Technical Report

STRUCTURE OF TURBULENCE IN THE BOUNDARY LAYER NEAR THE WALL

W. W. Willmarth
Bo-Jang Tu

ORA Project 02920

under contract with:

DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
CONTRACT NO. Nonr-1224(30), NR-062-234
WASHINGTON, D.C.

administered through:

OFFICE OF RESEARCH ADMINISTRATION
ANN ARBOR

February 1968

Distribution of this document is unlimited.
Structure of Turbulence in the Boundary Layer near the Wall

W. W. Willmarth and Bo Jang Tu
Aerospace Engineering Department
The University of Michigan, Ann Arbor, Michigan

Previous measurements of space-time correlations of turbulent wall pressure and velocity in the boundary layer were extended to include space-time correlations between the wall pressure and all three velocity components in the vicinity of the wall. Additional measurements of space-time correlations between various velocity components have also been made. The velocity correlations include measurements of the spatial correlation of the streamwise component of the fluctuating wall shear stress. A qualitative model is proposed for the structure of that portion of the turbulent field near the wall that is correlated with the wall pressure. The model outlines the sequence of events that result in the production of intense pressure and velocity fluctuations by stretching of the vorticity produced by viscous stresses in the sublayer. All the measurements show that the shape and size of the contours of constant correlation and the sign of the measured correlations are in agreement with the proposed model for turbulent structure.

I. INTRODUCTION

Background knowledge of the structure of turbulence in the boundary layer has been provided by the extensive experimental investigations of Townsend, Schubauer and Klebanoff, and Laufer and Klebanoff in the period 1950–1954. In this period the structure of turbulence was inferred from measurements of spatial correlation and power spectra of turbulent velocities. More recently Grant has studied the structure of large eddies as inferred from spatial correlation of velocity. The work of Favre, Gaviglio, and Dumas introduced measurements of space–time correlations of streamwise velocity components using a multichannel tape recorder for time delay. Using their ideas Willmarth and Wooldridge have measured space–time correlations of the wall pressure and of the space–time correlation between wall pressure and two velocity components u and v. The introduction of space–time correlation makes it possible to investigate the evolution of turbulent eddies.

The new measurements reported here extend the space–time correlation measurements to the correlation between pressure and the third velocity component w. The rather extensive set of measurements has encouraged us to try to formulate a qualitative model for turbulent structure near the wall. Before discussing the model we review some of the previous results and present some new results of our recent experiments.

II. DISCUSSION OF EARLIER SPACE–TIME CORRELATION MEASUREMENTS OF WALL PRESSURE AND VELOCITY.

The wall pressure fluctuations are produced by turbulence in the boundary layer covering the wall pressure transducer. It has been shown that when the boundary layer is laminar in the region very near the pressure transducer the measured wall pressure fluctuations are very small. When this layer is tripped and a turbulent boundary layer covers the transducer the fluctuating signal increases by an order of magnitude. The wall pressure signal is not increased until the tripped turbulent boundary layer (which spreads with the contamination half-angle $\approx 8.6^\circ$) covers the transducer. This means that at the low Mach numbers, $M < 0.4$, of these tests appreciable radiation of sound from turbulence in the boundary layer does not occur.

Furthermore, the space–time correlations of wall pressure show that the pressure is produced by disturbances in the turbulent boundary layer that travel at a convection speed U_* less than the free stream speed actually $0.56U_* < U_* < 0.83U_*$ for various spatial separations and, or frequency bands. The pressure fluctuations on the wall are produced by the pressure field of moving turbulent eddies within the boundary layer.

3 J. Laufer, NACA Technical Note 2954 (1953).
In later worka the space–time correlation between pressure and the velocity component v normal to the wall has been measured. One result of these measurements is the discovery that the space–time correlation

$$p(x_1, 0, x_3, t) p(x_1 + x_1', x_2, x_3 + x_3', t + \tau)$$ \hspace{1cm} (1)

appears to be produced by a convected disturbance moving at approximately the local velocity in the boundary layer at a distance x_1' (the position where v is measured) from the wall. The correlation, p_w, is an odd function of x_1' when $\tau = 0$ and if the time delay necessary to allow the disturbance to move from the point x_1 to the point $x_1 + x_1'$ is taken into account the correlation is also an odd function of x_1' measured with respect to a new origin at $x_1' = U_\tau \tau$. The correlation $\overline{p_w}$ is positive for $x_1' > 0$ negative for $x_1' < 0$, passes through zero at $x_1' = 0$, and vanishes for $|x_1'|$ large.

