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ABSTRACT

It is shown that a motion is possible in every compressible homogeneous
isotropic simple solid having a certain range of memory, in the presence of a
constant body force field, if and only if it is homogeneous and uniformly
accelerated after a certain time. In the class of solids having perfect memory,
the only motion of this kind which can be smoothly initiated in a body at rest
is a rigid one. For the class of solids having finite memory of duration T
and initially at rest, the motions of the type considered need be homogeneous
and uniformly accelerated only after time T. For those solids having fading
memory, the motion must reduce to a fixed homogeneous deformation. Similar
results are developed for simple fluids and anisotropic simple solids.






1. INTRODUCTION

A simple material, as defined by Noll [1]*, is one for which knowledge of
its response to all homogeneous deformations is necessary and sufficient to de-
termine the relation between stress and any deformation. It thus appears that
in order to determine the response functional relating stress and deformation
history, one need only carry out an experimental program in which a specimen
is subjected to arbitrary homogeneous deformations. The possibility of carry-
ing out such a program depends on whether the material is incompressible or com-
pressible., Coleman and Truesdell [2] nave shown that only irrotational homogen-
eous motions need be considered for incompressible materials. For compressible
materials, Truesdell and Noll [3, 8 28] have shown that, in the presence of a
constant body force field, the only homogeneous motions satisfying the equations
of motion are those having constant acceleration. In order to determine the
response functional for compressible materials therefore, it will be necessary
to subject the material to nonhomogeneous deformations. In this case the experi-
mentor is faced with the problem that, in general such motions depend on the
form of the response functionalvhe is trying to determine.

Suppose an experimenter has decided that a given specimen is a compress-
ible homogeneous isotropic solid. With no other g priori prejudice as to the
nature of the material, and with the above remarks in mind, the question now
arises as to whether there are any motions which may be produced in every com-
pressible homogeneous isotropic solid. Such a motion must then be possible
in the particular specimen on hand. For any motion of this kind the interior
state of deformation at each time t will be the same for all such isotropic
solids. Assuming a constant body force field only, these motions can be
produced by the application of appropriate surface tractions alone, Knowing
the details of the deformation completely, and having measured the surface
tractions required, the experimenter can directly obtain information on the
form of the response functional. We call such motions controllable. A more
precise definition will be given in Section 3.

In the present paper we will be concerned with the determination of mo-
tions of this kind for compressible simple materials of the following general
types: fluids, isotropic solids, and anisotropic solids. This problem was
first posed in a paper by Ericksen (4] in which he derived a number of deforma-
tions which can be maintained in every incompressible homogeneous isotropic
perfectly elastic solid by the action of surface tractions alone. In a later
paper Ericksen [5] showed that any deformation which is controllable in com-
pressible homogeneous isotropic perfectly elastic solids in equilibrium must
necessarily be homogeneous. We use this result to show that any test motion

*Numbers in square brackets refer to the List of References at the end of this
paper.



which is to be controllable in compressible simple fluids, isotropic solids

or anisotropic solids after some time t must be homogeneous after that time.

The details of the motion before time t depend on the duration of memory of the
particular type of material considered. These details are derived for compres-
sible simple materials having perfect memory, finite memory, and fading memory.
Generally speaking, depending on whether the memory is perfect, finite or fad-
ing, the deformation up to time t must be homogeneous and respectively, uniformly
accelerated, arbitrary or fixed. Once the motion has become controllable it

must be homogeneous and have constant acceleration. This latter motion is dis-
cussed in the article by Truesdell and Noll [3, § 28].

In Section 2 we present constitutive equations for compressible simple
fluids and isotropic simple solids in forms which are most useful for our
analysis. The field equations and a more explicit definition of the condition
that a motion be controllable are given in Section 3. In Sections &4 and 5 we
apply this condition to the determination of controllable motions in isotropic
- solids. The results obtained are summarized above. Section 6 contains a sim-
ilar treatment for simple fluids. The final two sections are devoted to the
extensions of results for isotropic solids to anisotropic solids. The proof
of the extension is carried out in Section 7, using the result proved in Section
8, that the constitutive equation for a solid having any material symmetry can
be represented in one of two general forms. In Section 8, we first review the
method of constructing representations of constitutive equations. We then
show that for any material symmetry, the corresponding representation can take
one of the two general forms used in Section 7.

