Angewandte Chemie

Supporting Information
 © Wiley-VCH 2011

69451 Weinheim, Germany

Design of a Three-Helix Bundle Capable of Binding Heavy Metals in a Triscysteine Environment**
Saumen Chakraborty, Joslyn Yudenfreund Kravitz, Peter W. Thulstrup, Lars Hemmingsen, William F. DeGrado, and Vincent L. Pecoraro*

ange_201006413_sm_miscellaneous_information.pdf

Supporting Information

Table S1. Parameters fitted to the ${ }^{199 \mathrm{~m}} \mathrm{Hg}$ PAC data. ${ }^{\text {a }}$

α_{3} DIV ($\left.\mu \mathrm{M}\right)$	$\mathrm{Hg}^{\prime \prime}(\mu \mathrm{M})$	pH	$\mathrm{v}_{\mathrm{Q}}(\mathrm{GHz})$	η	$\Delta \omega_{0} / \omega_{0} \times 100$	$\mathbf{1} / \tau_{\mathrm{c}}\left(\mu \mathrm{s}^{-1}\right)$	$\mathrm{A} \times 100$	$\chi_{\mathrm{r}}{ }^{2}$
200	80	5.8	$1.48(2)$	$0.15(5)$	$2(2)$	$18(21)$	$12(1)$	0.63
200	80	7.5	1.48^{b}	0.15^{b}	2^{b}	$10(18)$	$4(1)$	0.67
			1.11^{b}	0.40^{b}	6^{b}		$11(1)$	
200	80	8.6	$1.11(2)$	$0.40(3)$	$6(2)$	$0(20)$	$10(1)$	0.62

${ }^{a}$ Numbers in the parenthesis are the standard deviations of the fitted parameters. ${ }^{b}$ Fixed in the fit.

Table S2. Parameters fitted to the ${ }^{111 \mathrm{~m}} \mathrm{Cd}$ PAC data. ${ }^{\text {a }}$

Peptide ($\left.\mathbf{C}_{\text {call }} / \mathbf{C}_{\text {peptide }}\right)$	$\omega_{0}(\mathrm{rad} / \mathrm{ns})$	η	$\Delta \omega_{0} / \omega_{0} \times 100$	$\mathbf{1} / \tau_{\mathrm{c}}\left(\mu \mathrm{s}^{-1}\right)$	$\mathbf{A} \times 100$	$\chi_{\mathrm{r}}{ }^{2}$
α_{3} DIV (1/12)	$0.350(6)$	$0.0(1)$	$14(3)$	$4.5(6)$	$5(1)$	1.36
	$0.268(4)$	$0.18(7)$	$1(2)$	$4.5(6)$	$0.3(3)$	
	$0.17(2)$	$0.5(2)$	$24(3)$	$4.5(6)$	$5.8(8)$	

[^0]

Figure S1. A) CD spectrum of $\alpha_{3} \mathrm{DIV}$ at pH 8.0 and $25^{\circ} \mathrm{C}$. The double minima at 222 and 208 nm are representative of α helical structure. Molar ellipticity of $-34726 \mathrm{deg} \mathrm{cm}^{2}$ $\mathrm{dmol}^{-1} \mathrm{res}^{-1}$ at 222 nm corresponds to a 97% folded structure. B) ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of α_{3} DIV showing chemical shift dispersion characteristic of a well folded $\alpha-$ helical structure.

Figure S2. GuHCl denaturation titration curve of α_{3} DIV plotted as a function of concentration of folded protein vs. concentration of GuHCl . The solid line represents fit to the experimental data.

Figure S3. UV/Vis spectra of solutions containing $20 \mu \mathrm{M} \alpha_{3}$ DIV, $40 \mu \mathrm{M}$ TCEP, and 1 equivalent of CdCl_{2} at pH 8.0 (dashed line); $30 \mu \mathrm{M} \alpha_{3} \mathrm{DIV} ; 60 \mu \mathrm{M}$ TCEP, and 1 equivalent of HgCl_{2} at pH 8.6 (solid line), and $20 \mu \mathrm{M} \alpha_{3}$ DIV, $40 \mu \mathrm{M}$ TCEP, and 1.0 equivalent of PbCl_{2} at pH 8 (dotted line). Shown is a plot of normalized absorbance vs. wavelength.

Figure S4. pH dependence of the binding of 1 equivalent of $\mathrm{Cd}^{\prime \prime}$ (open circles), $\mathrm{Hg}^{\text {" }}$ (squares), and $\mathrm{Pb}^{\prime \prime}$ (filled circles) to $20 \mu \mathrm{M}, 30 \mu \mathrm{M}$, and $20 \mu \mathrm{M} \alpha_{3} \mathrm{DIV}$, respectively, along with the fits of the experimental data. Experiments were followed by monitoring UV/Vis absorbance due to LMCT bands at 232, 247, and 236 nm for $\mathrm{Cd}^{\prime \prime}, \mathrm{Hg}^{\prime \prime}$, and $\mathrm{Pb}^{\prime \prime}$, respectively. $\mathrm{Cd}^{\prime \prime}$ and $\mathrm{Pb}^{\prime \prime}$ titration data were fit to the model simultaneous dissociation of two Cys thiol protons; $\mathrm{Hg}^{\text {II }}$ was fit to a single 1-H step corresponding to the formation of HgS_{3} from $\mathrm{HgS}_{2}(\mathrm{SH})$.

Figure S5. Fourier transformed ${ }^{199 m} \mathrm{Hg}$ PAC spectra of α_{3} DIV (faint lines) under different conditions along with the Fourier transformed fits (dark lines). Sample conditions were A) $200 \mu \mathrm{M} \alpha_{3}$ DIV, $80 \mu \mathrm{M} \mathrm{HgCl} 2,100 \mathrm{mM}$ phosphate buffer at pH 5.8 , B) $200 \mu \mathrm{M} \alpha_{3}$ DIV, $80 \mu \mathrm{M} \mathrm{HgCl} 2,100 \mathrm{mM}$ phosphate buffer at pH 7.4, and C) $200 \mu \mathrm{M} \alpha_{3} \mathrm{DIV}, 80 \mu \mathrm{M} \mathrm{HgCl}{ }_{2}$, 100 mM CHES buffer at pH 8.6 .

Figure S6. ${ }^{113} \mathrm{Cd}$ NMR spectrum of $3 \mathrm{mM} \alpha_{3}$ DIV with 0.8 equivalents of ${ }^{113} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ recorded at pH 8.

Figure S7. Fourier transformed ${ }^{111 \mathrm{~m}} \mathrm{Cd}$ PAC spectrum of $300 \mu \mathrm{M} \alpha_{3}$ DIV loaded with $1 / 12$ equivalents of Cd" (faint line) along with the Fourier transformed fits (dark line). Sample was prepared in 20 mM TRIS buffer at pH 8.1. The data analysis of this spectrum relied on identification of typical signals from $\mathrm{CdS}_{3} \mathrm{O}$ species reported in the literature. ${ }^{[37]}$

[^0]: ${ }^{a}$ Numbers in the parenthesis are the standard deviations of the fitted parameters.

