Deadlocking in Material Handling Systems

Richard C. Wilson

The University of Michigan
Department of Industrial and Operations Engineering
Ann Arbor, Mi. 48109

Technical Report 85-13

Deadlocking in Material Handling Systems
Richard C. Wilson
The University of Michigan
Department of Industrial and Operations Engineering

Ann Arbor, MI. 48109
Closed material handling systems can be designed with protocols
which lead to deadlocks, where further movement of the system is
impossible without external intervention. Deadlock states also
can lead to premature termination of simulations. Three examples
of material handling systems which can deadlock are described.

Models for identifying systems with deadlocking potential are

described and evaluated.

Many automated material handling systems can be viewed as closed
systems with limited space for material in queues or in transit,
and captive carts or fixtures which circulate within cyclic
routes. Because of the associated costs, systems are designed
with minimal numbers of carts, fixtures, and waiting spaces. An
unexpected consequence may be the occurence of deadlocks
comparable to '"gridlock" in New York City. In spite of the
potential disruption which deadlocks generate in the operation of
automated handling systems, the subject has received little

attention in its material handling context.

One purpose of this paper is to describe this problem by means of
three real instances in which deadlocking can occur. We provide a
survey of methodologies for analyzing the detection or avoidance
of deadlocks in existing systems, and for designing deadlock free
systems. We also describe two models developed specifically for

deadlock detection in material handling systems.

Deadlock-potential adds to the cost of automated handling systems
in several different ways. Larger queue space may be needed to
reduce the chances of deadlocks. More elaborate look-ahead rules
may be programmed in the controls to avoid potential dea&lock
states. Throughput may be reduced and lead times extended as a
result of the time lost in relieving the deadlock. For example,
in an automated guided vehicle system (AGVS), a manually operated
lift truck may be needed to unload a blocked automated guided

vehicle (AGV) so that the AGV is freed to move a load from a

blocking output queue to an available input queue. It may not be
obvious however which AGV to unload and to which blocking queue

it should be dispatched.

Simulation is the technique most appealing for analysis of the
capacity of a handling system. Unfortunately, unless the real
system is guaranteed to be deadlock-free, a valid simulation
model itself may deadlock in the early stages of the simulation
run. Therefore, it may be impossible to obtain any data on system
capacity. Furthermore, even if a simulation encounters no
deadlock state, deadlocks may occur when the real system begins
operation. Future changes in the product-mix or work load may
introduce deadlocks into an operation which previously seemed

deadlock-free.

Examples of Material Handling Systems

A simulation study of heuristic rules for dispatching automatic
guided vehicles (AGV's) in a job shop is described in Egbelu and
Tanchoco (1981). The shop consists of thirteen departments
containing multiple identical machines in each department. Each
department except the receiving and shipping departments has a
single capacitated input and output queue. Jobs move in unit
loads on six AGV's on a route defined by the nature of the job.
At each department, the delivering loaded AGV transfers its unit
load to the input queue, if space is available. Unit loads are
drawn from the input queue and processed by the machines in the
department. When finished, loads are discharged into the output

queue, if space is available. Loads wait until an empty AGV

arrives to remove the processed load and carry it to the next
department on its routing. If the output queue is full, machines
are not able to discharge completed work and thus become blocked.
Incoming work continues to fill the incoming queue until it is
unable to accept additional loads. An arriving AGV is unable to
discharge its load and therefore remains unavailable to move
completed loads from output queues to the next department on
their routings. Thus deadlock may occur if full output queues
cannot be emptied because all carts are unable to discharge their
loads, or are blocked from reaching pick=-up points due to
interference from other carts. When they encounter this
difficulty in their simulation, Egbelu and Tanchoco set the queue
capacities to infinity. Unless large queue space is a realistic
alternative in practice, however, the performance measures from
such a simulation are questionable indicators of the performance

of the real system.