Notation. We refer the components of all tensors to a fixed Cartesian coordin-
ate system. We use the usual conventions of index notation. Repeated indices
denote summation over the range i =1,2,5. A comma preceding an index denotes
partial differentiation, i.e., ®; = O9/dxi. A second rank tensor is denoted
by the matrix D = HD .|| of its components. T, D"l trD = D;;, det D = | D, J|
DN denote, respectlveiy, the transpose, 1nverse, trace, determlnant and Nth
power of D. I° = 1= HSi.H represents the identity matrix, where 8;4 is the
Kronecker delta J



2, THE CONSTITUTIVE EQUATION

The motion of a deformable body can be described by specifying the motion
of each of its particles. Relative to a fixed Cartesian coordinate system, the
deformation of a body can be described by a relation

x = x (%7 (2.1)
between the position X occupied by a generic particle in some reference con-
figuration and the positions X occupied at each time T in some time interval.
This relation is assumed to be one-to-one and at least three times continuously
differentiable,

The deformation gradient at a particle taken with respect to some refer-
ence configuration is denoted by F(%,T Hax /ax (X,7)||. For simple materials,
the stress tensor o(X,t) depends on all the values of F(X t) in some time
interval [t-T,t], i. e., is a functional of the history F(X T)

o(X,t) = éc‘;z (F(X,m) 1. (2.2)
T = t-T

The interval [t-T,t] defines the extent of this memory of the material.

, A homogeneous simple solid is defined [1] as a simple material having
a fixed reference configuration and such that the form of the response func-
tional 1s independent of X.

If the simple solid is isotropic in its reference configuration, then
this property and the Principle of Material Indifference [1] imply that (2.2)
can be expressed in the form

t
g(t) = % ,gt<T), B 1, (2.3)

T:‘t -

werezzls a functional of the history of the relative right Cauchy-Green tensor
Ct(T) defined by

( ) ox (T)‘

t B t
ct(r) = et (7] Bxl(t) a%](t)l

" iJ




and a function of the inverse left Cauchy-Green tensor

q
la an

2t

X X
q |‘ (2.5)

Us) = fegdee)]

Although, in most applications the response functional is expressed in terms
of the left Cauchy-Green tensor B, for our present purposes it is convenient
to use its inverse BT -1, oA (t) 'l depend on a fixed particle through its
position X in the reference configuration. By means of (2.1) we can express
them in terms of the position ¥(t) in the current configuration.

Dependence of 7 on-B'l(t) represents the effect on the stress of the
present deformation with respect to the fixed reference configuration. Depen-
dence on the history g,(T) represents the effect of the deformations which
the material has already undergone.

An additional restriction on % is the isotropy condition

Q?.[s;,(r), Finlg - Z[gct(-r),g e (t)a'],
~r=t-T T=t=-T

%%T = =1 (2.6)

which must be satisfied identically in Ef(t) and.;fl(t) for all constant
orthogonal transformations @, A theory of general representations for response
functionals %/ satisfying (2 6) has been developed by Rivl@n and his co-workers
for various continuity assumptions. (See [6] for a resumé of this work.)

A specific example of a constitutive equation arising from such representations
is given by

) = gLt Bl g BE 4 [P ci(r)e(t-T)ar. (2.7)

The @ are polynomials in the invariants of ﬁjl, defined by

I, = tr B'l, I, = 1/2 [(ﬁré’l) -tr B’ 2] I3

~

det BL  (2.8)
~o

and the invariant

o) = [ tr Ha)ue-n)ar. (2.9)
T



E}(T) can be taken as depending on x(t), implying that w = wﬁg(t),t). The
scalar quantities @y, ©, V¥ are material parameters, depending on the parti-
cular solid considered. ©. and V¥ are assumed .to be continuous on the interval
[t-T,t] whatever the choice of T. The response functional (2,7) may be made
more general by adding integrals of greater multiplicity whose ¢ntegrands

are matrix products formed from E:l, gf(Tllgng(T ). However, (2.7) is
sufficiently general for our purposes. For brevity, we will refer to materials
of this type as isotropic solids.

A homogeneous simple fluid is a simple material whose reference configura-
tion may be taken as the one at the current time t. Dependence of the response
functional (2.3) on g:l(t) is replaced by dependence on the present density
po(t). In addition, simple fluids are isotropic, so that their response func-
tionals satisfy a condition of form (2.6). A representation of a constitutive
equation for a compressible simple fluid which will be useful is

. t
o = -p(p) L+ [%er cb(r) w(t-m;0) ar + [0 CH(r)e(t-T;0)dr,
~ AR T U t=T (2.10)
The scalar p(p) is the pressure the fluid would be supporting if it had
remained at rest in its present configuration at all times in the past.



