FURTHER DEVELOPMENTS IN THE SIMULATION OF AUTOMOBILE HANDLING

by

D. L. Wilson

R. A. Scott

Technical Report, Department of Mechanical Engineering and Applied Mechanics

UM-MEAM-82-2

TABLE OF CONTENTS

	Page
Chapter 1. Introduction	. 1
References for Chapter 1	. 6
Chapter 2. Three-Degree-of-Freedom Vehicle Model	. 7
Section 2.1. Equations of Motion for the Model	. 7
Section 2.2. Solution Procedure For the Equations for the Three-Degree-of-Freedom Model	. 27
Section 2.3. Fortran Computer Program for the Three-Degree-of-Freedom-Model	. 32
Section 2.4. Program Variable Definitions for Three-Degree-of-Freedom Model	. 51
Section 2.5. Three-Degree-of-Freedom Vehicle Data for Base Configuration	62
Figures for Chapter 2	. 66
References for Chapter 2	. 73
List of Symbols for Chapter 2	, 74
Chapter 3. Modification Required in IDSFC To Simulate Asymmetric Vehicles	. 81
Section 3.1. Changes in the Equations of Motion	. 81
Section 3.2. Running the IDSFCAS Simulation	. 90
References for Chapter 3	. 97
Chapter 4. Modifications in Driver Module	. 98
Section 4.1. Technical Changes Required to Implement Extended Cross-over Model	. 98
Section 4.2. Programming Chages Required to Implement Extended CROSS-OVER Model	.100
Section 4.3. Programming Changes Required to Interface Driver Module With the Three-Degree-of-Freedom Model	.106
List of Symbols for Chapter 4	.112
References for Chapter 4	.114

Chapter 1. Introduction

Recently , under contract No. DOT-HS7-01715, the authors were involved in the creation of some all-digital simulations for both open and closed-loop automobile maneuvers. Specific achievements of that project were the development of:

- (1) A vehicle module IDSFC (Improved Digital Simulation Fully Comprehensive).
- (2) A driver module DRIVER, which involved several mathematical models of the human driver. Such a module is required for closed loop maneuvers

Overall features of these modules are as follows. Full details can be found in Refs. [1.1] to [1.9].

(i) IDSFC. The vehicle model IDSFC involves the following degrees of freedom:

<u>Sprung Mass</u>. Specification of the sprung mass requires 3 translational and 3 rotational degrees of freedom.

Front Unsprung Masses. The degrees of freedom allowed are 2 wheel hops, 2 wheel spins, 2 wheel rotations about the kingpins and 1 steering connecting rod displacement. To reduce costs, the steering system is handled statically. Rear Unsprung Masses.

A. Solid Rear Axle. The degrees of freedom allowed are 1 rear suspension deflection, 1 rear axle roll and 2 wheel spins.

B. Independent Rear Suspensions. The degrees of

freedom allowed are 2 rear suspension deflections and 2 wheel spins.

The mathematical representation of the vehicle model involves 30 first order nonlinear differential equations and approximately 250 algebraic equations. The digital program contains 30 subroutines and both single precision and double precision versions are available.

The vehicle simulation capabilities are basically as follows:

- (1) Straight line braking/acceleration, cornering without braking/acceleration and cornering with braking/acceleration are allowed.
- (2) Maneuvers up to and including the limit range can be studied in that (i) Nonlinear terms in the kinematics are retained. (ii) These terms are activated by model level switches and can be deleted for less severe maneuvers, thereby decreasing running costs. These switches can also be employed if the user wishes to do studies on the effects of various nonlinearities. The tire and suspension forces and moments are modeled into the nonlinear range.
- (3) For system and user flexibility, two methods are provided for computing tire forces and moments, namely (i) The APL-CALSPAN model which is based on curves fitted to the measured data. (ii) A Partial Data Deck model which directly uses the measured data.
- (4) An antilock capacity, which can be activated by a model level switch, is available.

- (5) Both solid rear axle and independent rear suspensions are allowed.
- (6) Front wheel drive, rear wheel drive and four wheel drive are available.
 - (7) Separate braking at each wheel is permissible.
- (8) An interactive capability is provided, which is activated by a model level switch.
- (ii) A driver module (DRIVER), involving several mathematical models of human driving behavior, was also developed. The main features of DRIVER are as follows:
- (1) DRIVER controls steering, braking and drive torque inputs to the vehicle model.
- (2) There are 5 pre-programmed open-loop maneuvers available, namely:
 - (a) Sinusoidal steer with trapezoidal braking.
 - (b) Trapezoidal steer with trapezoidal braking.
 - (c) Double trapezoidal steer with trapezoidal braking.
 - (d) Trapezoidal steering with a sinusoidal perturbation with trapezoidal braking.
 - (e) Sinusoidal steering sweep with no braking.
 In addition the driver module will accept:
 - (i) Any open-loop maneuver supplied by the user in tabular form.
 - (ii) Any open-loop maneuver specified by a user supplied subroutine.
 - (3) The driver module can operate in a closed-loop

mode following a desired path. Four control strategies are available, namely:

- (a) A "cross-over" model for a straight line path.
- (b) A "cross-over" model for an arbitrary path.
- (c) A preview-predictor model which uses a geometric predictor.
- (d) A preview-predictor model which uses a threedegree-of-freedom vehicle model as a predictor.
- (4) The driver module permits a mixed-mode operation which allows combined open and closed loop control.
- (5) An obstacle avoidance strategy using the preview-predictor models is available.

Since the completion of that contract, additional work has been done in the areas of: (i) developing a simpler vehicle model, (ii) vehicle asymmetry, and (iii) driver modeling. More specifically: (a) A three-degree-of-freedom vehicle model incorporating certain asymmetries has been developed and a digital program has been written for it. IDSFC has been modified to take into account certain (b) vehicle asymmetries. (c) The module DRIVER has modified to allow it to interface with three-degree-of-freedom vehicle model. Also, an improved cross-over driver model has been implemented in it.

The purpose of this report is to provide documentation to enable users of IDSFC and DRIVER to incorporate the above additions/changes. In Chapter 2 a description is

given of the mechanical modeling involved in the three-degree-of-freedom vehicle model. Then a discussion of the numerical strategy used is given, as well as a Fortran program listing of the computer code. In Chapter 3, the alterations in the seventeen-degree-of-freedom vehicle model IDSFC that are required to allow for certain asymmetries are presented. Both equation and changes are given. Chapter 4 is concerned with the module The program alterations required to interface it DRIVER. three-degree-of-freedom vehicle with the model documented. Also, an extended cross-over model of human driving is described and the program changes required to implement it are detailed.

REFERENCES FOR CHAPTER 1

- 1.1 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 4. User's Guide for the General Simulation", W. R. Garrott, D. L Wilson A. M. White and R. A. Scott. Final Report DOT-HS-7-01715, July 1979.
- 1.2 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 5, Programmer's Guide for the Vehicle Model, Part 1. Documentation Through Subroutine IOUT. Part 2. Documentation for Subroutines PRTCID through KNMTC. Part 3. Documentation for Subroutines SLPCLC Through OUTPUT and a Double Precision Listing", W. R. Garrott, A. M. White and R. A. Scott. Final Report DOT-HS-7-01715, December, 1979.
- 1.3 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 6. Programmer's Guide for the Driver Module", W. R. Garrott, D. Wilson, A. M. White and R. A. Scott. Final Report DOT-HS-7-01715, December 1979.
- 1.4 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 7. Technical Manual for the General Simulation", W. R. Garrott and R. A. Scott. Final Report DOT-HS-7-01715, March 1980.
- 1.5 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 8. Summary Report", W. R. Garrott and R. A. Scott. Final Report DOT-HS-7-01715, April 1980.
- 1.6 "A Note on the Calculation of Tire Side Forces", W. R. Garrott and R. A. Scott. Journal of Sound and Vibration, Vol. 78, 1981, pp. 306-309.
- 1.7 "An All-Digital Simulation for Open and Closed-Loop Automobile Maneuvers", W. R. Garrott, D. L. Wilson and R. A. Scott. Simulation, Sept. 1981, pp. 83-91.
- 1.8 "Closed-Loop Automobile Maneuvers Using Describing Function Methods", W. R. Garrott, D. L Wilson and R. A. Scott. SAE Paper, No. 820305, Feb. 1982.
- 1.9 "Closed-Loop Automobile Maneuvers Using Preview-Predictor Models", W. R. Garrott D. L. Wilson and R. A. Scott. SAE Paper, No. 820306, Feb. 1982.

Chapter 2. Three-Degree-of-Freedom Vehicle Model 2.1 Equations of Motion for the Model

A relatively simple mathematical model of a four-wheel vehicle has been developed as an inexpensive and easily manipulated simulation tool. It can be applied to both symmetric, and certain types of unsymmetric, vehicles.

The model possesses three degrees of freedom; namely, translation in a plane (X-Y plane) and rotation about an axis (the Z axis) perpendicular to that plane. The vehicle is considered to be acted upon by gravity, by air resistance, and by contact forces and moments at the four tire-road contact points.

The following asymmetries can be treated:

- (1) Addition of a "payload" at any arbitrary location in the vehicle.
- (2) Independent tire properties at each wheel.
- (3) Torque transfer from the chassis to the driven axle(s).
- (4) Asymmetrical brake-torque and drive-torque distribution.
- (5) Independent steering system compliance at each front wheel. In addition, the model includes the following features which are particularly important to the asymmetry mechanisms.
 - (i) Non-linear tire models.
 - (ii) Variable lateral weight transfer at front and rear (corresponding to front-rear roll

stiffness ratio).

Payloads are incorporated by considering a system consisting of two rigidly connected arbitrary rigid bodies. Body 1 will ultimately be interpreted as the nominal (unloaded) vehicle, and Body 2 will be interpreted as a payload.

Let Body 1 be a rigid body (mass m_1) and let xyz be a set of axes fixed in Body 1 with the origin 0 at the center of mass.* Let $[I^1]$ denote the inertia tensor of Body 1 with respect to these axes.

Let Body 2 be another rigid body of mass m_2 which is rigidly fastened to Body 1 such that the center of mass of Body 2 lies at point P which has coordinates (x_p, y_p, z_p) . The position of P with respect to 0 is given by

$$\dot{\rho}_{p} = (x_{p} \dot{i} + y_{p} \dot{j} + z_{p} \dot{k})$$
 (2.1)

Define a set of axes $x_2y_2z_2$ with origin at P, which will be parallel to xyz as shown in Fig. 2.1. Let $[I^2]$ denote the inertia tensor of Body 2 with respect to axes $x_2y_2z_2$.

Assume that the only forces and moments acting on Body 2 are gravity and the forces and moments \vec{F}_{21} and \vec{M}_{21} exerted by the connection to Body 2 from Body 1. Then, Newton's laws give

^{*}A List of Symbols is given at the end of the chapter.

$$m_2 \vec{a}_2 = m_2 \vec{g} + \vec{F}_{21}$$
 (2.2)

$$\dot{H}^2 = \dot{M}_{21} \tag{2.3}$$

The forces and moments acting on Body 1 are gravity, the forces and moments \vec{F}_{12} and \vec{M}_{12} exerted by the connection from Body 2, and \vec{F}_0 and \vec{M}_0 which are the resultants at 0 of all other forces and moments acting on Body 1 as shown in Fig. 2.2. Then

$$m_1 \vec{a}_1 = m_1 \vec{g} + \vec{F}_{12} + \vec{F}_0$$
 (2.4)

$$\vec{H}^{1} = \vec{M}_{12} + \vec{M}_{0} + \vec{\rho}_{p} \vec{X} \vec{F}_{12}$$
 (2.5)

Noting that

$$\vec{F}_{12} = -\vec{F}_{21} = -m_2 \vec{a}_2 + m_2 \vec{g},$$

$$\vec{M}_{12} = -\vec{M}_{21} = -\vec{H}^2,$$

(2.4) and (2.5) become, using (2.2),

$$m_1 \vec{a}_1 = (m_1 + m_2) \vec{g} - m_2 \vec{a}_2 + \vec{F}_0$$
 (2.6)

$$\vec{H}^{1} = -\vec{H}^{2} + \vec{\rho}_{p} X (-m_{2} \vec{a}_{2} + m_{2} \vec{g}) + \vec{M}_{0}$$
 (2.7)

The equation of translational motion will be developed

first, from (2.6). The equation of rotational motion will then be developed from (2.7).

Let $\vec{\omega}$ be the angular velocity of Body 1. Then

$$\vec{a}_2 = \vec{a}_1 + \vec{\omega} \vec{x} \vec{\rho}_p + \vec{\omega} \vec{x} (\vec{\omega} \vec{x} \vec{\rho}_p)$$
 (2.8)

Substitution of (2.8) into (2.6) gives the equation of translational motion

$$(m_1+m_2)\vec{a}_1 + m_2\vec{\omega}\vec{x}\vec{\rho}_p + m_2\vec{\omega}\vec{x}(\vec{\omega}\vec{x}\vec{\rho}_p) =$$

$$(m_1+m_2)\vec{g} + \vec{F}_0. \qquad (2.9)$$

Now specialization is made to the three-degree-of-freedom model, for which

$$\vec{\omega} = r\vec{k} \tag{2.10}$$

$$\vec{g} = g\vec{k}$$
 (2.11)

Recalling that

$$\left(\frac{d}{dt}\right) = \left(\frac{d}{dt}\right)_{rel} + \dot{\omega}_{x}$$
 (2.12)

where "rel" stands for relative to the moving frame, it follows that

$$\vec{a}_1 = (\vec{v}_1)_{\text{rel}} + \vec{\omega} \times \vec{v}_1$$
 (2.13)

where $\vec{v_1}$ is the velocity of the point 0, namely,

$$\vec{v}_1 = u\vec{i} + v\vec{j} \tag{2.14}$$

Using (2.10), (2.11), (2.13) and (2.14), (2.9) gives, in component form,

$$u(m_1+m_2) - ry_p m_2 = (m_1+m_2)vr$$

$$+ m_2 r^2 x_p + F_x$$
(2.15)

$$\dot{v}(m_1+m_2) + \dot{r}x_p m_2 = -(m_1+m_2)ur$$

$$+ m_2 r^2 y_p + F_y$$
 (2.16)

$$0 = (m_1 + m_2)g + F_2$$
 (2.17)

For the model at hand, angular momenta are given by

$$H_n^{\gamma} = I_{n_z}^{\gamma} \omega_z = I_{n_z}^{\gamma} r, \gamma = 1, 2, n = 1, 2, 3$$
 (2.18)

Noting this and the relation (2.12), the component version of (2.7) is, using (2.10) and (2.11)

$$I_{xz}^{S} \dot{r} - I_{yz}^{S} r^{2} = m_{2}(\dot{v}z_{p} + \dot{r}x_{p}z_{p} + urz_{p})$$

 $-r^{2}y_{p}z_{p} + y_{p}g) + M_{x}$ (2.19)

$$I_{xz}^{S}r^{2} + I_{yz}^{S}r = m_{2}(r_{yp}z_{p}-u_{zp}+v_{zp})$$

 $+r^{2}x_{p}z_{p}-x_{p}g) + M_{y}$ (2.20)

$$I_{zz}^{S} = m_{2}(-v_{p}-v_{p}^{2}+v_{p}^{2}+v_{p}^{2}+v_{p}^{2}+v_{p}^{2}$$

$$-v_{p}^{2}+M_{z} \qquad (2.21)$$

where

$$I_{mn}^{S} \equiv I_{mn}^{1} + I_{mn}^{2} \qquad (2.22)$$

The forces and moments acting on the vehicle are tire forces and moments, aerodynamic effects, and gravity (which is already included in the formulation). Then

$$F_{x} = i \sum_{i=1}^{\Sigma} F_{xi} + F_{xaero}$$
 (2.23)

$$F_{y} = i \sum_{i=1}^{2} F_{yi} + F_{yaero}$$
 (2.24)

$$F_{z} = i \sum_{z=1}^{2} F_{zi} + F_{zaero}$$
 (2.25)

$$M_{x} = \sum_{i=1}^{2} (Y_{ti}F_{zi}-z_{ti}F_{yi}+M_{xi}) + M_{xaero}$$
 (2.26)

$$M_{y} = \sum_{i=1}^{\Sigma} (z_{ti} F_{xi} - x_{ti} F_{zi} + M_{yi}) + M_{vaero}$$
 (2.27)

$$M_z = \sum_{i=1}^{\Sigma} (x_{ti} F_{yi} - y_{ti} F_{xi} + M_{zi}) + M_{zaero}$$
 (2.28)

where F_{xi} , F_{yi} , F_{zi} , M_{xi} , M_{yi} , M_{zi} are the tire forces at, and moments about, the tire contact points; F_{xaero} , F_{yaero} , F_{zaero} , M_{xaero} , M_{yaero} , M_{zaero} are the forces at, and moments about, the vehicle c.m. due to aerodynamic effects, and x_{ti} , y_{ti} , z_{ti} are the coordinates of the tire contact points.

The tire is assumed to operate with zero camber angle in the three-degree-of-freedom model, so F_{xi} , F_{yi} , M_{xi} , M_{yi} , M_{zi} are functions only of F_{zi} , tire drive torque, and slip angle. F_{xaero} , ..., M_{zaero} are functions of vehicle velocity. Equations (2.15),(2.16),(2.17),(2.19),(2.20) and (2.21) thus provide six equations in the seven variables $(\dot{u},\dot{v},\dot{r},F_{z1},F_{z2},F_{z3},F_{z4})$.

A seventh equation is obtained by the following argument. Consider a system consisting of a rigid body which pivots on two solid axles, with torsional springs at the pivots, as in Fig. 2.3. Assume that the axles are parallel, and that there is some angular deflection (roll) of the body with respect to the axles. In addition to the moments caused by the springs, let there be torques T_1 and T_2 transmitted between the body and axles which are independent of θ .

A free-body-diagram of the front axle is shown in Fig. 2.4. If the axle is taken to be massless, the equation of rotational motion about the x-axis becomes

$$F_{z1}Y_{t1} + F_{z2}Y_{t2} - F_{y1}h_F - F_{y2}h_F + M_{x1} + M_{x2} - T_1 = -k_1\theta$$
(2.29)

Note that $y_{t2} < 0$.

The analogous equation for the rear axle is

$$F_{z3}Y_{t3} + F_{z4}Y_{t4} - F_{y3}h_R - F_{y4}h_R + M_{x3} + M_{x4} - T_2 = -k_2\theta$$
(2.30)

Define

$$K = k_1 + k_2$$
 (2.31)

$$\lambda_{RS} = k_1/K. \tag{2.32}$$

Then

$$k_1 = \lambda_{RS} K \tag{2.33}$$

$$k_2 = (1 - \lambda_{RS})K \qquad (2.34)$$

Substitution of (2.33) into (2.30) and (2.34) into (2.31) yields

$$(F_{z1}Y_{t1} + F_{z2}Y_{t2} - F_{v1}h_F - F_{v2}h_F + M_{x1} + M_{x2} - T_1)/\lambda_{RS} = -K\theta$$
 (2.35)

$$(F_{z3}Y_{t3}^{+F}_{z4}Y_{t4}^{-F}_{y3}^{h}_{R}^{-F}_{y4}^{h}_{R}^{+M}_{x3}^{+M}_{x4}^{-T}_{2})/(1-\lambda_{RS}) = -\kappa\theta$$
 (2.36) Equating (2.35) and (2.36) yields

$$(1-\lambda_{RS})^{(F_{z1}Y_{t1}+F_{z2}Y_{t2})} - \lambda_{RS}^{(F_{z3}Y_{t3}+F_{z4}Y_{t4})}$$

$$= (1-\lambda_{RS})^{(T_{1}+F_{y1}h_{F}+F_{y2}h_{F}-M_{x1}-M_{xz})}$$

$$- \lambda_{RS}^{(T_{2}+F_{y3}h_{R}+F_{y3}h_{R}+F_{y4}h_{R}-M_{x3}-M_{x4})}$$
(2.37)

Equation (2.37) holds for all values of K. In the limit as K becomes infinitely large, the two-axle/body system will behave as a rigid body in plane motion (i.e. no rolling). Eq. (2.37) can thus be used to remove the indeterminacy in F_7 for the three-degree-of-freedom model.

