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ABSTRACT

Heat transfer coefficients have been determined on three pairs
of tube bundles, all 48 inches long. The bundles of a palr are identical
except that plain tubes are used in one bundle and finned tubes in the
other. One pair is 6 inches in diameter with 5/8-inch tubes. The other
two pairs are 8 inches in diameter and have 1/2-inch and 3/4-inch tubes,
respectively. The finned tubes have 19 nominal fins per inch about 1/20
inch high; with the diameter over the fins slightly less than the diameter
of the plain ends. These finned tubes have from 2.07 to 2.76 times as
much outside surface as plain tubes.

Heat transfer measurements were made for water, lubricating oil,
‘and glycerine on the shell side. Several tempersture levels and tempera-
ture differences were used to give a variety of viscosities and other fluid
properties. Shell-side coefficients were determined by extrapolating to
infinite water velocity the overall coefficients for a series of water
velocities inside the tubes. These shell-side coefficients are correlated
by the following equation:

)

65 >375 e

) (2)

The values of C depend upon the bundle and vary from 0.225 to 0.115. The
pressure drop data are correlated by the methods presented by Donohue.

The heat transferred per degree of temperature difference for
the clean finned-tube bundles varied from 110 per cent of that for the
corresponding plain-tube bundles for water to 200 per cent for the lubri-
cating oil. For the same mass velocity, the shell-side coefficients for
the finned tubes based on the outside area are spproximately 80 + 20 per
cent of the plain tube coefficients. In all cases, at the same mass
velocities the pressure drop is less for the finned-tube bundles.

A study of the economics of plain versus finned tubes shows that
finned tubes are more economical than plain tubes for viscous fluids with
low shell-side coefficients. Example calculations are given to make a
comparison of shell and tube exchanger costs for cooling lubricating oil,
absorber o0il, and corn sirup with water. The metal requirements for these
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exchangers are computed,

For the example problems, selected computations

indicate savings in cost from 20 to 25 per cent ani savings in metal re-
quirements from 23 to 36 per cent when exchangers equipped with finned
tubes are used.

for the same service:

A comparison is made of plain and finned-tube exchangers designed

Heat Ugy Stendard Ixchanger Required
Transfer Btu Outside Total
- , T — o, Total
Btu/nr h»F gq ft Area Size Cost Weight
L sq ft ’ 1bs
Case T
Lube 0il
Plain 840,000 80, 768 24" x8" £28502 . 5) 5,758
Finned 8h0, 000 57.7 978 18"xR! 42839.35 3,673
Casge TI
Absorver 01l ’
Plain 1,450,000 116, h370 h2"x16' 14,116 26,665
Finned 1, hoo, 000 87.5 3780 33"x16' 510,530 17,762
Case III~‘
Corn Sirup _
Plain 1,500,000 67.1 hos 20"x8’ 3 3,288 4,308
Finned 1,500,000 43,0 565 6"x8' $ 2,627 3,049

and (Lb)

The following constents cre recormended for use

in Equetions (La)

~\.6 1/3 1k
oG\ C_ A \
TR 2L (& (4v)
k Ky, £/ /“w//
¢ Txoh C for Eq (Lka) C' for g (kb)
> Ixche
Type of Ixchonger Plain Finned Ilein Finned
Shell Circle Design ‘ . ‘5
Bored Shell 0.19 0.13% 0.3h 0.2%
Standord Design ) o 5 0.175
Bored Chell 0.14 0.090 0.25 ™
Standard Decizn " 0 oo 0.155
Unbored Shell 0.125 0.0¢7 =2 25
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PERFORMANCE OF FINNED TUBES
IN

SHELL AND TUBE HEAT EXCHANGERS

INTRODUCTION

Finned tubes are used to increase the rate of heat transfer over
that obtained by plain tubes. A major requirement for the effective use
of fins on the outside of tubes is that the heat-transfer coefficient on
the outside must be low relative to the coefficient on the inside. Heat-
ing of air on the outside of tubes by steam inside the tubes is an example
of an effective use of fins, since the heat-transfer coefficient between
air and the outside of the tubes is very low relative to the steam coeffi-
cient.l For this service, when the outside coefficient is about 1/100 of
the inside coefficient, high fins are used to give up to 20 times as much
outside surface as a plain tube. Subcooling of a refrigerant liquid by
cold vapors also employs finned tubes advantageously.2

Many commercial processes employing shell and tube exchangers
result in a low coefficient on the outside of tubes as compared to the
coefficient inside the tubes. The introduction of tubes with plain ends
end low fins, about 1/20 inch high, made it feasible to use finned tubes
in standerd shell and tube exchangers. These tubes provide about 2.5

times as much outside surface as plain tubes. The services in which

these tubes may be used economically will have outside coefficients of



the order of 1/5 of the inside coefficient, and hence the surface ratio of
2.5 is sufficient. The condensing of refrigerants such as Freon 12 is &n
example of the effective use of finned tubes in shell and tube units accep-

ted in the inﬁustry°5"(

The relatively low condensing coefficients for
organic substances as compared to water-convection coefficients inside the
tubes provides the necessery conditions for the sdvantageous use of fins.
Boiling of organic liquids outside of tubes makes effective use of fins
when the temperature difference is low,698

The cooling or heating of viscous materials such &s lubricating
oils provides the necessery ratio of coefficients for the advantageous use
of finned tubes in shell and tube exchangers,9 Armstrcnglo reported test
data on & baffled shell end tube exchanger employing finned tubes for cool-
ing a viscous oil and concluded thet tubes with low fins were advantageous
for this service. These data were encoursging but seemed insufficient to
predict the increase in heat transefer which one would expect for various
fluids in shell snd tube exchangers. No direct comparison was made with
plain tube exchangers of the same dimensions.

An experimental program was developed to compare heat-transfer
coefficients between plain tubes snd finred tubes for fluids on the shell
gide of shell and tube exchﬁngers. Exchangers identical in all details
except for the tubes were obtained, using the shell-circle type of design

known to give efficient heat exchange.ll

The exchangers were tested by
circulating water to standardize them, and then meeasurements were obtained
using B¢ SAE lubriceting oil and glycerine as viscous fluids. The data
vere taken in a menncr which mede it pcssible to obtain the shell-side co-

efficients in order that they might be correlated by the usual dimension-

less groups. Pressure-drop deta for the shell-side fluids were measured,



gince pressure drop may provide a limitation on the fluid velocity in the
exchangers.

This report also includes methode of vpredicting the services for
which these helical finned tubes are economical in standerd shell and tube

exchangers.

EXPERIMENTAL INSTALLATTCN

Equipment was ingtalled in the Chemical ¥ngineering Laboretory
to circulate oil through two ghell and tube exchangers. The exchangers
are respectively 8 inches and © inches in dismeter sand the remcvable tube
bundles are 48 inches long. The cil is cooled in the exchanger under test
and is heated in the other axchanger.

A flow diagram of the experimental unit is shown in Fig. 1,while
Fig. ¢ is a phctograph of the installation. Cne pumping system circulates
the shell-aide fluid, which passes through the shell of one exchanger to
cocl it and through the shell of the exchanger not under test to heat it
in a conbtinuous steady-stete experiment. A gecond ayetem circoulates water
through the tubes of the cooler under test. Stesm cn the inside of the
tubes was used to heat the fluid in the exchanger not under test. The pip-
ing was arranged so that the cocling water could be clrculsted through either
excharger and the astoam enter the tubes of either exchsnger. This arrange-
ment madg it possible to tegt the tube bundle in each exchenger by operating
valves.

The significant specifications for the €-inch and 8-inch bundles
are given in Tuble I, vage 107. The plein-tube exchengers, shells and bun-

dles, were commercizl units bullt to the manufacturer's specifications.
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f SPare TusE BUNDLES

FIG.2 PHOTOGRAPH OF EXPERIMENTAL INSTALLATION
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The finned-tube bundles were constructed to the same specifications as the
plain-tube bundles but were tubed with finned tubes supplied by the Wolver-
ine Tube Division. One pair of bundles was tested in the 6-inch exchanger
with 5/8-inch outside diameter plain Admiralty tubes in one bundle eand 5/8-
inch outside diameter finned tubes in the other bundle. Four bundles were
used in the 8-inch exchanger; 1/2-inch copper plain and finned tubes and
B/M—inch Admiralty plain and finned tubes were tested. In all cases the
bundles were identical for each pair with respect to the tube-sheet layout,
number of baffles, baffle spacing, and all other dimensions. A baffle spac-
ing of h’inches was used in all bundles, with 9 baffles in the 8-inch bundles
and 11 baffles in the 6-inch bundles. The layout of the baffles in relation
to nozzles is indicated in Fig. 1.

Tube-sheet layouts for the three tube sizes are shown in Figs. 3,
4, 5, pages 94-96. It may be seen that the tubes fill the shell circle
completely and are spaced inside this circle on a triangular pitch, though
they do not necessarily fill this area completely.

Figs. 6 and 7 are photograpﬁs of the finned and plain-tube bundles.
It may be seen that the finned tubes have plain ends similar to plain tubes.
The fins have a diameter slightly less than the plain end, so that the tubes
may be inserted in the bundle in a manner identical with that used for plain
tubes. The finned tubes have 19 nominal fins per inch and the fins are about
1/20 inch high. Fig. 8 is a photograph of tube cross sections, showing the
contour of the fins. The tubes were sectioned, mounted in bakelite, and the
sections polished. The section of the tube indicates the inside of the tube
to be smooth. However, when a length of tube is held to the light, small
mérkings are observed on the inside surface corresponding to the fins. The

dimensions of all tubes in a given bundle are uniform within 0.001 inch.
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BUNDLE NO. | BUNDLE NO.2

BUNDLE NO.4 BUNDLE NO.5
FIG. 6 PHOTOGRAPHS OF BUNDLES REMOVED FROM EXCHANGERS
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BUNDLE 2

BUNDLE 4

BUNDLE 6

FIG.8 LONGITUDINAL SECTION OF FINNED TUBES
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except for fin height, which varies up to 0.003 inch., The outside areas
for the finned tubes are computed by assuming an idealized shape. The fin
is assumed to have & rectangular section with square ends, and the root is

gsumed to be a semicircle, as shown in Fig. 9. The area so computed is
within ¢ to 5 per cent of the integrated area given by the actual contours.
The tube dimensions are identified in ¥Fig. 9, and the calculated areas for
the bundles are given in Table I, page 109.

These finned tubes are manufactured from plain tvbes by extrud-

ing the metal wall into & continuous helical fin. In addition to having

plain ends, the tubes may also have plain sections at any desired points

along their lengths.

Messurements in Heat-Transfer Tests

desgurements were made of the tempersturesg of the two ligquid
streems entering and leaving the test exchanger, the flow rates of the twe

atresms, and the pressure drop scross the shell gide of the test exchanger.

This information is sufficient to permit computation of oversl) ceefficients.
1

! 2y -
7 din Bouwsation \

pwe g

(1)

2
.
it

.
o
o=
w3
-

in whicsh g heat transferred, bBtu per hour
G = overall coefficient, Btu per (ar)(°7)(sq ft)
& = heat-transfer area, sq 't

A1 =  temperature difference, °F.