3. FIELD EQUATIONS

The body force field £ per unit mass is assumed to be conservative. To
be dynamically possible, the motion (2.1) of the material and the stress field
related to it by (2.3) must satisfy the equations of motion

20 ) (t) %,() (3.1)
_—t p(t)f, = plt) %X, (T 3.1
3x(t) 1 1
in the region occupied by the body at each time t. p(t) is the density of

the material at time t which for simple solids is related to the density p,
in the reference configurations by

o(t) = I3 gy (3.2)

We are particularly interested in those motions which are possible in
every compressible simple material of the types mentioned in Section 1. By
a controtleble motion for meterials of a given type, we mean a mapping (2.1)
which is such that the system consisting of (3.1) and the appropriate consti-
tutive equation is satisfied identically, independent of the properties of
particular materials of that type. By controlleble tensors we mean the defor-
mation tensors E:l and E?(#) corresponding to a controllable motion.

When the system consisting of (3.1) and the constitutive equation (2.7)
is restricted by the condition that the motion be controllable, we obtain .
a system of equations for the controllable tensor fields Q:l(gjt),t) and
gf(g(t),T) for some range of t. It is seen from (2.4), (2.5) that both of
these strain tensors can be interpreted as the covariant components of metric
tensors. Thus, in order that le(t) lead to a one-to-one mapping (2.1) at
time t, the Riemann-Christoffel tensor based on‘E:l must vanish. Similarly,
in order that ,Q_t('l‘) lead to a one-to-one relation between x(7) and ')Jc(t), the
Riemann-Christoffel tensor based on E?(T) must vanish for each desired choice
of 7. An explicit statement of this condition, not needed for our purposes,
is given in [5].



4. DETERMINATION OF THE GENERAL CONTROLLABLE MOTION

; We now consider motions of isotropic solids which are to be controllable at
time t. Such a motion must be possible in the particular isotropic solid whose
constitutive equation is given by (2.7). Substitution of this constitutive
equation and (3.2) into (3.1) yields the following equation.

2 2 3 > o) 3
- N - Py -N .t
Lo B'N L — Iy, ; Bi? + N 13 S Ct AT)¥(t-T)dr
N=0 N 1453 oo M=1 03Ty MY o dw t_p PPsJ
v [t o(t-T)ct, (T)dT + p I l/2f I 1/2 X+ (4.1)
{-T 13,3 P03 i Po *3 i

(4.1) must hold for arbitrary choices of the material parameters @y, BQN/Bﬁq,
SQN/Bw, V,0, and po. From the arbitrariness of p, and the condition that Iz =
det‘gfl # 0 in a continuous motion, we conclude that a necessary condition
that a motion be controllable at time t is that

%(t) = £y (k.2)

Continued application ofthis argument implies that the coefficients of @y,
8¢N/BIM, and d¢/dw must vanish, yielding the conditions

=N = -N N =0,1,2
P13,3 O T,y Piy = O (M =1,2,3 (4.3)
-N t t ) _
Bj 3 _r V(t-T)C pp,j(T)dT = 0 (N =0,1,2), (4.4)
t t
{ g O TICy ylmiar = 0 (4.5)

Letting N =1 in (4.3). and N =0, M= 1 in (’+.5)2 and using (2.8) we obtain
as conditions on 2: that

-l — -l =
Bij’j(t) 0, Bii’j(t) 0. (L.6)

Letting N = O in (4.4) we find



/2 owt-m)ct (et = o (4.7)
£-T 11,)

For a controllable motion, the strain history CU(r) must be the same for
all isotropic solids. (4.5) and (L4.7), with CEJ,j(T) and Ctii,j(T) fixed,
must be satisfied for each choice of the material functions © and V. By an
argument similar to that used to prove the Fundamental Lemma of the Calculus
of Variations [7, p, 185], this implies that any motion which is to be control-
lable at time t must satisfy

cgj)j(T) = 0,ct, (r) = o (4.8)

for T in [t-T,t].

