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Quasistatic measurements of room-temperature anelastic relaxation were used to characterize the

properties of shear transformation zones (STZs) in amorphous Al86.8Ni3.7Y9.5 in the dilute limit.

Using a combination of nanoindenter cantilever bending and mandrel bend relaxation techniques,

anelastic relaxation was measured over times ranging from 1 s to 3� 107 s. Direct spectrum analysis

yields relaxation-time spectra, which display seven distinct peaks. The results were analyzed using a

linear dashpot-and-spring model, combined with transition-state theory, to yield several STZ

properties. These reveal a quantized hierarchy of STZs that differ from each other by one atomic

volume. Potential STZs occupy a large volume fraction of the solid. They access their ergodic space,

with the ratio of forward-to backward jump rates ranging from 1.03 to 4.3 for the range of stress

values used. VC 2011 American Institute of Physics. [doi:10.1063/1.3552300]

I. INTRODUCTION AND BACKGROUND

Metallic glasses exhibit high strength and elastic limit,

properties that are attractive for a variety of structural appli-

cations.1 However, they also exhibit flow localization, which

results in macroscopically brittle behavior. While significant

progress has been made in understanding their mechanical

behavior since the pioneering work by Spaepen,2 a detailed

microscopic description of viscoelastic flow of metallic

glasses remains a challenging task. Plastic deformation of

crystalline materials has long been well-understood, and

described in terms of well-defined lattice defects. However,

glasses pose significant challenges in defining flow defects,

as even the baseline structure is poorly known. Recent

reviews of deformation of metallic glasses have been given

by Schuh et al.3 and Trexler and Thadhani.4

Spaepen’s model2 has been successful in describing a

range of observations on flow and flow localization. Argon5,6

added microscopic details, based on insight gained from two-

dimensional bubble rafts.7,8 He identified low-stress flow

defects as microscopic, equiaxed, regions, termed shear

transformation zones (STZs). The shear transformations are

thermally activated and assisted by external stress, and the

transformation shear strain, cT
0 , is of the order of 0.1. Both

authors expressed the shear rate in terms of transition-state

theory, with a barrier height biased by an applied stress. Ar-

gon and Shi argued6 that isolated STZs can be reversed by

back-stress in the elastic matrix, leading to macroscopic ane-

lasticity. In fact, simulations9 and experiments10,11 show an

anelastic contribution to apparent elastic behavior in metallic

glasses, with the simulations showing a bond-breaking mech-

anism. Egami et al.12 correlated an elastic deformation

with bond-orientational order. Argon and Kuo13 used

temperature-stepping experiments to determine activation

energy spectra for anelastic relaxation for several metallic

glasses. Increased attention has recently been given to the

behavior of shear transformation zones, using three-dimen-

sional colloids14 and molecular dynamics (MD) simula-

tions.15,16 Despite the progress made, the lack of matrix

periodicity and the small size of STZs have made their direct

experimental characterization elusive.

In order to investigate the properties of STZs, we have

conducted quasistatic anelastic relaxation measurements in

amorphous Al86.8Ni3.7Y9.5, an alloy previously studied by

one of the authors.17,18 Unlike some Al-rich metallic glasses,

this alloy does not crystallize upon room-temperature plastic

deformation. It exhibits significant anelastic deformation at

room temperature, enabling us to conduct stable, high resolu-

tion, measurements for durations of 1 s–3� 107 s. Our sim-

ple experiments provide valuable information on STZ

properties. Most importantly, we obtain evidence of a quan-

tized hierarchy of STZs with single-atom increments.

II. EXPERIMENTAL PROCEDURE

An amorphous Al86.8Ni3.7Y9.5 (at.%) ribbon, 22 lm

thick and 1mm wide, was obtained by the single-wheel

melt-spinning technique using a Cr-coated Cu wheel at a

tangential velocity of 40 m/s in vacuum. Electron diffraction

analyses were employed to confirm the amorphous structure

of the as-spun alloy ribbon.