From the measurements, contours of constant correlation $\overline{p_w}$ with zero-time delay have been plotted in planes parallel to the wall. For planes $x_1' > 0.5\delta^*$ the correlation $\overline{p_w}$ is positive downstream of the pressure transducer and negative upstream of the transducer. In planes closer to the wall $x_1' = 0.2\delta^*$ and $x_1' = 0.1\delta^*$ the symmetry of the contours in the stream direction is destroyed and the correlation becomes positive upstream and to either side of the pressure transducer but remains negative directly upstream of the pressure transducer. This swept back structure is shown in Fig. 1.

The correlation of wall pressure and velocity normal to the wall is undoubtedly produced by the convected vorticity in the turbulent boundary layer. The correlation $\overline{p_w}$ that would be measured by passing a pressure transducer and hot wire through a Rankine vortex has been computed11 for various spatial separations x_1'. The computations show that the shape of the correlation, $\overline{p_w}$, as a function of spatial separation x_1' is remarkably similar to the measured correlation, $\overline{p_w}$. Experimentally we are measuring $\overline{p_w}$ produced by a random distribution of eddies whose axes at the point where v is measured are oriented obliquely to the wall and stream.

\section{III. DISCUSSION OF CORRELATION MEASUREMENTS OF PRESSURE AND VELOCITY COMPONENT NORMAL TO STREAM AND PARALLEL TO THE WALL}

Recently we have reporteda measurements of the correlation $\overline{p_w}$. The space–time correlation $\overline{p_w}$ also shows the effects of convection in a manner similar to the convection effects found earlier4 for the correlation $\overline{p_t}$. Contours of constant correlation $\overline{p_w}$ in planes normal to the wall and stream direction are shown in Fig. 2. The contours are symmetric, but with opposite sign, about the x_1, x_2 plane and contours for $x_3 < 0$ are not shown. The pressure transducer is located at the origin and the correlation in planes upstream and at the transducer is positive. Downstream the correlation becomes negative near the wall and further downstream the region of negative correlation near the wall grows larger.

\section{IV. MODEL FOR TURBULENT STRUCTURE NEAR THE WALL}

The results of the above measurements have led us to propose a model for the average turbulent eddy

11 F. W. Roos (unpublished).
structure near the wall. We have discussed how eddies of any inclination or obliquity with respect to the wall or free stream direction can produce the observed correlation \(\overline{p_w} \) far from the wall. However, near the wall the contours of constant correlation \(\overline{p_w} \) show a swept back structure so that the eddies must be primarily oblique. The contours of constant correlation \(\overline{p_w} \) in planes normal to the wall show an oblique disturbance moving away from the wall.

In the problem of the transition from laminar to turbulent boundary layer theoretical and experimental studies\(^{12-17}\) show that in the course of development from two-dimensional Tollmien–Schlichting waves to the final stage when the turbulent spots are formed, a necessary intermediate step is the appearance of streamwise vortex components. According to Stuart,\(^{17}\) it is this streamwise vortex component which produces the vertical convection of the spanwise vorticity component which is at the same time stretched along the streamwise direction so as to be intensified and eventually generate turbulence. We believe that such a streamwise vortex component, together with the other two components of a three-dimensional vortex line of a hair-pin shape, also exists near the wall in the turbulent boundary layer and is an important part of the physical mechanism which maintains the turbulence.

To explain physically how a three-dimensional vortex line is formed we first refer to the work by Browand\(^{18}\) who studied the instability of a shear flow. Browand gave a qualitative explanation for his observation of subharmonic waves in a shear flow. His explanation used the idea that a small vortex of opposite circulation from the mean circulation should experience a restoring force, when it is displaced either upward or downward; while a vortex with circulation in the same direction as the mean circulation should experience a destabilizing force when displaced. Using this idea we consider the region near the wall in a turbulent boundary layer. This region including the viscous sublayer is a region in which the mean vorticity parallel to the wall and normal to the stream is large and disturbances are also large. Suppose that random disturbances which are initially two-dimensional (i.e., correlated over some distance in a spanwise direction) cause motion of vortex lines near the edge of the sublayer either toward the wall or away from the wall. If the vorticity in motion normal to the wall has the same sign as the mean vorticity the motion will tend to continue and a rolling up and stretching process in the shear flow starts simultaneously. Finally the vorticity with the same sign as the mean vorticity near the wall will take the form shown in Fig. 3(a). Note that one apex of the deformed vortex line is “anchored” at the wall while the other is carried off down stream. With the above qualitative physical model in mind it seems that one can understand qualitatively how an originally two-dimensional motion becomes unstable and develops into three-dimensional motion in a shear flow.