Temveraturs measuremsnts were mede with mercury-in-glass thermom-
sters installsd in thermometer wells in mixing chambers esquipped with disc

and doughuut vaffles, as shown in Fig. 10, page 27. uvhell-side fluids were
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measured with thermometers graduated to 0.1°C, while the water on the tube
side was measured either with these thermometers or with Beckmann thermome-
ters graduzted to 0.01°C. A1l thermometers are calibrated against Bureau
of Standardes thermometers. The mixing device was considered necessary to
meke sure that the fluid leaving the heat exchanger had been sufficiently
nmizxed so that the temperature was a true sverage or mean bulk temperature.
Flow rates in both circulation systems were measured by sharp-
edged orifices installed in the 3-inch zircvletion lines. They were cal-
ibratoed with water in both systems and with oil in the shell-side system.
CPundles of 5/h-inch tubing were used as sgtraightening venes some 50 diame-
ters shead of the orifice instsllstion in the J-inch pipe. HMercury manom-
eters were used to indicste the orifice differentisl. All the orifice co-
efficients for water were within the range of 0.601 to 0.608 for the four
orifices used. For oil, the coefficient wess plotted as a function of the
Reynolds number through the orifice in the range from 1000 to 20,000 and
wag found to lie 1.5 ver cent above the curve reported from standard ori-

I
le The use of orifice coefficient as 2 fuaction of

fice installations.
Poymolds number resulted in individual rete curves as a function of pressure
drop across the orifice for oil and for glycerine at each tempersture level.
Tor water, & single curve wes used with corrections for density made by mul-
tiplying the rate by the square root of the ratio of the density st 60°F to
the density at the flowing temperature. Fig. 11, pesge 98, gives typical
calibration curves for water flowing through two different plates.

Pressure drops were obtained for the shell-side fluid by the use
of mercury menometers attached to outlets on the circulation line aspproxi-

mately 1 inch from the exchanger nozzle. Similsr mensurements were made for

the water on the tube side during the cooling tests with the exchanger.
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PROPFRTING OF FLUIDS

Water was selected as one of the shell-side flulds because its
properties are so well known that it serves as a stendardizing fluid for
the exchangers. Tt waz not expected that much advantage would be observed
for finned-tube bundles as compared Lo plain-tube bundles when cooling the
water because of the hirh coelTicient botween the water and the outside of
the tube. Lubricating oil, 40 BAW, wag chosen ag a typical viscous oil,
and glycerine was selected ag a gecond viscous fluid with properties dis-
tinct from those of mincral oil.,

The viscoaity and thermal conductivity of water were tsken from
McAdams}j while the heat capacity and density were tasken from steam tables%h

The dnnsiti@s of the oil and of the glycerine were determined in
the laboratory al room temperature., Ths changes in density with temperature
were taken from the National Gtandard Petroleum Oil Tablesl5 for the oil and
from the International Critical Tﬁblﬂslé for glycerine., Fig. 12, page 79,
is a plot of the Jonsitics as 2 function of temperaturc.

CED ey wn b
GRS LY SIS

noof the oil and glycerive vere determined in the lab-
oratory by Fenske pipettes at five tewperatures, as plotted in Fig. 13, page
100.

The thermal conductivity of the lubricating oil was determined in
the laboratory at 5°T. The value fell in the aves expected for oils, A
curve drawn through the experimental point with a slope equal to that of

similer oilgl7 is plotted in ¥ig. 1%, page 10L. The thermal conductivities
wore behen from Smith™! oand ers plotted on Fig. b,

ror glyo

18

enific hent of the lubricating oil was taken from TEMA™,

16

while the valuocn [or plycerine were taken from the literature. These are

plotted in Fig. 19, page 102.



1k

To insure that the oil and glycerine were constant in properties
during the heat-transfer tests, samples were taken at intervals to deter-
mine the density and viscosity. The oil showed no change in density from
the initial value. The glycerine showed a small change in viscosity and
density between the initial sample and the sample after it had been heated
in operation. The change in density corresponded to a change in water con-
tent from 1.6 per cent a2t the beginning to 0.5 per cent during steady opera-
tion. The viscosity of the glycerine during steady operation also corres-
ponded to 99.5 per cent glycerine from data in the 1iterature,19 as shown

in Tig. 13.

TEST PROCEDURES AND OPERATION OF EQUIPMENT

The six tube bundles were tested using in turn water, oil, and
glycerine as the shell-side fluid, with cooling water inside the tubes.
Four temperature levels for the fluids were used for some bundles and fluids,
while three 1evels were used on others., Most of the tests used a temperature
difference between the shell-side fluid and the cooling water of around 25°F,
For about 10 per cent of the data, temperature differences of 50 to 55°F were
employed. TFig. 16 illustrates the conditions of the tests for bundle L, while
Table II gives a similar summary of tests for all bundles.

All tests consisted of obtaining data for an overall coefficient
of heat transfer under steady state. Two types of data were obtained. The
first consisted of a series of consecutive measurements in which the cooling-
water velocity was varied between individual tests, while the shell-side inlet
and outlet temperatures as well as flow rate remained constant. This set of

data was required for Wilson plots. The other type of data was individual
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tests to give single values of the overall coefficients at selected condi-
tionas. The latter type of data was taken only after sufficient data of
the first type had been accumulated to give reliable coefficients for the
cooling water inside the tubes.

All measurements of an overall heat-transfer coefficient were made
in similar menner once the conditions of the test had been selected. The
test unit was operated for a sufficient period of time to bring it to a
steady state before taking measurements. Once the flow rates for the shell-
side fluid and cooling water were fixed, the controls consisted of the steam
rate to the exchanger not under test and the make-up cooling-water rete to
the tank in the cooling-water system. Thermoregulators were installed and
were used between tests, but final control was usually manual.

The date tabulated for a single overall coefficient consisted of
the four temperatures for the shell-side fluid and cooling water entering
and leaving the test exchanger and of the manometer readings to give the
flow retes and pressure drops for the shell and tube-side fluids. Table
I1I, page 110, gives actual data recorded for run 26, which consisted of
four oversll coefficients, eince it was of the first type described. Four
recordings of the tenmperatures and menometer readings were made at about
one-minute intervals. The flow rates were such that the contents of the
exchanger were changed several times in & minute. Also, the heat transfer
was large as compared to the heat capacity of the exchanger., Therefore,
the short test period was considered as satisfactory when the inlet temper-
atures and flow rates vere essentially constant.

The recordings for runs of the second kind, in which individuel

overall coefficients were determined, varied from those for Wilson plots;



ten consecutive readings were taken at one-minute intervals instead of the
four readings.

A summary of the experimental data and calculated results is given
in Table IV, page 115. All the pertinent data used in the calculations are
given, including the heat transfer on both the tube side and the shell side.
There are 208 runs, which represent approximately Loo determinations of over-
all heat-tranefer coefficient, since Wilaon-plot data with four overall coef-
ficients easch were taken on about half of the runs reported. The dimen-
gionless groups used in correleting the data are slso included in Table IV.

Pundles 1, 2, 5, and 6 were obtained at the time the installation
was made and were tested with water, oil, and glycerine in turn. DBundles 3
and k were procured later and were tested with glycerine, water, and oil in
turn. The run numbcfs in Table IV indicate the exact order of the tests.

The tests may be considered as applying to clean tubes., Water de-
posited a thin film removable by touch or washing. The inside of the tubes
wag clesned with a stiff brush and dilute hydrochloric acid at the beginning
of a series of tests for each bundle with each fluid. The outside of the
tubea was cleaned after tests with weter on the shell side. The tubes were
ringsed by pumping dilute hydrochloric acid solution containing a deterpent
through the shell side.

Yhen chenging fluids, it was necessary to clean the circulating
czystem. Water was removed by draining and filling with oil or glycerine
and operating the shell-side system et temperatures above 212°F. Glycerine
wag removed by circulating water. 0il was removed by circulating a kerosene-

water-detergent emulsion at elevated temperatures.
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CALCULATION OF SHELL-SIDE COEFFICIENTS

There are two methods of computing the shell-side convection
coefficients, corresponding to the two types of data. Tor the runs in
vhich a series of overall coefficients was determined nt constant condi-
tions for the shell-side fluid, the shell-side coefficient is found from
a Wilson plot,go For the individual determinations of the overall coeffi-
cient, the cooling-water film and metal resistances were subtracted from

the overall resistance by calculation to give the shell film resistance.

Overall Coefficients

Overall coefficients are computed by Equation (1). The quantity
of heat transferred was measured for both the shell-side and the tube-gide
fluids. The hot shell-side fluid lost heat to the surroundings and there-
fore the computed shell-side heat transfer might be expected to be greater
than the actual transfer. Likewise, the cooling water lost heat to the
air between the points of temperature measurement. It was found that a
difference in heat transfer between the two streams was of the order of
100 Btu per degree temperature difference between the shell fluid and
the room. This difference represented from 1 to 10 per cent of the totzl
heat transfer. It appeared logical to average the heat transferred on
the two sides to obtain q , unless other runs in the series indicated
that the shell-side value was in error.

The actual outside area of the exchanger is taken from Table

The temperature difference is the logarithmic mesn difference
corrected for the two passes on the water side by Tig. T-42 ir TEMA18,
or else the temperature difference was computed by T urtion 10, page 145

of McAdams.15
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An exasmple calculation of the overall coefficient is given in
Table III. All coefficients for each determination are recorded in Table

IvV.

Wilson Plots

A plot bf the reciprocal of the overall coefficient as & func-
‘tion of the reciprocal of the water velocity to the 0.8 power is termed
a Wilsoh plot,go An extrapolation of the line to infinite water velocity
gives the resistance of the remainder of the heat-transfer path. An exam-
ple calculation of the convection coefficient between the shell fluid and
the cutside of the tubes is given for run 26 in Table IIT, page 110. The
Wilson plot for these data is shown by Fig. 17. The intercept in Fig. 17
gives the resistance to heat transfer for the shell-side fluid and the
metal, since the coefficient has been extrapolated to infinite water ve-
locity, After subtracting the metel resistance from the intercept, the
shell-side resistance, or its reciprocal, the shell-side coefficient, is
obtained.

The use of a temperature correction for the Wilson plot may
merit brief discussion. The Wilson plot should have as its ordinate the
reciprocal of the overall coefficient and as its abscisse the reciprocal
of the water-film coefficient. If all mean weater temperatures in one run
were the same, then the reciprocal of the 0.8 power of the water velocity
would be directly proportional tqythe reciprocal of the water-£ilm coeffi-
cient, when assuming that the water-film cocefficient is a function of the
Reynolds number to the 0.8 power. However, when the water temperature for
one velocity differs from that for another, one should plot the convection
coefficient with the proper variation in properties. OSince the convection

coefficient for water has been simplified to be & function of temperature
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and velocity,l5 the use of N/VO‘8 for the reciprocal of the convection
coefficient gives Wilson plots with streight lines of constant slope for
a given tube bundle. If this temperature correction had not been made,
the lines through points of a different mean water temperature would have
different slopes. It was a valusble correlation fnctor to know that all

Wilson-plot lines for a given bundle were of the ssme slope.

I'in Efficiency

During heat transfer in the finned-tube exchangers, the temper-
sture along the outside surface of the fin is higher than at the base of
the fin. The procedure which has been found sstisfactory for evoluating
the effect of this temperzture distribution is the use of a {in 2flizien-

[

2l
cy. The fin efficiency is defined zs follows:

ar
j AT d(ag)

0
. un ~ 2
ﬁ ATB bp (2)

where AT' =  the varieble temperature difference between the bulk-
fiuid temperature and the point fin temperaiure,
AT, =  the temperature édifference at the base of the fin or
at the root of the fin,
ap = wrea of the fin,

¢ = fin efficlency.

An effective area (Ay) is defined as the sum of the root area
and the fin aree times the fin efficlency. This effective sorea may be
used in heat transfer equations along with the temperature differences
wvhich apply for outside surface temperatures at the root of the fin.