The steering system will now be addressed. The front tire forces depend in part on the steer angles of the wheels. The steering system is shown schematically in Fig. 2.5. It is assumed to be massless, so that the deflection of the compliant members can be computed statically. The input to the system is the steering-wheel displacement. The linkage geometry can be specified to yield either parallel steer angles or Ackerman steer angles, as shown in Fig. 2.6. In either case, the simplifying assumption is made that the torque acting at the pitman arm is the sum of the kingpin torques.

The steering system is described by the following equations, where $\delta_{\rm SW}$ is the steering-wheel displacement, $\delta_{\rm P}$ is the pitman arm displacement, $\delta_{\rm 1}$ and $\delta_{\rm 2}$ are the front-

wheel steer angles, TQ $_{ST1}$ and TQ $_{ST2}$ are the steering torques about the kingpins, NG is the steering ratio, C $_{ST1}$, C $_{ST2}$, and C $_{ST3}$ are the steering-system compliances as shown in Fig. 2.5, and δ_{TOE1} AND δ_{TOE2} are toe-in angles.

$$\delta_{P} = \left\{ \delta_{SW} + C_{ST3} (TQ_{ST1} + TQ_{ST2}) / NG \right\} / NG$$
 (2.38)

For parallel steer linkage geometry,

$$\delta_1 = \delta_P + C_{ST1}^{TQ}ST1 + \delta_{TOE1}$$
 (2.39)

$$\delta_2 = \delta_P + C_{ST2}^{TQ} + \delta_{TOE2}$$
 (2.40)

For Ackerman steering linkage geometry (assuming a perfectly stiff linkage) the following relations are obtained from geometry, where the wheelbase L and rearaxle center turning radius $R_{\rm p}$ are defined as in Fig. 2.6.

$$\delta_{\rm p} = \tan^{-1}(L/R_{\rm r}) \tag{2.41}$$

$$\delta_1 = \tan^{-1}(L/(R_r - y_{t1}))$$
 (2.42)

$$\delta_2 = \tan^{-1}(L/(R_r - y_{t2}))$$
 (2.43)

(note that $y_{t,2} < 0$).

Substitution of (2.41) into (2.42) and (2.43) and addition of initial toe-in angle and steering compliance

effects yields

$$\delta_1 = \tan^{-1} \left[\operatorname{Ltan} \delta_p / \left(\operatorname{L-y_{tl} tan} \delta_p \right) \right] + C_{ST1}^{TQ} ST1 + \delta_{TOE1}$$
 (2.44)

$$\delta_2 = \tan^{-1} \left[L \tan \delta_p / \left(L - y_{t2} \tan \delta_p \right) \right] + C_{ST2} TQ_{ST2} + \delta_{TOE2}$$
 (2.45)

where δ_p is given by (2.38).

Tire force and moment equations will now be considered. It is assumed that the tires are capable of generating side forces, circumferential forces (along the intersection of the ground plane with the wheel plane), and aligning torques (moments about the z-axis) in addition to the normal forces (perpendicular to the ground plane). The tire forces are calculated using a simplified CALSPAN tire model in which the tire forces and moments depend only on the normal force, slip angle, and drive/brake torque [2.1].

The slip angle at each tire is computed by the following equations.

$$\alpha_{i} = \beta_{i} - \delta_{i} \qquad i=1,2 \qquad (2.46)$$

$$\alpha_{i} = \beta_{i} \qquad i=3,4 \tag{2.47}$$

where

$$\beta_i = \tan^{-1}[(v+x_{ti}r)/(u-y_{ti}r)]$$
 (2.48)

The tire circumferential and side forces and aligning torques are resolved into the vehicle axis system by the following equations, where FC_i , FS_i , and TQ_{ALi} refer to circumferential force, side force, and aligning torque,

$$F_{xi} = -FS_i \sin \delta_i + FC_i \cos \delta_i$$
 i=1,2 (2.49)

$$F_{vi} = FS_i cos \delta_i + FC_i sin \delta_i$$
 i=1,2 (2.50)

$$F_{xi} = FC_i \qquad i=3,4 \tag{2.51}$$

$$F_{vi} = FS_i \qquad i=3,4 \tag{2.52}$$

$$M_{zi} = TQ_{ALi}$$
 i=1,2,3,4 (2.53)

The steering torques $TQ_{\rm STi}$ are computed by the following equation, where $C_{\rm X}$ is the caster offset, as shown in Fig. 2.7.

$$TQ_{STi} = TQ_{ALi} - C_x FS_i \qquad i=1,2$$
 (2.54)

Tire modeling will be addressed now. The force and moment generating capabilities of the tires in the vehicle model in this report are represented by a tire model developed by investigators at the CALSPAN Corporation. The model has evolved over the last 15 years; in its current form it supplies a fairly complete representation of the

non-linear steady-state behavior of the pneumatic automobile tire [2.3, 2.4]. Such a representation is felt to be necessary even with simple vehicle models, if realistic results are to be obtained. It includes the following features:

- (1) non-linear cornering stiffness/normal force relation
- (2) non-linear camber stiffness/normal force relation
- (3) non-linear side force/slip angle relation including side force saturation
- (4) non-linear circumferential force/normal force relation
- (5) side force roll-off as a function of longitudinal slip
- (6) aligning moments and overturning moments as nonlinear functions of normal load, side force, and camber angle.

The CALSPAN tire model is based on a representation of experimentally measured data curves with polynomial expressions. A total of 29 descriptive parameters plus a side force roll-off versus longitudinal slip table are required. The independent variables for the model are slip angle, camber angle, radial deflection, and longitudinal slip. The dependent variables are radial force, side force, circumferential force, aligning moment, and overturning moment

A simplified version of the CALSPAN tire model for use

with the 3-DOF vehicle model will now be described. simplifications arise since no tire deflection is allowed and wheel-spin dynamics are not included. As a result, tire deflection and longitudinal slip cannot be independent variables. Instead, the normal force and drive/brake torque are taken as input variables. Also, the camber angle always zero, so the camber angle dependence is removed. In addition, the overturning moment was felt to be unimportant for this vehicle model, so it was taken to be zero. summary, for this simplified model the independent variables are slip angle, normal force, and drive/brake dependent variables are side torque; the force. circumferential force, and aligning moment. Longitudinal slip is calculated as an intermediate variable so that the standard CALSPAN side force roll-off calculation, which depends on longitudinal slip, can be used.

The simplified CALSPAN tire model can be broken down into the following steps. Details of the calculations are given later.

- (1) The circumferential force necessary to give the existing drive/brake torque is calculated.
- (2) The corresponding longitudinal slip is computed, which requires the calculation of several frictional properties of the tire and road surface.
- (3) The circumferential force computed in (1) is compared with the maximum tire capabilities and

reduced if necessary.

- (4) Rolling resistance effects are added.
- (5) The side force is calculated for the existing slip angle and normal force as if the tire were free-rolling (no longitudinal slip).
- (6) The side force computed in (5) is modified if the longitudinal slip computed in (2) is non-zero.
- (7) The aligning moment is computed based on the normal force and side force.

These steps are carried out by the following sequence of calculations.

The circumferential force for the ith tire is first assumed to have the following form

$$FC_{0i} = TQ_{ti}/RT_{i}$$
 (2.55)

The coefficient of sliding friction in braking (at longitudinal slip \pm 1.0) as a function of normal load is represented by

$$\mu_{Si} = S_{0i} + S_{1i}FN_i + S_{2i}FN_i^2$$
 (2.56)

The peak coefficient of friction for zero slip angle as a function of normal load is represented by

$$\mu_{Pi} = P_{Oi} + P_{1i}FN_i + P_{2i}FN_i^2$$
 (2.57)

The longitudinal slip at which $\mu_{\mbox{\scriptsize Pi}}$ occurs is given by

$$SI_i = -R_{Oi} - R_{1i}FN_i$$
 (2.58)

Note that in the CALSPAN data R_{0i} AND R_{1i} have negative values so that (2.58) gives positive value for SI_i .

An effective coefficient of sliding friction (longitudinal slip = 1) for the existing slip angle and road surface skid number is given by

$$\mu_{1i} = \mu_{Si} \cos(\alpha_i) SN_i \qquad (2.59)$$

An effective peak coefficient of friction for the existing slip angle and road surface skid number is given by

$$\mu_{Mi} = \mu_{Pi} (1-57.3B_{Ci}^{\alpha}_{i})SN_{i}$$
 (2.60a)

provided this expression is greater than μ_{1i} . Otherwise,

$$\mu_{Mi} = \mu_{1i}$$
 (2.60b)

The longitudinal slip corresponding to this level of ${\rm FN}_{\rm i}$ and ${\rm FC}_{\rm Oi}$ is given by

$$S_i = 1.0$$
, for $FC_{Oi} < -\mu_{Mi}FN_i$ (2.61a)

$$s_i = -(FC_{Oi}/FN_i)(SI_i/\mu_{Mi}), \text{ for } FC_{Oi} \leq \mu_{Mi}FN_i$$
 (2.61b)

$$s_i = -1.0$$
, for $FC_{Oi} > \mu_{Mi}FN_i$ (2.61c)

Note that if $|FC_{0i}| \le \mu_{Mi}FN_i$, a value of slip S_i will be obtained such that $-SI_i \le S_i \le SI_i$.

The circumferential force generated by the tire is then given by

$$FC_{Ai} = FC_{Oi}$$
, for $FC_{Oi} \le \mu_{Mi}FN_i$ (2.62a)

$$= \mu_{1i}FN_i$$
, for $FC_{0i} > \mu_{Mi}FN_i$ (2.62b)

Finally, an additional circumferential force, proportional to the normal load, is added opposing the direction of motion to simulate the effects of rolling resistance [2.5]. Thus,

$$FC_{i} = FC_{Ai} - K_{RRi}FN_{i}$$
 (2.63)

where $K_{\mbox{RKi}}$ is the rolling resistance proportionality factor.

Some remarks should be made concerning the possibility of tire spin due to drive torque $(S_i = 1)$, even though maneuvers involving tire spin were not included in this investigation. The limit on circumferential force in this tire model leads to a corresponding limit on the drive

torque which can be utilized, given by

$$TL_{i} = FC_{Ai}RT_{i}$$
 (2.64)

This utilized drive torque would be less than TQ_{ti} in the case of $S_i = -1$. For a two-wheel-drive vehicle with a standard differential in the driven axle the drive torque applied to the wheels on that axle is the same and is limited by the torque which can be utilized by either tire. To accurately simulate post-tire-spin behavior of such a vehicle, TL_i should be taken as the input drive torque to the non-spinning driven wheel, rather than TQ_{ti} . This provision is included in the 3-DOF model.

The side force generated by the tire is computed by first calculating the force which would be generated by a free-rolling tire operating at the same slip angle, then modifying this to account for the longitudinal slip. The side force for a free-rolling tire is calculated by

$$FS_{0i} = -G_{\alpha i} \mu_{y i} FN_{i}$$
 (2.65)

where $\mu_{\mbox{ yi}}$ is the peak lateral friction coefficient for the existing normal load, given by

$$\mu_{yi} = (B_{1i}FN_i + B_{3i} + B_{4i}FN_i^2)SN_i$$
 (2.66)

 $\textbf{G}_{\alpha \boldsymbol{i}}$ is a side force shaping function, given by

$$G_{\alpha i} = 1.0 \text{ for } \overline{\alpha}_i > 3.0$$
 (2.67)

$$= \overline{\alpha}_{i} - 1/3\overline{\alpha}_{i} |\overline{\alpha}_{i}| + (1/27)\overline{\alpha}_{i}^{3}$$
, for $|\overline{\alpha}_{i}| \leq 3.0(2.68)$

$$=$$
 -1.0, for $\overline{\alpha}_{i} < -3.0$ (2.69)

where $\overline{\alpha}_{i}$ is a non-dimensional slip angle defined by

$$\overline{\alpha}_{i} = -\alpha_{i} C_{\alpha i} / (\mu_{y i} FN_{i}) \qquad (2.70)$$

and C $_{\alpha\,\, i}$ is the low-slip angle cornering stiffness, represented by

$$C_{\alpha i} = A_{0i} + A_{1i}FN_i - (A_{1i}/A_{2i})FN_i^2,$$

for
$$FN_i \leq A_{2i}$$
 (2.71)

$$A_{0i}$$
, for $FN_i > A_{2i}$ (2.72)

It may be noted that at low slip angles this free-rolling tire model behaves like a linear tire, reducing to $FS_{Oi} = C_{\alpha i}^{\alpha}$; at extremely high slip angles it saturates and behaves like a sliding tire, reducing to $FS_{Oi} = \mu_{yi} FN_i$.

The effects of longitudinal slip are accounted for by assuming that the side force of a side-slipping longitudinally-slipping tire can be broken down into two components: a "rolling" side force and a "sliding" side

force. A side force roll-off factor f_i is defined where $f_i = 0$ corresponds to a free-rolling tire $(S_i = 0)$, and $f_i = 1$ corresponds to a sliding tire $(S_i = 1.0)$. f_i is given by linear interpolation on S_i in a lookup table.

The final value of the side force is then given by

$$FS_{i} = FS_{0i}(1-f_{i}) + FN_{i}\mu_{Si} \left| sin\alpha_{i} \right| f_{i} sgn(FS_{0i}) SN_{i}$$
 (2.73)

where the first term is the "rolling" component and the second term is the "sliding" component.

The aligning torque is assumed to be a function of both normal load and side force, and is given by

$$TQ_{ALi} = (K_{1i}FN_i + K_{2i} | FS_i |)FS_i$$
 (2.74)

Aerodynamic effects are treated in the standard fashion. They are represented by the following equations, where all forces are taken to act at the center of mass of the vehicle. The longitudinal drag, which affects the drive thrust requirement, is given by (2.75) where \mathbf{C}_{D} is the drag coefficient, \mathbf{A}_{PF} is the projected frontal area, $\mathbf{\rho}_{\mathrm{A}}$ is the density of air, and u is the forward velocity. This assumes the vehicle is moving through still air with constant velocity.

$$F_{\text{xaero}} = C_D^A_{PF} \rho_A u |u|/2$$
 (2.75)

$$F_{yaero} = F_{zaero} = M_{xaero} = M_{yaero} = M_{zaero} = 0(2.76)$$

The terms which are taken to be zero in (2.76) will be retained in the model for completeness.

The drive-brake torque at tire i is given by

$$TQ_{ti} = T_{QD} R_A \lambda_{TQi} - P_{FL} B_{RKi}$$
 (2.77)

where T_{QD} is drive-line torque, R_A is the drive axle ratio, λ_{TQi} are torque distribution parameters, P_{FL} is brake-line pressure, and B_{RKi} are brake torque coefficients.

Chassis-drive axle torque transfer is given by

$$T_{i} = T_{QD} \lambda_{DTi}, i = 1,2$$
 (2.78)

Differential equations for inertial coordinates X, Y, and heading angle ψ are given by

$$\dot{X} = u \cos \psi - v \sin \psi \tag{2.79}$$

$$\dot{Y} = u \sin \psi + v \cos \psi \tag{2.80}$$

$$\dot{\psi} = r \tag{2.81}$$

2.2 Solution Procedure for the Equations for the Three-Degree-of-Freedom Model.

Equations (2.15), (2.16), (2.17), (2.19), (2.20), (2.21) and (2.37) describe a set of coupled non-linear first order differential equations in the variables u, v, and r. To integrate these equations, it is convenient to put them into the form

$$\dot{u} = \dot{u}(u,v,r)$$

$$\dot{v} = \dot{v}(u, v, r)$$

$$\dot{r} = \dot{r}(u, v, r)$$

This cannot be done immediately due to the implicit nature of the tire force relations, the presence of compliance in the steering system, and the fact that the normal forceside force relation is not one-to-one. The desired form is obtained by the following method.

Equations (2.23) through (2.28) are substituted into (2.15), (2.16), (2.17), (2.19) and (2.21). In matrix form, they, plus (2.37), (2.44), and (2.45) can then be written

$$[C] \{a\} = \{b\}$$
 (2.82)

where

$$a_2 = \dot{v}$$

$$a_4 = F_{z1}$$

$$a_5 = F_{z2}$$

$$a_6 = F_{z3}$$

$$a_7 = F_{z4}$$

$$a_8 = \delta_p \tag{2.83}$$

and

$$C_{ij} = 0$$
, except:

$$c_{11} = c_{22} = m_1 + m_2$$

$$c_{13} = c_{61} = -m_2 y_p$$

$$c_{23} = c_{62} = m_2 x_p$$

$$c_{34} = c_{35} = c_{36} = c_{37} = -1$$

$$C_{42} = -m_2 z_p$$

$$C_{43} = I_{xz}^{S} - m_2 x_p z_p$$

$$c_{44} = -y_{t1}$$
 , $c_{45} = -y_{t2}$, $c_{46} = -y_{t3}$, $c_{47} = -y_{t4}$

$$c_{51} = m_2 z_p$$

$$c_{53} = i_{yz}^{S} - m_2 y_p z_p$$

$$c_{54} = x_{t1}$$
 , $c_{55} = x_{t2}$, $c_{56} = x_{t3}$, $c_{57} = x_{t4}$

$$c_{63} = I_{zz}^{S} + m_2(x_p^2 + y_p^2)$$

$$c_{74} = y_{t1}(1-\lambda_{RS})$$

$$c_{75} = y_{t2}(1-\lambda_{RS})$$

$$c_{76} = -y_{t3}\lambda_{RS}$$

$$c_{77} = -y_{t4}^{\lambda}_{RS}$$

$$C_{88} = 1$$
 (2.84)

$$b_1 = (m_1 + m_2)vr + m_2r^2x_p + \sum_{i=1}^{4} F_{xi} + F_{xaero}$$

$$b_2 = (m_1 + m_2)ur + m_2 r^2 y_p + \sum_{i=1}^{4} F_{yi} + F_{yaero}$$

$$b_{3} = (m_{1}+m_{2})g+F_{zaero}$$

$$b_{4} = I_{YZ}^{S}r^{2}+m_{2}(urz_{p}-r^{2}y_{p}z_{p}+y_{p}g)-i=1^{2}z_{ti}F_{yi}+M_{xaero}$$

$$b_{5} = -I_{XZ}^{S}r^{2}+m_{2}(vrz_{p}+r^{2}x_{p}z_{p}-x_{p}g)+i=1^{2}z_{ti}F_{xi}+M_{yaero}$$

$$b_{6} = m_{2}(urx_{p}-vry_{p})+i=1^{2}[(x_{ti}F_{yi}-y_{ti}F_{xi})+M_{zi}]+M_{zaero}$$

$$b_{7} = (1-\lambda_{RS})T_{1}-\lambda_{RS}T_{2}$$

$$b_8 = \{\delta_{SW} + C_{ST3} (TQ_{ST1} + TQ_{ST2})/NG\} /NG$$
 (2.85)

{b} is a function of u, v, r, F_{xi} , F_{yi} , M_{zi} , and TQ_{STi} (F_{aero} , M_{aero} , are functions of u, v, r). F_{xi} , F_{yi} , M_{zi} and TQ_{STi} depend on F_{zi} , which are elements of {a}. It is thus necessary to solve (2.82) simultaneously with the following non-linear equation

$$\{b\} = \{b\}(u,v,r,\{a\})$$
 (2.86)

The solution to (2.82) and (2.86) is obtained iteratively. At a given time, u, v, and r are known. An estimate of F_{zi} is made from a previous time step. (The first estimate is made using the static weight distribution.) An initial $\{b_0\}$ can be computed, and the following algorithm applied.

$$\{a_{j}\} = [c]^{-1}\{b_{j}\}$$
 (2.87)

$$\{b_{j+1}\} = \{b\}(u,v,r,\{a_{j}\})$$
 (2.88)

This process is continued until

$$|a_{i,j}^{-a_{i,j-1}}| < \varepsilon_{i}$$
 i=1,...8 (2.89)

where $\epsilon_{\bf i}$ are assigned convergence parameters whose magnitudes are related to the expected magnitudes of a,.