As a second example, consider the conveyor transfer scheme in
figure 1 which was part of a comprehensive material handling
system proposed for a high volume manufacturing facility. The
transfer scheme was intended to provide an interface between two
cart-type material handling systems. The transfer receives empty
racks which are entering the plant stacked either two or three
high on tow-line carts (line B). The stack of empty racks 1is
removed from the tow-cart at transfer station 3. The emptied tow
cart then continues to the next transfer station at 5. There, it

receives a stack of two or three-high full racks which are coming

from the manufacturing plant on line A for shipment. Line A is a
track system which carries cars mechanically powered for movement
independent of each other. The cars can accumulate in queues
anywhere. Cars incoming at A may be empty, or carrying full racks
of one type of product stacked two-high, or full racks of a
different product stacked three-high, All full racks are
transferred at 5 to line B by an automated transfer. Emptied cars
continue on their track to receive a stack of empty racks from
the tow line at transfer mechanism at 3. A mixture of empty cars
and cars with empty racks continues on the tracks to the de-
stacker machine at l. Here the racks on top are lifted off, and
the car now with one rack proceeds to a rack checking activity
and subsequently into the plant. The next incoming car on the
track must be empty so the destacker can place the bottom rack
being held from the preceeding stack on the empty car. Thus, a
car entering the destacker with three empty racks must be
followed by two empty cars. Furthermore, all cars which leave the
transfer are either empty or carry exactly one rack.The sequence
of rack/car loadings entering the transfer from the plant on line
A is controllable by the shipping department. The sequence of
loadings on the incoming towline at B is largely random since it
reflects the reverse order in which the racks are loaded into
rail cars at the customer plants. It is easy to see that this
transfer can deadlock if a cart with empty racks is blocked in
transfer station 3 because no empty car is available into which
it can be unloaded, and a car with full racks is blocked in
transfer station 5 because no empty cart is available into which

its full racks can be loaded. If this situation arose 1in

practice, a lift truck was to temporarily unload the empty racks
from the cart in transfer station 3 so that it could move to

station 5 to receive the full racks.

The third example shown in Fig. 2 illustrates deadlock problems
in an unusual automated plating system controlled by programmable
controllers. The system consisted of approximately sixty
cleaning, plating, and rinse tanks serviced by a battery of
automatically controlled overhead monorail hoists. Par;s for
plating are manually loaded into barrels or racks at an
input/output workstation. The hoists carry a barrel or rack to
the next tank specified by the plating recipe for the batch of
parts. The barrel/rack is placed in the tank for a time not less
than the required processing time, and the hoist is free to
execute the next pickup and move according to a dynamic priority.
The system is planned to be able to process an arbitrary mix of
parts in any sequence without operator intervention. Deadlocks
arose during the simulation of the system when all available
circulating barrels/racks were blocked because the subsequent
destination tanks on the recipes were occupied. Trial and error
efforts to redesign the tank configuration or the recipes to
eliminate deadlocks proved to be difficult.

A fourth example (Fig.3) illustrates an automotive engine test
system. Engines to be tested are each loaded on a pallet which
circulates on a loop power and free conveyor track. The pallets
are encoded so that they can be directed to the first free engine

test stand. If all stands are occupied, they continue to

circulate until a stand becomes free. The engine and pallet enter
the free test stand, and undergo the prescribed tests. When
finished, they are coded to travel to the a repair station or to
the unload point. An engine automatically exits from the loop on
its pallet into the free repair station. After repair, the pallet
with the engine is coded for a test station and re-entered onto
the conveyor loop. Although this system superficially resembles a
simple AGV system, it can never block., The number of pallets in
the system is never sufficient to completely fill the loop
conveyor. Since the conveyor serves as a queue for all the test
and repair stations, the queue while finite, is never filled.
Therefore the system can never block, or deadlock.

Prior Research

Egbelu and Tanchoco (1981) describe their encounter with
deadlocking in their simulation analysis of a hypothetical AGV
system. They offer pragmatic reasons why several of their
dispatching rules encountered deadlocks, but provide no analytic
approach to deadlock detection or avoidance.

In computing systems, the problem of deadlocking was described as
early as 1961 in an IBM technical report. Coffman et al (1971)
survey the literature on deadlocks through 1970. We briefly
summarize the most pertinent ideas published since, in order to
establish notation and definitions appropriate to a material
handling context. Deadlock issues arise in a system consisting of
a fixed number m of types of resources. In a material handling
system a resource is the place occupied by a unit load which
moves through the system. Thus a resource may be a machine, a