V. COMPARISON OF THE MODEL WITH EXPERIMENTAL MEASUREMENTS.

The correlation \(\overline{p_w} \) measured in planes normal to the wall and stream, Fig. 2, can be qualitatively explained using the above model for average eddy structure near the wall. Figure 3(b) shows the sign of the spanwise velocity and Fig. 3(c) shows the sign of the correlation \(\overline{p_w} \) in various regions of the flow field of the vortex line. When correlation is measured we observe (Eulerian correlation) a random collection of disturbances passing over our instruments and this results in a high noise level. Therefore, the observed correlation coefficients are rather small (of the order of 0.1).

We have also made measurements of the correlation between velocity components.\(^{17}\) We have found that when the measuring points are separated in the spanwise direction in a plane parallel to the wall,
and the velocity correlation \overline{vw} is measured, there is good agreement with Grant's results far from the wall. When the measuring points are near the wall, $x_z < 0.2\delta^+$, the correlation \overline{vw} becomes negative. This indicates that stream-wise vorticity components of small scale transverse to the stream are present near the wall. In this connection we should mention that Bakewell19,20 has recently studied the sublayer structure in a flow of glycerine and has found evidence that streamwise vorticity is present in or near the sublayer.

We have also measured the velocity correlation \overline{vw} at two points in a plane near ($x_z = 0.1\delta^+$) and parallel to the wall. When the measuring points are slightly separated in the spanwise direction and the point at which v is measured is well upstream of the point where w is measured the correlation is of one sign but passes through zero and changes sign when the velocity v is measured at a point downstream of the point where w is measured. This result shows that at this distance from the wall oblique eddies inclined at a small angle to the wall are indeed present.

One additional experimental result can be mentioned. There is not enough space available to discuss this result in detail. A number of hot wires were glued on the wall $x_zu_\parallel/v = 5$, and are used to measure the spatial correlation of streamwise component of wall shear stress. The correlation contours are elongated in the stream direction and show symmetry about a line parallel to the stream. When the correlation between the wall shear stress and the streamwise velocity fluctuation in a plane further from the wall, $x_zu_\parallel/v = 200$, is measured; two maxima of the correlation are observed on either side and downstream of the point where the wall shear stress is measured. The location of these maxima can be approximately predicted if we assume that a vortical disturbance is produced near the wall and is convected downstream with the local flow velocity as it diffuses in the plane normal to the wall and stream. The diffusion distance used is the local root-mean-square disturbance velocity times the time interval required for the local velocity to carry a disturbance downstream.

We have proposed a qualitative model for turbulent structure near the wall. All the measurements we have made are in qualitative agreement with the model. Significant spatial ordering of the fluctuating velocity field appears to exist near the wall. We plan to use multiple arrays of hot wires to determine more details of the turbulent structure, and perhaps gain some understanding of the nonlinear process which maintains the turbulence in the boundary layer.

ACKNOWLEDGEMENTS

We wish to thank Professor A. M. Kuethe and A. F. Messiter, and F. W. Roos for many helpful discussions.

This work was supported by the Fluid Dynamics Branch of the Office of Naval Research under Contract No. 1224(30).
Structure of Turbulence in the Boundary Layer Near the Wall

Willmarsh, W. W., and Tu, Bo Jang

February 1968

Nonr-1224(30)
NR-062-234

02920-4-T

Distribution of this document is unlimited.
Qualified requesters may obtain copies of this report from DDC.

Previous measurements of space-time correlations of turbulent wall pressure and velocity in the boundary layer were extended to include space-time correlations between the wall pressure and all three velocity components in the vicinity of the wall. Additional measurements of space-time correlations between various velocity components have also been made. The velocity correlations include measurements of the spatial correlation of the streamwise component of the fluctuating wall shear stress. A qualitative model is proposed for the structure of that portion of the turbulent field near the wall that is correlated with wall pressure. The model outlines the sequence of events that result in the production of intense pressure and velocity fluctuations by stretching of the vorticity produced by viscous stresses in the sublayer. All the measurements show that the shape and size of the contours of constant correlation and the sign of the measured correlations are in agreement with the proposed model for turbulent structure.
Security Classification

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A ROLE</th>
<th>WT</th>
<th>LINK B ROLE</th>
<th>WT</th>
<th>LINK C ROLE</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulence structure</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary layer structure</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulence</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary layer</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subcontractor number, system numbers, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through [DDC]."