Gardner21 has computed the fin efficiency for severel shapes; Fig. 6 of
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hig paper was used with a fin of constant cross section for heat flow.
These efficiencies depend upon the coefficient of heat transfer adjacent
to the fin surface as well ag the conductivity of the fin metal and fin
dimensions. To solve problems involving fin efficiency, Fig. 18, page

103, has been prepared, which gives the ratio of the total outside area
(Ag) to the effective outside area (A,) as a function of both the outside
coefficient based on the actual area and of the outside c5efficient based
on the effective area. The dashed curves in Fig. 18, which relate Ao/Ae
to the convection coefficient (hy') based on the actual area, are required
to compute the experiméntal data on & bagis of effective fin area, while
solid curves, which relate Ao/A to the convection coefficient (h,) based
on the effective area, are convenient to find actual exchanger sizes from
computed effective areas. These curves for the low-fin tubes with 19 nom-
inal fins per inch are the seme for several sizes of tube, but are differ-
ent for metals of different thermel conductivity. Théy do not apply to
finned tubes when the fin profile is different from that of Fig. 8.

In using‘Gardner's procedure, it was decided that 80 per cent of
the surface is fin surface and 20 per cent is root surface and represents
prime surface. Reference to the sections in Fig. 8 illustrates that the
entire surface could be considered as fin surface. In once case, with 80
per cent of the area considered as fin end 20 per cent as prime surface,
the use of Fig. 6 of Gardner gave the same effective surface as the com-
putation of the fin efficiency by numerical methods for the actual cross

section shown in Fig. 8.

Film Coefficients from Single Qverall Coefficients
After séveral Wilson vlots had been determined for each tube

bundle to make sure that the slope was detérmined correctly, individual



nD
=

overall coefficients were used to determine shell-side coefficients. Rather
than drawing a line through a single point on a Wilson plot, the equation
for the water-film coefficient was determined for each bundle as listed in
Table V. The ccnstants in these equations were determined from the slopes

of the Wilson-plot lines.

TABLE V

EQUATIONS FOR INSIDE COEFFICIENTS

Bundle No. Shell and Tube Equation

1 8" 3/4" Plain hy' = 138 (1 + .011T) V o
2 8" 3/L" Finned hy' = 58.9(1+ .011T) V 0.8
3 8" 1/2" Plain hy' = 137 (1 + .01 T) V 0.8
4 8" 1/2" Finned hy' = U5.0(1+ .011T)V 0.8
6" 5/8" Plain hy' = 129 (1 + .011 T) V 0.8
6 6" 5/8" Finned h;' = 55.5(1+ .011 T)V 0.8

where hi' = 1nside coefficient for water based on the actual outside

area, Btu per (hr)(°F)(eq ft outside),
T = mean bulk water temperature, °F,

v = water velocity, ft per sec,

The equations in Teble V permitted computation of the sghell)side

coefficient by the following fomrula:

__J:._. = ..l. - L Ao + 1 (3)
ho' Uo kAav hi !

In Table IV all single determinations of overall coefficients were con-

verted to shell-side coefficients by this procedure. It was necessary
to convert the hy' based on the actual area to hy based on the effective

area for these runs in the same manmer as for runs having Wilson plots.
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CORRELATION OF HEAT-TRANSFER DATA

The data on the plain-tube bundles were correlated first since
they might be expected to follow correlations previously established by
2 >

[}
Donohue, 2 Short,L or Tinker.ll The data obtained did not permit a study
of baffle spacing, baffle height, or tube arrangement. The data did pernit
a study of Reynolds number at constant Prandtl number and of Prandtl number

at constant Reynolds number. The correlations for the finned-tube data

closely paralleled the correlation of the plain-tube data.

Plain Tubes
The shell-side coefficients were assumed to follow an equation

of the following form:

| m o 1L
EEE = C Dl ! L (
: =)\)\&)

=
N

in which h, = the film heat-transfer coefficient,
D = outside diameter of the tube,
k= the thermal conductivity of the fluid at the mean bulk
temperature,
Gn = mean mass velocity, 1lbs per (sq ft)(hr),
p = viscosity of the fluid at the mean bulk temperature, 1bs

ver (ft)(hr),

My = Viscosity of the fluid at the wall temperature, 1lbs per
(£t) (hr),

Cp = specific heat of the fluid at the mean bulk temperature,
C,o,m = constants

The physical and thermal properties of the shell-side fluid are
taken at the mean bulk temperature, with the exception of the viscosity at

the tube wall.
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The velocity of the fluid as it proses through the bundle between
the tubee and baffles will vary. Severnl procedurer are available for this
computation.ll’22’25 After due considerntion, it woo decided to use a pro-

cedure recommended by Donohue, as follows!:

(5)

I

¢ =
n A
'm

in which w pounds of fluid flowing per hr through shell side

%

G = pounds flowing per (hr)(sq ft)

2]

the mean area for the shell side of the exchanger
def'ined by Equation (6).

The mean flow area is defined as follows:

Ap = wﬁﬂ:??ﬂ; ’ (6)
in which Ay = area of the window opening in baffle minus the
cross section of the tubes in the window
¢ = mninimum cross-flow area through the row of tubes
nearest the center line of the exch:inger and norm~l

to the direction of the fluid flow.

An example calculation of the mean flow =ren is given in Table VI, page 131.
The mean flow areasg for all exchangers are listed in Table I, Tor the
eight-inch exchanger o slight modification of the calculation procedure

was necessary since the two ends of the exchanger did not contain baffles
spaced the same as in the center portion of the exchunger. The crea of
cross Tlow when the fluid was flowing between the baf{les was different
from thnt when it flowed across the tubes on either end. Tor this ex-

chenger two values of A, were obtained, resulting in two values of A,

C
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for the center portion and for the end portion of the exchanger. These
two values of Am then were averaged, based on the respective length which
each represented to give the final values of Ap used.

For each experimental determination of the shell-side coeffi-
cient listed in Table IV, the Nusselt number, hD/k, the Reynolds number,
DGm//U,, the Prandtl number, Cpﬁ/k, and the viscosity ratio, . //Lw, were
computed and listed in the table.

A series of successive approximations was required to obtain the
final correlation between these dimensionless groups. The graphs shown
are the final result after much study and several approximations.

The Nusselt number was plotted against the Reynolds number for
several series of‘runs in which the temperature level, and hence the Prandtl
number, were essentially constant for the series. Fig. 19 for bundle 1 is
an example of the plots obtained. It may be observed thet there is a lower
slope for these curves at low Reynolds numbers than at high Reynolds numbers.
This means that Equation (U4),with constant exponents, will not give the best
correlation of the data. However, a practical correlation is required for
design procedures, and an average slope of the lines on figures similar to
Fig. 19 was used as the exponent for the Reynolds number. To determine the
exponent for the Prandtl number, it was plotted against the product of the
Nusselt number, the Reynolis number to the 0.65 power, and the viscosity
ratio to 0.14 power, with Fig., 20 for bundle 1 shown as an example of the
final result. The slope of this curve was used as the exponent on the
Prandtl number for the final correlation by Equation (4) and plotted for
bundle 1 on Fig. 21.

In the first trial of this procedure, the slope found on the

graph corresponding to Fig, 21 did not agree with the average slope
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selected from Fig., 19 and used as the exponent for the Reynolds number in
Lo graph corresponding to Fig. 20. This required a second trial for the
graphs similar to Figs. 20 and 21. 1In additicn, it seemed appropriate to
arrive at the same velues of the exponents of each dimensionless group for
all bundles if the date would permit. The final values for the Reynolds
number exponent, 0.65, end the Prendtl number exponent, 0.375, were used
for Figs. 20 and 21 rather than the exponents used in the first trials.

The exponent for the viscosity retio was selected as O.lh, basged
on its acceptance for previous correlationslls22,23 and the data supporting
it.eu However, the date of this research verify that the best correlation
requires & variable exponeht for this dimensionless group as well as for the
Reynolds and Prandtl numbers.

The fiﬁal correlations for plain-tube bundles 3 and 5 are given

by Figs. 22 end 23, peges 104 and 105. They were obtained in a manner simi-

lar to that described for Fig. 21.

Finned Tubes

The data and correlations for finned tubes paralleled those for
plain tubes.

In Equation (4), D, the diemeter of the tube, becomes De, the
equivalent ocutside diemeter. It is defined as the outside diameter of a
plain tube having the same inside diameter and the same weight of metal.

The values of D, are given in Table I, page 109. In computing cross-flow
area, A,, D, is used for tubes, but in computing the window ares, Ay, the
diameter over the fins is used.

The final correlations of the heat-transfer data with finned tubes

are given by Figs. 24, 25, and 26, pages 106-108. The exponents for
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the Prindtl number and Reynolds number have been taken as 0.375 and 0.65,
the same as for the plain tubes. These values represent an average value
for the several bundles, but the dverage values are no‘more résfriétive
in obtaining a fit between the data points and a single curve than ié ﬁhe
assumption that the exponents are constant.

A comparison of all the data is made in Fig. 27. They are
represented by a single equation (4a), except that the constant, Cy, in
the equation varies with the exchanger bundle.

h D DG 65 C 272 1
or . c<_..2> <_P_/_‘> o) (ka)
k M k M,

The three plain tube_bundles could be represented by & single equation in
which ¢ = 0.197, with the data falling within +50, -26 per cent of the
curve. Similarly, an equation with C = 0.147 represents all the data
on finned-tube bundles within +50, -55 per cent.

In both plain and finned-tube runs for which the cooling-water
temperatures were in the vicinity of 200°F, certain discrepancies were
observed. The shell-side coefficients were often high as compared to
any correlation, the heat balances were more erratic, and some Wilson
plots appeared to be of’different slope. Two possible explanations were
considered, namely, incipient boiling of the water in the tubes and
vaporization in the water orifice ahead of the exchanger. Calculations
of tube-wall temperature indicated that it could not have reached the
boiling point of water. The orifice readings reached some 24 inches of
mercury for the high flow rate of a Wilson plot. These points, at
high rates, scattered more than usual, but no definite trend could be
found which would prove that erroneous flow rates for the water side

were obtained at these high orifice differentials.
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As shown under the discussion of pressure drop, bundles 1, 3,
and 2 gave the lower tube-side pressure drop amd hence lower pressures at
the orifice., Jt is quite possible that vaporization occurred in the ori-
fice for some of the high-velocity—high-temperature conditions for these

. bundles.

Bffect of Clearance

The effects of clearance between the tubes and baffle and between
baffle and shell are likely to have a significant c¢ffect on the constants
in Bquation (la) for the individual exchanger. A consideration of clear-
ances is of no essistance in explsining the relative behavior of the plain-
tube bundies but it does help to explain the differences between plain and
finned-tube bundles,

The clearance between the tube and the baffle, for the assembled
bundles, could not be meagured readily, but the difference Dbetween the tube
diameter and baffle hole for the plain-tube bundles is known to be less than
0,009 fnch. Measurements of zhell diameters, beffle diameters, and tube di-
emeterg are listed in Table I, page 109. Hince ench pair of bundles was made
at the some time, it may be assumed that the bafflec holec for the plain and
correspond ing finned-tube bundles are the same dlemeter. ¥rom tube diameter
mzagurements, the difference in the clearsnces between finned and plain tubes
then becomes the Jdifference in the cutside diemeter of the tubes.

Tinkergﬂ stated that for a particular exchanger an additional
1/64 inch in the clearance between the tube and the baffle over the minimum
mschanically feasible would reduce the shell-side coefficient by 10 per

cent.
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It happened that one finned-tube bundle (No. 6) had the same
diameter over the fins as the duplicate plain-tube bundle (No. 5). In
this case the ratio of the constants in Equation (4a) was .225/.182 = 1,2k,
This ratio is representative of the difference between plain and finned
tubes for the same clearance. Part of this ratio is due to the fact that
Dg is smaller for the finned tube than Dy for the plain tube, and hence
the Nusselt numbers should not be the same at a given Reynolds number if
the coefficients were the same. Part of the ratio represents leakage
between the fins and might be related to the baffle thickness (.065 inch
for all bundles) and fin spacing (.0525 inch).