All relaxation measurements were performed at

295 6 1 K. An Agilent G200 nanoindenter with a DCM head

was used for the cantilever measurements (Fig. 1(a)). Cantile-

ver samples were mounted in epoxy for nanoindenter
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experiments, and the distance between the clamp and indenter

tip contact point was 0.1 cm. Two different mounting com-

pounds were used in order to rule out their effect on the mea-

surement. Thermal drift was subtracted. In each run, the

following cycle, consisting of three stages, was repeated 20

times: 0.2, 0.02, and 0.002 mN, each for 200 s. The stiffness

measured from the instantaneous, elastic, displacement agreed

with the calculated value,19 based on a Young’s modulus value

of E0¼ 48.2 GPa (Ref. 20) for a similar alloy. Displacement

versus time data obtained during each full-load stage were used

in the analysis, each consisting of 5000 points. Reversibility

was confirmed during the low-load parts of each cycle.

Throughout this paper, e refers to the maximum bending [x
direction in Fig. 1(a)] strain, attained at the surface. For the can-

tilever, this maximum strain is attained at the fixed end of the

sample, and is given by e¼ 3d � h=2 L2,19 where d is the sample

thickness, h its displacement, and L its effective length. The

elastic strain, e0
el, is constant under fixed nanoindenter load, and

is determined from the instant deflection in response to a jump

in load. Its value is less than 10�4 for all measurements. The

time-dependent strain value, normalized by e0
el, is equal to the

ratio of the corresponding displacements. A total of 95 mea-

surement cycles were obtained from four different samples.

For the bend stress relaxation (“mandrel”) experi-

ment,21,22 Fig. 1(b), five 1 cm long samples were used. Sam-

ples were first constrained around mandrels of radii ranging

from 0.35 to 0.49 cm for 2� 106 s, then allowed to relax

stress-free for 3� 107 s. The radius of curvature was moni-

tored during relaxation as a function of time using a digital

camera, taking care to insure that its optical axis was perpen-

dicular to the sample stage, which was illuminated with a

backlight. The curvature was determined by on-screen visual

fitting of the calibrated photo with a circle. Under constraint,

the total bending strain at the surface is eT ¼ d/2(1/R� 1/r0),

where R is the mandrel radius and r0 is the initial sample

radius of curvature. eT consists of an elastic and anelastic

contribution, the values of which at the end of the constrain-

ing period are e0
el¼ d/2� [1/R� 1/r(0)] and e0

an¼ d/2� [1/

r(0) � 1/r0], respectively, where r(t) is the radius of curva-

ture at time t after removal of the constraint. Note that e0
el,

which is defined differently for the cantilever and mandrel

experiment, is the elastic strain at mechanical equilibrium in

both cases. The maximum bending strain at time t after re-

moval of the constraint is given by e(t)¼ d/2� (1/r(t)� 1/

r0). These expressions assume a neutral plane equidistant

from the surfaces. Since we find the processes under consid-

eration to be linear functions of the stress, the strain varies

linearly across the sample thickness, justifying the assump-

tion. For the different mandrel radii used, e0
el ranged from

0.153% to 0.303%. The maximum shear stress is given by

rs¼ðrx� rzÞ=2¼ rx=2¼E0 ex=2 1� v2ð Þ since the out-of-

plane stress, rz, is zero. The maximum shear strain is given

by c ¼ ex � ez ¼ ex= 1� vð Þ, where ez is the out-of-plane

strain. It is important to note that because the in-plane per-

pendicular stress, ry, is proportional to rx, relative changes

in rx and ex due to any linear process are the same as they

would be for uniaxial geometry.

Direct spectrum analysis23 was performed by fitting the

relaxation curves, using the Primal-Dual Interior Point Filter

Line Search Algorithm. The software package AMPL (Ref. 24)

was used with nonlinear solver IPOPT.25 In the fits, the relaxa-

tion-time values, si, were fixed and spaced logarithmically in

the ranges 0.3 to 400 s and 1080 to 5.4� 107 s for the cantile-

ver and mandrel experiments, respectively. Each experimental

curve was fitted to obtain a relaxation-time spectrum, f sð Þ. To

obtain the integral over peak m,
Ð

m f sð Þd ln s, for overlapping

peaks, f sð Þ=s was fitted with sums of log-normal functions,

yielding excellent agreement. STZ properties were calculated

for each peak in each spectrum, and then averaged over the

spectra. The error indicated in the plots is the standard devia-

tion of the mean.