waiting space, or a unit load transport cart. Initially we

consider only unit loads; thus assembly, disassembly, or batching
are not incorporated in these models. The capacity (holding
space) of a resource type i is t;« , a fixed integer. A part in
process seizes and releases one or more resources as it traverses
a specified route through the system. Thus at each part-step j of
its route, the part-step '"claims" one or more units of the
available resources. C(i,j) is the maximum number of resources of
type i required by a part-step j at one time. We assume that
C(i,j) can be determined from the operation routings. A(i,j) is
the number of resources of type i which are currently allocated
to processing part-step j at a particular time. If A(i,j) <
C(i,j), the processing sgep is blocked until sufficient
additional resources become available to meet the claim. R(i,j)
is the number of units of resource type i requested next by the
part-step j, given its current allocation A(i,j). Thus if we know
A(i,j), we can determine R(i,j), the resources required at the
next step on the part routing. A number of relationships are
self-evident. For feasibility the resources required at any step
cannot exceed the capacity provided:
c(i,j) ¢ t; i=1,..m; j=1l,..,0. (1)
The number of resource units allocated to a part step cannot
exceed the maximum claim, although a partial allocation 1is
permitted:
A(i,j) g ¢(i,]) i=l,..m; j=1l,..,n (2)

The total number of resources allocated cannot exceed the
capacity:

n
ZA(i,J') e, i=l,..,m (3)
e

For example (Habermann, 1969) for the claim matrix |[C(i,j)|][=

(% 3_). the resource capacity vector Il-tiH = (4,5), and a
current allocation matrix ||A(i,j)I| = ('l Z'.) y, the system
is not in a deadlock state, since we can allocate the free
resources to satisfy the resource claim needed to process part-
step 2. This gives a revised allocation matrix |[[|A'(i,j})|]| =

(.!5 L> . Thus part step 2 can finish its operation, and the
freed resources reallocated to process part-step 1l next.
Alternatively, if the current allocation matrix is |[A(i,j)|[=

(% 'Z) ’ the free resources cannot be reallocated in any
way to satisfy the claim of either part-step. Hence, assuming
allocations are 1irreversible, a deadlock occurs.
Coffman (1972) notes that if each of a set of part-steps 1is
allocated to a resource and there is only one resource of each
type, a state graph can be used to represent the system state.
Each node corresponds to a resource. If a part-step 1s currently
allocated to resource i and requests resource j (i.e., the next
step on its process routing after i is resource j), the graph
contains a directed arc from node i to node j. A circuit in the
graph is a necessary and sufficient condition for a deadlock. For
the more general case of several resources of any type and/or
multiple types of resources required concurrently by a part-step,
Coffman providés the following algorithm to detect a deadlock
condition for a given allocation state. Let s; be the number of
resources of type i currently free. Thus:

s; =t - S AL (4)

\):l
The algorithm proceeds as follows:

Step l: Initialize w; = s; for all i=1l,...,m. "Mark" all part-
steps j which are unallocated (eg. A(i,j)=0 for all 1i).

Step 2: Find an unmarked part-step k with R(i,k) < w. for all i.

i
If one is found, go to step 3; otherwise stop: a deadlock
exists.

Step 3: Set w; = w: + A(i,k) for all i, "Mark" part-step k and

i i
return to step 2.
The algorithm reveals a deadlock by accounting for all ways of
completing the allocated part-steps. A deadlock exists if and
only if there are unmarked part-steps at termination; i.e. one or
more part-steps cannot be completed. Modifications are proposed
to improve the computation time in special cases. Similar ideas
are developed and extended by Holt (1972), including testing

deadlock-freedom for systems with single unit resources (ti=1 for

all i) or with a single resource type (m=1).

Kameda (1980) describes an efficient algorithm for determining
the deadlock-freedom of a system which does not require a
deadlock detection algorithm at each state of the system. The
procedure requires that the parts (and hence the part-steps) to
be admitted to the system be fixed in advance, and their resource
requirements be specified. For the same model, Ibaraki et al
(1983) provide an algorithm for designing deadlock free systems

by selecting the t;'s which minimize:

LY
Zdi tis

i3
where d; is the cost per unit of resource type i. Ibaraki and

Kameda (1982) show that several variants of this problem are NP-
complete.

