x x	.049" .049" .065" .065"	\$.3700 .5775 .6550 .4125

QUANTITY SCHEDULE

The quantity of each item for delivery at one time determines the price.

					Per Fo	ot
250,0	000 ft ar	nd o	over	Base	Less \$.04
				250,000Base		.03
Inc.	100,000	ft	to	100,000Base	Less	.025
Inc.	50,000	ft	to	100,000Base	Less	.02
Inc.				50,000Base		.01
Inc.	5,000	ft	to	10,000Base	Less	.005
Inc.	2,000	ft	to	5,000BASE	PRICE	
Inc.	1,000	ft	to	2,000Base	Plus	.005
Inc.	500	ft	to	1,000Base	Plus	.01
Inc.	300	ft	to	500Base	Plus	.02
Inc.	100	ft	to	300Base	Plus	.04
Less	than 100	ft	t	Base	Plus	.01

PRICES AND WEIGHT OF MIN. WALL STEEL TUBES							
a. n.				Price			
Sq. Ft. Per Lin. Ft.	Dia.	Gage	Weight Lin. Ft.	Lin.Ft.	Sq.Ft.		
.1636	5/8 5/8 5/8	18 16* 14	.340 .435 .538	.1562 .639 .1712	.96 1.01 1.05		
.1963	3/4 3/4 3/4	18 16 14*	.415 .534 .665	.1629 .1703 .1788	.83 .87 .91		
.2617	1 1 1 1	18 16 14 13 12*	.565 .732 .918 1.037 1.168	.1833 .1899 .1986 .2063 .2150	.70 .725 .76 .79 .82		

Above prices for steel tubes are <u>Base Prices</u>. See Extras below. On items marked* on 16' 0" long tubes only, use <u>Base Price</u> regardless of quantity.

Extras

40,000 lbs	or	Feet or	ove	er =	= Ваяе	
30,000 lbs t						5%
20,000 lbs						10%
10,000 lbs 1	to	19,999	lbs	or	Ft	20%
5,000 lbs 1	to	9,999	lbs	or	Ft	30%
2,000 lbs 1	to	4,999	lbs	or	Ft	45%
Under 2000 1	lbs	of Ft				65%

Example:

16,480 Ft of 3/4" x 14 gauge, Cupro-Nickel 30%, plain tubing Weight = 16,480 x 0.694 = 11.437 lbs

Base price Alloy Extra	\$0.5087 per lb 0.1920 per lb
Quantity Discount	\$0.7007 per lb 0.0100 per lb
Net	\$0.6907 per 1b

Net price = $0.6907 \times 11,437 = 7899.54

•	
	ENGINEERING DATA
I	
ı	
l	
ı	
١	
١	
ı	
	ALCO PRODUCTS DIVISION of AMERICAN LOCOMOTIVE COMPANY
١	

5/8" O.D.TUBE ON 13/16" TRIANGULAR PITCH (Single Pass Shell)

Unit		2 Pa	ss Cha	nnel		4 Pa	ss Cha	nnel		6 Pa	ass Cha	nne
Size		Surface			Surface				Surface			
	No. Tubes	8'	12'	16'	No.Tubes	81	12'	16'	No.Tubes	81	12'	
12"	138	181	271	382	130	171	256	342	124	163	544	73
14"	172	226	339	452	156	205	307	410	150	197	295	3
16"	242	318	477	636	216	284	426	568	210	275	412	5:
18"	316	415	622	830	288	378	567	756	284	373	559	7.
20"	404	530	795	1060	372	488	732	976	362	475	712	9
22"	490	644	966	1288	460	604	906	1208	454	595	892	13
24"	586	768	1152	1536	558	732	1098	1464	542	711	1066	11
27"	770	1010	1515	2020	732	960	1440	1920	716	939	1408	18
30"	970	1272	1908	2544	926	1215	1822	2430	912	1195	1792	23
33"	1188	1560	2340	3120	1144	1500	2250	3000	1118	1467	2200	25
36"	1378	1810	2715	3620	1338	1755	2632	3510	1318	1730	2595	35
39"	1644	2160	3240	4320	1594	2090	3135	4180	1576	2070	31 05	43
42"	1922	2520	3780	5040	1862	2440	3660	4880	1844	2420	3630	48