2.3 Fortran Computer Program for the Three-Degree-of-Freedom Model

The differential equations presented in 2.1 were integrated by a fourth-order predictor-corrector method. A pre-programmed code, the HPCG subroutine in the IBM SSP package [2.6] was used to implement the scheme. The source code for HPCG is not given in the following program listing since it is widely available.

The 3-DOF model, as programmed, requires a set of "driver" subroutines, named DRINPT, DRINIT, DRIOUT, and DRIVER. This was done to interface this model with the driver module described in Reference [2.7] and Chapter 4. The call statements for these subroutines may be removed if alternate provisions are made for supplying values of

DELSW, TQD, and PFL in subroutine FCT.

A Fortran listing of the program is given on the following pages, followed by a list of program variables and a typical data set.

```
MAIN SUBPOUTINE TRANS35
                   MAIN PROGRAM FOR THE 3DDF MODEL. MAIN READS VEHICLE AND TIRE DATA AND CONTROLS THE ITERATIVE SOLUTION OF THE STEADY-STATE
              C
              C.
               EQUATIONS
                   THIS VERSION OF MAIN REQUIRES SUBROUTINES F35, TIRES, MINV,
                   HPCG. FCT. OUTL. (OUT2 INCLUDED FOR EXTENDED DUTPUT)
                   DEVELOPED BY DOUGLAS L. WILSON, 8/30/81
0001
                     LOGICAL*1 VEHCON(6), TIRCON(6), ICSET(6)
0002
                     REAL K1,K2, KD
                     REAL*8 T.DT.T1.DTPRNT
0003
0004
                     DIMENSION C(7,7), PRMT(5), Y(6), DERY(6), AUX(16,6), JUNK1(7), JUNK2(7)
0005
                     EXTERNAL FCT, OUT1
0006
                    COMMON /T3DATA/ FRD(4,10,2), AO(4), A1(4), A2(4), B1(4), B3(4), B4(4), RT(4), P0(4), P1(4), P2(4), S0(4), S1(4), S2(4),
                    2 PO(4), R1(4), K1(4), K2(4), BC(4), SN(4), FRR(4)
2007
                     COMMON /V3D/ CI(7,7), ALAMT(4), EC(5), XT(4), YT(4), DTDE(2), TAXL(2),
                    1 AXLR, VC,G, ALAMRS, VM, VIZZ, VIYZ, VIZX, XPL, YPL, ZPL, PLM, PLIZZ, PLIYZ,
                    2 PLIZX, CST 1, CST 2, CST 3, SR, XC(2), BRK(4), HF, HR, C), PFA, RHOA, I ACKER
0008
                     COMMON /FOUT/ FN(4), ALPHAT(4), TOT(4), FS(4), FC(4), S(4), DELT(2),
                    1 TOST (2)
2009
                     COMMON /OUT PT/ DS WOUT, TO DOUT, PFLOUT
0010
                     COMMON /PRNT/ DTPRNT, TI
                     COMMON /VPR/ DSWMAX,TQDMAX,PFLMAX,KD,DSWO,TQDO,PFLO
0011
0012
                     COMMON /FINFO/ IFIRST
              C
                   READ VEHICLE AND TIRE DATA
              C
0013
                     READ (5,105) VEHCON
0014
                     READ (5,101) (XT(1), YT(1), 1=1,4)
2215
                     READ (5,101) DTDE(1), DTDE(2)
                     READ (5,101) ALAMT(1), ALAMT(2)
0016
0017
                     READ (5,101) ALAMT(3), ALAMT(4)
                     READ (5,101) TAXL(1), TAXL(2)
0018
                    READ (5,100) VC, VIZZ, VIYZ, VIZX, VM, AXLR, ALAMRS, G
READ (5,100) XPL, YPL, ZPL, PLM, PLIZZ, PLIYZ, P_IZX
0019
0020
                     READ (5,100) CST1, CST2, CST3, SR, HF, HR
0021
0022
                     READ (5,101) XC(1), XC(2)
0023
                     READ (5,101) BRK(1), BRK(2)
0024
                     READ (5,101) BRK(3), BRK(4)
                     READ (5,100) CD, PFA, RHDA
0025
                     READ (5.99) IACKER
0026
0027
                     RFAD (5,100) DSWMAX, TQDMAX, PFLMAX, KD
0028
                     READ (5,105) TIRCON
002.9
                     READ (5,102) (RT(I), I=1,4)
                    RFAD (5,102) (A)(I), I=1,4)
READ (5,102) (A)(I), I=1,4)
0030
0031
0032
                     READ (5,102) (A2(I), I=1,4)
                     READ (5,102) (B1(I), I=1,4)
READ (5,102) (B3(I), I=1,4)
0033
0034
                     READ (5,102) (84(11, .I=1,4)
0035
0036
                     READ (5,102) (PO(I), I=1,4)
                     READ (5,102) (P1(I), I=1,4)
0937
                     READ (5,102) (P?(I), I=1,4)
0038
0039
                     READ (5,102) (SO(1), I=1,4)
                     READ (5,102) (S1(1), I=1,4)
22 42
```

```
0941
                     READ (5,102) (S2(I), I=1,4)
                     READ (5,102) (RO(1), I=1,4)
READ (5,102) (R1(1), I=1,4)
READ (5,102) (K1(1),I=1,4)
0042
0043
0044
0045
                     READ (5,102) ((2(1), 1=1,4)
                     READ (5,102) (BC(I), I=1,4)
READ (5,102) (SN(I), I=1,4)
0046
0047
0048
                     READ (5,102) (FRR(I), I=1,4)
                     READ (5,104) ((FRO(I,J,1),FRO(I,J,2), I=1,4),J=1,10)
0049
              C
0250
                     READ (4,105) ICSET
                     READ (4,100) X0, Y0, PSIO, U0, V0, PSIDO, DSWO, TQD), PFLO, DT, DTPRNT READ (4,100) TMAX
0051
0052
0053
                     READ (4,103) (EC(I), I=1,5)
                     WRITE (1,199) VEHCON, TIRCON, ICSET
                199 FORMAT ('IVEHICLE CONFIGURATION: ', 641/' TIRE CONFIGURATION: ',641/
0054
                    ** INITIAL CONDITIONS SET: 1,641/
                    *' T', 11X, 'DEL SW', 7X, 'X', 11X, 'Y', 11X, 'PSI', 9X, 'V', 11X,
                    * 'P' ,11X,' AY')
                99 FORMAT (16)
100 FORMAT (F12.5)
0055
0056
                101 FORMAT (2F12.5)
0057
                102 FOR MAT (4E16.6)
1)3 FOR MAT (5F12.5)
0058
0059
                104 FORMAT (8F12 5)
0060
                105 FORMAT (6A1)
0061
              C SET UP THE COEFFICIENT MATRIX
0062
                     00 10 I=1.7
0063
                     DC 10 J=1,7
0064
                 10 C(I,J) = 0.0
              C
                     C(1.1) = VM + PLM
0065
                     C(1,3) = -YPL*PLM
0056
                     C(2,?) = C(1,1)
0067
                     C(2,3) = XPL*PLM
0068
              C
9860
                     C(3.4) = 1.0
                     C(3,5) = 1.0
0070
                     C(3,6) = 1.0
0071
0072
                     C(3.7) = 1.0
              C
                     C(4,2) = -ZFL*P(M
0073
0074
                     C(4,3) = -PLM*XPL*ZPL + VIZX +
                     C(4,4) = -YT(1)
0075
                     C(4.5) = -YT(2)
0076
                     C(4,6) = -YT(3)
0077
                     C(4,7) = -YT(4)
0078
              C
                     C(5,1) = ZPL*PLM
0079
2080
                     C(5,3) = VIYZ + PLIYZ - YPL*ZPL*PL*
0081
                     C(5,4) = XT(1)
0082
                     C(5,5) = XT(2)
0083
                     C(5,6) = XT(3)
                     C(5,7) = XT(4)
0084
```

```
C
                   C(6,1) = C(1,3)
0085
0086
                   C(6,2) = C(2,3)
0087
                   C(5,3) = (PLM*(XPL**2 + YPL**2) + PLIZZ + VIZZ)
            C
                   C(7,4) = YT(1)*(1.0 - ALAMRS)

C(7,5) = YT(2)*(1.0 - ALAMRS)
0088
0089
                   C(7,6) = -YT(3) *ALAMRS
0090
                   C(7,7) = -YT(4)*ALAMRS
0091
             S CALCULATE THE INVERSE
0092
                   DO 20 I=1.7
0093
                   DO 20 J=1,7
0094
                20 \text{ CI(I,J)} = \text{C(I,J)}
             C
0095
                   CALL MINV(CI,7,D,J)NK1,JJNK2)
0096
                   IF (ABS(D) .LT. 0.001) GO TO 70
                   TI = -DTPRNT
0097
0098
                   IFIRST = 1
0099
                   PRYT(1) = 0.0
0100
                   PRMT(2) = TMAX
                   PRYT(3) = DT
0101
0102
                   PRMT(4) = 0.1
             C
0103
                   Y(1) = X0
                   Y(2) = Y0
0174
                   Y(3) = PSIO
0105
                   Y(4) = U0
0106
0107
                   Y(5) = V0
0108
                   Y(6) = PSIDO
                   DERY(1) = 0.16666
0109
0110
                   DERY(2) = 0.16565
0111
                   DERY(3) = 0.16667
                   DERY(4) = 0.16667
0112
                   DERY(5) = 0.16667
0113
0114
                   9ERY(6) = 0.16667
             C
                   CALL DRINPT
0115
0116
                   CALL DRINIT
2117
                   CALL DRIOUT(1)
                   CALL HPCG (PRMT, Y, DERY, 6, IHLF, FCT, OUT1, AUX)
0118
             С
0119
                   IF (IHLF .LT. 11) GO TO 30
                 ERROR RETURN FROM HPCS
                   WRITE (6.151) IHLF
0120
               151 FORMAT ('OERROR RETURN FROM HPCG; IHLF =', 13)
0121
01.22
                   STOP
                30 IF (PRMT(5) .NE. 0.0) GO TO 40
0123
             Ç
                 TMAX HAS BEEN EXCEEDED
0124
                   WRITE (6.152)
               152 FORMAT ("OTMAX HAS BEEN EXCEEDED")
0125
1126
                   STOP
             ŗ
                 VEHICLE HAS STOPPED
             C
```

```
C
                   SUBROUTINE OUTL CHECKS THE VEHICLE STOPPING CRITERION
              C
                    AND WRITES DUT INTERMEDIATE VALUES.
              C
                      SUBROUTINE OUT1 (T,Y,DY,IHLF,NEQ,PRMT)
0001
0002
                      REAL*8 DTPRNT,T1
                      DIMENSION PRAT (5), Y(6), DY(6)
0003
                      COMMON /OUTPT/ DSWOUT, TODOUT, PFLOUT
0004
0005
                      COMMON /PRNT/ DTPRNT,T1
              C
0006
                      IF (((Y(4)**2 + Y(5)**2) .GT. 0.1) .DR. (TOD .NE. ).01) GD TO 10
                      PRMT(5) = 1.0
0007
0008
                      RETURN
                   PRINT OUT INTERMEDIATE VALUES AT INTERVALS DIPRNT
0009
                  10 IF (T-T1+0.0001 .LT. DTPRNT) GO TO 20
0010
                      T1 = T
                      VEL = SQRT(Y(3)**2 + Y(4)**2)
AY = DY(5) + Y(4)*Y(6)
0011
0012
                      WRITE(1,201) T,DSWDUT,Y(1),Y(2),Y(3),VEL,TQDDUT,Y(4),Y(5),Y(6),
                    1 AY, PFLOUT, DY(4), DY(5), DY(6)
                 201 FORMAT( 'OT =' ,F12.4,5X, 'DELSW=',F12.4,5X, 'X
0013
                                                                                 =',F12.4,5X,
                    *'Y =',F12.4,5X,'PSI =',F12.4,5X,'VEL =',F12.4/
*21X,'TQD =',F12.4,5X,'U =',F12.4,5X,'V =',F12.4/
*'R =',F12.4,5X,'AY =',F12.4/
                                                                               =' ,F12 .4,5X,
                    *21X, 'PFL = ', F12.4, 5X, 'UDOT = ', F12.4, 5X, 'VDOT = ', F12.4, 5X,
                     ***DOT = *, F12.4)
                     WRITE (2,202) T.DSWOJT. (11). Y(2), Y(3), Y(5), Y(6), AY, Y(4)
0014
0015
                 202 FORMAT(9F12.5)
                  20 RETURN
0016
0017
                      FND
 *OPTIONS IN EFFECT* ID, EBCDIC, SOURCE, NOLIST, NODECK, LDAD, NOMAP
*OPTIONS IN EFFECT* NAME = QUT1 . LINECNT = 57
*STATISTICS* SOURCE STATEMENTS = 17, PROGRAM SIZE =
                                                                                  936
 *STATISTICS* NO DIAGNOSTICS GENERATED
```

```
SUBROUTINE OUT 2 PRINTS OUT TIRE FORCES AND SLIPS
                      DUT2 IS NOT CALLED IN THIS VERSION OF MAIN PROGRAM®
0001
                          SUBROUTINE OUT2
0002
                          COMMON / FOUT/ FN(4), ALPHAT (4), TQT(4), FS(4), FS(4), S(4), DELT(2),
                        1 TOST(2)
                     20 WRITE (1,205)
WRITE (1,206) (I,FN(I),I,FS(I),I,FC(I),I=1,4)
                 C
                          WRITE (1,207)
                          WRITE (1,208) (1,5(1),1,4LPHAT(1),1=1,4)
WRITE (1,209) DELT(1),TQST(1),DELT(2),TQST(2)
                    205 FORMAT ('ONORMAL FORCES AT TIRES', 8x, 'SIDE FORCES AT TIRES', 10x,
0003
                        * CIRCUMFERENTIAL FORCES AT TIRES !)
0004
                    206 FORMAT (' FN(',II,') =',F12.5,11X,'FS(',II,') =',F12.5,11X,
                        *'FC(', I1, ') = ', F12.5)
                    207 FORMAT ("OSLIPS AT TIRES", 16X, "SLIP ANGLES AT TIRES")
208 FORMAT ("S(",11,") = ", F12.5, 12X, "ALPHAT(",11,") = ", F12.5)
209 FORMAT("OFRENT TIRE STEFR ANGLES: DELT(1) = ", F12.5, 8X,
0005
0006
0007
                        * 'KINGPIN STEERING TORQUES: TOST(1) = ', F12.5/27X, 
* 'DELT(2) = ', F12.5, 35X, 'TOST(2) = ', F12.5)
0008
                          RETURN
0009
                          END
 *OPTIONS IN EFFECT* ID.EBCDIC.SOURCE, NOLIST, NODECK, LOAD, NOMAP
*OPTIONS IN EFFECT* NAME = OUT2 , LINECNT = 57
*STATISTICS* SOURCE STATE MENTS = 9, PROGRAM SIZE =
                                                                                                 590
 *STATISTICS* NO DIAGNOSTICS GENERATED
```

```
C
                    SUBROUTINE FCT SERVES AS AN INTERFACE BETWEEN HPCG AND F35
0001
                      SUBPOUT INE FCT (T,Y,DY)
                      DIMENSION Y(6) DY(6)
COMMON /FINFO/ IFIRST
0002
0003
                      COMMON /FOUT/ FN(4), ALPHAT(4), TQT(4), FS(4), FS(4), S(4), DELT(2).
0904
                     1 TQST(2)
                      COMMON /OUTPT/ DSWDUT, TODOUT, PFLOUT
0005
              C
0006
                      DEL1 = DELT(1)
                      DEL2 = DELT(2)
0007
                      CALL DRIVER(DELSW,PFL,TOD,D3,D4,DY,T,Y,DEL1,DEL2)
0008
                      CALL F35(DELSW, TOD, PFL, Y(4), Y(5), Y(6), DY(4), DY(5), DY(6), IFIRST, T)
0009
                      DY(1) = Y(4)*COS(Y(3)) - Y(5)*SIN(Y(3))
0010
                      DY(2) = Y(4)*SIN(Y(3)) + Y(5)*COS(Y(3))

DY(3) = Y(6)
0011
0012
                      DSWOUT = DELSW
0013
                      TODOUT = TOD
PFLOUT = PFL
0014
0015
0016
                      RETURN
                      END
0017
*OPTIONS IN EFFECT* ID.EBCDIC.; OJRCE. NOLIST. NODEC(._) AD. N) 40

*OPTIONS IN EFFECT* NAME = FCT , LINECNT = 57

*STATISTICS* SOURCE STATEMENTS = 17, PROGRAM SIZE =
 *STATISTICS*
                                                                                    766
 *STATISTICS* NO DIAGNOSTICS GENERATED
```

```
SURROUTINE F35 COMPUTES THE TIME DERIVATIVES FOR A SIMPLE 3-DOF
                 VEHICLE MODEL. THE ONLY FORCES ACTING ON THE VEHICLE ARE TIRE
                 FORCES, GRAVITY, AND AIR RESISTANCE
                 F35 REQUIRES SUBROUTINF TIRE3
DEVELOPED BY DOUGLAS L. WILSON 8/30/81
SUBROUTINE F35(DELSW.TQD, PFL.U.V.R.UDOT, VDOT, RDOT, IFIRST, T)
0001
0202
                   DIMENSION B(7), RO(7), FX(4), FY(4), FZ(4), THETAT(4),
                  *TOAL(4), UT(4), VT(4), TL(4)
                   COMMON /V3D/ CI(7,7),ALAMT(4),FC(5),XT(4),YT(4),DTOE(2),TAXL(2),
0003
                  1 AXLR, VC, G, ALAMRS, VM, VIZZ, VIYZ, VI ZX, XPL, YPL, ZPL, PLM, PLIZZ, PLIYZ,
                  2 PLIZX, CST1, CST2, CST3, SR, XC(2), BRK(4), HF, HR, CD, PFA, RHOA, IACKER
                   COMMON /FOUT/ FN(4), ALPHAT(4), TQT(4), FS(4), FC(4), S(4), DELT(2),
0004
                  1 TQST(2)
             C
                 INITIALIZE FZ AND TOST DN FIRST CALL OF F35
                   IF (IFIRST .NE. 1) GO TO 10
0005
                    FZ(1) = (VM + XT(3) + PLM + (XT(3) - XPL))/(XT(1) - XT(3)) + G/2.0
0006
                   FZ(2) = FZ(1)
0007
                   FZ(3) = -(VM*XT(1) + PLM*(XT(1)-XPL))/(XT(1)-XT(3))*G/2.)
0008
0009
                   FZ(4) = FZ(3)
                    TQST(1) = 0.0
0010
                   TOST(2) = 0.0
0011
0012
                   IFIRST = 0
                 COMPUTE THE PART OF B WHICH IS INDEPENDENT OF TIRE FORCES
                10 BO(1) = (VM+PLM)*V*R + PLM*XPL*R**2 - CD*PFA*RHOA*0.5*U*ABS(U)
0013
0014
                    BO(2) = -(VM + PLM)*U*R + PLM*YPL*R**2
0015
                   BO(3) = -(VM + PLM)*G
                   BO(4) = (VIYZ + PLIYZ)*R**2 + PLM*(U*R*ZPL - YPL*ZPL*R**2)
0016
                            + PL4*YPL*3
                   B)(5) = -(VIZX + PLIZX)*R**2 + PLM*(V*R*ZPL + XPL*ZPL*R**2)
001.7
                            -PLM+ XPL+G
                   BO(6) = PLM + R + (XPL + U - YPL + V)
0018
                   BO(7) = (1.0 - ALAMRS)*TAXL(1)*TOD - ALAMRS*TAXL(2)*TQD
0019
                 COMPUTE TIRE PATCH VELOCITIES
             C
00 20
                   PI02 = 1.57079633
                   DO 20 I=1.4
0021
                     UT(I) = U - YT(I)*R
0222
                      VT(I) = V + XT(I)*R
0023
                     IF (ABS(UT(I)) .LT. 0.001) GO TO 15
THE TAT(I) = ATAN(VT(I)/UT(I))
0024
0025
0926
                      GD TO 20
0027
                      THETAT(I) = PIO2
                     IF (VT(I) .LT. 0.0) THETAT(I) = -PIO2
2028
                   IF (ABS(VT(I)) .LT. 3.001) THETAT(I) = 0.0
0029
0030
                20 CONTINUE
             C
                 COMPUTE DRIVE TORQUE DISTRIBUTION
             C
0931
                   DD 30 I=1,4
                   TOT (I) = TOD+ALAMT(I)+AXLR
0032
                3) TQT(I) = TQT(I) - BRK(I)*PFL
0033
                 ITERATE TO FIND SOLUTION TO AX=B
             C
```

```
0034
                    K = 0
0035
                40 K=K+1
             C
             C
                  SAVE THE OLD VALUES OF UDOT, VDCT, RDOT, FZ(1), DELT(1)
             C
0036
                    UDDTO = UDCT
2037
                    YOUA = OTOM
0038
                    ROOTO = ROOT
                    FZ10 = FZ(1)
2039
0040
                    FZ20 = FZ(2)
                    FZ30 = FZ(3)
2041
                    FZ40 = FZ(4)
0042
0043
                    DELTIO = DELT(1)
                    DELT20 = DELT(2)
0044
             C
                  COMPUTE TIRE FORCES
             C
2245
                    DO 50 I=1.4
                 50 P(I) = -FZ(I)
0046
             C
                  CHECK FOR TIRE LIFTOFF
                    DO 60 I=1,4
IF (FN(I) .GE. 0.001) GO TO 60
0047
0948
0049
                    WRITE (6,202) (J,FN(J),J=1,4)
0050
                    STOP
                60 CONTINUE
0051
             C
             C
                  COMPUTE STEER ING ANGLES
                    DELTO = DEL SW/SR + CST3*(TQST(1) + TQST(2))/SR**2
2252
                  CHECK FOR STEERING TYPE
             C
0053
                    IF (IACKER .EQ. 1) GO TO 70
                  COMPUTE WAGON-TYPE STEERING ANGLES
                    DELT(1) = DELTP + CST1*TQST(1)
DELT(2) = DELTP + CST2*TOST(2)
0054
0055
2056
                    SO TO 75
             C
                  COMPUTE ACKERMAN STEER ANGLES
0057
                 70 XL = XT(1) - XT(3)
                    TP = TAN(DELTP)
005.8
                    DELT(1) = DTOE(1)+AT AN(X L*T P/ (XL-TP#YT(1)))+CST1*TQST(1)
0059
0050
                    DELT(2) = DTOE(2)+4TAV(XL +TP/(XL-TP#YT(2)))+:ST2+TQST(2)
             C
                  COMPUTE TIRE SLIP ANGLES
0061
                75 00 80 I=1,2
0052
                      ALPHAT(I) = THETAT(I) - DELT(I)
                      ALPHAT(I+2) = THETAT(I+2)
0063
             C
             C
                  COMPUTE TIRE FORCES
             C
                    DO 85 I=1.4
0064
0065
                    CALL TIRE3(FN, ALPHAT, TQT, FS, FC, TQAL, S, TL, I)
                  CHECK FOR TIRE SPIN
             C
                    IF (S(I) .GT. -0.999) GO TO 85
IF (I .EQ. 1) IOTHER = 2
IF (I .EQ. 2) IOTHER = 1
0066
0067
0068
                    IF (I . EQ. 3) IOTHER = 4
0069
```

```
0070
                     IF (I \bullet EQ\bullet 4) IOTHER = 3
0071
                     TQT(IOTHER) = TL(I)
                    IF (IOTHER .EQ. 1 .OR. IOTHER .EQ. 3)

* CALL TIRE3(FN,ALPHAT,TAT,FS,FC,TQAL,S,TL,IOTHER)
0072
0073
                 95 CONTINUE
              C
                   RESOLVE TIRE FORCES ALONG VEHICLE AXES
              C
0074
                     FX(1) = -FS(1)*SIN(DELT(1)) + FC(1)*COS(DELT(1))
                     FY(1) = FS(1)*C3S(DELT(1)) + FC(1)*SIN(DELT(1))
0075
                     FX(2) = -FS(2)*SIN(DELT(2)) + FC(2)*CDS(DELT(2))

FY(2) = FS(2)*COS(DELT(2)) + FC(2)*SIN(DELT(2))
0076
2077
0078
                     FX(3) = FC(3)
                     FY(3) = FS(3)
0079
0080
                     FX(4) = FC(4)
0081
                     FY(4) = FS(4)
                     TQST(1) = TQAL(1) - XC(1)*FS(1)
0082
0083
                     TQST(2) = TQAL(2) - XC(2)*FS(2)
              C
                   COMPUTE THE TIRE-FORCE DEPENDENT PART OF B
                     B(1) = BO(1) + FX(1) + FX(2) + FX(3) + FX(4)
0084
                     B(2) = BO(2) + FY(1) + FY(2) + FY(3) + FY(4)
0085
0086
                     8(6) = 80(6) - FX(1)*YT(1)-FX(2)*YT(2)-FX(3)*YT(3)-FX(4)*YT(4)
                                    + FY(1)*XT(1)+FY(2)*XT(2)+FY(3)*XT(3)+FY(4)*XT(4)
                    1
                                   + TQAL(1)+TQAL(2)+TQAL(3)+TQAL(4)
                    2
0087
                     B(3) = B0(3)
0088
                     B(4) = BO(4) - VC*(FY(1)+FY(2)+FY(3)+FY(4))
                     B(5) = BO(5) + VC*(FX(1)+FX(2)+FX(3)+FX(4))
0089
                     8(7) = 80(7)+(1.0-ALAMRS)*HF*(FY(1)+FY(2))-ALAMRS*+R*(FY(3)+FY(4))
2090
              ŗ
                   COMPUTE NEW VALUES FOR UDOT, VOOT, ROOT, FZ(I)
2091
                     UDOT = 7.0
2092
                     V03T = 0.0
                     RDOT = 7.0
2093
0094
                     FZ(1) = 0.0
0095
                     F7(2) = 0.0
0396
                     FZ(3) = 0.0
0097
                     FZ(4) = 0.0
009 A
                     90 \ J = 1.7
                     UDOT = UDOT + CI(1,J)*8(J)
0099
                     VDOT = VDOT + CI(2,J)*B(J)
0100
                     RDOT = RDOT + CI(3,J)*B(J)

FZ(1) = FZ(1) + CI(4,J)*B(J)
0101
0102
                     FZ(2) = FZ(2) + CI(5,J)*B(J)
0103
0104
                     FZ(3) = FZ(3) + CI(6,J)*B(J)
0105
                 90 \text{ } \text{FZ}(4) = \text{FZ}(4) + \text{CI}(7,J) * \text{B}(J)
                   CHECK FOR CONVERGENCE
                     IF((UDOT-UDOTO)**? .LE. EC(1) .AND. (VDOT-VD)TO)**2 .LE. EC(2)
0106
                    1 .AND. (RDOT-ROOTO)**2 .LE. EC(3) .AND. (F7(1)-F710)**2 .LE. EC(4)
2 .AND. (F7(2)-F720)**2 .LE. EC(4) .AND. (F7(3)-F730)**2 .LE. EC(4)
```

```
3 .AND. (FZ(4)-FZ40)**2 .LE. EC(4) .4ND. (DELT(1)-DELT10)**2 .LT. 4 EC(5) .AND. (DELT(2)-DELT20)**2 .LT. EC(5)) RETURN
                      CHECK WHETHER ITERATION LIMIT HAS BEEN EXCEEDED
                         IF (K .LT. 20) GD TD 40 WRITE (6,201) T
0107
2108
                   201 FORMAT ( OND CONVERGENCE AFTER 20 ITERATIONS IN SUBROUTINE F32 .
0109
                       * ' AT T=',F12.5)
0110
                   202 FORMAT ('ONEGATIVE NORMAL TIRE FORCE--TIRE LIFTOFF'/
                                   ( FY( ', [ ], ') = ', F12.5))
                C
                         RETURN
0111
 #OPTIONS IN EFFECT* ID, EBCDIC, SOURCE, NOLIST, NCDECK, LO AD, NOMAP

*OPTIONS IN EFFECT* NAME = F35 , LINECNT = 57

*STATISTICS* SOURCE STATEMENTS = 112, PROGRAM SIZE =
0112
                                                                                           4088
 *STATISTICS* NO DIAGNOSTICS GENERATED
```

```
SUBPOUTINE TIRES COMPUTES TIRE SIDE FORCE USING THE CALSPAN MODEL.
                  CIRCUMFERENTIAL FORCES ARE COMPUTED BY FC=TQT/RT.
                  THIS MODEL INCLUDES SIDE-FORCE FRICTION ROLL-OFF AS A FUNCTION
                  OF SLIP. WHICH IS COMPUTED FROM THE CIRCUMFERENTIAL FORCE.
                  DEVELOPED BY DOUGLAS L. WILSON, 8/30/81
0001
                     SUBROUTINE TIRES(FY, ALPHAT, TOT, FS, FC, TOAL, S, TL, I)
0005
                     REAL K1,K2
                     DIMENSION FN(4), ALPHAT(4), TOT(4), FS(4), FC(4), TQAL(4), S(4), TL(4)
0003
                   CDMMON /T3DATA/ FRO (4,10,2), AO(4), A1(4), $2(4), B1(4), B3(4), B4(4), RT(4), P0(4), P1(4), P2(4), SO(4), S1(4), S2(4), R1(4), K1(4), K2(4), BC(4), SN(4), FRR(4)
0004
0005
                     FMAX = (81(I)*FN(I) + 83(I) + 84(I)*FN(I)**2)*FN(I)*SN(I)
                     CALPHA = AD(1) + Al(1)*FN(1) - Al(1)*FN(1)**2/42(1)
3006
                     IF (FN(I) .GT. A2(I)) CALPHA = A0(I)
ALFBAR = -CALPHA * ALPHAT(I) / FMAX
0007
0008
                     DALF = ABS (ALFBAR)
0009
0010
                     G = 1.0
0011
                     IF (ALFBAR .LT. 0.0) G = -G
                   IF (DALF .LT. 3.)) G = ALFBAR - ALFBAR * DALF / 3.0
1+ ALFBAR**3 / 27.0
2012
0013
                     FS(I) = G * FMAX
0014
                     FC(I) = TQT(I)/PT(I)
                    UP = PO(I) + PI(I)*FN(I) + P2(I)*FN(I)**2
001 5
                    US = SO(I) + SI(I)*FN(I) + S2(I)*FN(I)**2
0016
0017
                     SI = -RO(I) - RI(I)*FN(I)
                    U1 = US*ABS(COS(ALPHAT(I)))/SN(I)
0018
                XM1 IS THE SLOPE AT LOW SLIP NUMBERS
0019
                     XM1 = UP*(1.0-57.3*BC(I)*ABS(ALPHAT(I)))*SN(I)/SI
                     IF (X M1 .GE. U1/SI) GD TD 20
0020
                     XM1 = U1/SI
0021
                S IS THE SLIP NUMBER
0022
                 20 \text{ S(I)} = -(\text{FC(I)/FN(I)})/\text{XMI}
                     IF (S(I) \cdot GT \cdot SI) \cdot S(I) = 1.0
0023
                     IF (S(1) \cdot LT \cdot -SI) S(1) = -1.0
0024
                     IF (ABS(S(I)) .LE. 3.999) GO TO 30
0025
                     FC(I) = U1*FN(I)
0026
                     IF (S(I) \cdot GT \cdot 0 \cdot 0) FC(I) = -FC(I)
0027
0028
                     IF (S(I) \cdot LE \cdot -0.999) TL(I) = FC(I)*RT(I)
                  ADD ROLLING RESISTANCE FORCES
                 30 FC(1) = FC(1) - FRR(1)*FN(1)
วว 29
                  COMPUTE SIDE-FORCE FRICTION ROLL-OFF-
                    DO 40 J=1.9
0030
                    IF (ABS(S(I)) .LE. FRO(I, J+1,11) GO TO 50
0031
                 40 CONTINUE
0032
                     F = 1.0
0033
                    SD TD 60
0034
0035
                 50 F = FRO(I,J,2) + (ABS(S(I)) - FRO(I,J,1))
                   1 *(FRO(I,J+1,2) - FRO(I,J,21)/(FRO(I,J+1,1)-FRO(I,J,1))
0036
                    IF (FS(I) .LT. 0.0) L = -1
0037
0038
                 70 FS(I) = FS(I)*(I*O-F) + FN(I)*US*ABS(SIN(ALPHAT(I)))
                               *F*L *SN( 1)
0039
                 80 TOAL(I) = (K1(I)*FN(I) + K2(I)*ABS(FS(I)))*FS(I)
```