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through [DDC]."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through [DDC]."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified

Security Classification
DISTRIBUTION LIST

Defense Documentation Ctr. (20 copies)
Cameron Station
Alexandria, Virginia 22314

Commanding Officer
Attn: Tech. Lib. (Bldg) 313
Aberdeen Proving Ground, Md. 21005

Dr. F. D. Bennett
Exterior Ballistics Laboratory
Ballistics Research Laboratories
Aberdeen Proving Ground, Md. 21005

Mr. C. C. Hudson
Sandia Corporation
Sandia Base
Albuquerque, New Mexico 87115

Professor Bruce Johnson
Engineering Department
Naval Academy
Annapolis, Md. 21402

Superintendent
Naval Academy
Attn: Library
Annapolis, Md. 21402

Officer in Charge
Annapolis Division
Naval Ship Research and Development Ctr.
Annapolis, Maryland 21402

Professor F. G. Hammitt
University of Michigan
Ann Arbor, Michigan 48108

Prof. W. W. Willmarth
Dept. of Aerospace Engineering
University of Michigan
Ann Arbor, Michigan 48104

Professor A. Kuethe
Dept. of Aerospace Engineering
University of Michigan
Ann Arbor, Michigan 48108

AFOSR (SREM)
1400 Wilson Boulevard
Arlington, Va. 22209

Dr. J. Menkes
Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22204

Mr. Lukasiewicz
Chief, Gas Dynamics Facility
Arnold Air Force Station
Tennessee 37389

M. J. Thompson
Defense Research Laboratory
University of Texas
PO Box 8029
Austin, Texas 78712

Library
Aerojet-General Corp.
6352 N. Irwindale Avenue
Azusa, California 91702

Professor S. Corrsin
Mechanics Department
The Johns Hopkins University
Baltimore, Maryland 21218

Prof. M. V. Morkovin
Aeronautics Building
Johns Hopkins University
Baltimore, Maryland 21218
Professor O. M. Phillips
The Johns Hopkins University
Baltimore, Maryland 20910

Commander
Air Force Cambridge Research Center
Attn: Geophysical Research Lib.
Bedford, Massachusetts 01731

Librarian
Department of Naval Architecture
University of California
Berkeley, California 94720

Professor P. Lieber
University of California
Berkeley, California 94720

Professor A. K. Oppenheim
Division of Mechanical Engineering
University of California
Berkeley, California 94720

Professor M. Holt
Division of Aeronautical Sciences
University of California
Berkeley, California 94720

Dr. L. Talbot
University of California
Department of Engineering
Berkeley, California 94720

Professor J. Johnson
412 Hesse Hall
University of California
Berkeley, California 94720

Professor Dr. Ing. S. Schuster
Versuchsanstalt Fur Wasserbau und Schiffbau
Berlin, Germany

Professor R. J. Enrich
Department of Physics
Lehigh University
Bethlehem, Pennsylvania 18015

Engineering Library
Plant 25
Grumman Aircraft Engineering Corp.
Bethpage, Long Island, N. Y. 11714

Mr. Eugene F. Baird
Chief of Dynamic Analysis
Grumman Aircraft Eng. Corp.
Bethpage, Long Island, N. Y. 11714

School of Applied Mathematics
Indiana University
Bloomington, Indiana 47401

Commander
Boston Naval Shipyard
Boston, Mass. 02129

Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston, Mass. 02210

Professor M. S. Uberoi
Dept. of Aeronautical Engineering
University of Colorado
Boulder, Colorado 80303

Commanding Officer and Director
Naval Applied Science Laboratory
Naval Base, Attn: Code 930
Brooklyn, New York 11251

U.S. Naval Applied Sci. Lab.,
Technical Library
Building 1, Code 222
Flushing and Washington Aves.
Brooklyn, New York 11251

Professor J. J. Flood
Chairman, Engineering Department
State University of New York
Maritime College
Bronx, New York 10469
C. A. Gongwer
Aerojet General Corporation
9100 E. Flair Drive
El Monte, California 91734