In most material handling systems, the set of parts which may be
in the system at a given time may be a sub-set of all possible
parts. The total number of parts may be constrained by the number
of available fixtures, carts, waiting space, or machine space,
but the specific set of parts may be continually changing. In
these cases, Kameda's algorithm is not directly applicable.
Ibaraki and Kameda (1982) show that if the number of part-steps
which are allowed concurrently in the system is limited to K, the

system can deadlock for K if and only if:

m
K ¢ Z max { KC(i,j) - tis O 2 (5)
$=\
holds for all j. Thus, in the earlier numerical example, the
system can never deadlock if K=1; i.e., if at most one part is

allowed in the system, but it can deadlock if K = 2. If there is

also an upper bound kj (>1) on the number of part steps x; from a

]
class (such as all part-steps which use the same fixture), and if
"
K <Z ks
6=‘

determining if a system can deadlock is NP-complete.

Obermark (1982) and others have modeled algorithms for detecting
a deadlock in a packet switching network where messages must be
transmitted among the nodes in order to determine the current
state of the network. Complications arise when the state of the
system changes during the time required to transmit the messages.
Toueg and Ullman (1981) prove that if buffers at each node are of
size b and b is greater than the maximum number of part-steps of
any part type, several local dispatch rules can control the
dispatch of parts so that deadlock will never occur. Bracha

(1984) addresses the problem of deadlock detection when resource

10

requirements may be of the AND-OR variety, i.e., a part-step may
require several other (AND) part-steps concurrently for its next
step, or a part-step may require some combination (OR) of other

part steps.

Deadlock Freedom in Material Handling Systems
From the preceding survey, we see that in the most general case,
determination of deadlock-freedom requires enumeration of all
possible states and testing each state to detect if the state can
deadlock. In this section we describe two branch and bound
algorithms which seek to enumerate only feasible system states
for deadlock detection. We show how the models apply to a variety
of material handling systems. Computational experience on several
realistic problems is reported.
*Integer Programming Model
We first formulate a zero-one integer programming problem which
seeks to maximize the number of part steps:

mn

z* = :; X5

‘s

subject to constraints on the number of part-step unit load

spaces which are available:
n

Zcli,i) x5 ¢

. i=1’...’m
4=

i
and to other configuration constraints (i.e., each unit load j

must be fastened to a specific fixture type k while in the

system): M
Z F(ky§) x5 & by k=m+1,...M.

=\

The following assumptions are implicit in the model:

l. Parts move as unit loads throughout the system. Each space

11

constraint is stated in number of unit loads.

2. Parts are not assembled or disassembled during their route
through the system.

3. Each part has a unique routing of steps through the systenm,
with known space requirements at each step. The part steps are
indexed in the modél in sequence from left to right.

4., Only one of any part-step can be in the system at any time.

This can be relaxed by adding columns which duplicate part-steps

in the model, or by changing the model to permit xj's to be any
non-negative integer.
5. The last step on a part requests next the resources specified

for the first step on the same part. Hence the system will block
if the finished part cannot be replaced with the same part.

6. Space resources must be empty before a claim can be satisfied.
7. A part-step may claimmultiple amounts of several resources
simultaneously.

An overview of the major steps in the algorithm to determine if a
system can deadlock is given in figure 4. Given the (0,1)
model,the algorithm seeks to find a feasible soiution state which
contains a maximum number of part-steps. Whenever the (0,1)
algorithm finds a feasible state containing at least as many
part-steps as any previous state, Coffman's algorithm is used to
test for a deadlock. If none is found, the algorithm tests o;her
feasible states until either all states have been implicitly
tested or a deadlock is found. Thus for designs with p fixtures,
n part-steps, and n<p, the algorithm may test n¥*...*(p+1)/(n-p)!
different states. For realistic problems (e.g.,n=50 and p=15) the

number of tests may be very large indeed.

12

In figure 5, we show a very simple array from the (0,1) model for
a system with three part types, the first and third parts having
two part-steps, and the second having four part-steps (Problem
#1AGV). Three resource types and two fixture types are provided.
If part-step 1 is in the state (x3=1), it requests the resources
and fixtures of the succeeding part-step 2, whereas the last
part-step xg of the second part type next requests its first
part-step xj.

This model structure lends itself to a simple heuristic for
minimum incremental cost resource expansion when a deadlock state
is detected. Assume that resources of type i cost d; dollars per
unit of space. If a deadlock is detected, increment the resource
capacities t; for i=l,..,m by an integer amount which relieves
the deadlock at minimum total cost. Repeat the deadlock test for
that state, etc. A guaranteed optimal resource expansion can be
obtained for a deadlocked state using a dynamic programming

formulation. We omit the details.