For bundles % and 4 the ratio of the constants is 1.47. The
clearance of the finned tube is .018 inch greater than that for the plain
tube in this case; In addition, the peripheral length for leakage is 130
per cent greater for this pair of exchangers than for bundles 5 and 6
because of the increased number of tubes,

Bundles 1 and 2 have .016 inch extra clearance for the finned
tube compared with the plain tube and 80 per cent more peripheral length
than bundles 5 and 6. Bundles 1 and 2 have a ratio of constants of 1.40.

It appears that the concepts concerning the effect of clearance
or leakage are substantiated by the differences in the pairs of bundles
and that the major differences in convection coefficients between plain
and finned tubes found are due to differences in leakage. For finned
tubes there may be two causes for the leakage: +the fins may not have
the same outside diameter as the plain tube and there is an inherent flow
of liquid in the helical space between the fin. It would appear that if
plain and finned tubes had the same clearance of the first kind, the ratio

of the constants in Equation (l4a) might be the same for all pairs of bundles,
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Effect of Tube and Shell Diameter

A comparison of the performance of the plain-tube exchangers
gives no clue as to effects of tube and shell diameter beyond those ob-
served in Bquation (4) except that, over the range of dimensions used,
they are not critical.

Bundle 5 gavé the best performance but had a hicsher clearance
between baffle and shell, and the tube diaﬁeter wvas undersize rather than
oversize. The spoce between the shell-circle tubes and the shell was the
lowest. The 5/3-inch tubes are intermediate between the 1/2-inch tubes
of bundle 3 and B/Q—inch tubes of bundle 1. A difference between the
5-inch bundles and the 8-inch bundles which may be signilTicant is that two
nore baffles were used for the H-inch hundles. The efifect of these bafflles
was noted in computing the flow areaz, Ay, as shown in Table VI, page 151.

However, there is no assurance that the weighting of the flow areas for

the baffled cection and unbaffled section compensated for the difference.

Are Exponents for Dimensionless Groups Constants?

Equation (4) was derived by dimensional analysis which specifies
the dimensionless groups but does not require that the exponents are
constant. The value of using the equation as compared to a graph depends
upon the assumption that the exponents are constant. As a practical matter,
these exponents were used as constants in the correlation presented above,
However, the exponents for the Reynolds number, the Prandtl number, and the
viscosity ratio could well have been variables,

Curves have been drawn through the data for the plain-tube bun-
dles in Figs. 21, 22, and 23, and these curves represent the data better
than the straight lines. Between Reynolds numbers of 50 and 50,000, the

slope of the curve varies from O.41 to 0.70. TFor the finned-tube bundles,
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the curvature at low Reynolds numbers is not observed, but the water
data, especially in Tig. 25, chow a definitely higher slope than 0.65.
These observations would indicate that extrapolation of these results
to higher or lower Reynolds numbers might employ the curve on the graph
rather than use the constant exponent. A~Also, it may be exvedient to
use one exponent for a range of Reynolds numbers and another for =
different range.

The viscosity ratio was studied by Gordner and Sillergh, who
observed that the exponent increased with increasing Reynolds number.
The two lines for water in Fig. 295 were run at different temperatures.
In Fig., 22 also, a scattering of the water date results from runs at
temperature diflerences. These differences in the water data at high
Reynolds numbers éould be minimized by employing an exponent for the
viscosity ratio of about 0.8, as suggested by Gardner and Siller.gh
To bring the water data to a single curve, similar arguments
could be advanced for a variable exponent on the Prandtl number instead

of on the viscosity ratio.

Correlation with Exponents from Literature

In order that comparisons might be made on the basis of the
exponents used by Donohue, Tinker, and Short, the experimental data were
plotted with these exponents according to Equation (Lb),

o - .60 o /«1/3 1

2-e(B) (%) (2 o
This changes the exponent for the Prandtl number from 0.375 to 0.333 and
the exponent for the Reynolds mumber from 0.65 to 0.60, TFig. 28 is an

example of the correlation with these exponents from the literature for
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bundle 1. It may be observed that the exponents derived in this study
and used in Fig. 21 yield a slightly better fit of the data to the line
than do the exponents from the literature.

A similar correlation for the other bundles gave the constants
C'(shown in Table VII for Equation (4b)) to facilitate comparisons between

these results and others based on this form of the equation.

TABLE VIT

CONSTANTS IN CONVECTION CCEFFICIENT EQUATION

Bundle No. C' in Eq. (4b) C in Eq. (ka)
1 (Plain) .356 .200
2 (Finned) 255 J143
3 (Plain) .302 .169
4 (Finned) .205 .115
5 (Plain) RiTele) .225
6 (Finned) .32k .182

The convection coefficient equation recommended by Donohue for
commercial exchangers with bored shells is of the form (4b) with C' equal
to 0.25, Donchue's equation is plotted in Fig. 28. It may be observed
that the poorest plain-tube performance for the test exchangers gave 20
per cent higher shell-side coefficients than does the recommended litera-
ture value, while the best plain-tube exchanger in these tests gave coeffi-

cients 60 per cent higher than recommended by Donohue.

"RECOMMENDED SHELL-SIDE COEFFICIENTS FOR FINNED TUBES

The data are not complete in the sense that they do not provide
coefficients for other exchanger designs for finned tubes. The basic data
and calculations are presented in detail so that engineers in the heat-

exchanger industry can arrive at their estimate of the best coefficients to
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use in the light of the data obtained. However, there are those who would
like to take recommended coefficients and proceed with the design.

The mechanical design of the exchangers, including clearances,
baffle arrongement, etc., is important to the extent that no accurate
prediction can be made without knowledge of these factors. In the case
of exchangers of standard design for which the performance with plain
tubes is known, these mechanical features are evaluated., The finned-
tube performance can be given in terms of the plain-tube performance

equation.

Finned Tubes When Flain-Tube Terformance is Known

For plain-tube exchangers with known performince, the value of
C' is known for Equation (4b) and the equation may be used to compute con-

vection coefficients

Do Lo (DO Gm>'6 (Er/i)'% /'/*)'lu (i)

& k k \ H

For finned-tube exchangers of the same design and clearances, this same
equation may be used with Iy, the equivalent diameter, replacing Do, end

with a new value for C!'. It is recommended that:

C' (finned tube) = C' (plain tube) x 0.7

This factor, 0.7, is the average of the vilues observed for
bundles 1 znd 2 and bundles 3 and 4, It scsumes that the height of fins
on the tubeé are near the lower limit of the specificatlons. If assur-
ance could be given that the fin height is close to the plain-tube diameter
this faétor could well be as high as 0.8. Due to velocity and diameter
chrnees with finned tubes as compared to plain tubes it 1s necessary to

compute the convection coefficient; one cannot apply the above factor
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directly to the coefficient for satisfactory results.

Plain Tubes with Shell-Circle Design

For exchangers similar to those of this study, in which the shell
circle was filled with tubes and relatively close tolerances were used, the
absolute values of C or C' in Equations (4a) or (4b) can be used. For

plain tubes from 1/2 to 1 inch in diameter, Equation (4c) may be used, as

65/ \-375 ﬂ.lh
%) \Z (he)

If desiréd, the corresponding form of Equation (4h) may be used:

o 60 c/'% 1k
o ‘m Ve
T + & (ha)

Finned Tubes for Shell-Circle Design

follows:

| B

| B

= .3k

For finned tubes in similar exchangers, the coefficients are

given by the following forms of Equation (4):

2 U@ (A

These equations apply for tubes described in this report with 19 nominal

fins per inch and from 1/2 to 1 inch in diameter.
The constants in Equations (Le) and (4f) are based on the assump-
tion that the height of the fins on the tubes are near the lower limit of

‘the specifications and will have large clearances. In case the fin height
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is such that the diameter over the fin equals the diameter of the plain
end, the values for C and C' may rise to 0.15 for Equation (4e) and 0.27
for Equation (L4Lf) for the finned tubes.

It is appreciated that no data are available for 1l-inch tubes,
but there is no evidence to indicate that a significant difference may

be expected.

COMPARISON OF PLAIN AND FINNED-TUBE FPERFORMANCE

The correlations of heat-transfer coefficients permit quantita-
tivs calculations to compare finned tubes with plain tubes, but the rela-
tive amounts of heat transfer are not readily discernible. Comparisons
will be made between the coefficients and between the heat transfer for

the bundles identical except for the tubes.

Heat Transfer Per Degree Temperature Difference

The heat transferred by the plain-tube bundle could be compared
dirzsctly with the heat transferred by the finned-tube bundle if the tem-
verature level and temperature differences were the same, Since data are
not available which have exactly the same temperature difference for the
two exchangers, the heat transfer per degree temperature differance may
be compared, provided the temperature levels and hence the physical pro-
perties of the fluids are essentially the same. The comparisons with
water would show the least increase in heat transfer for finned tubes due
to the high coefficients on the shell side, while the comparisons for
0il will show the greatest benefit from the finned tubes. Bundles 3 and L
will show the least improvement for the finned tubes with oil, and bundles
5 and 6 the most improvement due to the nature of the clearances between

the tube and the baffle, as explained in connection with Fig. 27.
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The tests with water on the shell side gave the highest rates
of heat transfer. From the clearances discussed previously, bundles 1 and
2 or 3 and 4 would be expected to show the least improvement for finned
tubes. However, due to the high heat-transfer rates, the conductivity of
the tube metal becomes significant. Therefore, the copper tubes in bundles
% and 4 chow the greatest improvement for the finned tubes as compared to
the plain tubes. Fig. 29 is a comparison of the performence of bundles
3 and 4, which show from 57 to 60 per cent more heat transfer for the
finned bundle at the same mass rates for water on the tube side.

The least improvement for finned tubes is with water on the shell
side of bundles 1 and 2, having Admiralty tubes. TFig. 30 gives the per-
formance under specified conditione, with an increase in heat transfer from
11 to 18 per cent for the finned-tube bundle as compared to the plain-
tube bundle.

Fig. 31, for oil on the shell side of exchanger bundles 5 and 6,
shows the maximum benefit found for the finned tubes. The finned tubes
more than doubled the heat transfer at the higher water velocities. Figs.
32 and 33 show typical increases in heat transfer of from 60 to 70 per cent
when oil is the fluid and the clearances between the tubes and the baffle

are the maximum to be encountered.

Overall and T'ilm Coefficients

The overall coefficients of heat transfer may be compared for a
given temperature level of the fluid. If the actual outside area is used,
it should be remembered that the finned-tube bundles have from 2.05 to
2,77 times as much surface as the plain-tube bundles. On the other hand,

if the inside areas are used the finned-tube bundles have only from 0,78
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to 0.65 times as much inside surface as the plain-tube bundles. Figs.
34 and 35 show typical overall coefficients for glycerine and oil, based
on the outside and on the inside areas of the tubes.

The magnitude of the overall coefficients observed is worthy of
consideration. For example, with water on the shell side of bundle 5,
Tun 16, an overall coefficient of 1222 Btu per (Er)(°F)(sq ft) was ob-
served. This coefficient requires film coefficients of 2500 or more and
indicates that fouling was extremely small or entirely absent. For finned
tubes, run 28 gives an overall coefficient of 792 Btu per (hr)(°F)(sq ft
outside). This coefficient, based on the outside fin area, requires film
coefficient of about 3000.