III. RESULTS AND DISCUSSION

The maximum anelastic bending strain of mandrel sam-

ples, equilibrated under constraint for 2� 106 s and subse-

quently allowed to recover, is shown, normalized by e0
el, as a

function of time in Fig. 2. As with any static measurement,

e0
el may include anelastic contributions10,11 with time scales

shorter than the experimental resolution. The curves in Fig. 2

indicate absence of significant permanent strain and are inde-

pendent of e0
el. The implied linearity in stress leads to impor-

tant conclusions: a) the anelasticity is unlikely to originate

from macroscopically heterogeneous behavior, but rather has

microscopic origin, b) the anelastic sites are not exhausted

for the strain values used, c) the viscosity in the linear solid

model, used below, is Newtonian, i.e., the strain rate of the

dashpots is proportional to their stress, and d) consequently,

unlike for the case of yield, the strain profile across the sam-

ple thickness is linear at any time. In Fig. 2, for the highest

value of applied strain, the maximum anelastic bending

strain at the end of the constraining period, t¼ 0, is about

0.055%. Assuming the shear strain of an STZ (Ref. 5) when

FIG. 1. Measurement techniques. (a) Cantilever method. The displacement

h is monitored as a function of time at a fixed load, P. The instantaneous dis-

placement is the elastic component; (b) Mandrel method. The sample was

constrained for 2� 106 s at varying radii, after which the radius of curvature

was monitored as a function of time in a stress-free condition.
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constrained by the surrounding matrix is cc
0¼ 0.09 (see

below), and converting bending to shear strain, the corre-

sponding total volume fraction occupied by activated STZs

is about 0.94%.

In order to observe anelastic relaxation with time scales

of 1 – 200 s, the displacement of cantilever samples at

constant load, P¼ 0.2 mN, Fig. 1(a), was monitored as a

function of time. Its division by the instantaneous displace-

ment upon loading yielded the ratio of anelastic to elastic

bending strain, ean tð Þ=e0
el. Sample curves for both measure-

ments are shown in Figs. 3(a) and 3(b).

Because anelastic relaxation in a metallic glass involves

several processes, the temporal evolution of the strain is typi-

cally fitted with a linear combination of exponentially decay-

ing terms, exp �t=sð Þ, with different time constants, s.

Alternatively, a single stretched exponent has been used,

exp(�(t/s)b),26 implicitly making an assumption about the

shape of the relaxation spectrum. Instead, we employ a direct

spectrum analysis method23 by fitting the following func-

tions to the anelastic strain as a function of time:

e ¼ Aþ Btþ
XN1

i¼1

ei exp �t=sið Þ; (1a)

e ¼ Aþ
XN2

i¼1

ei exp �t=sið Þ (1b)

for the cantilever and mandrel measurement, respectively,

with N1 and N2 less than the number of data points. The ei are

fitting parameters, and the si are fixed and spaced logarithmi-

cally. The linear term in Eq. (1a) a priori describes plastic

flow or approximates anelastic processes with time constants

greater than the measurement duration. A in Eq. (1b) is very

small and likely corresponds to processes with time constants

longer than the duration of the experiment.

It should be noted that even in a simulated relaxation

curve consisting of a sum of a small number of pure exponen-

tial terms that differ from each other by a factor of ten, it is dif-

ficult to discern the different time constants. This is especially

true when the amplitude of the exponents with the longest

time constants is the greatest, since these introduce a curvature

in a log(e) versus time plot at short times. Experimental noise,

and the fact that the spectrum peaks have an intrinsic width,

further obscure any distinct processes. Because of the conse-

quent need to rely on fits, we undertook several steps to rule

out artifacts due to the fitting method. We have: a) performed

fits with several values of N1, N2; and b) fitted the mandrel

data with 4–8 exponents, allowing both the ei and si to vary.

