Basic Science

Therapeutic Ultrasound to Noninvasively Create Intracardiac Communications in an Intact Animal Model

Gabe E. Owens, MD, PhD, Ryan M. Miller, MS, Greg Ensing, MD, Kimberly Ives, DVM, David Gordon, MD, Achi Ludomirsky, MD, and Zhen Xu, PhD

Objective: To determine if pulsed cavitation ultrasound therapy (histotripsy) can accurately and safely generate ventricular septal defects (VSDs) through the intact chest of a neonatal animal, with the eventual goal of developing a noninvasive technique of creating intra-cardiac communications in patients with congenital heart disease. Background: Histotripsy is an innovative ultrasonic technique that generates demarcated, mechanical tissue fractionation utilizing high intensity ultrasound pulses. Previous work has shown that histotripsy can create atrial septal defects in a beating heart in an open-chest canine model. Methods: Nine neonatal pigs were treated with transcutaneous histotripsy targeting the ventricular septum. Ultrasound pulses of 5-μsec duration at a peak negative pressure of 13 MPa and a pulse repetition frequency of 1 kHz were generated by a 1 MHz focused transducer. The procedure was guided by real-time ultrasound imaging. Results: VSDs were created in all pigs with diameters ranging from 2 to 6.5 mm. Six pigs were euthanized within 2 hrs of treatment, while three were recovered and maintained for 2–3 days to evaluate lesion maturation and clinical side effects. There were only transient clinical effects and pathology revealed mild collateral damage around the VSD with no significant damage to other cardiac or extra-cardiac structures. Conclusions: Histotripsy can accurately and safely generate VSDs through the intact chest in a neonatal animal model. These results suggest that with further advances, histotripsy can be a useful, noninvasive technique to create intracardiac communications, which currently require invasive catheter-based or surgical procedures, to clinically stabilize newborn infants with complex congenital heart disease.

Key words: pediatric interventions; ultrasonics; echocardiography; histotripsy

INTRODUCTION

Several forms of congenital heart disease benefit from the creation or enlargement of an intra-cardiac communication such as an atrial septal defect (ASD) to ensure appropriate delivery of oxygenated blood to essential organs [1–12]. ASDs and less commonly ventricular septal defects (VSDs) are typically created in the fetus or neonate using cardiac catheterization or surgery with the associated risks of thrombo-embolic complications, cardiac perforation, and occasionally death.

1Department of Pediatrics, Division of Pediatric Cardiology, University of Michigan, Ann Arbor, Michigan
2Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan
3Department of Radiology, University of Michigan, Ann Arbor, Michigan
4Department of Pathology, University of Michigan, Ann Arbor, Michigan
5Department of Pediatric Cardiology, New York University, New York, New York
6Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan

Grant sponsor: National Institutes of Health; grant number: R01-HL077629; Grant sponsor: The Hartwell Foundation
*Correspondence to: Gabe E. Owens, MD, PhD, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5204. E-mail: gabeo@med.umich.edu
Received 14 July 2010; Revision accepted 14 August 2010
DOI 10.1002/ccd.22787 Published online 12 October 2010 in Wiley Online Library (wileyonlinelibrary.com)

© 2010 Wiley-Liss, Inc.
Histotripsy is an innovative ultrasonic technique that generates demarcated, mechanical tissue fractionation utilizing high intensity focused ultrasound (HIFU) pulses, resulting in soft tissue breakdown. This technique utilizes controlled acoustic cavitation to produce mechanical tissue fractionation [13–15] rather than thermal necrosis used in other HIFU approaches [16–21]. Cavitation bubbles are generated and maintained only at the focus leading to demarcated tissue fractionation and provide the ability to visually monitor therapy [22–27]. Previous work has demonstrated that histotripsy can create clearly demarcated perforations in excised porcine atrial and ventricular tissues using appropriate acoustic parameters [28]. In an open-chest canine model, histotripsy using an epicardial transducer position, accurately and efficiently generated ASDs without significant collateral damage or systemic clinical side effects [29].

The objective of this study was to determine if histotripsy could generate targeted intra-cardiac communications when positioned outside the body in an intact neonatal animal model. Safe creation of a targeted lesion in this manner, through multiple tissue layers including bone that may interfere with ultrasound propagation, should address the feasibility of this technique to create similar lesions in human neonates with congenital heart disease. Because vertical orientation of the heart in pigs limits ultrasound access to the atrial septum, the interventricular septum was targeted in this study.