*Network Model

For the simpler application in which a part-step claims only one
unit of one resource at any part step we describe a second model
based on a network representation for generating all feasible
states of the handling system, subject to a variety of realistic
constraints. The network consists of five stages as shown in
Figure 6. At the first stage h, one node is used to model each
fixture type; at the second stage i, each node represents a part-

step; each node at the third stage] represents a resource type,

13

and at the fourth stage k, nodes represent "regional" or shared
resources. Enumeration of system states requires the solution of

a sequence of maximum flow problems defined as:

maximize xtg’

subject to flow balance at each node:
Ax =0

where A is the node-arc incidence matrix of a network,
constructed according to the following rules:
1) Connect source node s to each fixture node h with upper bound
up equal to the maximum number of fixtures of type h circulating
in the system. The model assumes that a fixture remains
associated with a particular part throughout all of the
processing steps and resource utilizations.
2) Connect each fixture node h by an arc to each part-step i
which uses fixture type h. Note that a given part may use any one
of several different fixture types. These arcs need not be
bounded.
3) Connect each part step node i by an arc to the resource type
node j on which part step 1 is processed., During enumeration of
states, these arcs provide a matching of part-steps to resources,
where the "flow" on arc (i,j) is exactly one if part-step i is in
the system for that state, and zero otherwise.
4) Connect resource node j to the appropriate joint use node k
(if any) or to the terminal node t, with an upper bound on the
arc equal to tjs the number of resources of type j available.
5) Connect each joint use node k to the terminal t with an arc
whose upper bound is the capacity for joint use of the incident

resources.

14

Figure 7 provides a flowchart of the program for testing an
arbitrary material handling configuration for deadlock-freedom.
The implicit enumeration algorithm is based on Jensen and Barnes
(1980). A deadlock state is determined by the algorithm described
by Coffmann (1972). Part-step matching to resources 1is
established by a standard out-of-kilter sub-routine appropriately
configured for this application. Thus the testing procedure draws
on three routines selected because of their ready availability,
not because of their efficiency.

Modeling and application of the algorithm is illustrated by a
simplified example of a flexible manufacturing system using
AGV's., The system has three types of resources: two AGV's, one
machine type 1, and one machine of type 2. No queue space is
provided at either machine. The two AGV's are identical. Two
part-types are processed. Part type 1 is processed on machine 1;
part-type 2 is processed first on machine 1 then on machine two.
Both parts are mounted on fixtures while in the system, part 1l on
fixture A and part 2 on fixture B. Two fixtures type A aﬁd one of
type B are provided. Movement between and to/from the machines
requires use of either AGV. Schematically the layout might be as
shown in figure 8a. However the explicit details of the layout
are not relevant to deadlock-detection, since interference
between AGV's, travel rates, and throughput capacity are not
considered. The network model for this system is shown in figure
8b. The algorithm detected a deadlock in the first state
evaluated which has a part 1 on an AGV requesting machine 1,

another part 1 being processed on machine 1, and a part 2 on the

15

other AGV, also requesting machine 1. An alternate of this same
system (Problem #2AGV) with three AGV's, 2 type 1l machine spaces,
and three each of both fixtures is found to be deadlock-free. A
second trivial variation of the original system with no fixture
type A, generated the deadlock enumeration tree in figure 9.

A toy example of the automated plating system provides a second
example of the network model for deadlock detection. We assume
there are six types of plating tanks. There are two identical
tanks of type 1, and one of each of the others. Parts to be
plated are loaded into either a plating "barrel" or a rack. Two
of each are available. Three different plating recipes are
assumed. Recipe 1 requires parts in a barrel to cycle through
tanks 1, 2, and 5 and then back to a load/unload station. Recipes
2 and 3 require racks, and cycle through tanks 1, 3, 4, and 5 or
1, 2, and 6 respectively. The network model of this system
(Problem #3TNK) is shown in figure 10, A deadlock state found by
the algorithm is shown in figure 11, This deadlock was found in
the seventh state evaluated.