The results of the different methods were consistent with each

other. Regardless of the number of exponents used, the same

dominant time constants were obtained. In addition, simulated

data, containing noise, were fitted in order to assess the meth-

od’s reliability. While the peak widths varied with initial

guesses, their areas did not.

The spectra resulting from the fits, f (s), are included in

Figs. 3(a) and 3(b). These are normalized such that

e0
el �

Ð s2

s1
f sð Þd ln s is the equilibrium anelastic bending strain

due to processes with time constants in any interval

s1; s2ð Þ: f sð Þ=s exhibits a distinct set of peaks, each described

well with a log-normal distribution.

We associate each peak in the spectra with one STZ type,

m. To analyze the relaxation behavior, the standard linear

solid model27,28 is used, as illustrated in Fig. 4: a Voigt unit

m, consisting of a spring and linear dashpot in parallel, repre-

sents all STZs of type m, corresponding to one peak in the

spectrum [Figs. 3(a) and 3(b)]. Since the strain contribution of

FIG. 2. Anelastic strain evolution following equilibration at different man-

drel radii. The strain is normalized by the elastic strain at equilibrium, prior

to removal of the constraint.

FIG. 3. Sample relaxation curves and corresponding relaxation-time spectra.

(a) Cantilever measurement, performed at fixed load, P¼ 0.2 mN, i.e., fixed

stress. (b) Mandrel measurement, performed in a stress-free condition after

equilibration under constraint. For each case, two spectra, f (s), are shown,

obtained from fits with different numbers of fitting parameters (see text).
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each STZ type is additive, the units are connected in series.

The additivity implies that both the effective Young’s modu-

lus and shear viscosity, E
0
m and g

0
m, respectively, are inver-

sely proportional to the density of m-type STZs. In the limit

of vanishing concentration of m-type STZs, E
0
m, g

0
m !1,

i.e., the corresponding Voigt unit is rigid and makes a negli-

gible contribution to the strain. It is important to recognize

the limitations of this simple model: Argon and Shi6 note

that once an STZ has other STZs as neighbors, its transfor-

mation is likely to become irreversible. This is equivalent to

destruction of the spring that is parallel to a dashpot. In the

present work, conducted at low strains and showing full re-

versibility, such a process is not encountered.

Using appropriate boundary conditions, exponential

relaxation of stress or strain is obtained. Under fixed or zero

stress, the strain in each unit evolves independently, with

time constant,

sm ¼
3g

0
m

E0m
; (2)

where the factor of 3 accounts for the conversion of uniaxial

to shear viscosity. sm will be taken as the median of the

respective (log-normal) peak, since it will yield the peak-

averaged activation energy, DFm, below.

Mechanical equilibrium between unit m and the spring

in Fig. 4 yields the effective Young’s modulus associated

with the unit:

E
0

m ¼
e0

el

e0
m

E0; (3)

where E0 is Young’s modulus, and e0
m ¼ e0

el �
Ð

m f sð Þd ln s,

with integration over peak m, is the anelastic bending strain

due to m-type sites at mechanical equilibrium. Eq. (3) would

remain the same if the ratio of shear strains were used, since

these are linear in the corresponding bending strains for the

present geometry. The assumption of mechanical equilib-

rium between each STZ type and the matrix is valid for all

but m¼ 8, since s8¼ 1.25� 107 s, as compared with a con-

straint duration of 2� 106 s. A corresponding correction is

implemented in the analysis below.

Once E
0
m and sm are determined from the spectra, Eq. (2)

is used to calculate g
0
m. Below, we will relate it to the addi-

tive contribution of m-type STZs to the macroscopic anelas-

tic shear strain rate,

_cm ¼
rs

g0m
; (4)

where rs is the net shear stress on the dashpot in Voigt

unit m, equal to the applied stress minus that of the corre-

sponding spring. Since our samples exhibit linear deforma-

tion behavior, g
0
m is constant, and rs and _cm vary linearly,

across the thickness. Therefore, Eq. (4) is valid for the entire

sample. Following our convention for e, maximum values of

rs and _cm, attained at the surface, are used in the analysis

below.