The convection coefficients on the shell side are of interest.
These coefficients are compared on the basis of the outside area. TFor

the finned tubes, the effective outside area is used rather than the

k9

actual outside area since any inefficiency in the fin should not be allowed

to detract from the convection coefficient. For water on the shell side
of Admiralty finned tubes, the fin efficiency was as low as 70 per cent,
and the effective area is this fraction of the actual area for the fins,
vhich constitute 80 per cent of the surface, i.e., the effective area mey
be only 76 per cent of the actual area. For oil and glycerine, the fin
efficiencies seldom dropped below 95 per cent, and the actual outside
area approximates the effective area. Tig. 36 compares typical convec-
tion coefficients plotted as a function of mass flow rate on the shell
gside. When convection coefficients for finned tubes are the same as for
plain tubes, it follows that the fluid between the fins must be inter-
changed with fluid in the main stream as rapidly as the fluid adjacent

to a plain-tube wall.
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An explanation for the similarity between the convection coeffi-
cients for finned and plain tubes may be found in the paper by Knudsen and
K‘a’cz.e5 Knudsen studied the heat transfer end fluid flow in annuli con-
taining finned tubes. He observed that the fluid enters the space between
the fihs and forms eddies, as shown in Fig. 37. These eddies appear to be

"responsible for replacing the fluid between the fims- when flow is turbulent
and parallel to the tube. In cross flow, it is understandable that the
fluid enters the space between the fins.

The results of this study indicate that at very low Reynolds
numbers the plain-tube coefficients do not decrease as rapidly as the
finned-tube coefficients because the fluid probably does not enter the
space between the fins at these low velocities. On the other hand, at
very high Reynolds numbers, the coefficients for the fimmed tubes may
exceed those for plain tubes because of the extra turbulence caused by

the fins,

CORRELATION OF PRESSURE-DROP DATA

Pressure-drop data were observed for the shell-gide fluid on
all runs and recorded in Table IV, page 1l15. For the same fluid rate
and temperatures, the pressure drop for the fimmed-tube bundle was less
than for the plain-tube bundle. This statement applies for all three
fluids and the three pairs of bundles. Typical pressure-drop data for
the shell-side fluid are plotted in Fig. 38. It is appreciated that the
flow rates in the exchangers under test exceeded flow rates normally
used in commercial operation. Mass rates up to 1.5 million pounds per
sq ft per hour were obtained with pressure losses up to 12 psi. Flow
rates in large exchangers with a pressure drop limit of 12 psi would

attain mass rates of 200,000 to 500,000 1bs per sq ft per hour. The
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greatest difference for finned and plain tubes occurs between bundles 3 and L
because these two differed the most in their clearances, while bundles 5 and 6
have the least difference in pressure drop, corresponding to the small
differencc in clearance.

Reference to Figs. 6 and 7 will cshow that there is more space for the
shell-gide fluid to flow in cross flow in the case of the finned tubes as com-
pared to the. plain tubes. Also, the inherent leakage through the helical space
between the fins at the baffle will reduce the pressure drop for the finmed-tube
bundle.

An analysis of pressure-drop data divides the total pressure drop into
the Tollowing itemsg2’25: (1) enlargement and contraction loss at the nozzles,
(2) loss during flow through baffle windows, end (3) friction loss during flow
across tubes, The enlargement and contraction losc for the nozzles was taken
as the kinetic energy‘of the fluid in the exit nozuzle; the inlet kinetic energy
was assumed to be dissipated. The loses during flow through a window was assumed

~

to follow the equation of Donohueeaz

2.9 G~
P, - P = Y (7)
( 1 2)w 1015sp o
where (Py - Pp)y, = pressure drop per baffle window, 1bs/sq in.

Gy = moso velocity nt Ay, 1ba/(hr)(sq £t)
sp gr = specific grovity referred to water at 60°F
or the density in g/cc

L e
Short“”

related pressure loss at baffle windows to the veloclity squared
and a function of the profuct cf the Reynolds number through the window and the
sguare root of the Prandtl number. Zven for this more complex relationship,
considerable scattering occurred for the data obtained by Short. Bquation (7)

is adopted vecouse of its simplicity and the demonstretion by Donchue tnat it wee

essentially as good as the more complex relationship. The toizl bafile leas ig

the pressure drop per baffle times the number of baffle windevs.
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The friction loss of flow across tubes may be expected to
22
follow o friction-factor curve such as was used by Donohue™, The fric-

tion factor is related to pressure drop as follows:

2 -0.14
1.07T £fnG ,
(Pp - Bp)g = e [ L) (8)
107 8.0 L/
where f = friction factor
n = the minimum number of rows of tubes the fluid passes

in flowing from one window to the next
G, = mass velocity at A, in cross flow, 1bs/(hr)(sq ft)
o = fluid deneity, lbs/cu ft

g, = 32.2, conversion factor

Py - Pn ressure drop ver baffle space due to friction of crose
l C.C p.‘. -

i

flow in 1bs/sq in.
/~¢MV = viscosity ratio between bulk temperature and wall
temperature

The friction factor is a function of the Reynolds number on the
shell side.

The experimental date were used to evaluate f, the friction fac-
tor, in the following manner. The outlet-nozrle kinetic energy and the
totel baffle loss were computed as described above. The sum of these two
pressure drops was subtracted from the experimental pressure drop to ob-
tain the pressure lose due to cross flow, (P; - Pp),. This value was
substituted in Equation (8) for (Py - Pp), and the friction factor, T,
wos computed for each run. These friction factors are plotted in Tigs,
39, 40, and 41 for the three pairs of exchangers.

The friction factors are above those reported by Donohuegg,
indicating the effect of the clearance between the tubes on the chell-

~ircle and the shell for the exchangers in these tests.
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The symmetry of the curves from this study and that of Donohue
would indicate that the equation for the window loss wasg suitable for the
test exchangers. Fig. 39 is an exception in that the finned-tube exchanger
has a lower pressure drop than the curve of Donohue,22 and in some cases
the experimental pressure drop was less than the sum of the ‘kinetic energy
of outlet nozzle and the computed window loss. No explanation for this
can be found, but it should be noted that these bundles, 1 and 2, had a
smaller window than the other bundles.

These studies indicate that when a friction factor curve is
available for an exchanger with plain tubes, this curve would be con-
servative for computing the pressure drop for the same exchanger equipped
with finned tubes.

On the tube side, the pressure drop for the cooling water was
observed, but it was not recorded in Table IV. Fig. 42 gives typical
pressure-drop velues for the water passing through the tubes at several

velocities at mean water temperatures in the range from 155 to 165°F.

ECONOMICS OF FINNED TUBES FOR

SHELL AND TUBE EXCHANGERS

The only reliable procedure for evaluating the economics of
finned tubes is to make designs and cost estimates of exchangers with
plain tubes and with finned tubes for a given heat-transfer duty. The
information required to meke this comparison is (1) methods of sizing
exchangers for a given duty and pressure-drop limitation and (2) methods
of deﬁermining the costs of the components of exchangers. The data and
correlations reported in this study serve as a basis for sizing exchan-

gers. The Exchangers Price Section of the book, Alco Heat Exchangers,
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September 28, 1950,26 will be used to determine the prices of the com-
ponents of the exchangers, except for the tubes. The cost data are for
shells with a working pressure of 150 lbs per sq in. The prices for
plain and finned tubes were obtained from the Wolverine Tube Division
of the Calumet and Heclas Consolidated Copper Company, as of December L,
1950.

Typical problems for which finned tubes might be economical
are selected to illustrate the use of the data in sizing and pricing
exchangers. Some exchangers will be sized using the shell-circle design
of the test exchangers. Comparisons more favorable for finned tubes
could have been made if the shell-side coefficients had been obtained

from the equation recommended for standard exchangers.22

Fouling

One of the important items in heat-exchanger design is the
fouling factor, which is used to provide the proper size of exchanger
for a given duty when the exchanger has accumulated a specified amount
of foreign material on the heat-transfer surface. The accepted procedure

in this regard is set forth in the TEMA standards.ls It should be ob-

vious that, if a tube is expected to foul severely on the inside, extended

surface on the outside can be of little value. Finned-tube exchangers
have been reported to perform on relatively dirty oil on the shell-side

without undue fouling as compared to plain tubes.lo Even though deposits

may settle at the root of the fin, the end of the fin may be considerably
cleaner than the surface of plain tubes. The eddies between the fins
may prevent fouling in some cases. The heat-transfer services selected
for design in this report require moderate fouling factors, which are

used according to TEMA standards for plain tubes.
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Procedures for Shell-Circle Design

The procedures for designing a shell and tube exchanger of the
type tested in this study will be outlined. An example calculation will
follow to illustrate the method.

In general, the length of the exchanger is specified or fixed
ét the maximum practical length for the service. The mass flow rate, Gy,
is normally selected as a starting point in the calculations. From this
flow rate and the fluid properties, the shell-side coefficient is found
from Equation (ke). An overall coefficient is computed from the shell-
side coefficient and °n assumed inside coefficient. The heat transfer
area for the exchanger is computed in the first trial, which area in-
dicates the diameter of the exchanger for a given length and tube. The
number of tubes and the water requirement determines the water passes
for a given water velocity, normally chosen in the range of 3 to 6 feet
per second.

At this point, =2 second trial is made. The overall coefficient
is computed from the inside coefficient and fouling factor to find a
second trial ares and diameter., It is necessary to go through the design
again with a viscosity rntic in the shell -side film coefficient. After
this part of the design is complete, the pressure drop is computed. This
requires a baffle spacing and window opening based on the mass velocity
relation of Equations (5) and (6) and exchanger dimensions. If the pres-
sure drop is excessive, 2 lower mass-flow rate is required, and, if the
pressure drop is low, a higher mass-flow rate is used.

Engineers with experience in the correlation of heat-transfer

coefficients as influenced by tube size and shell diameter over and above
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Design of Plain-Tube Exchanger. 40 SAE oil is assumed to have

properties of Figs. 12-15.
Average oil temperature = 178.5°F

011 Properties.

Cp = 0.5 Btu/1b °F from Fig. 15

p = .860 x 62.4 = 53.6 1bs/cu ft from Fig. 12
k = .08l Btu/(hr)(sq ft)(°F/ft) from Fig. 14
M = 23 centipoises from Fig. 13

0il rate in lbg/hr = 170 x 60 x 8.34 x .86 = 73,100 lbs/hr

Heat load = 73,100 x (190 - 167) x .50 = 840,000 Btu/hr

840,000
600 x 60 x 8.2

Water temperature rise = = 2.84°F. Water out at 162.84°F

(190 —162.8) - (167 - 160)

Log mean temperature difference = Tn (190-162.8)/(167 < 160) = 14.9°F
Correction factor, F, from TEMA, Fig. T-4A = 0.955 for two tube passes.
Mean temperature difference (AT,) = 14.9 x 0.955 = 1.2

Equetion (4c) with recommended value of 0.19 for C, with plain
tubes.
1L

hoDO D G C L ’
= l9< ) < ) /“'w (Le)

A 5/8-inch (.0521-ft) 0.D. Admiralty tube, 18-gauge, 0.049-inch wall on

a 13/16-inch triangular pitch, will be selected for this design. A mass
velocity Gy of 350,000 1lbs per (hr)(sq ft) is assumed for the exchanger.

First trial solution for shell-side coefficient:

p oz 0.19x .081 [ .0521 x 350,000 05/0.5 x 23 % 2.42 ‘375_4?\'11*
o = 0551 5% x 242 ~081 .
V | y

a1k

295 (321)' % (3w (£

L1k
hy = 113<,{;) Btu/(hr)(°F)(sq £t)

h
o



67
Assume an overall coefficient (U,) of 90 Btu per (hr)(°F)(sq ft). The

heat-transfer area by Equation (1):

A = —a . 840,000 . 457 gq £t outside
Uy ATy 90 x 1.2 o7 =

From the Alco bbok,26 the smallest exchanger, 8 ft long, with maore than 657
sq ft outside is a 2h-inch diameter shell which was 768 sq ft with 586 tubes
for a two-pass tube side. It is assumed that there would be approximately
the same number of tubes in a 2h-inch bundle with the shell-circle design
as with regular triangle pitch.

Flow area tube side: inside flowarea, tubes 0.2181 sq in.