3/4" O.D. TUBE ON 15/16" TRIANGULAR PITCH (Single Pass Shell)

TT2 -1		2 P		annel			ass Ch		,	6 Pass Channel			
Unit			Surfac				<u> Surfac</u>				Surfac		
Size	No.Tubes	81	12'	161	No.Tubes	81	12'	16'	No.Tubes	81	12'	16'	
12"	106	167	250	334	98	1 54	231	308	96	151	226	302	
14"	126	198	297	396	114	179	268	358	108	170	255	340	
16"	172	271	406	542	156	245	367	490	150	236	354	472	
18"	232	365	547	730	210	330	495	660	204	321	481	642	
20"	298	468	702	936	278	437	655	874	270	425	637	850	
22"	358	562	843	1124	338	532	798	1064	328	516	774	1032	
24"	432	680	1020	1360	410	645	967	1290	398	626	939	1252	
27"	566	890	1335	1780	538	845	1267	1690	526	827	1240	1654	
30"	720	1132	1698	2264	682	1072	1608	2142	670	1052	1578	2104	
33 "	882	1385	2077	2760	844	1330	1995	2660	824	1295	1942	2590	
36"	1030	1620	2430	3240	986	1550	2325	3100	976	1535	2252	3070	
39"	1224	1925	2887	3850	1184	1862	2793	3724	1162	1830	2745	3660	
42 "	1426	2242	3363	4484	1378	2165	3247	4330	1358	2140	3210	4280	

1" O.D. TUBES ON 1-1/4" TRIANGULAR PITCH (Single Pass Shell)

	2 Pass Channel 4 Pass Channel 6 Pass Chann											
Unit		2 <u>F</u>	ass Cr Surfac			<u> 4 1</u>	Surfa		T	0 1	Surfac	
Size	No.Tubes	81	12'	16'	No.Tubes	81	12'	16'	No.Tubes	81	12'	16
12 "	52	109	163	218	52	109	163	218	50	105	1 57	21(
14"	72	150	225	300	60	126	189	252	54	113	169	22€
16"	98	205	307	410	86	180	270	360	82	172	258	341
18"	126	264	396	528	116	243	364	486	110	231	346	462
20"	164	343	514	686	1 52	318	477	636	146	306	459	612
22"	195	407	610	814	186	390	585	780	176	319	478	638
24"	242	506	759	1012	228	478	717	956	220	461	691	922
27"	3 1 5	660	990	1320	298	624	936	1248	290	607	910	1511
30"	400	836	1254	1772	378	792	1188	1584	366	967	1150	15 3 ¹
33"	486	1020	1 530	2040	464	970	1455	1940	462	968	1452	1936
36"	570	1191	1786	2382	546	1145	1717	2290	542	1135	1702	2270
39"	680	1422	2133	2844	652	1365	2047	2730	648	1360	2040	272(
42"	792	1655	2482	331 0	764	1600	2400	3200	752	1575	2362	31 50

5/8" O.D. ON 13/16" SQUARE PITCH (Single Pass Shell)

	2 Pass Channel 4 Pass Channel 6 Pass Channel											
Unit					77 77 7				37 - 53-3			
Size	No.Tubes		Surfac		No.Tubes		Surfac		No.Tubes	8.	Surfac	
		81	12'	16'		8'	12'	16'		0	12'	16'
12"	124	163	244	3 26	116	152	228	304	116	152	228	304
14"	158	207	307	414	140	184	276	368	132	173	259	346
16"	208	273	409	546	196	257	385	5 1 4	188	246	369	492
18"	274	359	538	718	262	344	516	688	252	3 30	49 5	660
20"	352	462	693	924	332	436	654	872	320	420	630	840
22"	424	555	832	1110	406	532	798	1064	396	520	780	1040
24"	518	680	1020	1380	488	640	960	1280	484	635	1007	1270
27"	664	872	1308	1744	644	845	1267	1690	628	824	1236	1648
30"	844	1106	1659	2212	816	1070	1605	2140	804	1055	1582	2110
33 "	1032	1355	2032	2710	1004	1320	1980	2640	980	1285	1927	2570
36"	1204	1581	2371	3162	1176	1 545	2317	3090	1140	1500	2250	3000
39"	1430	1875	2812	3750	1398	1835	2752	3670	1372	1800	2700	3600
42 "	1664	2182	3273	4364	1620	2130	3195	4260	1600	2100	31 50	4200
												