The total volume of potential, (also known as fertile),

m-type STZs, per unit volume can be expressed as

cm ¼
e0

m

e0
el

¼ E0

E0m
; (5)

as derived in the Appendix. The full physical meaning of cm

is discussed below. Equation (5) is obtained by modeling an

anelastic unit m as a large number of potential STZs in

series, all of which are reversible due to the same elastic con-

stant as the solid.2,5 The main step in modeling STZs, which

have on/off states, with Voigt units that have a continuum of

strain states is based on the ergodicity of STZs: since equili-

brated STZs undergo thermal fluctuations that are only

biased by the stress (see below and Ref. 14), the ensemble
average, the activated fraction, xm, of cm at mechanical equi-

librium, can be interpreted as the average fraction of time

each potential STZ is transformed. Thus, an STZ has a

continuum of time-averaged strain values. While kinetic

measurements can involve significant uncertainty in pre-

exponential factors, Eq. (5) allows for a reliable determina-

tion of cm from experiment, which does not depend on cT
0

and applies to any STZ type that has equilibrated.

Using the literature value, E0¼ 48.2 GPa for a similar

alloy,20 sm, cm, E
0
m, and g

0
m were calculated for each m by

averaging over values obtained from the individual spectra,

Fig. 5(a)–5(d). For m¼ 4, only g is given, as determined from

the linear part of the nanoindenter curve. It likely corresponds

to an anelastic process with s values that fall between the

ranges covered by the two measurement methods. We observe

cm to range from<1% for the fastest sites to �27% for the

slowest: the total volume fraction occupied by potential STZs

is a significant fraction of unity. In this context, we point out

that we view cm as the total volume of potential type-m STZs

per unit volume, where overlapping volumes are counted multi-

ple times. While our analysis is restricted to xm� 1, i.e., a small

volume fraction of the potential STZs are activated, cm values

greater than 1 are meaningful: the contribution of two potential
STZs that have a finite spatial intersection to the probability of

STZ formation is proportional to the sum of their volumes as

long as their activation is rare. cm> 1 merely implies that the

anelastic strain is greater than the elastic strain [Eq. (5)]. For the

present experimental conditions, at any point in time, the major-

ity of potential STZs are not activated and are part of the elastic

matrix. Thus, a high cm value does not affect E0 in Fig. 4 if

xm� 1. It should be noted that while cm may continue to

increase with increasing m, STZs with high m will be kineti-

cally frozen below the glass transition temperature [Eq. (7)].

After an anelastic site type with time constant s is acti-

vated at fixed stress for a duration t0� s, the stress-free

FIG. 4. Linear solid model: n anelastic processes act in series, where m-type

sites are associated with Young’s modulus of E
0

m and viscosity g
0

m, both

effective quantities that are inversely proportional to the volume fraction of

these sites.
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strain relaxation rate is smaller than that under stress by a

factor of t0/s. Therefore, anelastic strains may last signifi-

cantly longer than the duration of the prior stress that caused

them, a fact that is often missed. This is the case for m¼ 8 in

the present work. The reader is reminded that the present

value of c8 is determined by extrapolation to account for the

fact that equilibrium is not reached for m¼ 8 during the con-

straining period. The extrapolation introduces added error,

which will be reduced in our ongoing work.

We proceed to determine the STZ volume values. Pre-

vious derivations of the shear strain rate were based on

one dominant STZ type.2,5,6 Since our experiments resolve

different STZ types, we follow those derivations to express

the contribution to the total shear strain rate due to STZs

of type m:

_cm ¼ 2cmcc
0mG exp �DFm

kT

� �
sinh

rscT
0Xm

2kT

� �
; (6)

where Xm is the STZ volume and cc
0 ¼ ½2 4� 5vð Þ=

15 1� vð Þ� cT
0 is Poisson’s ratio, mG, the attempt frequency,

and kT has its usual meaning. The activation free energy for

an m-type STZ is:

DFm ¼
7� 5vð Þ

30 1� vð Þ þ
2 1þ vð Þ
9 1� vð Þ

�b2

� �
cT

0 þ
1

2

�rSTZ

l

� �
lcT

0Xm;

(7)

where �b2 � 1 the dilatancy factor, m¼E0/[2(1þ m)], the

shear modulus and �rSTZ the shear resistance of the STZ.