Computational Experience

A model of the real plating system consisting of 64 tanks and 16
part types with a total of 270 part-steps was run on the network
algorithm. Computation was halted after 120 CPU seconds and over
4000 feasible states had been tested. Determining if the system
were deadlock free could require examination of all combinations
of 17 fixtures among 270 part steps. Several sub-sets of part
types were tried with a reduced set of resource types. The
deadlock shown in Figure 12 was detected in sub-problem #7TNK

with 19 tanks, 21 part-steps and 17 fixtures. Computation times

16

for this and other smaller problems are shown in Table 1. Further
reductions in CPU time for the network algorithm could be
achieved by simplifying the detection algorithm for the single
resource use by each part-step.

Conclusions

We described the development of programs which detect deadlock
potential for a wide class of material handling systems
designed for automated manufacturing. For large problems, the CPU
time of these is likely to be.prohibitive. Clustering methods for
selecting subsets of part-steps with high potentiai for
deadlocking might be devised to reduce problem size. A number of
other questions are yet to be resolved. For example, the models
do not incorporate the contribution to deadlock which might be
caused by interference between carts. Furthermore, we have not
developed Bracha's concepts for AND-OR detection models to permit
the modeling of part steps which include assembly or dis-
assembly. As a consequence, we have not modeled the transfer
system described earlier.

In addition, we have barely touched on the issues of deadlock-
avoidance and design. With carefully devised sequencing rules,
potential deadlock states can be avoided, as Egbelu and Tanchoco
indicate in their AGV simulations. However, a systematic
methodology for devising rules which avoid deadlocks in an
existing system is needed. For example, if the model deadlocks
because the last part-step requires that it be replaced by the
first part-step for the same part-type, resource requests of the

first steps of alternate part-types might be considered,

17

particularly part types which might be accepted without
deadlocking or violating constraints. These rules might also be
useful in selecting parts to load into a system to avoid
deadlocking. The rules for choosing among several part types
candidates however may impact the long term proportion of part-
types accepted, or the prospect of future deadlocks. The design
of minimum-cost deadlock-free systems has been reported by
Irabaki (1983). However, this work only applies to the case where
the the number of part-steps in the system is fixed and known in
advance. For material handling applications we previously noted
that the part-steps may change during operation, so that
Irabaki's algorithm needs extension for material handling

applications.

18

References for "Deadlocks in Material Handling Systems"

Araki, T., Y.Sugiyama, T.Kasami, J. Okui; "Complexity of the
Deadlock Avoidance Problem", Proc. 2nd IBM Symp. on Mathematical
Foundations of Computer Sc1ence, IBM Japan, Tokyo (1977) p.229-
252.

Bracha, Gabriel, Sam Toueg; "A Distributed Algorithm for
Generalized Deadlock Detection", Tech.Report TR 83-558, Dept. of
Computer Science, Cornell University, Ithaca, NY 14853 (July,
1984).

Coffman, E.G.Jr., M.J.Elphick, A, Shoshani; "System Deadlocks",
Computing Surveys, 3:2 (1971) p.67-78.

Egebelu,Pius J., J.M.Tanchoco; '"Characterization of Automatic
Guided Vehicle Dispatch Rules'", Int.J.Prod.Res., 22:3 (1981)
po359-3740

Garey,M.R., D.S.Johnson; Computers and Intractability, W.H.
Freeman & Co. San Francisco, CA 94104. (1974)

Gold, E.M., "Deadlock Protection:Easy and Difficult Cases",SIAM
J. Comput., 7 (1978) p.320-336.

Haberson,A.N., "Prevention of System Deadlocks'", Communications
of ACM, 12:7 (July,1969) p.373-385.

Holt, Richard C., "Some Deadlock Properties of Computer
Systems",Computing Surveys, 4:3 (September,1972) p.179-195.

Ibaraki,T., T.Kameda; '"Deadlock-Free Systems for a Bounded Number
of Processes", IEEE Transactions on Computers, C-31:3
(March,1982) p.188-193.

Ibaraki,T., H. M. Abdel-Wahab, T. Kameda; '"Design of Minimum-Cost
Deadlock-Free Systems'", Jour. A.C.M., 30:4 (0ct.1983) p.736-751.
/

Jensen,P., Barnes, Network Flows, Wiley & Sons, New York,N.Y.

(L980). T

Kameda,T.; "Testing Deadlock-Freedom of Computer Systems",
Journ.ACM, 27:2 (April,1980) p.270-280.