METHODS

The procedures described here have been reviewed and approved by the University Committee on Use and Care of Animals at the University of Michigan. Nine healthy neonatal (2–3 weeks) pigs weighing 3-5 kg, comparable in size to the human neonate or infant, underwent percutaneous transthoracic histotripsy of the antero-apical muscular interventricular septum to avoid the conduction system.

The animals were preanesthetized with Telazol (6 mg kg⁻¹, IM) and Xylazine (2.2 mg kg⁻¹ IM), intubated and maintained on Isoflurane (1–3%) inhalation anesthesia, and paralyzed with pancuronium (0.1 mg kg⁻¹) for the duration of the procedure. Heparin (200 U kg⁻¹) was administered prior to the procedure and every hour thereafter if necessary. During the histotripsy procedure, the pig was submerged neck deep in a semi-upright position (Fig. 1a) in degassed water, which ensures ultrasound propagation into the animal without forming cavitation in the propagation pathway.

Histotripsy Apparatus

Ultrasound pulses for histotripsy treatment were generated by an external high power ultrasound therapy transducer. The transducer was placed in a degassed water-filled cylinder covered by a thin plastic membrane that was acoustically transparent. The cylinder was then placed into the warm degassed water bath that contained the submerged pig. This ensured continued ultrasound coupling from transducer, to water, through plastic membrane, to water and then to the chest wall (Fig. 1a). An 8-MHz imaging transducer (S8, SONOS 7500, Philips Healthcare, Andover, MA) was placed through the center hole of the therapy
transducer (Fig. 1b) and coupled to the neonatal pig in the same manner.

The therapy transducer was designed in our laboratory and fabricated by Imasonic, S.A., Besançon, France. The circular transducer has a center frequency of 1 MHz, a geometric focal length of 90 mm, an outer diameter of 100 mm, and a 40 mm inner hole for housing an ultrasound imaging probe (Fig. 1b). Ultrasound pressure waveforms of this therapy transducer were previously measured in degassed water using a fiber optic probe hydrophone [30]. The peak negative and positive pressures used in the following experiment were 16 and 32 MPa, respectively. Taking into account the attenuation caused by the \(\frac{1}{2} \times 1.5 \) cm thick chest wall tissue in the pathway, the peak negative pressure reaching the ventricular septum was estimated to be 13 MPa, resulting in a mechanical index of 13 [31]. The ultrasound pulses were 5 \(\mu \)s in duration (five cycles at 1 MHz) and separated by 1 ms (i.e., pulse repetition frequency = 1 kHz).

Histotripsy Treatment

Prior to the procedure, histotripsy pulses were applied to a water bath, producing a bright (hyperechoic) zone on a two-dimensional ultrasound image. The front center of the hyperechoic zone was marked as the focal position (Fig. 2a). The bubble cloud generated in the water for identifying focal location is larger than that in the tissue or blood. During the treatment, the bubble zone visualized by ultrasound was measured to be \(\sim 2-4 \) mm wide.

An 8 or 12 MHz phased array imaging probe was used on the chest wall to identify a window which provided imaging of the anterior ventricular septum in the axial resolution without substantial overlying lung. The therapeutic transducer was then moved by a three-axis positioning system (Parker Hannifin, Rohnert Park, CA) to align the focus marker on the ventricular septum (Fig. 2b). The entire histotripsy procedure was guided by ultrasound imaging using an 8-MHz phased array probe inserted into the central hole of the therapy transducer.

To verify the targeting accuracy, a small number of pulses were applied to produce a bubble cloud on the RV portion on the muscular interventricular septum, usually anterior to the moderator band (Fig. 2c). Once the targeting was accomplished, respirations were held (in 1-min intervals) and histotripsy treatment was applied to the ventricular septum. Ultrasound exposures were delivered in 1-min intervals or until a hypoechoic (dark) channel was visualized through the ventricular septum. The area was interrogated with color Doppler to confirm the creation of a VSD.