The division of the mechanical work term in Eq. (6) by two

reflects the assumption that the mechanical energy is a linear

function of strain between the two STZ configurations2—

there are other models that also satisfy detailed balance. The

other factor of two, absent in Refs. 5 and 6, originates from

the subtraction of forward- and backward flux and the defini-

tion of the sinh function. The following values were assumed

for all STZ sizes: mG¼ 1013 s�1, m¼ 0.35, �rS=l¼ 0.025 (Ref.

29) and cT
0 ¼ 0.2. In Ref. 6, cT

0 values range from 0.1 to

0.135, with a different mechanical work term. Colloid

experiments yield �0.3.14,30 It is noted that the empirical

definition of the activation volume, V� ¼ kTd ln _c=dr,

FIG. 5. Calculated properties of the respective

STZ types m¼ 1–8. (a) Time constants. (b) Vol-

ume fraction of potential STZs; (c) Effective

macroscopic Young’s modulus. (d) Effective

macroscopic viscosity. (e) STZ volume in units

of atomic volume of Al, VA1¼ 16.6� 10�30 m3.

The value for m¼ 4 was obtained from Fig. 4(d)

and interpolation in Fig. 4(b). (f) Volume frac-

tion of potential STZ and transformation strain

as a function of DF/kT. The error bars are the

standard deviation of the mean, obtained by

averaging over multiple measurements.
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equals cT
0X=2 only if rscT

0X=2kT	 1. Caution should be

exercised when assigning a physical meaning to V* in other

regimes. Using Eq. (6), linearized for small rs, and Eqs. (4)

and (7), Xm is obtained. Its value, normalized by the atomic

volume of Al, is displayed in Fig. 5(e). A hierarchy of Xm

values is observed, ranging from �14 to �21, in single-
atomic increments.

Xm is insensitive to error in g
0
m since it appears in the

exponent. It is, obviously, dependent on the assumed value

of cT
0 . Despite the uncertainty in the latter, the magnitude of

the X spacings strongly suggests that the peaks in the relaxa-

tion spectrum correspond to a quantized hierarchy of STZs

with single-atomic increments. Since the local chemistry and

structure in an amorphous solid are expected to have a wide

distribution, the clear separation of the processes may be sur-

prising. Based on detailed studies of two dimensional

bubble-rafts, Argon5,8 argued that the spectrum of activation

energies reflects the expected free-volume distribution: a

large volume fraction occupied by sites with small free vol-

ume, and therefore a high activation barrier, and vice versa.

In light of our present experiments, it appears that the spec-

trum of activation energies, calculated from Eq. (7) and dis-

played in Fig. 5(f), reflects the discrete STZ sizes and not the

free-volume distribution. Spatial fluctuations in the composi-

tion, density and elastic constants are averaged over a vol-

ume that includes the surrounding matrix, and are apparently

insufficient to obscure the effect of discrete STZ volumes.

This argument is consistent with the fact that the third term

in Eq. (7), the work required to shear the atomic planes in an

STZ, is insignificant,6 and with MD simulations15 that show

a well-defined composition, and narrow distribution of the

volume per atom, in activated STZs. We suggest that the

local state of structural relaxation, i.e., the distribution of

free volume or stress fluctuations, affects the flow behavior

as an on/off switch via cm. Our ongoing work is expected to

lead to further insight into this issue.