0040 RETURN

0041 END

OPTIONS IN EFFECT ID, EBCDIC, SOURCE, NOLIST, NCDECK, LO AD, NOMAP

OPTIONS IN EFFECT NAME = TIRE3 , LINECNT = 57

STATISTICS SOURCE STATEMENTS = 41, PROGRAM SIZE = 2056

STATISTICS NO DIA GNOSTICS GENERATEO

NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS.

FTN

06-24-75

THE UNIV DF MICH COMP CTR

C NAASA 2.1.020 MINV

C C C SUBROUTINE MINV C PJRPCSF CC INVERT A MATRIX C US AGE C CALL MINV(A,N,D,L,M) C DESCRIPTION OF PARAMETERS C A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY RESULTANT INVERSE. 000000 N - ORDER OF MATRIX A D - RESULTANT DETERMINANT L - WORK VECTOR OF LENGTH N M - WORK VECTOR OF LENGTH N C REMARKS MATRIX A MUST BE A GENERAL MATRIX c : c SUBROUTINES AND FUNCTION SUBPROGRAMS REGUIRED C C METHOD THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT C C IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT 0000 THE MATRIX IS SINGULAR. 0001 SUBROUTINE MINV (A.N. D.L.M) DIMENSION A(1), L(1), M(1) С C 000 IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION C STATEMENT WHICH FOLLOWS. Ç DOUBLE PRECISION A.D.BIGA.HOLD C C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS C ROUT INE. C THE DOUBLE PRECISION VERSION OF THIS SUBPOUTINE MUST ALSO C C CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT С 10 MUST BE CHANGED TO DABS. C С Ċ C SEARCH FOR LARGEST ELEMENT

2002

```
C
0003
                    D=1.0
0004
                    NK=-N
                    DO 80 K=1.N
2205
0006
                    NK=NK+N
0007
                    L(K)=K
0008
                    4(K)=K
0009
                    KK=NK+K
0010
                    BIGA= A(KK)
0011
                    DO 20 J=K.N
0012
                    IZ=N*(J-1)
                    DO 20 I=K.N
0013
0014
                   I J= I 7 + I
0015
                10 IF( ABS(BIGA)- ABS(A(IJ))) 15,20,20
                15 RIGA= A(IJ)
2216
0017
                   L(K)=[
0018
                    M(K)=J
                20 CONTINUE
0019
             202
                       INTERCHANGE ROWS
0020
                    J=L(K)
2221
                    IF(J-K) 35,35,25
                25 K] = K-N
0022
                    DO 30 I=1.N
0023
0024
                    KI = KI + N
0025
                    HOLD=-A(KI)
                    JI=KI-K+J
0026
0027
                    A(KI) = A(JI)
                30 A(JI) =HOLD
0028
             C
                       INTERCHANGE COLUMNS
2025
                35 J=4(K)
                    IF( I-K) 45,45,38
0030
0031
                38 JP=N*(I-1)
                   DO 40 J=1.N
0032
                    JK = NK + J
0033
0034
                    JI = JP + J
0035
                   HOLD=-A(JK)
                    \Delta(JK) = \Delta(JI)
0036
0037
                40 A(JI) = HOLD
             C
                       DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVO
             C
                       CONTAINED IN BIGA)
             C
                45 IF(BIGA) 48,46,48
0038
0039
                46 D=0.9
0040
                   RFTURN
                48 DO 55 I=1.N
0241
                   IF(I-K) 50,55,50
0042
0043
                50 IK=NK+I
2244
                   A(IK)=A(IK)/(-BIGA)
                55 CONTINUE
0045
             C
```

```
REDUCE MATRIX
             C
             C
0046
                    DO 65 I=1.N
0047
                    IK=NK+I
                    HOLD=A(IK)
0048
0049
                    IJ=I-N
0250
                    DO 65 J=1, N
0051
                    IJ=IJ+N
                    IF(1-K) 60,65,60
0052
0053
                 60 IF(J-K) 62,65,62
                62 KJ=IJ-I+K
A(IJ)=HCLD*A(KJ)+A(IJ)
0054
0055
                 65 CONTINUE
0056
             C
                        DIVIDE ROW BY PIVOT
             C
                    KJ=K-N
DO 75 J=1, N
0057
0058
0059
                    KJ=KJ+N
0060
                    IF(J-K) 70,75,70
                 70 A(KJ)=A(KJ)/BIGA
0061
                 75 CONTINUE
0062
             C
                        PRODUCT OF PIVOTS
             C
0063
                    D=D*BIGA
             C
                       REPLACE PIVOT BY RECIPROCAL
             C
             C
0064
                    A(KK)=1.0/BIGA
                 80 CONTINUE
0065
             C
             C
                       FINAL ROW AND COLUMN INTERCHANGE
             C
0066
                    K=N
0067
               100 K=(K-1)
0068
                    IF(K) 150,150,105
                105 I=L(K)
0069
0070
                    IF(I-K) 120,120,108
0071
               108 JQ=N+(K-1)
                    JR=N*( I-1 )
0072
0073
                    DO 110 J=1,N
0074
                    JK=J0+J
                    HOL D= A(JK)
9075
                    JI = JR + J
0076
0077
                    \Delta(JK) = -\Delta(JI)
               110 A(JI) =HOLD
0078
0079
               120 J=M(K)
                    IF( J-K) 100,100,125
0080
0081
               125 KI=K-N
0092
                    DO 130 I=1.N
0083
                    KI = KJ + N
0084
                    HOLD=A(KI)
0085
                    JI = KI - K + J
                    \Delta(KI) = -\Delta(JI)
0086
```

0087 130 A(JI) =HDLD
0088 GO TO 100
0089 150 RETURN
0090 END
OPTIONS IN EFFECT ID.EBCDIC.SOURCE.NOLIST.NODECK.LOAD.NOMAP
OPTIONS IN EFFECT NAME = MINV . LINECNT = 57
STATISTICS SOURCE STATEMENTS = 90.PROGRAM SIZE = 2084
STATISTICS NO DIAGNOSTICS GENERATED

NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS.