Professor Ali Bulent Cambel
Department of Mechanical Engineering
Northwestern University
Evanston, Illinois 60201

Professor A. Charnes
The Technological Institute
Northwestern University
Evanston, Illinois 60201

Barbara Spence Technical Lib.
Avco-Everett Research Lab.
2385 Revere Beach Parkway
Everett, Massachusetts 02149

Dr. Martin H. Bloom
Polytechnic Institute of Brooklyn
Graduate Center, Dept. of Aerospace Engineering and Applied Mechanics
Farmingdale, N. Y. 11735

Commanding General
Army Engineering R and D Labs.
Tech. Documents Center
Fort Belvoir, Virginia 22060

Prof. J. E. Germain
Prof.-in-Charge, Fluid Mech. Pro.
College of Engineering
Colorado State University
Ft. Collins, Colorado 80521

Technical Library
Webb Institute of Naval Architecture
Glen Cove, Long Island, New York 11542

Dr. H. Reichardt, Dir.
Max Planck Institut Fur Stromungsforschung
Bottingerstrasse 6-8
Gottingen, Germany

Dr. H. W. Lerbs
Hamburgische Schiffbauversuetschsanstalt
Bramfelder Strasse 164
Hamburg 33, Germany

Dr. O. Grim
Institute Fur Schiffbau
Lahmersieth 90
2, Hamburg 33, Germany

Dr. K. Eagers
Institute Fur Schiffbau
University of Hamburg
Laemmersieth 90
2, Hamburg 33, Germany

Dr. H. Schwanecke
Hamburgische Schiffbauversuetschsanstalt
Bramfelder Strasse 164
Hamburg 33, Germany

I. E. Garrick - MS 242
NASA Langley Research Center
Hampton, Virginia 23665

NASA, Langley Research Center
Langley Station
Attn: Library MS185
Hampton, Virginia 23665

Dr. B. K. Pridmore Brown
Northrop Corp.
NORAIR-Div.
Hawthorne, California 90250

Mr. J. P. Breslin
Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey 07030

Mr. D. Savitsky
Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey 07030
Mr. S. Tsakonas
Stevens Institute of Technology
Davidson Laboratory
Hoboken, New Jersey 07030

Prof. J. F. Kennedy, Director
Iowa Institute of Hydraulic Research
State University of Iowa
Iowa City, Iowa 52240

Professor L. Landweber
Iowa Institute of Hydraulic Research
State University of Iowa
Iowa City, Iowa 52240

Professor John R. Glover
Iowa Institute of Hydraulic Research
State University of Iowa
Iowa City, Iowa 52240

Professor E. L. Resler
Graduate School of Aeronautical Engineering
Cornell University
Ithaca, New York 14851

Dr. Alfred Ritter
TH-RM Advanced Research, Inc.
100 Hudson Circle
Ithaca, New York 14850

Director
Scripps Institution of Oceanography
University of California
La Jolla, California 92037

Prof. S. R. Keim
University of California
Institute of Marine Resources
P. O. Box 109
La Jolla, California 92038

Dr. B. Sternlicht
Mechanical Technology, Incorporated
968 Albany-Shaker Road
Latham, New York 12110

Mr. P. Eisenberg, Pres.
Hydronautics, Inc.
Pindell School Rd.
Howard County
Laurel, Md. 20810

Mr. Richard Barakat
Optics Department
Itek Corporation
Lexington, Massachusetts 02173

Mr. Seymour Edelberg
Massachusetts Inst. of Technology
Lincoln Laboratory
PO Box 73
Lexington, Massachusetts 02173

Mr. Alfonso Alcedan L., Dir.
Laboratorio Nacional de Hydraulics
Anticuo Cameno A. Ancon
Casilla Jostal 682
Lima, Peru

Commander
Long Beach Naval Shipyard
Long Beach, Calif. 90802

Professor A. F. Charwat
Department of Engineering
University of California
Los Angeles, California 90024

Professor R. W. Leonard
University of California
Los Angeles, California 90024

Prof. John Laufer
Dept. of Aerospace Engineering
University Park
Los Angeles, California 90007

Professor Carl Prohaska
Hydro-OG Aerodynamisk Laboratorium
Lyngby, Denmark
Dr. Jack Kotik
Trg, Incorporated
Route 110
Melville, New York 11746

Professor J. Ripkin
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Professor J. M. Killen
St. Anthony Falls Hydraulic Lab.
University of Minnesota
Minneapolis, Minnesota 55414