Our analysis implies that STZs that are larger or smaller

than those detected should be active for the appropriate tem-

perature and time scale. While extrapolation suggests that

smaller STZs makeup a small volume fraction, it also sug-

gests steeply increasing volume fractions occupied by STZs

with increasing m. Previous publications have all reported

single, average, STZ sizes. Because of the steep increase of

cm with m [Fig. 5(b)], it is expected that the contribution of

the largest active STZs will dominate the macroscopic strain.

Based on Eq. (6), it follows that the observed average STZ

size will increase with increasing temperature. In the present

work, the volumes of the different STZs that contribute to

the observed relaxation range from 14 to 21 atomic volumes

of Al, in single-atom increments, as compared with 53

atomic volumes for the slowest, and therefore largest, active

STZs determined for Pd80Si20 at elevated temperature.6

Considering our uncertainty in cT
0 , these results are not

inconsistent with the present work. Pan et al.,31,32 using

strain-rate sensitivity measurements by nanoindentation,

reported STZ sizes as high as >680 atoms. However, such

measurements involve strain localization and shear band for-

mation. The deforming volume fraction increases with

increasing strain rate,33,34 which leads to an underestimate of

the microscopic strain rate sensitivity and therefore an over-

estimate of the STZ volume. In addition, the state of relaxa-

tion affects pileup18 and therefore the indenter contact area.

Therefore, we do not consider the high X values in Refs. 31

and 32 to be realistic. MD results show STZs consisting of

2–10 atoms15 and tens to hundreds of atoms, increasing with

strain.16 Such simulations are conducted at higher stress and

strain than the present experiment, and caution should be

exercised when using them for comparison, as they are likely

to be affected by interaction among STZs. It should also be

noted that thermally activated shear of STZs well below the

glass transition temperature is a rare event, which cannot be

modeled realistically by MD.

Dmowski et al.11 have recently concluded from meas-

ured anisotropic atomic pair distribution functions that 1/4

of the volume of a Zr-based metallic glass deforms anelas-

tically with short time constants, contributing to the appa-

rent elastic behavior on typical experimental time scales. If

we extrapolate our cm values to smaller m, and therefore

shorter t, we obtain very small volume fractions. This dis-

crepancy is even greater than it appears, because the alloy

of Ref. 11 has a higher glass transition temperature than

the present alloy and its STZs should be more sluggish at

room temperature for a comparable size. We suggest that

the fast anelastic sites reported to occupy 1/4 of the volume

are of a different nature than the STZs that are active at

high temperature, even though their effect on the pair

distribution function may be similar. Activity of these sites

is possibly described by a bond-exhange9 mechanism.

Recent dynamic measurements in several metallic glasses

are consistent with this picture, showing a nonzero loss

modulus at cryogenic temperatures, which is separate from

the broad high-temperature peak.35

Our X values are consistent with the assumption of

Newtonian viscosity—for the highest stress values used, lin-

earization of the sinh term in Eq. (6) results in an error of 6.5

to 9% for X5 to X8, and orders of magnitude less for the can-

tilever experiment. As in Ref. 14, STZ activation is thermal,

with the stress bias resulting in an initial ratio of forward-to-

backward jump rates of �1.03 for the cantilever and 3.4-4.3

for the mandrel experiment. As seen in Fig. 5(f), DFm /kT
ranges from about 33 to 50. 0.85<DFm< 1.26 eV/atom,

compared with a vacancy migration energy in crystalline Al,

DH¼ 0.62 eV.36 The present experiment is conceptually

related to the measurement of the activation-energy distribu-

tion by temperature stepping,13 but it does not suffer from re-

solution limitations due to thermal stabilization times.

Reference 13 yields 0.87<DF< 2.18 eV/atom for alloys

with shear moduli in a range above twice that of the present

alloy, which represents good agreement. It is important to

note that our X values are dependent on the assumed value

of cT
0 —using 0.3 would reduce X by a factor greater than

two, whereas cT
0 ¼ 0.1 would increase it by a factor of

approximately 4. Our assumption of size-independent cT
0 is

unlikely to significantly affect our conclusions.