Program Variable	Analytic Symbol	Definition
ALAMRS	$^{\lambda}$ RS	Fraction of total roll stiffness at front axle
ALAMT(I)	$^{\lambda}$ TQi	Fraction of total drive torque applied at wheel I. Note that $\Sigma \lambda_{TQi} = 1$
ALFBAR	·αi	Normalized slip angle
ALPHAT(I) I=1,4	α i	Slip angle at tire i
AUX		Auxiliary variable required by subroutine HPCG
AXLR	R _A	Axle drive ratio, same at front and rear if both driven
AY		Lateral acceleration
AO(I),Al(I), A2(I) I=1,4	A _{Oi} ,A _{li} ,A _{2i}	Coefficients in expression for low-slip cornering stiffness
B(I) I=1,7	{b}	Vector of force-type quantities in itera- tive solution to {a}
BC(I) I=1,4	^B Ci	Tire parameters which give the influence of slip angles on circumferential force

^{*}Program variables are not listed for Subroutines MINV or HPCG

Program Variable	Analytic Symbol	Definition
BRK(I) I=1,4	B _{RKi}	Brake torgue coef- ficient for wheel i
B0(I) I=1,7		Part of {b} which does not depend on tire forces
B1(I),B3(I) B4(I),I=1,4	B _{1i} , B _{3i} , B _{4i}	Coefficients in peak lateral friction coef- ficient expression
C(I,J) I=1,7,J=1,7	c _{ij}	Matrix of inertia-type quantities in itera-tive solution to {a}
CALPHA	$\mathtt{c_{\alpha}}_{\mathtt{i}}$	Low-slip angle tire cornering stiffness
CD	c _D	Aerodynamic drag coefficient
CI(I,J) I=1,7,J=1,7		Inverse of C
CST1,CST2 CST3	C _{ST1} , C _{ST2}	Steering system compliances (right, left, steering column)
D		Determinant of C
DALF		Absolute value of $\overline{\alpha}$
DELSW	^δ sw	Steering wheel angle

Program Variable	Analytic Symbol	Definition
DELT(I)	δ ₁ ,δ ₂	Front wheel steering angles (right, left)
DELTP	p	Pitman arm angle
DELT10, DELT20		Values of DELT(I) from previous iteration
DEL1,DEL2		Arguments for DRIVER; correspond to DELT(I)
DERY(I) I=1,6		Input variable for HPCG
DSWMAX		Maximum allowable value for DELSW; re-guired by DRIVER
DSWOUT		Output variable; corresponds to DELSW
DSW0		Initial value of DELSW; required by DRIVER
DT		Integration time step
DTOE(I) I=1,2	S _{TOE1} ,S _{TOE2}	Toe-in angles of right and left front wheels, positive for positive rotation about z - axis
DTPRNT		Time increment at which output is printed
D3,D4		Dummy arguments; required by DRIVER

Program Variable	Analytic Symbol	Definition
EC(I) I=1,5	e _i	Convergence criteria for the iterative solution to \(\frac{1}{4} \) a \(\frac{1}{4} \)
F	f _i	Side force roll-off factor
FC(I) I=1,4	FC _i	Circumferential force at tire i
FMAX		Intermediate variable in tire side force calculation
FN(I) I=1,4	FN _i	Normal force at tire i
FRO(I,J,K) I=1,4 J=1,10 K=1,2		Lookup table for com- putation of f; K=1 gives S, K=2 gives f; I=tire number, J'gives tabular values
FRR(I) I=1,4	K _{RRi}	Rolling resistance proportionality factors
FS(I) I=1,4	FS _i	Side force at tire I
FX(I),FY(I), FZ(I) I=1,4	F _{xi} , F _{yi}	Components of tire forces at tire contact points
FZ10,FZ20 FZ30,FZ40		Values of FZ(I) from previous iteration

Program Variable	Analytic Symbol	Definition
G	g	Gravity
G (subroutine TIRE3)	Gαi	Tire side force saturation
HF, HR	h _F ,h _R	Height of roll center above ground plane, front and rear axles
IACKER		Steering type indi- cator; IACKER = 0: Parallel IACKER = 1: Ackerman
ICSET		Label for initial conditions data set (6 characters)
IFIRST		Indicator for first integration time step
IHLF		Error indicator for HPCG
IOTHER		Index identifying laterally opposite tire
JUNK1(I),JUNK2(I) I=1,7		Dummy vectors required by MINV
KD		Understeer factor; required by DRIVER
K1(I),K2(I) I=1,4	K _{li} ,K _{2i}	Coefficients in tire aligning torque calcu-lations

Program Variable	Analytic Symbol	Definition
NEQ		Number of equations integrated by HPCG
PFA	A _{PF}	Projected frontal area of vehicle
PFL	P _{FL}	Brake-line pressure
PFLMAX		Maximum allowable value of PFL; required by DRIVER
PFLOUT		Output variable; cor- responds to PFL
PFLO		Initial value of PFL; required by DRIVER
PI02		π/2
PLIZZ, PLIYZ, PLIZX	I ² zz,I ² yz I ² zx	Movements of inertia of payload w.r.t. $x_2y_2^z$ 2 axes
PLM	m ₂	Mass of payload
PRMT(I) I=1,4		Control parameters required by HPCG
PSI0		Initial value of
PO(I),Pl(I) P2(I) I=1,4	P _{0i} ,Pl _i	Coefficients in the peak coefficient of friction versus normal force expression

Program Variable	Analytic Symbol	Definition
R	r	Angular velocity of vehicle about z-axis
RDOT	r	d(r)/dt
RHOA	$\rho_{\mathbf{A}}$	Density of air
RT(I) I=1,4	RTi	Rolling radius of tire
RO(I),R1(I) I=1,4	R _{0i} , R _{1i}	Coefficients in lon- gitudinal slip versus normal load expression
S(I) I=1,4	Si	Longitudinal slip at tire I
SI	SIi	Longitudinal slip at which peak coefficient of friction occurs
SN(I) I=1,4	SNi	Skid number ratio: present surface/ measurement surface
SR	NG	Steering ratio
S0(I),S1(I) S2(I) I=1,4	S _{0i} ,S _{1i} S _{2i}	Coefficients in expression for the sliding friction coefficient
Т	t .	Time [.]
TAXL(I)	DT1' DT2	Drive torque transfer

Program Variable	Analytic Symbol	Definition
I=1,2		parameter: fraction of drive torque acting at axle I (front,rear) which would cause axle roll relative to chassis. TAXL†0 corresponds to negative axle roll about x-axis
THETAT(I) I=1,4	i	Angle between x-axis and tire contact point velocity vector at tire i
TIRCON		Label for tire data set (6 characters)
TL(I) I=1,4	TL _i	Drive torque limit. When driven wheel i spins, only generating TL;, then TL; is drive torque input to wheel IOTHER
TMAX		Simulation stopping time
TP		tan (δ_P)
TOAL(I) I=1,4	TO _{ALi}	Aligning torque at tire i
TQD		Drive torque
TQDMAX		Maximum allowable value of TOD; required by DRIVER
TQDOUT		Output variable; cor-

Program Variable	Analytic Symbol	Definition
		responds to TQD
TQD0		Initial value of TQD; required by DRIVER
TQST(I) I=1,2	TO _{ST1} ,	Steering torque about the kingpin due to tire forces and moments (right, left)
TQT(I) I=1,4	^{TQ} ti	Drive/brake torque at tire i
Tl		Time at which output was most recently printed
U,V	u,v	Components of vehicle velocity along x and y axes
UDOT, VDOT	u,v	du/đt, dv/đt
UP	^U Pi	Peak coefficient of friction
US	Si	Coefficient of sliding friction
UT(I),VT(I) I=1,4		Components of tire contact point velocity along x and y axes
U0,V0		Initial values of u, v
Ul	li	Effective coefficient of sliding friction

Program Variable	Analytic Symbol	Definition
VC	^Z ti	Height of vehicle center of mass above ground plane
VEHCON		Label for vehicle data set (6 characters)
VEL		Speed of vehicle
VIZZ,VIYZ VIZX	I ¹ zz,I ¹ yz I ¹ zx	Moments of inertia of vehicle w.r.t. xyz axes
VM	^m 1	Vehicle mass
XC(I) I=1,2	C _x	Caster offset
XL	L ·	Wheelbase
XMl	Mi	Effective maximum coefficient of friction
XPL, YPL, ZPL	x _p , y _p , z _p	Coordinates of center of mass of payload w.r.t. xyz axes
XT(I),YT(I) I=1,4	x _{ti} ,y _{ti}	Coordinates of tire contact points w.r.t. xyz axes
X0,Y0		Initial values of inertial position X and Y

Program Variable Analytic Symbol Definition

Y(I) State vector: Y(I) = X Y(2) = Y $Y(3) = \psi$ Y(4) = u Y(5) = v Y(6) = r

2.5. Three-Degree-of-Freedom Vehicle Data For Base Configuration

x _{ti} ,y _{ti} ,z _{ti}	48.0	30.75	21.74
(coordinates of tire	48.0	-30.75	21.74
contact points), in	-61.0	30.50	21.74
	-61.0	-30.50	21.74
δ _{TOE1} , δ _{TOE2}	0.0	0.0	
(toe angles), rad			
drive torque distri-	0.0	0.0	
bution parameters	0.5	0.5	
(fraction of T_{QD}			
at each wheel)			
$\lambda_{ extbf{TT}}^{ extbf{T}}$ (drive torque	0.0	0.0	
distribution paramete	r:		
front, rear)			
$\lambda_{ extsf{RS}}$ (roll-stiffness	0.66		

ratio, front/total)

rear axle ratio

2.79

g, in/sec²

386.4

 m_1 , $lb-sec^2-in$

9.403

 I_{zz}^1 , $1b-sec^2-in$

22500.0

 I_{yz}^1 , 1b

0.0

 I_{zx}^1 , $1b-sec^2-in$

-230.0

 x_p, y_p, z_p (payload

-6.0

0.0

-6.0

coordinates), in

 m_2 , $1b-sec^2/in$

0.83

 I_{zz}^2 , $1b-sec^2-in$

0.0

 I_{vz}^2 , $lb-sec^2-in$

0.0

 I_{zx}^2 , $lb-sec^2-in$

0.0

C _{ST1} (right steering	0.00000540	04
linkage compliance),		
rad/(in-lb)		
C _{ST2} (left steering	0.00000540	4
linkage compliance),		
rad/(in-lb)		
C _{ST3} (steering column	0.001389	
compliance), rad/(in-1b)		
SR (overall steering	17.5	
ratio)		
h _F (height of front	0.0	
roll center), in		
•		
h _R (height of rear	0.0	
roll center), in		
C _{xi} (caster offset), in	0.0	0.0
xi (dagder darbeet), in	9.0	3.0
BK; (brake torque	30.0	30.0
coefficient),	20.0	20.0
$in-lb/(lb/in^2) = in^3$	20 • U	20.0
$I_{11} I_{21} (I_{21} I_{11} I_{11}$		
C _D (drag coefficient)	0.45	

$$A_p$$
 (projected frontal 3100.0 area), in^2

$$\rho_{A}$$
 (air density), 0.000000115
 $1b-\sec^{2}/in^{4}$

Convergence criteria used in solution:

$$\varepsilon_{\text{convg}}$$
 = 0.05
 ε_{1} = 0.001 in/sec²
 ε_{2} = 0.001 in/sec²
 ε_{3} = 0.0001 rad/sec²
 ε_{4} = ε_{5} = ε_{6} = ε_{7} = 0.1 1b
 ε_{8} = 0.001 rad

FIGURE 2.1 BODY-FIXED AXIS SYSTEMS

FIGURE 2.2 FREE-BODY DIAGRAMS OF BODY 1 AND BODY 2

FIGURE 2.3 CONCEPTUAL MODEL FOR NORMAL FORCE DISTRIBUTION

FIGURE 2.4 FREE-BODY DIAGRAM OF FRONT AXLE OF CONCEPTUAL MODEL

FIGURE 2.5 SCHEMATIC DIAGRAM OF STEERING SYSTEM, $3-DOF\ MODEL$

PARALLEL STEER

FIGURE 2.6 STEERING LINKAGE GEOMETRIES: PARALLEL AND ACKERMAN

A = Tire contact point

B = Intersection of kingpin axis
 with ground plane

C_x = Caster Offset

FIGURE 2.7 SCHEMATIC DIAGRAM OF CASTER OFFSET

REFERENCES FOR CHAPTER 2

- 2.1 "Reserch on the Influence of Tire Properties on Vehicle Handling", Calspan Corporation, Rept. No. DOT-HS-053-3-727, 1976.
- 2.2 "Tire Parameter Determination", D. J. Schuring, DOT-HS-4-00923, 1975.
- 2.3 "The Dynamics of Pneumatic Tires", Motor Vehicle Performance Measurement and Prediction", Highway Safety Research Institute, Univ. of Michigan, 1974.
- 2.4 "Analysis of Tire Properties", H. Pacejka, Chapter 9, Mechanics of Pneumatic Tires (S. K. Clark, Ed.) NHTSA, 1982.
- 2.5 "A Handbook for the Rolling Resistance of Pneumatic Tires", S. K. Clark and R. N. Dodge, DOT-TSC-1031, 1978.
- 2.6 System/360 Scientific Subroutine Package, Version III, Programmer's Manual, IBM Corporation, 1970.
- 2.7 "Improvement of Mathematical Models for Simulation of Vehicle Handling", Vol. 6. Programmer's Guide for the DRIVER MODULE, W. R. Garrott, D. L. Wilson, A. M. White and R. A. Scott. Final Report DOT-HS-7-01715, December 1979.

List of Symbols

The nomenclature used in Chapter 2 is presented below.

Symbol	<u>Definition</u>
\vec{a}_1 , \vec{a}_2	Acceleration of body 1 and body 2, respectively. Body 1 is the vehicle. Body 2 is the payload.
{a},a _i	Vector of kinematic derivatives, normal tire forces, and steering angle.
A _{PF}	Projected frontal area of vehicle.
A _{Oi} , A _{li} , A _{2i}	Coefficients in expression for low-slip-angle cornering stiffness.
B _{li} , B ₃ iB ₄ i	Coefficients of curves fitted to the peak lateral friction coefficients.
^B Ci	Tire parameters which give the influence of slip angles on circumferential tire forces.
B _{RKi}	Brake torque coefficient for wheel i.
{b},b _i	Vector of force type terms.
c_{D}	Aerodynamic drag coefficient.
c _{ij}	Matrix of inertia-type quantities in iterative solution to {a}.
$c_{ST1}, c_{ST2}, c_{ST3}$	Steering system compliances.
c _x	Caster offset.

$c_{lpha i}$	Low-slip-angle tire cornering stiffness.
fi	Side force roll-off factor for tire i.
F _O	Net force acting on body 1, excluding gravity and \hat{F}_{12}
F _x , F _y , F _z	Components of \overrightarrow{F}_{O}
Fxaero' Fyaero' Fzaero	Components of the aerodynamic force that acts at the vehicle center of mass. These are designated as ΣF_{xs} , ΣF_{ys} , ΣF_{zs} in Ref [1.1].
F ₁₂	Force on body 1 exerted by the connection from body 2.
F ₂₁	Force on body 2 exerted by the connection from body 1.
Fxi, Fyi, Fzi	Components of the tire forces at the tire contact points.
FC _i	Circumferential force at tire i.
FC _{Ai} ,FC _{Oi}	Intermediate variables in tire circumferential force calcultions.
FNi	Normal force at tire i.
FSi	Side force at tire i.
ġ	The acceleration due to gravity.
$\mathtt{G}_{lpha_{\mathbf{i}}}$	Function that arises in tire side force saturation.

$^{\mathrm{h}}\mathrm{_{F}}^{\mathrm{h}}\mathrm{_{R}}$	Height of roll center above ground plane, front and rear axles, respectively.
[→] 1, [→] 2	Angular momentum of body 1 and body 2, respectively.
$^{ extsf{H}_{f n}^{\gamma}}$	Angular momentum components.
[1 ¹],[1 ²]	Inertial tensor of body 1 and body 2, respectively.
I ¹ nz,I ² nz	Moments of inertia of bodies 1 and 2 w.r.t. the z-axis
	Note: I_{Xy}^2 , I_{YZ}^2 , I_{XZ}^2 are defined such that the inertial tensor $[I^2]$ is given by
	$\begin{bmatrix} \mathbf{I}^{2} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{xx}^{2} & -\mathbf{I}_{xy}^{2} & -\mathbf{I}_{xz}^{2} \\ -\mathbf{I}_{xy}^{2} & \mathbf{I}_{yy}^{2} & -\mathbf{I}_{yz}^{2} \\ -\mathbf{I}_{xz}^{2} & -\mathbf{I}_{yz}^{2} & \mathbf{I}_{zz}^{2} \end{bmatrix}$
I ^S mn	Sum of corresponding moments of inertia of bodies 1 and 2.
К	Sum of torsional spring constants k ₁ and k ₂ .
k ₁ ,k ₂	Roll stiffness used in deter- mining the normal tire force dis- tribution.
K _{li} ,K _{2i}	Coefficients in tire aligning torque calculation.
KRRi	Rolling resistance proportion- ality factors.
L	Wheel base.

Resultant external moment acting

on body 1, excluding \dot{m}_{12}

 ^{M}x , ^{M}y , ^{M}z

Components of Mo.

 M x1, M x2, M x3, M x4

X components of moments generated by the tires.

[™]12

Moment on body 1 exerted by the connection from body 2.

[→]21

Moment on body 2 exerted by the connection from body 1.

m₁,m₂

Mass of body 1 and body 2, respectively.

Mxaero' Myaero' Mzaero

Components of the aerodynamic moment at the vehicle center of mass.

NG

Steering ratio.

P_{0i},P_{1i},P_{2i}

Coefficients in the peak coefficient of friction versus normal force relations.

PFI.

Brake line pressure.

r

Angular velocity of body 1 about the z-axis.

 R_{A}

Axle drive ratio.

 R_{r}

Rear axle center turning radius.

R_{Oi},R_{li}

Coefficients in longitudinal slip versus normal load relations.