0.2181 x 293 _
nn = 0.4k sq £t
, 600 x 8.2 _
water v¢1001ty = B roihxdio - 3.03 ft/sec
. , _ 13
Water convection coefficient, McAdams,”” page 183,
| 0.8
hi = 150(1 + 0.011 T) 3 o5
03 0.8
By = 150(1 + 0.011 x 161) 22— = 1150 Btu per (hr)(°F)(sq £t inside)
0.527"°
Computed overall coefficient:
U = 1 = 83,0 Btu hr) (°F £t
o = I %25 % 0.00L Zo5— = 5.0 Btuper (hr)(°F)(sq £t)

T3 * 0-001 + =55 * T5a7 x 1150

178.5 - 1h.2 x 9229 . 168.0°F

Tube wall temperature 113

H

i}

27 centipoises

A

cé;).lh

(23/27)’1h = .978
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h, = 113 x .978 = 111 Btu per (hr)(°F)(sq ft)

Uy = 1 - 82.0 Btu per (hr)(°F)(sq Tt

L 625 ] 625
a7t .001 + " x .00l + 57 % 1250 outside)

840,000
Heat-transfer area = 50x 105 - 721 sq ft outside

The 24-inch bundle with 768 sq ft is sufficient for this second trial area
and will be used if the pressure drop calculations are satisfactory

Baffle-Spacing Calculation. Minimum space between tubes along a

diameter perpendicular to flow, 28 tubes per row:

ok - (28 x 0.625)
12

= 0.541 ft

Cross-flow area equals 0.541 x baffle spacing. Baffle cut and spacing will

be chosen to give

G, = 210,000 and a Gy = 590,000
or
Gy =\/210,000 x 590,000 = 350,000
Area cross flow of 210,000 lbs per (sq ft)(hr) is 5%%?%%% 0.348 sq ft

Baffle spacing = %L%%% = 0.64h4 £t

Number of baffles = 5_%EE -1 = 11.4%; 10 baffles will be used to give

appropriate space at ends or 11 spaces for cross flow.

Pressure Drop. Cross flow passes about 10 rows of tubes from

edge of one window to edge of next.

2
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(%ﬁa)c = .ogﬁgxxeég,ooo - 197, £ from Fig. b0 = 2.0
(Py - Pp), = LOTx1.9x10x (210,000)2 ;1 _ 6.15 pei cross Tlow
109 x 32.2 x 53.6 x .978 pressure drop.
Window pressure drop:
(Py - Pp), = Egi% X gzwir (7)

2
0, 000
(P - P2)w = zii% x ngazég”l“ = 0,118 psi/baffle.

Total window loss:

0.118 x 10 1,18 psi

I

Total pressure drop 6,15 + 1.18 = 7,33 psi

Design of Finned-Tubing Exchanger. ©Since this unit will be

smaller in diameter, a mass velocity (Gm) of 500,000 will be wused with a
G,, of 830,000 and a G, of 300,000. Convection coefficient shell side,

using recommended value for C of 0.13:

.65 375 J1h
h, Dg (De r:pm> (%f‘) N >
k- = OB\ (m‘ (ke)
De for 5/8" end finmed tube from Table I = 0,554 inches or ,OL61 feet
n - 0.13x .081 <,oh61 x 500,000)'65 (?%),575('“),11»
o L0461 23 % 2,42 - pao
.6 L1k .
h, = 0.228 x L1k % x 7.75 % (%%) = 88.9 (ﬁ%) 1h

Assume a U, of 65,

i

T%Egggogg = 910 sq ft outside.

Area of finned tube = 0.361 sq ft per £t, Table I.

First trial heat-transfer area

No. of tubes, 8 ft long

It}

0.3 %9§~§ = 315 tubes.
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jovd
O

N

=

=
2 - "~ = 3.26 from Table I.
6.7

=
[
=

For one-pass water side, an 18-inch diameter exchanger will have 326 tubes.

Tubes have 0.133 sq in. flow area based on I.D. of 0.411 inch.

Flow srea for water = 336 i 0.133 _ 0,310 sq ft

600 x 8.2
60 x 0.310 x 61.0

Water velocity = h,34 rt/sec

Inside coefficient:

0.8
v 416 .2k
h; = 150(1 + 0.011 T) 5 0.2 = “““6%3%5—” = 1610 Btu per(hr)(°F)(sq ft)

i

Computed overall coefficient

Up = — 1 = - 60.5
855 + -001 + .001(3.26) + %éiﬁ
Wall temperature (100 per cent fin efficiemcy) = 178.5 - 1k.2 x 60.5/88.9
= 168.8
Viscosity ratio = (*‘g-)'llL = (23)‘1’+ = 0.983
Va's 26

h, = 88.9x0.9835 = 87.4

o}

This ho is based on the effective outside area. To convert to

hy', based on the actual outside area, use Fig. 18, which gives Ao/Ae.

In this figure the total outside conductance, including the outside foul-

ing, should be used. This equals 1787 %»+ 50T = 80.5; from Fig. 18,
A /Ae % 1.0, When Ay/Ae is significantly greater than one, the h, is

. . ~
divided by AO/Ae to get ho'. In this case h,' = h,.
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_ 1 - 5 L De o
Uo = /875 % .001 + .00526 + 3.26/1610 59.8 Btu per (nr)(°F)(sq )

Second trial heat-transfer area, AT = 1k.9 for single poss,
_ 840,000
o = sgBx g = M3l
No. of tubes = 243 = 326 tubes
o1 %8 °

The 18-inch exchanger is satisfactory.

Baffle Spacing

No. of tubes on & di~meter = 20 tubes.

Minimum space between tubes = 18 - Rgmx 29 - 0,577 £t
rath

Ares for cross flow of 300,000 is L2300 - 0,24} sq £t
500, 000

0.2lh

o5 - 0.h22 £t

Baffle spacing =

No. of baffles = _.éi;- -1 = 183 Allow 2 baffle spaces for
0.he2 nozzles and use 16.

Pressure Drop

Wo, of rows of tubes in cross Tlow betveen hoffle windows is 2bout 6.

ASIRe
: _39__(:‘9\ e Ol‘6l X 300, 000 = W8 = 0 75
\ / C — E‘ :.3 :‘: 2 'TL}? e Lo ,.I’ s i L ] -

' = - ~ 2
1.07 x 6 x 0.75 x (300,000)

(P - PI ) = - O OG5 adt
{ ) 1,255 pei
1 ¢ 109 x 32.2 x 55.6 x .993
Total cross flow (Pl -Py) = 17x0.255 = %.3% psi
2.9 x (830,000)°
Window loss = (Pl - Pe)w L8 AT x 16 = 3,72 psi

1013 x 0.86

Total pressure drop = 3.72 + 4,33 = 8.05 psi
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Pricing of Exchangers. The Alco Heat Exchanger ‘oook20 is used

for prices of exchanger components. Tube costs were furniched by Wolverine
Tube Division, as follows: plain Admiralty $0.172 per ft, finned Admiralty
$0.275 per ft, both in large quantities. A summary of the vesults of these
calcuvlations and the costs for the components of the exchangers ore given

in Table VIII.

The saving with fimned tubes is computed: $h159,64
3206.35
$ 953.2¢

Per cent saving = 222.29 x 100 _ oo of,

S VR o

Cagse II, Absorption Oil Cooler

Given: Cool 2,000,000 gallons per day of absorption oil from
140°F to 90°F. Treated cooling water.is available at 70°F and-will be
permitted to rise to 85°F, The oil has a molecular weight of 210 and 2
density of 0.875 g/cc at 60°F., TEMA fouling factors should be used, 0.002
outside and 0.001 inside. Admirslty tubes should be used.

The designs were computed in a menner similar to that of Case I
for the lubricating oil cooler. The results of the calculations are given
in Table IX. The shell diameters computed are 42 inches and 33 inches for
the plain and finned-tube units, respectively. The cost of the plain-tube
exchanger is $14,166 - $10,530 = $3,586 more thon the finned-tube unit.

This represents a decrease of 25.3 per cent in the cost of this type of

absorption oil cooler when using the finned tubes described in Table I,

Case III, Corn Sirup Cooler

Given: Cool 50 gallons per minute of 38° Be corn sirup from
200°T to 130°F., River water is available at 90°F and a 20°F rise may
be used. The exchanger tubes are to be 8 feet 1ong,,3/h—inch copper,
The fouling factors are 0.002 on both sides.

A comparison of the designs and cost is given in Table X.



TABLE VIIT

>

DESIGN AND COSTS OF LUBRICATING OIL COOLERS -~ CASE I

Properties of 0il at Mean Bulk Temperature

= 23 centipoises Cp = 0.5 p = 53.6 k =
Units Plain Tubes Finned Tubes
Heat duty Btu/(hr) 840,000 840,000
Mean temperature difference, AT, °F 1k.2 14.9
Shell side velocities 1bs/(hr)(sq ft)
Gy * " 350,000 500,000
Gc " 210,00C 300,000
Gy " 590,000 830,000
Shell side coefficient Btu/(hr)(°F)(sq ft) 111 87.4
outside
Water velocity, tube side ft/sec 3.03 L.3h
Water coefficient Btu/(hr)(°F)(sq ft) 1150 1610
inside
Overall coefficient Btu/(hr)(°F)(sq ft) 82.0 59.8
outside
Heat transfer area required sq Tt outside 721 QL3
Heat transfer area standard exchanger sq ft outside 768 972
Exchanger dimensions
Length of tubes* ft 8 8
Diameter of tubes* (0.0L9" well) inch 5/8 5/8
Spacing of tubes* inch 13/16 triangular 13/16 triangule:
Number of tubes 586 336
Diemeter of shell inch 2L 18
Pagses water side 2 1
Number of haffles 10 16
Shell side pressure drop 1bs/sq in. 7.33 8.05
Costs Dollars
Shell " $1158.20 $ 89%.68
Tube side " 508.28 398,19
Nozzles " 307.00 307 .00
Tube sheets " 911.00 480.00
Baffles " 467,16 338.48
Tubes " 808.00 7%9.00
TOTAL COST " $4159.64 $3206.35

*Agsumed in design procedure
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TABLE IX

DESIGN AND COSTS OF ABSORPTION OIL COOLERS -~ CASE IT

Properties of 0il at Mean Bulk Temperature

A= 2.6 centipoises p = 53.1 k = 0.0815 cp 0.485
Units Plain Tubes Finned Tubes
Heat duty Btu/(hr) 14,400,000 14,400,000
Mean temperature difference, ATy, °F 30.3 30.3
Shell side velocities 1bs/(hr)(sq ft)
Cm* " 500,000 600,000
Ge " 400,000 500,000
G " 625,000 720,000
Shell side coefficient Btu/(hr) (°F)(sq ft) 237 2ho
outside
Water velocity, tube side ft/sec 5.21 6.30
Water coefficient Btu/(hr)(°F)(sq £t) 1140 1390
inside
Overall coefficient Btu/(hr)(°F)(sq ft) 116 87.5
outside
Heat transfer area required sq ft outside 4100 5430
Heat transfer area standard exchanger sq ft outside LL30 5780
Exchanger dimensions
Length of tubes* ft 16 16
Diameter of tubes* (0.65" wall) inch 3/} 3/
Spacing of tubes% inch 15/16 triangular 15/16 triangula
Number of tubes 1378 882
Diameter of shell inch L2 33
Passes water side b 2
Number of baffles 8 11
Shell side pressure drop 1bs/sq in. h.1 5.3
Costs
Shell Dollars $ 2684 $ 1645
Tube side " 1278 751
Nozzles " 507 507
Tube sheets " 309% 1665
Baffles " 859 717
Tubes " 5700 5250
TOTAL COST $14116 $10530

*Assumed in design procedure



DESIGN AND COST OF CORN SIRUP COOLERS --CASE III

TABLE X

Properties of Sirup at Mean Bulk Temperzture

M = 61 centipcises

p = 85.5

k= 0.28 CP = 0,60

[

Heat duty

Units

Mean temperature difference, ATm

Shell side velocities

Gt
Ym

Ge
Gar

Shell side coefficient

Water velocity, tube side

Water coefficient

Overall coefficient

Heat transfer area required

Heat transfer area standard exchanger

Exchanger dimensions
Length of tubes*

Dieneter of tubes® (0.065"wall)

Spacing of tubes*

Number of tubes

Diameter of shell
Pasges water side
Number of baffles

Shell side pressure drop

Cosis
Shell
Tube cide
Novzles
Tube scheets
Baffles
Tubes

TOTAL COST

*Assumed in design procedure

Btu/ (hr)
°F
1bs/(hr)(sq ft)

"

"

Btu/(hr)(°F)(sq ft)
outside
ft/sec

Btu/(br)(°F)(sq t)
inside

Btu/(hr) (°F)(sq ft)
outside

sq ft outside

sq £t outside
ft

inch

inch

inch

1bs/sq in.