3/4" O.D. ON 1" SQUARE PITCH (Single Pass Shell)

	•	2 P	ass Ch	annel	P)ı D	ass Ch	ennel		6 F	ass Ch	anne
Unit			Surfac			Surface					Surfac	
Size	No.Tubes	81	12'	16'	No.Tubes	8:	12'	16'	No.Tubes	81	12'	16
12 "	80	125	188	251	76	119	179	238	76	119	179	23
14"	100	157	235	314	92	144	216	289	84	131	197	2ť
16"	132	207	310	414	124	194	292	389	116	187	273	36
18"	178	279	419	558	168	263	395	527	160	251	376	5(
20"	224	351	527	703	216	339	508	678	212	327	499	6:
22"	276	433	650	866	270	423	635	847	260	407	612	81
24"	336	527	791	1055	324	508	763	1017	312	489	734	97
27"	436	684	1026	1369	420	609	989	1318	408	640	960	128
30"	554	869	1304	1739	532	835	1252	1670	528	829	1243	165
33"	676	1061	159 2	2122	656	1029	1544	2059	640	1004	1507	200
36"	792	1243	1865	2487	762	1196	1794	2392	752	1180	1771	236
39"	934	1466	2199	2932	918	1441	2161	2882	896	1406	2110	281
42"	1100	1727	25 9 0	3454	1064	1671	2505	3341	1048	1645	2468	325
												L

1" O.D. ON 1-1/4" SQUARE PITCH (Single Pass Shell)

Unit		2 Pass Channel					ass Cha		6 Pass Channel			
	Surface						Surfac				urfac	
Size	No.Tubes	81	12'	16'	No.Tubes	81	12'	16'	No. Tubes	81	12'	16'
12"	52	108	163	217	48	100	150	201				
14"	60	125	188	251	60	125	188	251	56	117	174	234
16"	82	171	257	343	78	163	245	326	72	1 50	226	301
18"	112	234	351	469	104	217	326	435	100	209	314	418
20 "	144	301	452	603	136	284	427	569	128	218	402	536
22 "	170	356	533	712	166	347	521	695	158	331	496	662
24"	212	444	665	888	204	427	640	854	196	410	675	821
27 "	274	574	860	1148	266	557	835	1114	260	543	815	1087
30 "	344	721	1080	1441	336	703	1055	1407	324	678	1017	1357
33"	428	896	1344	1793	414	862	1300	1734	402	842	1262	1684
36"	494	1034	1551	2069	484	1012	1519	2025	476	996	1494	1992
39"	596	1247	1871	2495	576	1205	1808	2411	564	1181	1771	2361
42"	688	1441	2160	2882	664	1391	2085	2782				

APPROXIMATE SHIPPING WEIGHT

C+3				Less Tubes)		
Std. Each	150#	Series	300#Series			
Size		Added		Added		
5126	Wt.8'0"	Wt./Foot	Wt.8'0"	Wt./Foot		
12"	1690	70	1835	70		
14"	1876	77	2040	77		
16"	2456	97	2658	97		
18"	2888	109	3232	109		
20"	3348	126	4035	140		
22"	3846	137	4621	152		
5jt	4768	166	5641	182		
27"	<u>5</u> 884	188	6998	206		
30 "	6810	210	8458	251		
33"	8116	237	10278	306		
36"	9461	257	12028	331		
39"	11030	280	14336	382		
42"	12409	328	16360	410		

Weights Are Based On

- 1)-Type 2-34-42H Exchangers. 2)-3/16"Steel Baffles on 12" centers.
- 3)-Normal Size Nozzles.
- 4)-Domestic Type Skids.

Add weight per foot for Exchangers over 8' 0" Long. Add weight of Tubes from Sheet No. 9.

EXAMPLE: - 30" - 192 Exchanger, 150 series 1840 sq. ft. of Tubes 3/4" O.D. x 16 Ga. Steel

> Shell weight of 8' 0" = 6,810 Add 8' 0" @ 210# = 1,6807 Tubes 1840 sq.ft. x 5.094 x .534= 5,000 = 1,680#

13,490 Exchanger Shipping W