RT;

Rolling radius of tire i.

s _i	Longitudinal slip of wheel i.
s _{0i} ,s _{li} ,s _{2i}	Coefficients in the sliding friction coefficient versus normal load relations.
sı	Longitudinal slips for which the peak coefficients of friction occur.
sn _i	Skid number ratio: present surface/measurement surface.
t	Time.
^T 1, ^T 2	Torque about the x-axis trans- mitted from the vehicle body to the solid front and rear axles, respectively, as a result of drive torque.
TLi	Drive torque which can be utilized by tire i.
TQ _{ALi}	Tire aligning moments.
$^{\mathrm{T}}$ QD	Drive line torque.
TQ _{ST1} , TO _{ST2}	Steering torque about the kingpin due to tire forces and moments (right, left).
TO _{ti}	Drive/brake torque at tire i.
u	Component of v_1 along the x-axis.
V	Component of \vec{v}_1 along the y-axis.
X,Y,Z	Inertial coordinate system. Z is directed downward

x,y,z	Body-fixed coordinate system. x and z are directed towards the front and bottom of the vehicle, respectively.
x _p ,y _p ,z _p	Coordinates of P (center of the payload) with respect to the xyz axes.
x _{ti'} y _{ti}	Coordinates of tire contact points with respect to the xyz axes.
^x 2' ^y 2' ^z 2	Body-fixed coordinate system with origin at P (center of mass of payload), parallel to the xyz axes.
$\alpha_{\mathbf{i}}$.	Slip angle at tire i.
$\overline{\alpha}_{\mathbf{i}}$	Normalized slip angle at tire i.
βί	Angle between x-axis and tire contact point velocity vector at tire i.
δp	Pitman arm angle.
δ Sw	Steering wheel angle.
^δ TOE1' ^δ TOE2	Toe-in angles of right and left front wheels, positive for positive (i.e., right-hand) rotation about the Z-axis.
^δ 1, ^δ 2	Front wheel steering angles (right, left).
γ (=1,2)	An index designating body 1 or body 2.

$\epsilon_{f i}$	Convergence criteria for the iterative solution to {a}.
θ	Roll of vehicle body about an axis parallel to the x-axis.
λRS	Fraction of total roll stiffness at front axle in conceptual model for normal tire force distribution.
$^{\lambda}$ TQi	Fraction of drive torque applied at wheel i.
^λ DT1, λDT2	Drive torque transfer parameter (front, rear).
^μ Μi	Effective maximum coefficient of friction at tire i.
^μ Pi	Peak coefficient of friction for tire i.
^μ Si	Coefficient of sliding friction at tire i.
$^{\mu}$ yi	Peak lateral friction coefficents for tire i.
^μ li	Effective coefficient of sliding friction at tire i.
$\rho_{f A}$	Density of air.
p p	Position vector from vehicle center of mass to payload center of mass.
ψ	Heading angle; angle between inertial X axis and vehicle x axis.

ġ

Angular velocity of body 1.

Chapter 3. Modifications Required in IDSFC to Simulate Asymmetric Vehicles

3.1 Changes in the Equations of Motion

The equations of motion of the vehicle in IDSFC are written

$$[M]\{x\} = \{F\} \tag{3.1}$$

where $\{x\}$ is the state vector consisting of the ten degrees of freedom described by differential equations (the remaining seven "degrees of freedom" are handled using algebraic approximations), [M] is a matrix of inertial-like quantities, which depends on $\{x\}$ through suspension deflections, and $\{F\}$ is a vector of forcing functions which also depends on $\{x\}$, and is found through a numerical iterative procedure.

IDSFC was modified to include the options of adding a rigidly attached payload of arbitrary inertial properties at an arbitrary point in the vehicle sprung mass, and of transmitting an arbitrary portion of the drive torque from the chassis to the rear axle in the case of a driven solid rear axle. The equations below detail the changes necessary to implement the options above; the new terms are underlined. The "Technical Manual" referred to below is Ref. [3.1]. Variables m_2 , I_{mn}^2 , x_p , y_p , z_p , and λ_{TT} are defined in section 2.1.

Changes Necessary in {F}

Equations (2.2S) and (2.2I) in Technical Manual:

$$F(1) = (vr-wq-g\sin\theta)(\Sigma M+m_2) + \Sigma F \times s + \Sigma F \times u$$

$$+ \frac{m_2(q^2x_p + r^2x_p - qpy_p - rpz_p)}{m_2(q^2x_p + r^2x_p - qpy_p - rpz_p)}$$

+ terms involving assumption switches
$$0_{ijkl}$$
 (3.2)

Equations (2.3S) and (2.3I) in Technical Manual:

$$F(2) = (wp-ur+gcos\thetasin\phi)(\Sigma M+m_2)$$

$$+ \frac{m_2(r^2y_p + p^2y_p - rqz_p - pqx_p)}{}$$

+
$$\Sigma F_{ys}$$
 + ΣF_{yu} + terms involving O_{ijkl} (3.3)

Equations (2.4S) and (2.4I) in Technical Manual:

$$F(3) = (uq-vp+gcos\thetacos\phi)(M_S+m_2)$$

+
$$\frac{m_2(p^2z_p+q^2z_p-prx_p-qry_p)}{}$$

$$+ \Sigma F_{zs} = \sum_{i=1}^{4} i$$
 (3.4)

Equation (2.5S) in Technical Manual:

F(4) =
$$\gamma_2$$
(ur-wp-gcosθsinφ) + $\Sigma N_{\phi}s$ + $\Sigma N_{\phi}u$
+ $\frac{N_{\phi}2}{}$ + $\frac{T_2}{}$ + terms involving 0_{ijkl} (3.5)

Equation (2.51) in Technical Manual:

F(4) =
$$\gamma_2'(ur-wp-gcos\thetasin\phi) + \Sigma N_{\phi s} + \Sigma N_{\phi u}$$

+ $N_{\phi 2}$ + terms involving O_{ijkl} (3.6)

where

$$N_{\phi 2} = I^{2}_{xz}pq + I^{2}_{yz}q^{2} - I^{2}_{zz}rq - I^{2}_{xy}pr + I^{2}_{yy}qr - I^{2}_{yz}r^{2}$$

$$+ m_{2}(uqy_{p} - vpy_{p} - prx_{p}y_{p} + q^{2}z_{p}y_{p} - qry_{p}^{2}$$

$$+ urz_{p} - wpz_{p} + rqz_{p}^{2} - r^{2}y_{p}z_{p} + pqx_{p}z_{p}$$

$$+ y_{p}g\cos\theta\cos\phi - z_{p}g\cos\theta\sin\phi) \qquad (3.7)$$

and

$$T_2 = TQD\lambda_{TT}$$
 (3.8)

Equations (2.6S) and (2.6I) in Technical Manual:

F(5) =
$$\gamma_2'(vr-wq-g\sin\theta) + \Sigma N_{\theta s} + \Sigma N_{\theta u} + \frac{N_{\theta 2}}{2}$$

where

$$N_{\theta 2} = -I_{xx}^{2} pr + I_{xy}^{2} qr + I_{xz}^{2} r^{2} - I_{xz}^{2} p^{2} - I_{yz}^{2} qp$$

$$+ I_{zz}^{2} rp + m_{2} (vrz_{p} - wqz_{p} - qpy_{p} z_{p} + r^{2} x_{p} z_{p} - rpz_{p}^{2}$$

$$+ vpx_{p} - uqx_{p} + prx_{p}^{2} - p^{2} z_{p} x_{p} + qry_{p} x_{p}$$

$$- z_{p} g sin\theta - x_{p} g cos\theta cos\phi) \qquad (3.10)$$

Equations (2.7S) and (2.7I) in Technical Manual:

F(6) =
$$\gamma_1(wp-ur+gcos\thetasin\phi) + \Sigma N_{\psi s} + \Sigma N_{\psi u} + N_{\psi 2}$$

+ terms involving O_{ijkl} (3.11)

where

$$N_{\psi 2} = I_{xy}^{2}p^{2} - I_{yy}^{2}pq + I_{yz}^{2}rp + I_{xx}^{2}pq - I_{xy}^{2}q^{2} - I_{xz}^{2}rq$$

$$+ m_{2}(wpx_{p}-urx_{p}-rqz_{p}x_{p}+p^{2}y_{p}x_{p}-pqx_{p}^{2}$$

$$+ wqy_{p}-vry_{p}+qpy_{p}^{2}-q^{2}x_{p}y_{p}+rpz_{p}y_{p}$$

$$+x_{p}g\cos\theta\sin\phi+y_{p}g\sin\theta$$
) (3.12)

Equation (2.11S) in Technical Manual:

$$F(10) = \sum N_{\phi R} - \frac{T_2}{2} + \text{terms involving } 0_{ijkl}$$
 (3.13)

Changes Necessary in [M]

Equation (2.16) in Technical Manual:

$$M(1,1) = \Sigma M + \frac{m_2}{}$$
 (3.14)

$$M(2,2) = \Sigma M + \frac{m}{2}$$
 (3.15)

Equation (2.22) in Technical Manual:

$$M(3,3) = M_S + m_2$$
 (3.16)

Equation (2.15) in Technical Manual:

$$M(3,4) = \frac{m_2 y_p}{}$$
 (3.17)

$$M(3,5) = \frac{m_2 x_p}{}$$
 (3.18)

$$M(4,3) = \frac{m_2 y_p}{(3.19)}$$

$$M(4,5) = -I_{xy}^2 - m_2 x_p y_p$$
 (3.20)

$$M(5,3) = \frac{-m_2 x_p}{}$$
 (3.21)

$$M(5,4) = -I_{xy}^2 - m_2 x_p y_p$$
 (3.22)

Equations (2.17S) and (2.17I) in Technical Manual:

$$M(5,1) = \gamma_2' + \underline{m_2 z_p} + \text{terms involving } 0_{ijkl}$$
 (3.23)

Equations (2.18S) and (2.18I) in Technical Manual:

$$M(6,1) = \frac{-m_2 y_p}{p} + \text{terms involving 0}_{ijkl}$$
 (3.24)

Equations (2.19) in Technical Manual:

$$M(4,2) = -\gamma_2 - m_2 z_p + \text{terms involving } 0_{ijkl}$$
 (3.25)

Equation (2.20) in Technical Manual:

$$M(2,6) = Y_1 + m_2 x_p$$
 (3.26)

$$M(6,2) = Y_1 + m_2 x_p$$
 (3.27)

Equations (2.26S) and (2.26I) in Technical Manual:

$$M(2,4) = -\gamma_2' - m_2 z_p + \text{terms involving } 0_{ijkl}$$
 (3.28)

$$M(1,5) = \gamma_2' + \underline{m_2 z_p} + \text{terms involving } 0_{ijkl}$$
 (3.29)

Equations (2.27S) and (2.27I) in Technical Manual:

$$M(4,4) = I_{x} + I_{x}' + \frac{I_{xx}^{2} + m_{2}(y_{p}^{2} + z_{p}^{2})}{+ \text{ terms involving } 0_{ijkl}}$$
(3.30)

Equations (2.28S) and (2.28I) in Technical Manual:

$$M(6,4) = -I_{xz} - I_{xz}^{\prime} - I_{xz}^{2} - m_{2}x_{p}z_{p}$$
+ terms involving 0_{ijkl} (3.31)

Equations (2.31S) and (2.31I) in Technical Manual:

$$M(5,5) = I_{y} + I_{y}' + \frac{I_{yy}^{2} + m_{2}(x_{p}^{2} + z_{p}^{2})}{+ \text{ terms involving } 0_{ijkl}}$$
(3.32)

Equations (2.32S) and (2.32I) in Technical Manual:

$$M(6,5) = -I_{yz}^2 - m_2 y_p z_p + \text{terms involving } 0_{ijkl}$$
 (3.33)

Equations (2.36S) and (2.36I) in Technical Manual:

$$M(1,6) = -m_2 y_p + \text{terms involving } 0_{ijkl}$$
 (3.34)

Equations (2.37S) and (2.37I) in Technical Manual:

$$M(4,6) = -I_{xz} - I_{xz}^{\prime} - I_{xz}^{2} - m_{2}x_{p}z_{p}$$
+ terms involving 0_{ijkl} (3.35)

Equations (2.38S) and (2.38I) in Technical Manual:

$$M(5,6) = -I_{yz}^2 - m_2 y_p z_p + \text{ terms involving } 0_{ijkl}$$
 (3.36)

Equation (2.39S) in Technical Manual:

$$M(6,6) = I_{R} + I_{z} + M_{uF}(a^{2}+T_{F}^{2}/4) + M_{uR}b^{2}$$

$$+ \frac{I_{zz}^{2} + m_{2}(x_{p}^{2}+y_{p}^{2})}{+ \text{ terms involving } 0_{ijkl}}$$

$$(3.37)$$

Equation (2.39I) in Technical Manual:

$$M(6,6) = I_z + M_{uF}(a^2 + I_F^2/4) + M_{uR}(b^2 + I_R^2/4)$$

$$+ I_{zz}^2 + M_2(x_p^2 + y_p^2)$$
(3.38)

3.2 Running the IDSFCAS Simulation

The modified version of IDSFC described by the equations above is referred to as IDSFCAS (IDSFC-Asymmetric). The following changes in simulation operating instructions are necessary as a result of the modifications:

1) Payload data must be read in on I/O unit 9 in the format and order described below.

Format for payload data deck: (card number, data) in format (I4,1X,F20.10)

Order of payload data deck:

Card Number	Variable to be Read
1	m ₂ (lb-sec ² /in)
2	x _p (in)
3	y _p (in)
4	z _p (in)
5	$I_{xx}^2(lb-sec^2-in)$
6	$I_{yy}^2(lb-sec^2-in)$
7	$I_{zz}^2(lb-sec^2-in)$
8	$J_{xy}^2(lb-sec^2-in)$
9	$J_{yz}^2(lb-sec^2-in)$
10	$I_{xz}^2(lb-sec^2-in)$
11	$\lambda_{ extsf{TT}}$ (dimensionless)

2) Initial suspension deflections (which are required by the simulation) corresponding to the static equilibrium position of the vehicle plus payload must be determined by

one of two procedures: a calculation based on the given force/suspension-deflection data, or a brief simulation run. Suspension forces in IDSFCAS are given by interpolation from tabular data as a function of suspension deflection. For payloads which are sufficiently small that the suspension deflections remain within the initial linear segment of the force/deflection table the equations below can be used to compute the initial deflections. After the deflections have been computed they should be checked against the force/deflection table to insure that the deflections remained within the initial segment.

Equations for the loaded equilibrium position were derived by minimizing a potential energy expression in terms of suspension and tire deflections. Tire compliances are in general large enough that they must be included in the formulation.

The potential energy of the loaded vehicle with respect to the unloaded equilibrium position is given by equation (3.39), where $\delta_{\rm si}$ is the suspension deflection for wheel i, measured at the wheel for an independent suspension and at the spring mount for a solid axle, $\delta_{\rm ti}$ is the deflection of tire i, $k_{\rm si}$ is the stiffness of the suspension for wheel i, effective at the wheel for independent suspension and at the spring mount for solid axle suspension, $k_{\rm ti}$ is the tire stiffness, $k_{\rm F}$ and $k_{\rm R}$ are auxiliary front and rear roll stiffness, $k_{\rm F}$ and $k_{\rm R}$ are front and rear track widths, and $k_{\rm SF}$ and $k_{\rm R}$ are the front

and rear spring mount spacings (which are equal to \mathbf{T}_{F} and \mathbf{T}_{R} , respectively, for independent suspensions). Deflections are taken to be positive in elongation.

PE =
$$\sum_{i=1}^{4} (k_{si} \delta_{si}^2 + k_{ti} \delta_{ti}^2)/2 + k_F (\delta_{s1} - \delta_{s2})^2 / T_{sF}^2$$

+ $k_R (\delta_{s3} - \delta_{s4})^2 / T_{sR}^2 + m_2 g \Delta h_p$ (3.39)

where

$$\Delta h_{p} = (\delta_{s1} + \delta_{s2} + \delta_{t1} + \delta_{t2})(b + x_{p})/[2(a + b)]$$

$$+ (\delta_{s3} + \delta_{s4} + \delta_{t3} + \delta_{t4})(a - x_{p})/[2(a + b)]$$

$$+ [(\delta_{s1} - \delta_{s2})/T_{sF} + (\delta_{t1} - \delta_{t2})/T_{F}]y_{p}$$
(3.40)

The frame and body are assumed to be rigid, so that the body roll is the same at the front and rear. This constraint is expressed by equation (3.41).

$$(\delta_{s1} - \delta_{s2})/T_{sF} + (\delta_{t1} - \delta_{t2})/T_{F}$$

$$- (\delta_{s3} - \delta_{s4})/T_{sR} + (\delta_{t3} - \delta_{t3})/T_{R} = 0$$
(3.41)

A constrained potential energy expression PE is formed by multiplying the left-hand side of (3.41) by a Lagrange multiplier λ and adding it to (3.39). The

equilibrium equations are then given by

$$PE'/\partial \xi_{i} = 0 \quad i = 1,9$$
 (3.42)

where

$$\xi_{i} = (\delta_{s1}, \delta_{s2}, \delta_{s3}, \delta_{s4}, \delta_{t1}, \delta_{t2}, \delta_{t3}, \delta_{t4}, \lambda)$$

After some algebra the following expressions are obtained for the suspension deflections $\delta_{\,{\rm S}\,{\rm i}}\,.$

$$[K] \begin{cases} \delta_{s1} \\ \delta_{s3} \end{cases} = -m_2 g \begin{cases} A+C-F/T_{sF}+2Ak_F/(k_{s2}T_{sF}^2) \\ B+F/T_{sR}+2Bk_R/(k_{s4}T_{sR}^2) \end{cases}$$
 (3.43)

$$\delta_{s2} = (-2m_2gA - k_{s1}\delta_{s1})/k_{s2}$$
 (3.44)

$$\delta_{s4} = (-2m_2gB - k_{s3}\delta_{s3})/K_{s4}$$
 (3.45)

where

$$K_{11} = k_{s1} + (k_F + E)(1 + k_{s1}/k_{s2})/T_{sF}^2$$

$$K_{12} = -E(1+k_{s3}/k_{s4})/(T_{sF}T_{sR})$$

$$K_{21} = -E(1+k_{s1}/k_{s2})/(T_{sF}T_{sR})$$

$$K_{22} = k_{s3} + (k_{R}+E)(1+k_{s3}/k_{s4})/T_{sR}^{2}$$

$$A = (b+x_p)/(2a+2b)$$

$$B = (a-x_p)/(2a+2b)$$

$$C = -y_p/T_{sF}$$

$$D = -y_p/T_F$$

$$E = 1/[1/(k_{t1}T_F^2)+1/(k_{t2}T_F^2)$$

$$+1/(k_{t3}T_R^2)+1/(k_{t4}T_R^2)$$

$$F = E[(1/k_{t1}-1/k_{t2})A/T_F-(1/k_{t3}-1/k_{t4})B/T_R]$$

$$+(1/k_{t1}+1/k_{t2})D/T_{F}-2A/(k_{s2}T_{sF})+2B/(k_{s4}T_{sR})]$$

For solid rear axle suspensions the initial conditons which must be specified are δ_R and $\phi_R.$ These are computed by the following equations.

$$\delta_{R} = (\delta_{s3} + \delta_{s4})/2 \tag{3.46}$$

$$\phi_{R} = (\delta_{s3} - \delta_{s4})/T_{sR}$$
 (3.47)

Initial conditions can also be determined by performing a brief simulation run with either zero steering angle input or closed-loop driver control. The zero steering angle procedure is appropriate for symmetric vehicle configurations with payloads which are sufficiently large that the suspension operates outside of the initial linear range (or simply as an alternative to Equations (3.43)-(3.47)). A three-to-five second run at moderate speed (e.g., 400 in/sec) should be sufficient to determine the loaded equilibrium position. Extremely low speeds (below 100 in/sec) are not recommended because the wheel spin equations are very sensitive at such speeds.