Dollars

1

Plain Tubes Finned Tubes
1,500, 000 1,500,000
57'0 5700
200,000 250,000
200, 000 250,000
200, 000 250,000
121 100

507 3.08
1410 1520

67.1 L8.3

392 545
425 563 .0
8 8

5[4 5/h
15/16 triangular 15/16 triangular
270 172
20 16
6 2

17 17
4.0 3.8

$1011 4 875

521 408

221 221

556 366

359 281

530 476

%5283 $2627
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All prices for corn sirup coolers are based on exchangers having
plain steel shells. The use of other metals for the shells would change
the price of both units in a manner that would not affect the comparison

adversely.

Case IV, Replacement of Plain Tubes by Finned Tubes in Corn Sirup Cooler

Given: 1In Case III, a plain-tube exchanger was designed for
cooling 50 gallons of sirup per minute. The sirup leftat 130°F and the
water at 110°F. Compute the performance of this exchanger when it is
equipped with finned tubes.

The temperature of the sirup is now reduced to 117°F instead
of 130°F, while the cooling water is maintained at an outlet temperature
of 110°F. The finned tubes transfer an added 275,000 Btu per hr, as
shown in Table XI.

This example cannot be used to evaluate the merit of finned tubes
since it is impossible to evaluate the cost of the added cooling without
further comparisons. Case V is a design of a plain-tube exchanger to match

the performance of the exchanger in Case IV, i.e., the plain-tube unit of

Case IITI when it contains finned tubes.

Case V, Closer Temperature Approach with Finned and Plain Tubes

Design a plain-tube exchanger to cool 50 gallons per minute of
38° Be corn sirup from 200°F to 117°F, with water in at 90°F and out at
110°F. Fouling factors of 0.002 to be used on both sides. Exchanger tubes
are 8 feet long, 3/4-inch copper. Note that this is the performence of
the exchanger with finned tubes in Case IV.

The results of the design and cost calculations are given in
Table XI. It may be seen that the additional heat transfer to cool the
sirup from 130°F to 117°F costs $116.00 when employing finned tubes and

$930.00 when obtaining a larger plain-tube exchanger.



TABLE XI

DESIGN AND COSTS FOR CORN SIRUP ~- COVERS CASES IV AND V

Properties of Sirup at Mean Bulk Temperature of Cases IV and V

&= T3 centipoises p = 84.0 k = 0,28 = 0.6h
MCaaa {Y Case V
Pluin Tube Plain Tube Unit
Undoo Shell of Cuase to Match
III, with Case IV
Finned Tubes
feat duty Btu/(hr) 1,775,000 1,775,000
fean temperature difference, AT, °F Lh7.1 h7.1
Shell side velocities 1bs/(hr)(sq £%)
Cm* " 172,000 172,000
GC " lu"?, OOO l're ) OOO
Cw " 200, 000 172,000
Shell side coefficient Btu/(hr)(°F)(sq £t) 78.3 109
outside
later velocity, tube side ft/sec 5.6 2,68
later Coefficient Btu/(hr) (°F)(sq £t) 2120 1120
inside
erall coefficient Btu/(hr) (°F) (sq £t) k.2 68.2
outside
eat transfer area required sq ft outside 835 626

xchanger dimensions
Length of tubes*

Diameter of tubes* (0.0065"wall)

Spacing of tubes
Number of tubes
Diameter of shell
Passes water side
Number of baffles

hell side pressure drop

osts
Shell
Tube side
Nozzles
Tube sheets
Baffles
Tubes

TOTAL COST

Assumed in design procedure

£t
inch
inch

inch

1bs/sq in.

Dollars
1

8
5/
15/16 triangular
270

>
&

ON

_—

~
{

¥

(S|
=

$1011

521
221
596
559
46

& 3454

5/

15/16 triangular
398

2l

é

1

3

=
\Jt

$1158

5381
221
819
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It might be added that the extra cooling below 130°F for 50
gallons per minute costs $1.23% per °F for equipping with finned tubes and

$7.15 per °T when obtaining the requisite plain-tube exchanger.

WHEN ARE FINNED TUBES ECONOMICAL IN SHELL AND TUBE EXCHANGERS?

The above cases have been chosen to show typical advantages of
finned tubes by selecting services where the shell-side coefficients zre
relatively low. A comparison of costs for services with high chell-side
coefficients could result in little or no saving due to fouling fectors,
low fin efficiencies for high coefficients, and the slightly lower coeffi-
cients for the finned surface as compared to the plain surface, Fig. %6.

A complete calculation, such as is given in Case I, is required to arrive
at a definite comparison of costs.

One element of the economics is the working pressure of the ex-
changer. High rressures require heavy shells which are relatively expensive,
and a given size reductimwill save = higher per cent of the cost 2t higher
pressures. These studies are based on working pressures of 150 pounds per
sq in.

A generel statement concerning the probability that finned-tube
exchangers will or will not be economical can be made when the inside re-
sistances to heat transfer and the outside resistances are known. Equation
(9) gives the relationship between the clean and Touled coefficients, indi-

vidual coefficients, and fouling factors.

1
U, (fouled) = T ro s L%, Z;’ﬁ“ - Bo (9)
h,' k Loy S hyfy
1
] - (92)
U, (clean) RIS KI
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For cases in which water flows 1néide of tubes at = given velocity and the
metal resistance is known, the relationship between the inside resistance
and the outside resistance is given by the two fouling factors and the
overall coefficient on either a clean basis or on a fouled basis, Thus

it is possible, ot a fixed water-film coefficient and specified tube sizes,
to make cost studies for plain and finned-tube exchangers as a function of
the fouling factors and the overall coefficient.

Since situations arise in which either clean or fouled coefficients
are known, two charts have been prepared for predicting whether finned or
plain-tube exchangers are economical., Fig. 43 is based on overall coeffi-
cients for the fouled exchanger, and Fig, 4l plots overall coefficients for
the cleén exchanger. These charts have curves for given fouling factors on
the outside and plot the fouling factor on the inside as ordinates. The
curves represent the condition for equal costs of plain and finned-tdbe
exchangers. The area above each curve represents overall coefficients for
plain-tube exchangers for which cost calculations will show that plain tube
exchangers are cheaper, while the area below the curve represente coefficients o
which cost calculations will show that finned-tube exchangers are cheaper.

For example, Case I has a fouled overall coefficient of 87.1
for the plain-tube exchanger with f, = 0,001 and f, = 0.001. Reference
to Fig. 43 shows that an overall coefficient of 87.1 is well below the
curve for fo = 0,001 at fi'= O'00l‘ In fact, all exchangers having overall
coefficients in the fouled condition below 175, are more economical with
finned tubes for fouling factors of 0.001, The clean overall coefficient
for Case T is 110 and is well belcw the curve for £ = 0.001 in TFig. L3

at £, = 0,001.

i
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FIG.43 APPROXIMATE RELATIONSHIP OF
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These charts are based on specific calculntions with the follow-
ing data and assumptions:
(1) Inside water coefficient = 1500,
(2) 3/L-inch plain and finned Admiralty tubes of dimensions shown
in Table I.

(3) ©2b-inch diemeter shell, 12-foot tubes, L-pass plain-tube
exchanger and 22-inch diameter shell, l2-foot tubes, 2-
pass finned-tube exchanger.

(4) Tt is assumed that the outside coefficient for fimmed tubes

equals 80 per cent of the outside plain-tube coefficient.

(5) Costs are those used in this study, which are $4.65 per sq

ft outside for the plain-tube exchanger($4lL95 total) and

$2.61 per sq ft outside for the fimmed exchanger ($4578

total).
The curves represent the overall coefficients for the plain-tube exchanger
and given fouling factors at which the exchangers of this size and equal
costs transfer the same amount of heat per degree temperature difference.
For Fig. 43 the computations simply involve finding the points at which
Uo(Plain fouled) divided by Uo(Finned fouled) becomesequal to 4.65/2,61
or 1.78. The curves in Fig. 43 are terminated when the outside film
coefficients begin to rise rapidly.

It is appreciated that these charts do not apply accurately for
conditions other than those specified. For cases in which the exchanger
diameters are lower than those given (22-24 inches), the break-even point
for finned-tube exchangers will occur at lower overall coefficients., For
larger sizes, the coefficients for the break-even point may be slightly

higher.
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The use of large fouling factors for the outside may be questioned
in that such fouling might plug the spaces between the fins. Although such
fouling could occur, it should not be overlooked that there is turbulence
between the fins, The charts assume a uniform fouling on the outside, such
as might occur for paraffin accumulation in contrast to solid accumulation,
such as scale formation.

For petroleum oils used with the exchongers and conditions em-

ployed for Figs. 43 and 44, the overall coefficients are essentially =
function of the oil viscosity. For a thermal conductivity of 0.078 Btu
per (hr)(°F) (ft) and a specific heat of 0.48 Btu per (1b)(°F), the clean
overall coefficient can be computed from the oil viscosity , an assumed
velocity of 400,000 153/(hr)(sq £t) and the conditions specified. Thus,
a chart can be drawn to indicate whether, as a function of the oil vis-
cosity and the two fouling factors, Fig; 45, finned-tube coolers are cheaper
than plain-tube coolers, This chart is 5ased on the seme assumptions and
conditions ae T'igs. 43 and LU, TFor oilz of viscosity higher than e given
curve, finned-tube exchzngers (water inside tubes) are more economical.
The viscosity is tezken at the mean bulk temperature,

Taking Cose I as an example, the lube oil has 2 viscosity of
25,0 centipoises, with 0,001 fouling factor outside and 0.001 fouling
factor inside. The viscosity of 2% centipoises is considerably above the
0.1 centipoise read from the chart as the viacosity at the break-even
point for these fouling factors for mineral oils. Again, this chart
is based on the cost ratio of 1;78 for plain surface to outside finned
surface and applies to exchangers 22 td 2L inches in diameter. Small
exchangers cannot tolerate the low viscosities indicated for economic#l

use of fimned tubes, while larger exchangers would breask even at even
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FIG. 45 ROUGH RELATIONSHIP FOR PREDICTING OIL
VISCOSITIES AT WHICH FINNED TUBES BECOME
ECONOMICAL IN SHELL AND TUBE UNITS.
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lower viscosities than those shown.
It should be emphasized that these charts give only approximate
values and are intended as "rules of thumb" for evaluating fimmed tubes.

They are not offered as a substitute for the design calculations.

METAL REQUIREMENTS OF PLAIN AND FINNED TUBE EXCHEANGERS

The weights of heat exchangers for a given duty are of interest
for three reasons:

(1) metal requirement in times of metal shortage

(2) weight as a factor in handling, in design of supporting

structures, and for mobile equipment

(3) shipping costs.
Any reduction in cost due to the use of finned tubes will be primarily the
result of}reduction in shell size, and therefore a reduction in the amount
of metal used.

A comparison of the weights of the exchangers in Cases I, II, and
III is given in Table XII. For these cases, approximately one third of the
tube and shell metal is saved when fimned tubes are employed. These weights

are for operating pressures of 150 1lbs per sg in.