Reingold E M., J. Nievergelt, N Deo, Combinatorial

Cliffs, N. J 07632 (1977).

Silberschatz, A., Z.M.Kedem; "A Family of Locking Protocols for
Database Systems that are Modeled by Directed Graphs", IEEE
Transactions on Software Engineering, SE-8:6 (November,1982)
p.558-562.

Toueg, Sam, Jeffrey D. Ullman; "Deadlock-Free Packet Switching
Networks", SIAM J. Comput., 10:3 (August, 1981) p.594-611.

Wilson, Richard C. Conveyor Transfer Analysis:A Case Study,
Working Paper #2, Manufacturing Flow Research Project, Department

of Industrial and Operations Engrg., The University of Michigan,
Ann Arbor, MI 48109 (1977).

*3993 QT=YOUF [O[EOS °dWIYdS Iojsuei] JO MITA ueid °T 2iandtg

udtn [_ NP
€ 10 g [.6 1= ' 1€ = 6
PqQINO TINA
s)}oey :SMOJ . . -..
S 4 e Mwwwo Moy, %mM!m $9UTT MO], . muom% Lidug yagm siae)n :9urT] SOHllAHWMv
~A - S " = =
siey K3dug < -~ — 6T - - ——Tf=-— 8=
mxomzuﬁazm . »~ _.;;.Ast; soyadug| — - Ve)
IS ~ S PO 1 ‘H-¢ * IiHT—‘. - _ - I.—V —TH=cf| = |- o .h& - T w.\l..l.lzfo
aajsueall ‘—m———- :I::;li:~ R a23jsueay], | I a9qoeisaq S39'Y TH-1
ey walsAs }oeal ae) ﬂm 10 Aydug:sae)
S l¢
Tind s)yoey

K3ydug:sae)

‘welsds Burield STQIX9TJ PoIBWOINE UT SISTOY PuB SHUBI JO Inoke] *Z 2and1y

LF 1SIOH

¥3ddod INIZ
\
6€ e lzee loe lse lve lec lee e loc |62 |82 |tz |92 |Se |v2 €2 |22 12
< 9f ISIOH —>
28 311LNS
avoINN/avo ¢
NVITD NIL
Nt 21e lv Is |9 ¢ |8 6 Jou e Jat jer pt st pt jit pL |6l 02
> v# 1SIOH > G# LSIOH o
L# 31LLINNHS
avoINn/avo A ¢F I1LINHS ¥ND —
*ssvd Y3IATIS TN
v9 | €929 {19 |09 65 96 125 l9s lss lvs les lzs |is Jos |e6v |sy kv Jov Jsv [vb Jev f2v |Lb ov
IWOUIN) 31170 I

7737 1S3] 3INIONF d3IlvWolny ‘€ FENOLd

NOTLVLS ¥1Vd3y

b.v o
NOTLVLS
1nd1nQ/LNdN]
4]
---3YOAIANO)
4007 ¥3T10y
IATT
ﬁ

oot

NOILVLS 1S3]

sa
s9¢

0
o
<

{3
'

L
{

[4
[
[4

-0

S ww
St3dee ec
S af

2

Input System
Description

L

Create (0,1)
Model

I

Find
New Feasible
(0,1) Solution

old

with Z 22

Feasible?

Deadlock? Stop.

Deadlocked

Stop.
Deadlock
Free

Figure 4. Flowchart of (0,1) model for deadlock detection

Part #1] Part #2 | Part #3

X~—»X X=X —t X=X X

L "%, XXX R | XX

1 0 1 0 1 0 1 0 £33 Resource i#1
0 1 | 1 1 0 0 o 1 g1 Resource #2
2 1 [0 0 0 1 |2 1 £ 6 Resource #3
1 1 | o o o0 o0 [1 1 2 Fixture #l
0 0 ' 1 1 1 1 | 0 0 .S; 1 Fixture #2

Figure 5. Array for Toy Example (Problem #1AGV) of (0,1) Model

/\

Vv
v
v

l
Il'
)

6oy

R —

P

\

Source s Fixtﬁres Part;steps Resource JointEUse Terminal t
Sp?ces

Figure 6. Stages in a representative Network

Input System
Description

¥

Create Network
Model

'

Set Bounds on

Network Matching
= Variables to :

1 if matched

0 if not

(0,1) if free

Solve for Max Flow

Enumeration
Complete?