Some asymmetric configurations, such as those involving geometrically asymmetric center of gravity location in a vehicle with significant roll steer, will not travel in a straight line for a zero steer angle. A closed-loop driver model, such as the "Straight Line Crossover Model" in the IDSFC Driver Module, may be used to control the steering angle to obtain straight line motion. (Driver time delay may be set to zero to improve convergence to a straight path.) This method will provide the steering wheel path angle necessary for straight line motion and the resultant vehicle side-slip angle as well as suspension deflections.

It should be noted that initial conditions computed from equations (3.43) - (3.47) will in general not agree

exactly with those obtained from a simulation run. This discrepancy is largely due to coulomb friction in the suspension (which is not included in the static analysis), with small contributions coming from approximations to the trigonometric functions and other minor sources.

REFERENCE FOR CHAPTER 3

3.1 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 7: Technical Manual", W. R. Garrott and R. A. Scott. Final Report DOT-HS-7-01715. March 1980

Chapter 4. Modifications in Driver Module

4.1. Technical Changes Required to Implement Extended Cross-Over Model

Based on a cross-over model of human driving, Garrott et al [4.1], implemented, in the Driver Module, the following control law for steering regulation while maintaining a constant forward speed*.

$$\delta_{SW}(t) = K_{\psi} \psi_{err} + K_{\psi} T_{eq} \psi_{err}$$

$$+ K_{\psi} K_{Y} Y_{err} + K_{\psi} K_{Y} T_{eq} Y_{err}$$
(4.1)

However, this control law is inadequate for curved paths. If the vehicle is perfectly positioned, i.e. $\psi_{\rm err}=\psi_{\rm err}=\psi_{\rm err}=\psi_{\rm err}=\psi_{\rm err}=0$, then $\delta_{\rm SW}=0$, which is not correct. To remedy this, following Garrott et al [4.2], it is assumed that the driver is able to perceive path curvature and vehicle speed u and is able to determine and implement the steering angle necessary to cause a steady turn of that curvature. This is achieved by the addition of the term,

(NG)
$$[1+(KD)u^2]L\kappa(t-\tau)$$

A further extension has also been performed, following a proposal of Allen [4.3]. This extension involves the

^{*}A list of symbols is given at the end of the chapter.

addition of an "integral trim" term. Thus, the latest version of the control law in the Driver Module, is

$$\delta_{SW}(t) = K_{\psi} \psi_{err}(t-\tau) + K_{\psi} T_{eq} \dot{\psi}_{err}(t-\tau)$$

$$+ K_{\psi} K_{Y} Y_{err}(t-\tau) + K_{\psi} K_{Y} T_{eq} Y_{err}(t-\tau)$$

$$+ K \int^{t-\tau} \left\{ K_{\psi} \psi_{err}(\xi) + K_{\psi} T_{eq} \dot{\psi}_{err}(\xi) \right\}$$

$$+ K_{\psi} K_{Y} Y_{err}(\xi) + K_{\psi} K_{Y} T_{eq} Y_{err}(\xi)$$

$$+ (GR) [1 + (KD)u^{2}] L \kappa(t-\tau)$$

$$(4.2)$$

The following change was made in the desired heading gle computation in the Driver module.

 $\psi_{\rm des}$ = linear interpolation between ψ_{i} and ψ_{j} , where $\psi_{i} \text{ and } \psi_{j} \text{ are the average path angle at the}$ two end points of the closest road segment (j = i + 1), defined by

$$\Psi_{i} = (\Psi_{A} + \Psi_{B})/2$$
 (4.3)

$$\Psi_{i} = (\Psi_{B} + \Psi_{C})/2$$
 (4.4)

$$\Psi_{A} = \tan^{-1} (Y_{RPi} - Y_{RPi-1})/(X_{RPi} - X_{RPi-1})$$
 (4.5)

$$\Psi_{\rm B} = \tan^{-1} (Y_{\rm RPj} - Y_{\rm RPi}) / (X_{\rm RPj} - X_{\rm RPi})$$
 (4.6)

$$\Psi_{C} = \tan^{-1} (Y_{RPj+1} - Y_{RPj}) / (X_{RPj+1} - Y_{RPj})$$
 (4.7)

If
$$i = 1$$
 $\psi_{\Lambda} = \psi_{B}$ (4.8)

If
$$j = N_{RDPT} \psi_C - \psi_B$$
 (4.9)

4.2 Programming Changes Required to Implement Extended Cross-over Model

The extended cross-over model and improved path curvature calculation described in section 4.1 were programmed into the Driver Module. Alterations were made in subroutines DRINPT, DRIOUT, DRINIT, DCROV, and DCRERR. Listings of the modified Fortran code for these subroutines are given on the following pages.

For subroutines DRINPT, DRIOUT, and DRINIT only the portions of the code affected by the changes are listed. New lines are denoted by ">". For subroutines DRCROV and DCRERR the entire subroutine is listed.

Changes in subroutine DRINPT

```
41
                 ************
42
         С
         С
47
                 SUBPOUTINE DRINPT
111
                 THIS SUBBOUTINE READS THE DRIVER DATADECK INTO THE SIMULATION.
45
                 SUBECUTINE DRINPT
16
                 IMPLICIT REAL(A - H,O - Z)
:17
                 INTEGER DRMODE
48
                 LOGICAL ATEND, PASTOB, VIEWOB
                 COMMON /DEDMAP/ EDPT(3,300), IPT1, NRDPT
COMMON /DROLCH/ OLCOM(6,300), OLTIM(2,10), PPPABM(14),
49
50
                         IOLCOM (300), NINT, NMAX, NOLP
51
                COMMON /DROPMD/ DRMODE
COMMON /DRPAP1/ DRPR1(9), PE(12), WTAC(10), WTST(10),
52
53
54
                          MPRED, NOPERR
                COMMON /DRPAR2/ DGAIN(7), TAU, VDES, DELINT, ACCINT, TLCR COMMON /DRPAR3/ ACCSW, ACFRAC(2)
COMMON /DOBST/ ORCLR, OBBRK, TPPTO, IOBMOD, IOP, IVP,
55
< 7
cη
                 PASTOB, VIEWOB
DIMENSION LIT1(3), LIT2(4), LIT3(8), NAME(4)
59
..0
                 DATA IBLNK /'0000'/
```

```
150
   160
                  CROSSOVER MODEL DRIVER PARAMETER SECTION
   161
   152
             200 \text{ LIT3}(4) = IBLNK
   163
  164
                  00\ 210\ K = 1, 5
  165
                    95AD (3.420) J. DGAIN(K)
  155
             210 CALL DRORD(I. J. 1. NAME)
> 167
168
160
170
                  PFAD (3.420) J. DGAIN(6)
                  CALL DROPD (I.J. 1. NAME)
                  READ (3,420) J. 7541M(7)
                  CALL DROPD(I.J. 1. NAME)
  171
  172
                  READ (3,420) J. TAU
   173
                  CALL DRORD(I, J, 1, NAME)
   174
                  READ (3.420) J. VOES
   175
                  CALL DROPD(I, J. 1, NAME)
   176
                  CALL DRENDS (I. NAME)
   177
                  GO TO 50
   178
   179
                  PREVIEW-PREDICTOR MODEL DRIVER PARAMETER SECTION
  180
```

Changes in subroutine DRIOUT

```
384
  385
  386
                  SUBROGIINE DPIOUT
  387
           C
  388
           C
                  PURPOSE:
  389
                  TO PRINT OUT DRIVER MODULE PARAMETERS
  390
  391
                  SUBROUTINE DRIOUT (PRNTCN)
  392
                  IMPLICIT REAL(A - H,O - Z)
                  INTEGER DRMODE, PRNTCN
LOGICAL PASTOB, VIEWOB
  393
  3 94
                  COMMON /DOBST/ OPCLR, OBBRK, TPPTO, IOBMOD, IOP, IVP, PASTOB, VIEWOB COMMON /DRDMAP/ RDPT(3,300), IPT1, NRDPT COMMON /DROLCM/ OLCOM(6,300), OLTIM(2,10), PPPARM(14),
  395
   396
  397
  398
                 1 IOLCOM(300), NINT, NMAX, NOLP COMMON / DROPMO/ DRMODE
  399
  400
  401
                  COMMON / DEPAR 1/ DRPR 1(9), PE (12), WTAC (10), WTST (10),
  402
                          NPRED, NOPERR
                 COMMON /DRPAP2/ DGAIN(7), TAU, VDES, DELINT, ACCINT, TLCR
> 40≥
                  COMMON /DRPAF3/ ACCSW, ACFRAC(2)
IF (PENTCH .LT. 1) RETURN
  una
  405
  406
                  IF (DRMODE .GT. 0) GO TO 40
  407
                  PRINT OUT OPEN-LOOP COMMAND PARAMETERS
  408
                  TRITE (1,270)
  409
                  WRITE (1,290)
  410
                  L = 0
               10 I = 1
  411
  491
                  J = DRWODE - 10 * I
                  IF (J.LE. 2) GO TO 210
PRINT OUT DESCRIBING-FUNCTION(CROSSOVER) MODEL PARAMETERS
  497
  493
  484
                  IF (J .EQ. 3) WRITE (1.560)
                  IF (J.FO. 4) WRITE (1,579)
   485
                  WRITE (1.590) DG41N(1), DG41N(2)
  486
  497
                  WRITE (1,500) DGAIN(3), DGAIN(4)
  488
                  WRITE (1.600) DGAIN(5), TAU
  490
                  WPITE (1,605) DGAIN(6)
5 490
                  WRITE (1.606) DG4IN(7)
                  TF (J .EQ. 3) GO TO 220 WRITE (1.610) VDES
  401
  492
   40 2
                  RETURN
  494
                  PRINT DUT PREVIEW PREDICTOR MODEL PARAMETERS
  495
             210 IF (J.EO. 1) WRITE (1,620)
  476
                  IF (J.FO. 2) WRITE (1,630)
  497
                  WRITE (1,640) (DRPR1(K),K=1,5)
  400
                  WRITE (1.650) (BRPR1(K),K=6.9), NPRED
  400
                  WRITE (1.660) ACFRAC(1), ACFRAC(2), ACCSW
  587
              37) FORMAT ( OF . DRIVER PARAMETERS FOR THE STRAIGHT LINE .
                          . 'CROSSOVER MODEL')
   599
   599
              SAU EURHAT (101. IDPIVER GAIN UN A =1. G12.5.
              1 . DRIVER . GAIN ON V = ...
592 FORMAT (* ... DRIVER SAIN ON PSI = ... G12.5.
   590
                                                             =', G12.51
   501
                                DRIVER '. 'GAIN ON PSIDOT ='. G12.5)
   502
                1
   593
              500 FORMAT ( * . DRIVER GAIN ON U = . G12.5.
                                 DRIVER . TIME LAG TAIL = . G12.51
  504
              AGS FORMAT (* DRIVER GAIN ON STEERING EPPOR INTEGRAL #1.612.5)
 > 595
50x
              505 FORMAT (* DRIVER GAIN ON VELOCITY EPROP INTEGRAL =* -012.5)
  597
              51) FORMAT ( * . * DESTRED VELOCITY = . G12.5)
   598
              420 FORMAT ( '0' . 'DRIVER PARAMETERS FOR THE PREVIEW-PRED .
  500
                          *ICTOR DRIVER MODEL USING THE GEOMETRIC PRED ..
                1
   600
                 2
                          *ICTCR*1
```

Changes in subroutine DRINIT

```
COMMON /ORINTI/ TLAST
  661
                  COMMON /DRINT?/ NPRINT
COMMON /DRINT3/ ACCO. DELSWO. GP. TSTAPT
   662
   663
  664
                  COMMON / DROLCM/ DLCDM (6.301), DLT [M(2.10), PPPAPM(14),
                  INLCOM(300), NINT, NMAX, NOLP
COMMON /OPOPMO/ DRMODE
   565
   666
                  COMMON /DRMIX/ TZ. JOLOLO
   657
   668
                  COMMON /ORPARI/ ORPRI(0), PE(12), WTAC(10), WIST(10),
  649
                          NOREC. NOPERO
> 670
                  COMMON /DRPARZ / DGAIN (7) .T AU . VOES . DEL INT. ACCINT, TLCR
                  COMMON /DRPAR3/ ACCSW, ACFRAC(2)
COMMON /DOBST/ CACLR, DRARK, TPPTO, IDAMOD, IDP, IVP,
  671
   572
   673
                    PASTOB. VIEWOR
  674
                  NINT = 1
  675
  676
                   CHECK FOR PIRE OPEN-LOOP CONTROL
   677
                  IF (DPMODE .LE. 10) RETIJEN
   678
  670
                   [PT' = 1
  587
                   NPRINT = 3
   691
                  IF (DPMODE .EQ. 14) GO TO 20
  582
                   IF (DRMODE .EQ. 24) GO TO 20
   693
   684
                  CHECK FOR ERRORS IN ROAD-POINT DATA
   685
   686
                  IF (NRDPT . LT. 2) GO TO 93
  687
   688
                  DO 10 I = 2. NRDPT
                    DIST2 = (RDPT(1.T - 1) - RDPT(1.T)) ** 2 + (PDPT(2.
   689
   590
                   I - 1) - ROPT(2, I)) ≥ ₹ ?
  691
                     TF (DIST2 .LT. 1.E-09) GO TO 90
   697
               10 CONTINUE
   69 3
   694
               20 CONTINUE
  405
                  CHECK FOR NON-ZERO PERCEPTION FRROR
  606
                  NOPERR = 1
   607
  498
                  00 30 I = 1.12
   600
                     IF (PF(I) .GE. 1.E-4) GO TO 40
   700
               30 CONTINUE
   701
   772
                  NOPERR = 0
   703
                  GO TO 50
   70.4
                  INITIALIZE PERCEPTION-ERROR RANDOMIZATION SCHEME
   705
               40 CALL DRANDI
                  ORTAIN NECESSARY VEHICLE PARAMETERS
  706
  717
               53 CALL DRVEH
  708
                  DETERMINE CLOSED-LOOP DRIVER MODEL
  700
                  T = DRYDDE / 10
   710
                   J = DRMODE - 10 * 1
                  IF (J.LE. 2) GO TO 60
INITIALIZE DESCRIBING-FUNCTION MODEL RESPONSE MATRIX
  711
  712
                  NUSED = 2
   713
 > 714
                  DELINT = 0.0

\begin{cases}
71.4 \\
71.5 \\
71.6
\end{cases}

                  ACCINT = 0.0
                  TICR = TSTART
  717
                  RES(1.1) = TSTART
                  RFS(2.11 = DELSW)
  718
  719
                  RES(3.1) = ACCO
  720
                  RFS(1.2) = TSTART + TAJ - 1.F-04
```

```
1257
1258
1259
                 SUBPOUT INE DRCROV
          C
                 DECEMP IS THE CONTROL SUBPOUTINE FOR THE DESCRIBING FUNCTION MODEL
1260
1261
                 SUBPOUTINE DRORCV(ACC. DELSW. T. Y)
1242
                 TMPLICIT PEAL(A - H.O - 7)
1263
                 INTEGER DRACDE
1264
                 REAL KD
1265
                 COMMON /ORDPAD/ DRACOE
COMMON /ORDPARZ/ DGAIN(7), TAU, VDES, DELINT, ACCINT, TECR
COMMON /OCRVEH/ A, B, GR, KO
DIMENSION ERR(5), Y(6)
1266
1267
1268
1260
1270
                 DFLNEW = 0.0
                 IF (DRMODE .EQ. 13) GO TO 10
IF (DRMODE .EQ. 23) GO TO 10
1271
1277
                 STRAIGHT LINE DESCRIBING FUNCTION ERROR COMPUTATION
1272
                 E^{0.0}(1) = -Y(2)

E^{0.0}(2) = -Y(4) * SIN(Y(3)) - Y(5) * COS(Y(3))
1274
1275
1275
                 ERP(3) = -V(3)
1277
                 ERR(4) = -Y(6)
1278
                 FRP(5) = VDES - Y(4)
1279
                 GS TO SO
1290
                 GENERAL PATH DESCRIBING FUNCTION FRROR COMPUTATION
             10 CALL DERFREIERR. T. Y. ROCKVI
1291
1282
                 COMPUTE STEADY-TURNING STEEP ANGLE
1,393
                 POES = Y(6) + ERR (4)
1294
                 VEL2 = Y(4)**? + Y(5)**?
1285
                 DELNEW = (1.D+KD*VEL2)*(4+8) *RDES/SQRT(VEL2)/GR
1286
                 ADD IN ERROR CORRECTIONS
1297
             20 DELCOR = 0.0
1288
                 00 30 1 = 1, 4
1289
              30 DELCOR = DGAIN(I) * FRRIT) + DELCOR
                 DELNEW = DELNEW + DEL COR + DEL INT *DGA IN( 6)
1290
1291
                 COMPUTE STEERING FRROR INTEGRAL
1292
                 DELINT = DELINT + DELCOR*(T-TLCR)
1293
                 COMPUTE ACCELERATION COMMANO
1204
                 ACCRES = DGAIN(5) *500(5)
                 ACCVEN = ACCDES + DGAIN(7) *ACCINT
COMPUTE ACCELERATION INTEGRAL
1295
1206
1297
                 ACCINT = ACCINT + ACCDES*(T-TLCR)
1208
                 UPDATE TECR
1200
                 TLCR = T
1300
                 CALL DORMFIACO, ACONEW, DELNEW, DELSW, T. TAU)
1301
                 RETURN
1302
                 END
1302
```

```
1394
         1305
1306
                SUBBOUT INF CORERR
1307
               DORERR CALCULATES THE FEEDBACK FRRORS FOR THE DESCRIBING-FUNCTION
1308
         C
               MODEL
1309
1310
                SUBROUTINE DCRERR (ERR. T. Y. RDCRV)
1311
                IMPLICIT REAL(A - 4.0 - 7)
               COMMON /DRPTER/ UINT, XINT, YINT, 12, IPT COMMON /DRDMAP/ RDPT(3,300), IPT1, NRDPT
1312
1313
1314
                DIMENSION ERR(5), Y(6), YP(6,1)
1315
1316
                00 10 I = 1.6
            12 \text{ YP(I-1)} = \text{Y(I)}
1217
               DETERMINE POSITION AND VELOCITY ERRCPS FOR CURRENT POSITION
1318
               CALL DOTERRIDIST. UZERR, YP. 1. TI
1319
1320
                FRR(1) IS THE LATERAL POSITION ERROR
1321
                ERR(1) = -DIST
1322
                IPT AND 12 ARE THE INDICES OF THE ROAD POINTS
               ON FITHER END OF THE NEAPEST ROAD SEGMENT
1323
1324
                IF (IPT .LT. I2) I = IPT
               IF (IPT GT \cdot I2) I = 12
13 25
1325
               J = I + 1
1327
               DIST1 = SORT((XINT-FOPT(1,1))N*2 + (YINT-ROPT(2,1))**2)
1229
               DISTOT = SQRT((POPT(1,J) - POPT(1,I)) **? + (POPT(2,J)
1329
              1- ROPT(2,I))**2)
1330
                COMPUTE DESIRED PATH ANGLE BY LINEAR INTERPOLATION
                PSIB = ATAN2((ROPT(2, J)-ROPT(2,[1),(ROPT(1,J)-ROPT(1,I)))
1331
               IF (I .NE. 1) GO TO 20
1332
               PSIA = PSIB
1323
1334
               GO TO 30
1335
            27 K = 1 - 1
1336
               PSIA = ATAN2((POPT(2,I)-ROPT(2,K)),(POPT(1,I)-POPT(1,K)))
1337
            3) [F ('J .NF. NPDPT) GO TO 40
1328
               PSIC = PSIB
1320
               G7 T9 50
1340
            41 K = J + 1
1341
               PSIC = ATAN2((RDPT(2.K)-RDPT(2.J)).RDPT(1.K)-RDPT(1.J)))
            5) PSII = (PSIA + PSIB)*0.5
1342
1343
               PSI2 = (PSIB + PSIC)*1.5
1344
               PSIDES = PSII + DISTI*(PSI2 - PSIII/DISTOT
1345
                ERP(2) IS THE LATERAL VELOCITY ERPOR
                EPR(2) = -Y(4) * SIN(Y(3) - PSIDES) - Y(5) * COS(Y(3) - PSIDES)
1346
1347
               PI = 3.14159265359
1348
            60 IF (Y(3) .LE. PI) GO TO 70
               Y(3) = Y(3) - 2.0*PI
1349
1250
               GD TO 50
1351
            71 IF (Y(3) .GT. (-P[1) GO TO 3)
               Y(3) = Y(3) + 2.0*PT
1352
1353
                GO TO 70
1354
               ERR(3) IS THE HEADING ANGLE ERROR
            80 SRR(3) = PSIDES - Y(3)
1355
                IF (FRR (3) .GT. PI) FRR (3) = ERP (3) - 2.0 *PI
1356
1357
                IF (ERR(3) -LT. (-P[1) =RR(3) = ERP(3) + 2.0 *> [
                COMPUTE ROAD CURVATURE AT POINT OF PERPENDICULAR INTERSECTION
1358
1350
               BY INTERPOLATING BETWEEN CURVATURE AT SEGMENT ENOPOINTS
1360
                IF (1 .NE. 1) GO TO 90
1361
               POCRVI = 0.0
1 262
               GO TO 100
1362
            9) K = 1 - 1
               CALL DRCURV(ROPT(1.K), RDPT(2.K), RDPT(1.I),
1364
                     ROPT(2.1), ROPT(1.J), ROPT(2.J), ROCRVI. IFLG)
1365
               IF (PSINES .LT. PSII) RNCRVI = -RNCRVI
1 366
           100 IF (J.NE. NRDPT) GO TO 110
1367
1369
               RDCR V2 = 0.0
1369
               GO TO 123
1370
           110 K = J + 1
1371
               CALL DRCURV(RDPT(1.1), POPT(2.1), ROPT(1.J),
1377
                    ROPT (2.J). ROPT (1.K). ROPT (2.K). RDCRV2. IFLS1
               IF (PSI 2 .LT. PSIDES) RDCRV2 = -RDCRV2
1373
           120 POCRV = ROCRV1 + DIST1 * (ROCPV2 - ROCRV1) / DISTOT
1374
1375
               VEL = SQRT(Y(4) **2 + Y(5) **21
1376
               ERR(4) TO THE YAW-RATE ERROP
1377
               FRP(4) = VEL * RDCRV - Y(6)
               ERR(5) IS THE FORWARD VELOCITY FRROR
1378
1379
                FRR(5) = UINT - VEL
1380
               RETURN
1381
                END
1392
```