CONCLUSION

The heat-transfer and pressure-drop experiments provide adequate
data for designing exchangers to determine the relative costs for shell
and tube exchangers equipped with plain tubes and with finned tubes. For

uses in which the shell-side resistance, including fouling, is somewhat
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TABLE XII

COMPARISON OF METAL REQUIREMENTS

rﬁ
Cage I Case II Case III
Lube 0il Cooler Absorption 01l Sirup Cooler
i Cooler
Plain Tubes
Weight of exchanger* less tubes, lbs 4,268 14,633 3,148
Weight of tubes, 1lbs 1,490 12,000 1,160
Total weight, 1lbs 5,758 26,633 4,308
Finned Tubes
Weight of exchanger* less tubes, lbs 2,688 9,612 2,256
Weight of finned tubes, lis 985 8,150 793
Total weight, lbs 3,673 17,762 3,049
Per cent saving in tube metal 33,9 32,1 31,6
Per cent saving in total exchanger 36.2 33,3 29.1

*Taken as Alco shipping weights less 25 lbs per ft exchanger length
allowance for skids.
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higher than the inside resistance,a design calculation should be made

to determine the cheaper exchanger. Cooling of mineral >ils with water

is a typical example in which a saving of 20 per cent in exchanger cost and
of 30 per cent in metal may be realized by the use of finned tubes,

It is appreciated that the industry may desire further assurances
that the fouling resistances on the shelled side of finned tubes will be
similar to those on plain tubes. Also, such problems as corrosion of the
fins and erosion due to the higher water volocities on the inside of the tubes

may require some study under actual service conditions.
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NOMENCIATURE

Heat-transfer area, sq ft

Average heat-transfer area through metal wall of tube, sq ft per
ft of length

Flow area across the tube bundle, sq ft

Effective outside area of finned tube, sq ft per ft of tube

Ares of fins on finned tube, sq ft per £t of tube

Mean area for fluid flow on shell side of tube bundle, \/AA,, sq ft
Outside area of tube, sq ft per ft of length

Flow area through baffle window, sq ft

Area of & fin

Constant in heat transfer equation (4, La)

Constant in heat transfer equation (4b)

Heat capacity, Btu per (1b)(°F)

Diameter of tube, ft

Equivalent outside diemeter of finned tube, ft = outside diameter
of plain tube having same inside diameter and same weight of metal
Outside diameter of plain tube, ft

Inside diameter of tube, in. (See Equation (9).)

Correction factor for AT in multipass exchangers from TEMA
Mass-flow rate, lbs per (sq f£t)(hr)

Cross-flow mass-flow rate at A;, 1bs per (sq ft)(hr)

Mean flow rate, shell side, at Ay 1bs per (sq f£t)(hr)

Mess-flow rate at Ay, lbs per (sq f£t)(hr)

Conversion factor = 32.17 £t per sece

Inside coefficient based on inside area, Btu per (sq ft)(°F)(hr)
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AT

AT?

AT

ATy
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39
Inside coefficient based on outside area, Btu per (sq £t)(FJ(hr)

Outside coefficient based on outside area for plain tubes and ef-
fective outside area for finned tubes, Btu per (sq ft()°F)(ar)
Outside film coefficient based on the actual outside area for finmed
tubes, Btu per (sq ft)(°F)(hr)

Thermal conductivity, Btu per (ft)(°F)(hr)

Length of heat-transfer path through metal wall of tube, ft
Exponent of Reynolds Number, Equation (L)

2.31/(1 + 0.0l1T) for use in Wilson plots, where T = mean bulk
temperature of water inside tubes

Number of rows of tubes crossed in cross flow between baffle win-
dows

Exponent of Prandtl Number, Equation (%)

Po)ec = Pressure drop per baffle space due to friction of cross flow,

1]

1bs per sg in.

Pg)w.= Pressure drop per baffle window, 1lbs per sq in,

Heat transferred, Btu per hr

Bulk water temperature, °F

Temperature difference, °F

Variable temperature difference between bulk fluid temperature and
the point fin temperature, °F

Temperature difference between the bluk fluid temperature and that of
the base or root of a fin, °F

Log mean temperature dfference times the correction factor F for a
multipass tube side, from TEMA, °F

Overall heat-transfer coefficient, Btu per (sq ft)(°F)(hr)
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Mluy,

i

Overall heat-transfer coefficient based on the actual outside area
(plain and finned), Btu per (sq ft)(°F)(hr)

Water velocity inside tube, ft per sec

Shell-side mass-flow rate, lbs per hr

Fluid viscosity at bulk temperature

Fluid viscesity at tube wall temperature

Viscosity ratio

Fin efficiency (See Equation (2).)
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TABLE III

EXAMPLE DATA AND CAICUIATIONS OF COEFFICIENTS

Run No. 26:

6-in. exchanger, Bundle No.

5/8-in. 0.D. finned Admiralty tubes

Water shell side:
Water tube side:

ORIGINAL DATA

0.99%-in. orifice
1.597 in. orifice

6

Temperature Readings, °C Pressure Drop Manometer Readings, Inches Hg
Shell Side | Tube Side Shell Side Tube Side
In Out In Out Orifice Exchanger Orifice Exchanger
No. 7 No., 8 |No. 5 No. 6 _
: L R L R L R L R
(a)  79.85 72,10 65.05 70.50 7.90 8.05 2,50 2.15 1,85 2.00 2.70 2.95
79.90 .72.25  65.15 70.60 7.90 8.05 2.50 2.15 1.85 2,00 2.7 2.95
79,85 172,20 65.05 70.50 7.90 8.05 2,50 2.20 1.85 2,00 2.70 2.90
79.90 72.20 65.05 70.55 7.90 8.10 2.50 2.20 1.85 2,00 2.70 2.90
Av. 79.88 72,19 65.08 70.54 7.90 8.06 2.50 2.18 1.85 2,00 2,70 2.9%
(b) .
79.90 72.00 66.85 70.65 7,85 8,05 2.50 2.20 3.80 3.90 5.25 .50
79.95 72.25 67.15 70.90 7.85 8.05 2.50 2.20 3.85 3.90 5.25 5.50
80.00 72.30 66.95 T0.70 7.95 8.05 2,50 2.20 3.85 3,90 5.30 5.55
80.25 72.20 67.00 70.75  7.90 8.10 2.50 2.20 3.85 3.95 5.2° 5.5%
Av. 80.03 T2.19 66.99 70.75 7.89 8,06 2.50 2.20 3.84% 3,91 5.26 5.53
(o]
() 79.95 72,20 68.30 71.00 7.90 8.10 2.50 2.20 6.50 6.55 8,60 8.95
79.95 72,10 68.00 70.75 7.90 8.05 2,50 2.20 6.50 6.60 8.60 9.00
80.00 72.20 68.25 71.00 7.95 8.10 2.50 2.20 6.50 6.60 8.60 9.00
79.90 72.15 68.05 70.85 7.95 8,10 2.50 2.20 6.45 6.60 8.60 9.00
Av, 79.95 7T2.16 68.15 70.90 7.95 8,09 2.50 2.20 6.k9 6.59 8.60 8.99
(d)
79.95 72.10 68.85 T1.00 7.90 8.05 2,50 2,20 9.95 10.05 12.90 13.20
79.80 72.20 69.05 71.20 7.90 8.05 2.50 2.20 9.95 10.10 12.85 13.20
80.05 T72.35 68.80 170.95 7.85 8,00 2.50 2,20 9.90 10.10 12.85 13.20
80.15 72.15 68.80 17T1.00 7.90 8,05 2.50 2.20 9.90 10.10 12.80 13.20
Av, 79.99 72.20 68.87 71.04 7.89 8,04 2,50 2.20 9.92 10.09 12.85 13.20
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TABLE III, continued

CALCULATIONS FOR RUN 26a

Tube Side
Tegperatures:
Water in 65.08°C Water out 70.54°C
Correction +0.02°C Correction +0.37°C
65.10°C ' T70.91°C
or 149.18°F (Col.2)* or 159.58°F (Col.3)
Flow Rates:
Left 1.85 in, Hg
Right 2.00 in, Hg

Manometer Reading 3.85

From Fig. 11, flow rate at 60°F 31,700 1lbs/hr

31,700 x | —0 = 31,700 x 0.9

P155

Flow rate corrected for temperature

31,400 1bs/hr (Col.5)

Shell Side
Temperatures:
Water in 79.88°C Water out 72.19°C
Correction +0.68°C Correction +0.40°C
80.56°C 72.59°C
or 177.01°F (Col.8) or 162.66°F (Col.9)

Flow Rates:

left 7.90 in, Hg
Right 8.06 in. Hg

Manometer Reading 15.96 in. Hg
From Fig. 11, flow rate at 60°F = 24,000 1lbs/hr
Flow rate corrected for temperature = 24,000 x 0.99 = 23,800

l1be/br (Col.ll)

*¥These column numbers refer to Table IV.
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TABLE III, continued

Heat Transfer

Tube Side:

31,400 x (159.58 - 149.18)

i}

326,000 Btu/hr (Col.6)
Shell Side:

23,800 x (177.01 - 162.66) = 341,000 Btu/hr (Col.12)
Average 334,000
Mean Temperature Difference
L.M.T.D. - [(162.66 - 149.18) - (177.01 - 159.58)

162.66 - 149.18

n 177.01 - 159.58

15.30°F
Correction for two-pass tube side, Fig. T-4A TEMA, F = 0.887%

Mean temperature difference = 0.887 x 15.30 - 13.58 (Col.1lk)

Overall Coefficient based on outside area of 54.5 sq ft (Table I)

334,000

Uo = K‘%E; = e risEg - 451 Btu/(hr)(°F)(sq ft) (Col.l5)

Similar calculations give the following overall coefficients for 26b, 26c, and
264:

U0 /U v vo-8 0.8 v wp08
26a 451 .00222 7.75 5.14 .19k .860 167
26b 524 .00191 11.03 6.83 146 .85k .125
26¢ 58 .00171 14,31 8.40 .119 .850 .10l
26d 636 .00157  17.73 9.99 .101 847 .0855

#When the F of TEMA was less than about 0.9, Equation (19), p. 145 of McAdams,
was used to obtain the mean temperature difference directly, permitting the
reporting of F to the third place.
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TABLE III, continued

Linear Velocity of Water in the tubes of 0.0184 sq ft cross section = V

_ 31,400 (1bs/br) x 0.01636 (ew ££/1b) . .., )
i} 3600 x 0.010% (sq f£t) = 7.75 ft/sec (Col.T)

This velocity is taken to the 0.8 power and the reciprocal obtained as shown.
A corrsction to bring all runs to the same equivalent water temperature of
120°F is obtained from Equation (9c), page 183 of McAdams 313

N = 2.3

T 15 0.011 7

where T is the mean water temperature in °F. Then

2,32

1 + (0.011 x 15h)

N = 0.860

;éig = 0.167 (Col.l7)

~

The Wilson plot of the four points gives an intercept on Fig. 17 of 0.000930.
Then

- N
——-——-l L CJ — < 2O
ho' + T r‘,\lm = (C.0009350C
1 ) 0.0545 x 0.361
nor - 0:000930 - AT .1
= 0.0007:0
heo' = 5“6%6755 = 1390 outside coefficient based

on actual outside area.

*Standardes Copper ond Drase Research Association.
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TABLE III, concluded

The desired shell-side coefficients are those based on the effective
area in order that the usual temperature difference may be employed. Fig. 18
glves the conversion from actual to effective area for this tube, based on the

outside coefficient computed for the actual area:

n o= 1 Ao 165
o - 0.000720 A ~ 0.000720

1620 Btu/(hr)(°F)(sq £t effective outside area)*

*Columm 19 in Teble IV
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