Lorenz G. Straub Library
St. Anthony Falls Hydraulic Lab.
Mississippi River at 3rd Ave., S.E.
Minneapolis, Minnesota 55414

National Research Council
Aeronautical Library
Attn: Miss O. M. Leach, Librarian
Montreal Road
Ottawa 7, Canada

Lockheed Missiles and Space Co.
Technical Information Center
3251 Hanover Street
Palo Alto, California 94301

Professor M. S. Plesset
Engineering Division
California Institute of Technology
Pasadena, California 91109

Professor H. Liepmann
Department of Aeronautics
California Institute of Technology
Pasadena, California 91109

Professor F. Zwicky
Department of Physics
California Institute of Technology
Pasadena, California 91109

Commander
Naval Undersea Warfare Center
3203 E. Foothill Blvd.
Attn: Mr. J. W. Hoyt
Pasadena, California 91107

Commander
Naval Undersea Warfare Center
3203 E. Foothill Blvd.
Attn: Code 80962
Pasadena, California 91107

Commander
Naval Undersea Warfare Center
3203 E. Foothill Blvd
Attn: Code P804
Pasadena, California 91107

Professor A. Ellis
California Institute of Technology
Pasadena, California 91109

Dr. F. R Hama
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Professor T. Y. Wu
California Institute of Technology
Pasadena, California 91109

Commanding Officer
Office of Naval Research
Branch Office
1030 E. Green St.
Pasadena, California 91101

Dr. E. E. Sechler
Executive Officer for Aero
California Institute of Technology
Pasadena, California 91109

Professor A. Acosta
California Institute of Technology
Pasadena, California 91109
Commander
Naval Ordnance Laboratory
Attn: Librarian
White Oak
Silver Spring, Md. 20910

Commander
Naval Ordnance Laboratory
White Oak.
Silver Spring, Md. 20910

Dr. S. Kline
Mechanical Engineering 501 G
Stanford University
Stanford, California 94305

Engineering Library
Dept. 218, Bldg. 101
McDonnell Aircraft Corp.
P.O. Box 516
St. Louis, Missouri 63166

Mr. R. W. Kermeen
Lockheed Missiles and Space Co.
Department 57101, Bldg. 150
Sunnyvale, California 94086

Professor S. Eskinazi
Department of Mechanical Engineering
Syracuse University
Syracuse, New York 13210

Professor J. K. Lunde
Skipmodelltanken
Trondheim, Norway

Professor J. Foa
Dept. of Aeronautical Engineering
Rensselaer Polytechnic Institute
Troy, New York 12180

Professor R. C. Di Prima
Department of Mathematics
Rensselaer Polytechnic Institute
Troy, New York 12180

Dr. M. Sevik
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pa. 16801

Professor J. William Holl
Dept. of Aeronautical Engineering
Pennsylvania State University
Ordnance Research Laboratory
University Park, Pa. 16801

Dr. G. F. Wislicenus
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pennsylvania 16801

Dr. J. M. Robertson
Dept. of Theoretical and
Applied Mechanics
University of Illinois
Urbana, Illinois 61803

Shipyard Technical Library
Code 130L7, Bldg. 746
San Francisco Bay Naval Shipyard
Vallejo, California 94592

Library
The Marquardt Corporation
16555 Saticoy
Van Nuys, California 91409

Prof. Dr. Ir. J. D. Van Manen
Netherlands Ship Model Basin
Haagsteeg 2. Postbox 28
Wageningen, The Netherlands

Commanding Officer and Director
Naval Ship Research and Development Center
Attn: Code 042
Washington, D.C. 20007

Director (6 copies)
U.S. Naval Research Laboratory
Attn: Code 2027
Washington, D.C. 20390
National Science Foundation
Engineering Division
1800 G Street, N.W.
Washington, D.C. 20550

Chief of Naval Research
Department of the Navy
Attn: Code 421
Washington, D.C. 20360

Commander
Naval Ordnance Systems Command
Attn: Ord 035
Washington, D.C. 20360

Defense Research and Dev. Attache
Australian Embassy
1735 I Street, N.W.
Washington, D.C. 20006

Librarian Station 5-2
Coast Guard Headquarters
1300 E Street, N.W.
Washington, D.C. 20226

Commander
Naval Ship Systems Command
Department of the Navy
Attn: Code 6345
Washington, D.C. 20360