4.3 Programming Changes Required to Interface Driver

Module with The Three-Degree-of-Freedom Model

Four subroutines in the Driver Module are specific for the vehicle model being used, namely, DRFAC 1, DRFAC 2, (which includes an entry for DRFAC 3), DRFAC 4, and DRVEH. Versions of these subroutines have been written to interface the Driver Module with the three-degree-of-freedom vehicle model describe in Chapter 2. The Fortran code for these subroutines is listed on the following pages.

```
1070
1071
1972
               SURPOUT THE DREAC4
1073
               THIS SURROUTINE COMPUTES DELTA AND ACC
               FROM VEHICLE CONTROL VARIABLES
1074
1075
               SUBPOUTINE DREACHIACC, DELTA, DELSW, DOUTL, DOUTZ,
1076
1.077
                           DOUTS, DOUTS, JOLCOM)
1078
               IMPLICIT REAL(A - H.O - Z)
               COMMON /ORVEH4/ BRKCON, DRVCON, GR. BRKTAB(2,11)
1979
1080
               CONVERT STEERING WHEEL ANGLE TO FRONT WHEEL ANGLE
1091
               DELTA = DELSW + SR
               TE (JOLCOM .EQ. 1) PETJRN
CONVERT DRI VE TORQUE AND BRAKE LINE PRESSURE TO ACCELERATION
1082
1083
1994
                00.10 I = 2.10
1285
                 IF (DOUT) .LF. BRKT AB(1.1)) GO TO 20
1086
            10 CONTINUE
1037
1 180
            I=11
20 FP \Delta C=\{RPKT\Delta B(1,1)-DOUT1\} / \{RRKT\Delta B(1,1)-RRKT\Delta B(1,1)\}
INAC
1101
              11.1 - 11)
1001
               TOR = BRKTAR(2,1) - FRAC * (BRKTAB(2,1) - BRKTAR(2,1 -
1002
              1 111
               ACC = TOB / RPKCON + DOJT? / DRVCON
1003
1004
               DE TIJEN
1005
               FND
1996
1097
         1098
1000
               SURPOUTINE DREACT
1100
               DREACT CONVERTS VEHICLE KINEMATIC VARIABLES TO DRIVER FORMAT
1171
1102
               SUBPOUTINE DREACTION, DYVEH, Y, YVEH, DELT, DELZ, JDP.
1173
                           JOL COM )
1104
               IMPLICIT REAL (A - 4.0 - Z)
               DIMENSION DY(1), DYVEH(1), Y(1), YVEH(1)
1105
1106
               Y(1) = YVFH(1)
               Y(2) = YVEH(2)
1107
               Y(2) = YVEH(3)
1108
1109
               Y(4) = YVFH(4)
               Y(5) = YVEH(5)
1110
               Y(6) = YVEH(6)
1111
1112
               DY(1) = DYVEH(1)
1113
               DY(2) = DYVEH(2)
1114
               DY(3) = DYVEH(3)
1115
               DY(4) = DYV=H(4)
1116
               hy(5) = hyveh(5)
1117
               DY(6) = DYVEH(6)
1118
               RETURN
1119
               END
1127
1121
```

```
2563
2564
         0
2565
                SUBROUTINE DREACZ
                DR FAC2 CONVERTS THE DRIVER DUTPUT TO VEHICLE FORMAT
2566
2567
256 R
                SUBPOUTINE DREACZIACC, DELTA, DELSW, DOUTI, DOUTZ,
2569
                           DOUT3, DOUT4, JOLCOMI
                IMPLICIT REAL(A - H.O - Z)
2570
                COMMON /DRVEH4/ BRKCON, DRVCON, GR, BRKTAB(2,11)
2571
                COMMON /FOUT/ FN(4).ALPHAT(4).TOT(4).FS(4).FC(4).S(4).DELT(2).
2572
2573
               1 TOST(2)
                COMMON /V3D/ CI(7,7).ALAMT(4).EC(5).XT(4).YT(4).DTDE(2).TAXL(2).
2574
2575
               1 AXI R.VC.G.ALAMRS.VM.VI7Z.VIY7.VIZX.XPL.YPL.ZPL.PLM.PLIZ7.PLIYZ.
               2 PLITX, CST1, CST2, CST3, SR, XC(2), BRK(4), CD, PF4, RHO4, IACKER
2576
                INLON . EQ. 8 MEANS PREDICTOR OPERATING
2577
                WHILE STILL IN TOTAL OPEN-LOOP CONTROL
2578
2579
                TE (JOLCOM .EQ. 8) RETURN
                IF (JOLCOM .EQ. 1) 60 TO 10
2589
                COMPENSATE FOR FLEXIBILITY OF STEERING SYSTEM
2581
                \Delta 1 = TOST(1)*CST1
25A2
2583
                \Delta 2 = TOST(2) * CST2
                TEMP1 = SP*(41+4?1/2.0
2594
2585
                TEMP2 = (TQST(L) + TQST(2))*CST3/SR
                DELSW = DELTA +SR - TEMP1 - TEMP2
2586
2597
             10 COMTINUE
2588
                RRAKE/ORIVE TOROUE OUTPUT COMMAND COMPUTATION
2580
                ENTRY DREAD3(ACC.DOUT 1. DOUT 2. DOUT 3. DOUT 4. JOLCOM)
                TE (JOLCOM .NE. 5) DOUT3 = 1.0
2591
                IF (JOLCOM .NE. 6) DOUT4 = 0.0
2591
2592
                IF (JOLCOM .EQ. 2) RETURN
                IF (JOLCOM .EQ. 3) GO TO 50 IF (JOLCOM .EQ. 4) GO TO 80
2593
2594
2595
                IF (ACC .GT. 9.0) GD TO 49
2596
                SPECIFY DOUTL (BRAKELINE PRESSURE) BY INTERPOLATION
                FROM BRAKE TABLE
2597
2598
                TOR = BPKCON * ACC
2590
2600
                90.20 I = 2.10
2601
                 I= (TQB .LE. BRKTAB(2.1)) GO TO 30
             20 CONTINUE
2602
2673
2604
                I = 11
             30 FRAC = (BRKTAB(2.1) - TQB) / (BRKTAB(2.1) - BRKTAB(2.
2605
2606
               11 - 111
                DAUTT = BEKTAB(1.1) - FRAC * (BEKTAB(1.1) - BEKTAB(1.
2607
2608
               11 - 111
2679
                000T2 = 0.0
2610
                RETURN
2411
                COMPUTE DOUT 2 FOR CLOSED-LAGS MADES
             40 20111 = 0.0
2612
2413
                DOUT ? = DRV CON * ACC
2614
                RETURN
2415
                COMPUTE DOUTS WHEN DOUTL IS OPEN-LOOP CONTROLLED
            50 00 50 T = 2. 10
261.6
2617
                 IF (DOUTL .LE. BRKTAB(1.II) GC TO 70
251ª
             4) CONTINIE
2410
2620
2621
             70 FRAC = (BRKTAB(1,1) - DOUTL) / (BRKTAB(1,1) - BRKTAB(
2522
               11.1 - 111
                TOB = BRKTAB(2.1) - FRAC * (BRKTAB(2.1) - BRKTAB(2.1 -
2622
2624
               1 111
2625
                ACCDR = TOR / BRKCON
                ACCMOD = ACC - ACCPR
2626
2627
                DOUT 2 = DPV CON * ACCMOD
                TF (DOUT2 .LT. 0.0) DOUT2 = 0.0
2428
2520
                RETHRN
2430
               COMPUTE DOUTL WHEN DOUTS IS CPEN-LCCP CONTROLLED
           PO ACCPR = DOUT2 / DRVCON
2531
263?
                ACCMOD = ACC - ACCPR
2633
                IF (ACCMOD .LT. 0.0) GO TO 90
2534
                MUT1 = 0.0
2625
                PETURN
2636
            90 TOB = BRKCON + ACCMOD
```

```
2637
                     DO 100 T = 2. 10
TE (TOB .LE. RRKTAS(2.11) SO TO 110
2638
          TE (TOR
LOD CONTINUE
2639
2640
2641
            I = 11
11.0 FRAC = (BRKTAB(2.1) - TOB) / (BRKTAB(2.1) - BRKTAB(2.1)
11 - 11)
20011 = BRKTAB(1.1) - FPAC * (BRKTAB(1.1) - BRKTAB(1.1)
2642
2643
2644
2645
2545
                    11 - 111
2647
                     RETURN
264P . . .
                    ミィロ
```

```
7440
2650
2651
                 SUBROUTINE DRVEH
          C
                 DRIVEH ORTAINS NECESSARY VEHTCLE PARAMETERS FOR THE DRIVER MODULE
2652
2653
                 DRVEH IS SPECIFIC FOR THE TRANS35 3-DOF VEHICLE MODEL
2654
2455
                 SUPPOUT INF DRVEH
2655
                 IMPLICIT REAL(A-H.O-Z)
2557
                 INTEGER DRMODE, TMODE
2658
                 REAL KD
                 INGICAL FIRST
26 59
                 COMMON /DCR VEH/ CRA, CRS, CRSR, CRKD
2660
                 COMMON /DRINTS/ ACCO. DELSWO, GRO. TSTART
2551
                 COMMON /DROPMD/ DRMODE
2562
2643
                 COMMON /ORPAR3/ ACCSW. ACFRAC(2)
                 COMMON /DRT DAT/ DRTR (24)
2654
2665
                 COMMON /DRVEH1/ DRV1(3)
2666
                 COMMON /DRVEH2/ ACCMAX, ACCMIN, DELMAX
                 COMMON /DRVEH3/ SIDACC COMMON /DRVEH4/ BRKCON, DRVCON, GR, BRKTAB(2,11)
2667
266R
2669
                 COMMON /DRVEH5/ ABM. AI. AM. C. DRG. TOE(2), XA(4),
2570
                          XW(4)
                 COMMON /VPR/ DSHMAX, TODMAX, PELMAX, KD, DSHD, TODO, PELD
2671
2672
                 COMMON /V3D/ CI(7,7), ALAMT(4), EC(5), XT(4), YT(4), DTDE(2), TAXL(2),
2672
                1 AXLR.VC.G.ALAMRS.VM.VI77.VIY7.VIZX.XPL.YPL.7PL.PLM.PLI77, PLIY7.
2674
                2 PLIZX.CST1.CST2.CST3.SR.XC(2).BRK(4).CD.PFA.RHD4.IACKER
                COMMGN /T3DATA/ FRO(4.1).21, AO(4). A1(4). A2(4). B1(4). B3(4). 
1 P4(4). RT(4). PO(4). P1(4). P2(4). SO(4). S1(4). S2(4). 
2 PO(4). P1(4). K1(4). K2(4). BC(4). SN(4). FRR(4)
2675
2476
2677
2678
                 DIMENSION FR(4) .FCMN(4) .FSMX(4)
2679
2690
                 \Delta = XT(1)
2691
                 B = -XT(3)
2692
                 \Delta I = V I 77 + PL I 27 + PL 44 (XPL 442 + YPL 42)
2683
                 \Delta M = VM + PLM
2694
                 \Delta RM = \Delta M/(\Delta + R)'
2695
                 C = (VC*VM + PLM*(VC - ZPL 1)/AM
2596
                 DELMAX = DSWMAX/SR
2 497
                 DELS WO = DSWO
2698
                 DRG = G
2699
2690
                 ASSIGN TIRE PROPERTIES FOR 3DOF MODEL PREDICTOR
2591
                 70 90 [=1,4
2692
                 ORTR(I) = AO(I)
2493
                 DRTR(I+4) = Al(I)
2694
                 DRTR(I+8) = A2(I)
2695
                 DRTR(I+12) = R1(I)
38 dY
                 DRTP(I+16) = R3(I)
2697
              90 79 TP (1+20) = 84(1)
              COMPUTE MAXIMUM CIRCUMFERENTIAL AND SIDE FORCES
2598
                 FCMNT = 0.0
2699
2700
                 FSMXT = 0.0
2701
                 FP (1) = 4 + 48 M
2702
                 FR(2) = B*4B4
2703
                 00 70 1 = 1. 4
2734
                    J = (1 + 1) / 2
2705
                    F^{\prime}MN(I) = -FR(J) + (PN(I) + FR(J) + (PI(I) + FR(J) +
2704
                   P? ([] ) ) * SN( [)
2707
                   FOMNT = FCMNT + FCMN(I)
2778
                    FSMX(I) = FR(J) * (BR(I) + FR(J)*(RI(I) + FR(J)*R4(I))
2700
                    1111 * SN(I)
2710
              70 FSMXT = FSMXT + FSMX(T)
2711
```

```
2712
             COMPUTE MAXIMUM ALLOWABLE BRAKING ACCELERATION AND LATERAL ASSELERATION
2713
                ACCMIN = ACFRAC(2) * FOMNT / AM
271.4
                SIDACC = FSMXT / AM
2715
              COMPUTE MAXIMUM ALLOWABLE ACCELERATION DUE TO DRIVE TORQUE
                DRVCON = AM/AXLR/(ALAMT(1)/RT(1) + ALAMT(2)/RT(2)
+ ALAMT(3)/RT(3) + ALAMT(4)/RT(4))
2716
2717
                ACCMAX = ACFRAC(1)*TODMAX*DRVCOM
2718
2710
                DRV1(1) = A
2720
                DRV1(2) = B
2721
                DRV1(3) = KD
2722
                TSTART = 0.0
2723
                3R = 1.0/SR
2724
                GR 2 = GR
2725
                DO 100 I=1.4
2725
                X\Delta(I) = XT(I)
2727
           100 \times (I) = YT(I)
         ŗ
7778
2770
              COMPUTE ENTRIES FOR OPIVER-MODEL BRAKE TABLE
                BRKCON = 4M*(RT(1) + RT(2)+RT(3)+RT(4))*0.25
2730
2731
                BRKTAB(1.1) = 0.0
2732
                BRKTAB(2.1) = 0.0
                BRKTAR(1.2) = PFLMAX + 1.3
2733
                BRKTAB(2,2) = BRKTAR(1,2)*(BRK(1)+BPK(2)+BRK(3)+BRK(4))*0.25
2724
2735
         C
2736
                ACCO = TODO/DRVCON - PFLO/(PFLMAX+1.0)*BRKTAB(2,2)/BRKCON
2737
                TOE(1) = DTOE(1)
2738
                TOF(2) = DTOE(2)
                CRA = A
2730
2.740
                CRR = B
2741
                CRGP = GR
                CRKD = KD
274?
2742
                PETURN
7744
                END
```

List Of Symbols For Chapter 4

Symbol	<u>Definition</u>
GR	Steering gear box ratio
к'	Driver trim integrator gain
K _Y	Factor converting position error to heading angle error
κ_{ψ}	Driver gain on heading angle error
KD	Understeer factor for steady turning
L	Vehicle wheelbase
N _{RDPT}	Number of road points
^T eq	Equivalent yaw rate time constant
u	Velocity component along the x-axis
Yerr	Distance from vehicle position to desired path
X _{RPi} ,Y _{RPi}	Coordinates of the road point i
δ _{SW}	Steering wheel angle
ψ_{A} , ψ_{B} , ψ_{C}	Intermediate variables defined by eqs. (4.5), (4.6), (4.7)

Symbol	<u>Definition</u>
$^{\psi}$ des	Tangent angle to the desired path at the closest point on the road path
$^{\psi}$ err	Difference between current and desired heading angle
$^{\psi}$ i $^{'}$ $^{\psi}$ j	Average path angles
κ	Curvature of the desired path
τ	Driver time delay

REFERENCES FOR CHAPTER 4

- 4.1 "Improvement of Mathematical Models for Simulation of Vehicle Handling, Vol. 7. Technical Manual for the General Simulation", W. R. Garrott and R. A. Scott. Final Report DOT-HS-7-01715, March 1980.
- 4.2 "Closed-Loop Automobile Maneuvers Using Describing Function Methods", W. R. Garrott, D. L. Wilson and R. A. Scott. SAE Paper, No. 820305, Feb. 1982.
- 4.3 "Stability and Performance Analysis of Automobile Driver Steering Control," R. W. Allen, SAE Paper No. 820303, Feb. 1982.