Posttreatment Process

Within 2 hr after VSD creation, six of nine animals were euthanized with a lethal dose of Pentobarbitol IV (100 mg \(\text{kg}^{-1} \)). In three animals, euthanasia was deferred for 2–3 days to evaluate subacute cellular changes related to histotripsy therapy and VSD creation. After euthanasia, the heart and lungs were extracted and fixed in a 10% formalin solution and dissected after a week of fixation. The organs were first examined by gross evaluation and then processed with standard hematoxylin and eosin (H&E), phosphotungstic acid-hematoxylin (PTAH), and Gomori staining for pathological evaluation.

RESULTS

Histotripsy applied extracorporeally propagated through multiple tissues layers including skin, bone,
and portions of lung, and created a VSD in all nine animals within 20 sec to 4 min of therapy (Table I).

VSD creation was confirmed with two-dimensional imaging, color flow Doppler (Fig. 3), and pathologic evaluation. The size of created VSDs was variable (2–6.5 mm). All animals tolerated the procedure. Minor complications including transient hypoxia and ventricular ectopy were self limited to the time during

TABLE I. Summary of Histotripsy Treatments and Results

<table>
<thead>
<tr>
<th>Case</th>
<th>Tx time (min)</th>
<th>Echo VSD size center (mm)</th>
<th>Path VSD size center (mm)</th>
<th>Flanking injury RV side (mm)</th>
<th>Flanking injury LV side (mm)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>2.5</td>
<td>4</td>
<td>3.2</td>
<td>3.4</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>2.5</td>
<td>2.7</td>
<td>4.1</td>
<td>2.8</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3.5</td>
<td>4.4</td>
<td>3.8</td>
<td>Bradycardia*</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>3.3</td>
<td>2.7</td>
<td>3.7</td>
<td>2.7</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>0.33</td>
<td>4.2</td>
<td>4.4</td>
<td>3.3</td>
<td>2.7</td>
<td>Bradycardia*</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6.5</td>
<td>5.2</td>
<td>1.2</td>
<td>1.1</td>
<td>None</td>
</tr>
<tr>
<td>Mean</td>
<td>1.8</td>
<td>3.5</td>
<td>3.7</td>
<td>3.3</td>
<td>2.8</td>
<td>None</td>
</tr>
<tr>
<td>STD</td>
<td>1.4</td>
<td>1.7</td>
<td>0.7</td>
<td>1.1</td>
<td>0.9</td>
<td>None</td>
</tr>
</tbody>
</table>

Delayed euthanasia

<table>
<thead>
<tr>
<th>Case</th>
<th>Tx time (min)</th>
<th>Echo VSD size center (mm)</th>
<th>Path VSD size center (mm)</th>
<th>Flanking injury RV side (mm)</th>
<th>Flanking injury LV side (mm)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.6</td>
<td>3.3</td>
<td>2.8</td>
<td>0.6</td>
<td>0.9</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>1.7</td>
<td>4</td>
<td>NA</td>
<td>1.9</td>
<td>1.1</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>2.4</td>
<td>2</td>
<td>3.1</td>
<td>1.3</td>
<td>1.6</td>
<td>None</td>
</tr>
<tr>
<td>Mean</td>
<td>1.9</td>
<td>3.1</td>
<td>3.0</td>
<td>1.3*</td>
<td>1.2*</td>
<td>None</td>
</tr>
<tr>
<td>STD</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.1</td>
<td>None</td>
</tr>
</tbody>
</table>

Echo VSD size center column represents measurements of the center of VSD from two-dimensional imaging. Path VSD size center is a measurement of the VSD on H and E slides measured at the center of the defect. Measurement for animal 8 is not available (NA) secondary to tissue processing. Flanking injury RV (right ventricle) and LV (left ventricle) side are measurements from H and E slides of flanking injury from the border of acellular debris/VSD to the outermost border of myocyte damage taken from both sides of the created defect at the RV and LV surfaces, respectively, and then averaged. STD (standard deviation) Tx (therapy).

*Both animals recovered after a single dose of epinephrine.

*P < 0.05 by two tailed T test when compared to immediate euthanasia group.