Director, National Bureau of Stds.
Attn: Dr. D. H. Tsai
Washington, D.C. 20234

Dr. A. Powell
Code 900
Naval Ship Research and Development Ctr.
Washington, D.C. 20007

Division of Engineering
Maritime Administration
441 G Street, N.W.
Washington, D.C. 20235

Commander
Naval Ship Systems Command
Department of the Navy
Attn: Code 61500
Washington, D.C. 20360

Director, National Bureau of Stds.
Attn: Library
Washington, D.C. 20234

Commanding Officer and Director
Naval Ship Research and Development Center
Attn: Code 800
Washington, D.C. 20007

Commander
Naval Ship Systems Command
Department of the Navy
Attn: Code 6442
Washington, D.C. 20360

Commander
Naval Oceanographic Office
Washington, D.C. 20390

Chief of Research and Development
Office of Chief of Staff
Department of the Army
The Pentagon, Washington D.C. 20310

Commander
Naval Ship Systems Command
Department of the Navy
Attn: Code 6342A
Washington, D.C. 20360

Chief of Naval Research
Department of the Navy
Attn: Code 468
Washington, D.C. 20360

Commanding Officer and Director
Naval Ship Research and Development Center
Attn: Code 550
Washington, D.C. 20007
Dr. Frank Lane
General Applied Science Lab.
Merrick and Stewart Avenues
Westbury, Long Island, N.Y. 11590

Dr. F. W. Boggs
Uniroyal, Inc.
Research Center
Wayne, New Jersey 07470

Director
Woods Hole Oceanographic Institute
Woods Hole, Massachusetts 02543

Professor A. B. Arons
518 Woods Hole Rd.
Woods Hole, Mass. 01002

ARL (ARN), Building 450
Wright-Patterson AFB, Ohio 45433

AFAPL
Attn: APRC
Wright-Patterson AFB, Ohio 45433

AF Flight Dynamics Laboratory
Attn: FDD-Mr. W. J. Mykytow
Wright-Patterson AFB, Ohio 45433

Dr. A. S. Iberall, President
General Technical Services, Inc.
8794 West Chester Pike
Upper Darby, Pennsylvania 19082

Dr. H. Cohen
IBM Research Center
PO Box 218
Yorktown Heights, New York 10598

Dr. K. F. Hasselmann
Institut für Schiffbau der Universität
Laemmersieth 90
2 Hamburg 33, Germany

Professor L. M. Milne-Thomson
Mathematics Department
University of Arizona
Tuscon, Arizona 85721

Ir. W. Spuyman
Netherlands Ship Research Centre
Mekelweg 2
Delft, The Netherlands

Professor M. Lessen, Head
Department of Mechanical Engineering
University of Rochester
River Campus Station
Rochester, New York 14627

Commander
Naval Ship System Command
Technical Library, Code 20360
Washington, D.C. 20360

Dr. E. J. Skudrzyk
Ordnance Research Laboratory
Pennsylvania State University
University Park, Pa. 16801

Commander
Naval Ship Engineering Center
Concept Design Division
Attn: Code 6110
Washington, D.C. 20360

Mr. R. Wasserman
Executive Vice-President
Flow Corporation
127 Coolidge Hill Road
Watertown, Mass. 02172

Superintendent
Naval Postgraduate School
Attn: Library
Monterey, Calif. 93940

Professor A. B. Metzner
University of Delaware
Newark, Delaware 19711

Commanding Officer and Director
Underwater Sound Laboratory
Fort Trumbull
Attn: Technical Library
New London, Conn. 06321
Commanding Officer (25 copies)
Office of Naval Research
Branch Office
P. O. Box 39
FPO, New York, New York 09510

Dr. Stanley Byron
Aeronautics Applied Research
Laboratory
Ford Road
Newport Beach, California 92660

Commanding Officer
USA Underwater Weapons and
Research and Engineering Station
Attn: Technical Library
Newport, Rhode Island 02840

Professor W. J. Pierson, Jr.
New York University
Department of Meteorology
and Oceanography
University Heights
New York, New York 10405

Professor J. J. Stoker
Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, New York 10003

Engineering Societies Library
345 E. 47th Street
New York, New York 10017

Office of Naval Research
New York Area Office
207 W. 24th Street
New York, New York 10011

Professor A. G. Strandhagen
Department of Engineering Mechanics
University of Notre Dame
Notre Dame, Indiana 46556