Anelastic relaxation spectra with distinct peaks have

been observed for other metallic glass alloys,37–40 indicating

that our results are far from unique to the present alloy. In

addition to the quantitative information we obtain, a novel
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aspect of the present work is the wide range of accessible

time constants, which has allowed us to observe an unprece-

dented number of distinct processes. Few experiments, and

no MD simulation, can access such a wide dynamic range. It

may be surprising that no distinct anelastic processes were

observed in any of the large number of dynamic internal-fric-

tion studies41–45 performed in metallic glasses over the years,

since these are capable of exploring a wide dynamic range of

time constants. Two factors obscure spectrum details in

dynamic measurements, and are the likely cause: a) The ane-

lastic response curve in dynamic internal friction measure-

ments has a Cauchy frequency dependence, which leads to

significant overlap among different processes even if they

have low intrinsic width and differ from each other by a fac-

tor of 10. In contrast, and unlike most instrumented methods,

the curvature measurements we conduct provide high resolu-

tion and stability over long time periods. Furthermore, b)

dynamic measurements require high frequencies and there-

fore elevated temperatures. Since the time constant for a

relaxation process is proportional to exp(DF/kT), a higher

temperature will reduce the dynamic range of time constants

and thus the resolution. We conclude that while our experi-

mental approach is time consuming, it has been crucial to

our discovery of the quantized hierarchy of STZs. Finally,

we point out the difference between our regime of low strain

and that of a highly driven flow state, for which simula-

tions46 yield a broad and continuous distribution of activa-

tion energies.

In summary, quasistatic measurements of anelastic

relaxation in Al86.8Ni3.7Y9.5 have yielded a range of STZ

properties. A quantized hierarchy of STZs is revealed, with

increments of a single atomic volume. The volume fraction

occupied by potential STZs is obtained directly, and shown

to be a large fraction of unity. While only a small fraction of

the STZs is activated at any time for the low strains used,

thermal fluctuations cause all potential STZs to probe their

ergodic space and therefore have the same time-averaged

strain. Future work will address activation of slower proc-

esses, dynamic measurements of possible anelastic processes

that appear as elastic at our time resolution, the temperature

dependence of anelastic relaxation and the effect of struc-

tural relaxation.
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APPENDIX: DERIVATION OF THE VOLUME FRACTION
OCCUPIED BY POTENTIAL STZS

The connection between the standard linear solid model

(Fig. 4), with a continuum of strain states, and STZs, which

have discrete strain states, is developed here. As illustrated

in Fig. 6, Voigt unit m in Fig. 4 is modeled as a large number

of Voigt units in series, each representing the additive contri-

bution of one m-type STZ to the strain. The macroscopic

shear strain due to m-type STZs is proportional to the frac-

tion, xm, of potential m-type STZs that are activated, and is

therefore given by cm¼ cmxmc0
c. c0

c is the transformation

strain of an STZ that is constrained by the elastic matrix.

The macroscopic bending strain corresponding to cm is

em¼ 1� vð Þcmxmcc
0; (A1)

where m is Poisson’s ratio.

xmcc
0 is the ensemble-averaged shear strain of all poten-

tial STZs. Since the STZs are ergodic (see text and Ref. 14),

xmcc
0 is also equal to the time-averaged shear strain of each

potential STZ. In this interpretation, all STZs participate in

the deformation process and have a continuum of possible

time-averaged strain values that evolve under a macroscopic

applied stress. When an STZ is not in an activated state, it is

part of the elastic matrix. Since the elastic constant that gov-

erns STZ reversal is the same as that of the matrix, the time-

averaged equilibrium strain of each STZ in the bending

direction, (1� m)xm
0 c0

c, is equal to eel
0 , where xm

0 is the value

of xm at mechanical equilibrium. Applying Eq. (A1) at me-

chanical equilibrium, em
0¼ (1� m)cm xm

0 c0
c, in combination

with Eq. (3), the condition for mechanical equilibrium, one

obtains

cm ¼
e0

m

e0
el

¼ E0

E0m
: (A2)

As discussed in the text, cm can be understood as the total

STZ volume per unit volume, with STZ intersections

counted multiple times.
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