Stop
Deadlock Free

Backtrack; Reset
Free Variables

Figure 7. Branch and Bound/Network Algorithm for Deadlock Detection

[CART

?

MCH1

MCH2

"

Figure 8a. Simple FMS with two AGV's (CART) and two
Machine types

1]

/P&E? \
pe #1

Figure 8b. Network Model for Simple AGV Flexible Machining System. Numbers
in parentheses are lower and upper bounds on arc flows.

.mw:ﬂmUcmun
. .9 Sy Yy
jo @o%uanbas ayi aae [0 ur sasquny °S9pouU UT dIB § X JO SanTep X pue X X X 103
s23po2 uo uaarl 2ae (1‘Q) 3JO sonyea Buyyouelg °I[qISeajur = ,SIUI,, °V 2d43 2INIXTJ ouU YIIM
g 2an3tyg ur we1sAs Jurturyd®BK STQIX3Td AV 2Tdwrg 103 991] uorjeIdWNUF punog pue yoduelg -6 2an31yg

sjul 1000 0100 sJjujl 0010 Jul 0001 sjul
0ot
0 T 0 0 0 T =Ix
sjyul sjul
N
0 T 0 T 0 T
SJjul
“qvn
0 T
€

(Resources)

(Part-steps)
Figure 10. Simple Example of Network for Automated Plating System

- -_—~

/ TANKL N\
l
, :@\ TANK2 _TANK3 _ TANK4 TANKS _ TANK6

0 S M 3

Figure 11. Deadlock State for the Simple Example (Problem #3TNK)
of the Automated Plating System. Recipes (part-types)
numbers are in . Arrows indicate next requested
tank type. ‘

AMZHN*\ EQAAOHWV Ewuw%m wﬁﬁumﬁm poleuwn 1y Teoy I103F 23vIAG MoOoTpe=2d 71 OHSMM.&

*NOILVYNOI4NOD SIHL 40 X201dv3iA V 3IInAodd NVYD ST133¥vd JFYHL ANV SXHIVY dnOod SV Mid SY 310N
¥34402 Mz
) o
o5t Fol
6 R ac lze loe lse lve lee lee e loc |62 |82 |e2 |9z |s2 |v2 22 12
SN A4 of 1SION —
28 3IL0NS
avoiNn/avol A
Jﬂ_n‘o
he
,\ NV3T1) - NIL
\o .:
] [[e “
. 2le v ils 19 | |s |6 Jor jur Jat jer ot st 02
< /llnmwx\“wwwm-oz ,//1::::n||, Gf 1S10H >
(7 3LI0NS
ayoNn/avol A FILINKS UMD —
“Ssvd ~ YIAS TN
9¢ I e [Ph Pe [Pe e Prs
v9 | €9 |29 |19 |o9 65, a5 | s fos |ss |vs |es fas s Jos Jev Jav kv for |sv uv fev Lt ov
Mo \ 31170 _/

4

(S734Y¥vd 9 “SHIVY TT)

NOILVYN9IIINGD XI01AV3IA IJWVS V

*sad£3 -3aed 3jo aaqunu Tejl03]
=N S20IN0Sal jo Iaqunu=}] °*SPUOIIS~-TITITW UT DWI] d) *STOPOW MI0MIaN
pue (1°0) 103 suorleI9I] UOTIDIIBQ pue saur] uotieindwol aAaTleiRdWO) °*T 9[qE]

3344 hh 0¢T 49T 08h onl IT ¢ S A9V6
A3074a(q¢ 1 I b¢ 1t T ¢ S A9V8
#2070 S/h 0¢ 99 [AARAA 1! 1¢ 61 [1 ANL/
A42014(98/LT 9/ 16¢ ¢ 05¢h | TC ol Sl AN/
#2014(¢S L 8 [81 09 or 9 h ANLE

3344 he h 9 8¢ 11 9 ¢ 9 NS¢
#2074y [h ¢ It _ T4 q 8 ¢ ¢ AIVT

J3S W S1S3l _umw MW S1S3l
171NS3Y ndd Ad S13IN{ Ndd xJQ% N W ‘IXI4 # #9408 g

...... 73ady 13p-- | 73000 (T°C)

SLTINS3Y TYNOILVINGWO) AYVNIWIIIY