Fig. 3. Creation of VSDs by histotripsy. (a) Image of the ventricular septum in long axis prior to treatment. (b) After treatment a VSD is seen on two-dimensional ultrasound imaging, and (c) shunting is seen across the ventricular septum with color flow Doppler. Another example of a created VSD is seen in short axis with images prior to treatment (a), post treatment (b), and with color flow Doppler (c).
treatment. Seven animals received no intervention while two animals required epinephrine therapy for bradycardia. There were no major acute complications defined as pericardial effusion, sustained arrhythmia, or death. Two animals had mild unintended damage to the RV free wall due to its close proximity to the therapeutic focus. In the three animals, where euthanasia was deferred for 2-3 days post VSD creation, no changes in behavior, gait, appetite, vital signs, or other general characteristics were observed suggesting no global or neurologic effects from histotripsy treatment. VSD size also remained the same in these animals, although a surrounding rim of increased echogenicity was apparent, likely resulting from inflammation and/or edema (Fig. 4).

Evaluation of function prior to histotripsy therapy and immediately before euthanasia (either acute or after 2-3 days) revealed no overt differences in global ventricular contractility, although regional wall motion abnormalities could not be thoroughly evaluated in this acute study. Two dimensional and color flow Doppler analysis of the heart after treatment revealed no significant changes in valve function post procedure.

Gross Morphology

In all nine neonatal pigs studied, the epicardial surfaces appeared intact (Fig. 5a–c). Seven animals had intact endocardial surfaces except for the created VSDs. In two animals where the bubble cloud did appear very close to the right ventricular anterior free wall, minor discoloration of the endocardial surface was visualized. No other unintended damage was visualized on gross examination.

Cardiac dissection of the six animals euthanized immediately post-procedure revealed demarcated damage in the ventricular septum. The VSD and surrounding hemorrhage indicated by dark colorization was observed on both sides of ventricular septum (Fig. 5d). In the three animals with delayed euthanasia, the lumen of the VSD was more demarcated with smooth walls and the flanking hemorrhage appeared less substantial (Fig. 5e).

Gross evaluation of the lungs revealed normal appearance in five animals and very mild areas of congestion and focal hemorrhage in four comprising <5% of lung tissue. No evidence of pulmonary embolus was found in the lungs on gross pathology in either the acute or subacute setting (Fig. 6a). The ribs and underlying tissue in the ultrasound pathway were also examined. No visible damage was observed.

Pathology

On H&E stained slides from animals immediately sacrificed, the central damage zone of the VSD contained acellular debris and platelet/fibrin deposits (Fig. 7a and b). The average zone of necrosis in the center of the VSD was measured to be 3.7 ± 0.7 mm (Table I). VSDs from animals with delayed euthanasia had substantially less acellular debris (Fig. 7c) but were similar in size with a mean of 3.0 ± 1.3 mm (Table I).

Immediately outside the acellular zone in acutely euthanized animals was a rim of hemorrhage and structurally intact myocytes with a more eosinophilic hue and contracted nuclei in comparison to normal myocytes (Fig. 7b). These myocytes were likely affected by histotripsy. The width of hemorrhage (measured from the acellular zone border to distal portion of flanking injury on both sides of defect in multiple tissue slices and then averaged to provide a circumferential report of flanking injury) on the right ventricular side was 3.3 ± 1.1 mm and on the left ventricular side 2.8 ± 0.9 mm (Table I). Beyond this rim of damaged cells were normal appearing myocytes with no further discernable damage (Fig. 7b). In the animals allowed to survive 2–3 days, evaluation of the lesion revealed a clear lumen compared to the acutely sacrificed animals and the flanking region contained activated fibroblasts and occasional inflammatory cell invasion suggesting progression of an inflammatory remodeling process (Fig. 7c and d). The extent of flanking injury and/or inflammation was significantly less (1.3 mm vs. 3.3 mm on RV side and 1.2 mm vs. 2.8 mm on the LV side) comparing animals with delayed euthanasia to those with acute sacrifice (Table I).

The areas of discoloration found in the right ventricular free wall in two animals described above corresponded to minor areas of contraction necrosis and hemorrhage suggesting the tissue was mildly affected by the histotripsy therapy. There were no areas of acellular debris or platelet/fibrin deposits. No other damage was noted in the heart on histological evaluation.

Histological evaluation of the lung revealed mostly normal appearing lung tissue with focal areas of congestion and hemorrhage (Fig. 6b). There was no evidence for thrombo-embolic events and no debris from tissue fractionation was seen as evaluated by Gomori trichrome and PTAH staining.

DISCUSSION

Therapeutic creation of cardiac septal defects is necessary for the palliation of several forms of congenital heart disease [1–4,6,7,9,11,12] and is typically performed invasively with surgical or cardiac catheterization techniques [2,4,5]. This study demonstrates feasibility of “noninvasive” creation of an intra-cardiac defect by percutaneous pulsed cavitation ultrasound.
or histotripsy. Nine VSDs were created in nine intact neonatal pigs with minimal collateral damage or systemic side-effects.

The size of created VSDs was variable (2–6.5 mm), likely related to varying aberration of ultrasound energy from intervening bones and tissue, as well as

Fig. 4. VSD 2 days after histotripsy therapy. (a,b) Parasternal long axis view of VSD 2 days after creation in 2D and with color flow Doppler. (c) Three-dimensional representation of same VSD shown in a modified apical four chamber view showing persistence of the septal defect. Note the hyperechoic (bright) rim surrounding the defect marked by white arrows.

Fig. 5. Cardiac pathology after histotripsy treatment. Gross pathology of the heart revealed no damage to the epicardial surface on the anterior (a), basilar (b), or posterior regions (c). Dissection revealed demarcated damage across with ventricular septum with flanking zones of hemorrhage in immediately euthanized animals (d). (e) Similar lesions were observed in animals with delayed euthanasia but with smoother borders and less apparent flanking hemorrhage and/or damage.
motion and consistency of the targeted ventricular septum. However, no correlations could be definitively made between amount of overlying tissue (range 14–17 mm) or septal motion (range 2.6–5 mm) on VSD size. Flanking injury, comparable to that seen in ASD creation in the open-chest canine model [29], was also observed and likely related to some of the same factors. These variables should be de-emphasized with an

Fig. 6. Lung pathology. (a) Gross evaluation of the lungs revealed mostly healthy appearing tissue with only focal areas of hemorrhage or congestion (arrow). On histological analysis (b) no microscopic evidence of thrombo-embolic events were visualized.

Fig. 7. Histology of ventricular septum. (a) Histological analysis revealed a central area of acellular debris and necrosis and flanking areas of contraction necrosis with hemorrhage in immediately sacrificed animals. (b) High power imaging of this border reveals tight demarcation of necrosis and myocyte injury (solid arrow) with normal appearing myocytes in the top left of image (dashed arrow). (c) In animals with delayed euthanasia, the VSD is more clearly demarcated without acellular debris, and (d) there is evidence of cellular remodeling with presence of activated fibroblasts (arrows).
unobstructed acoustic window, such as the subcostal approach in human neonates (or other nonhuman primates), targeting of the thinner and less mobile atrial septum, as well as with improved transducer design allowing for motion tracking, ECG gating, and improved targeting (by decreasing focal distance and improving imaging resolution).

The pathologic evaluation of the animals allowed to survive 2–3 days after treatment revealed persistence in the size of VSD and less flanking injury with evidence of cellular remodeling (activated fibroblasts and inflammatory cell invasion), suggesting that some of the early flanking injury may be salvageable if not reversible. Further delineation of this inflammatory response, lesion maturation, and any systemic complications is currently under investigation in long-term studies.

No thrombo-embolic events were observed, consistent with prior demonstrations that particles created by histotripsy are largely <6 μm (the size of a red blood cell) [32], a size unlikely to cause harm [33]. Still, more robust evaluation of end-organ complications such as thrombo-embolic events are currently being investigated by utilizing transcranial Doppler during treatment and diffusion MRI to evaluate brain and other end-organs after therapy. Preliminary MRI data have revealed no evidence of cerebral lesions up to 1 month after defect creation.

CONCLUSIONS

These data in combination previous data demonstrating effective creation of ASDs in an open-chest dog model suggest that “noninvasive” creation of both atrial and ventricular septal defects via histotripsy is potentially feasible in the human neonate. Further investigation into potential side effects (embolic risk, maturation of lesions, and longer follow-up), improved transducer focusing and size optimization, and refinement of the approach are underway and necessary to develop the clinical potential of histotripsy for congenital heart disease and other applications.

ACKNOWLEDGEMENTS

The authors thank Dr. Timothy L. Hall and Yohan Kim for their help with construction of the therapy transducer driving system and positioning device.

REFERENCES

Catheterization and Cardiovascular Interventions DOI 10.1002/ccd. Published on behalf of The Society for Cardiovascular Angiography and Interventions (SCAI).