In determining the deformations which can be maintained in every compres-
sible isotropic homogeneous perfectly elastic solid in equilibrium, Ericksen
[5] also showed that the finite strain tensor B~! must satisfy the system (45).
He then showed that a strain tensor whose components are of the form of the
covariant components of a metric tensor, which satisfies a system such as (4.6)
or (4.8) and whose Riemann-Christoffel tensor vanishes, is a constant tensor
field, Thus, recalling the discussion at the end of Section 3, we conclude
that ;fl(t) is a constant tensor field and so is gf(T) for each T in [t-T,t].
The system (4.3), (L.4), (4.5) is now satisfied as would any system which would
arise from a constitutive equation more complex than (2.7).

A necessary and sufficient condition that Eyl(t) be a constant tensor
field is that at time t (2.1) have the form

(5,8) = E)X +R(t), aet f(x) 4o, (+.9)

X
~ Vs'’4

while a necessary and sufficient condition that Ct(T) be a constant tensor

field for T in [t-T,t] is that ~
x(x(t),1) = E(M)x(t) +B(T), det F(T) # o0, (k.10)

for 7 in [t-T,t]. The result of combining (4.9) and (4.10) is stated in the
following theorem.

Theorem 1. A necessary condition that a motion be controllsble at time t in
isotropic solids is that the motion (2.1) have the form



XX,m) = KX+ b(r), det B(1) # o0, (4.11)

for T in [t-T,t].



5. CONTROLLABLE MOTIONS IN ISOTROPIC SOLIDS

We now investigate the restrictionson (4.11) due to (L4.2) and various
durations of memory. For the present, we assume that the controllable motions
are to be produced in solids which are initially at rest in their reference
configurations. Then, (2.1) has the form

35(5,1‘) = 2(’, T<O0. (5.1)

A motion which is to be controllable in every isotropic solid must be control-
lable in those having perfect memory. For such solids, the deformations in
the entire interval [O,t] determine the present stress. Hence the results of
Section 4 must hold for T = t. In particular, by Theorem 1, (2.1) must have
the form (4.11) for T in [0,t].

Let t* be an arbitrary time such that t* < t. It follows from (2.4), (2.5),
and (4.11) that B‘l(t*) and the history Ct*(T) are constant tensor fields for
T in [0,t*]. (2 7) then implies that oy ™ (t*) = 0. Since (3.1) must hold
for each choice of t* in [0,t], we conclu&e that (4.2) must hold on the entire
interval [0,t].

From (4.11) and the condition that F(v) must be nonsingular in [0,t],
we obtain the acceleration field at time 7.

£@(0),m = KMENT) k(1) - b(D] + B(r) . (5.2)

Comparing (4.2) at time T with (5.2), we see that a conservative body force
field is compatible with this acceleration field if and only if’g has the form

f = Gx+g (5.3)
~ ~

G
~~

where g is a vector field and G is a symmetric tensor field, both independent
of X. “Since the most phys1cally meaningful form of (5.3) is a constant body
force field, we take G = 0 and g = constant here and throughout the paper.
Substituting (5.2) and (5.3) with G = 0 in (4.2), we conclude that

(5.4)

’13 = 2, 3 = i

10



for tin [0,t]. (L4.11), (5. l), and (5.4) now imply that a controllable motion
must have the general form

+

T, T in [0,%], » (5.5)

a
~

T
X(}{)l) - (FII l) X t g

VXt~

where %'andtgl are constant vector and tensor fields, respectively. F
represents an initial uniform velocity gradient field. It is clear from (2.3),
(2.4), (2.5), (3.1), and (5.3) with G = O, that a motion of form (5.5) is pos-
sible in any simple solid.

For some materials, it may be possible to establish the homogeneous motion
(5.5) with an initial uniform velocity gradient by appropriate surface trac-
tions. An example would be a pure shearing deformation suddenly imposed on
a material with no instantaneous elasticity, a Kelvin-type material. Because
the materials under consideration are compressible, it does not seem generally
possible to produce instantaneously an initial uniform velocity gradient field
by the action of surface tractions alone. Since we are considering motions
possible in all isotropic solids, we require that any controllable motion be-
gin continuously from the initial state (5.1). Combining this requirement with
the above results, we conclude the following theorem.

Theorem 2. Let g be a constant body force fleld and let (5 1) hold for t < 0.
Let the class of materials considered be isotropic solids having perfect memory
on [0,t]. If a motion is to be controllable at time t in materials of this
class, and be continuously initiated, then it must be uniformly accelerated
motion, in which case (2.1) reduces to

x(X,T) = X+¢g %'rz, T in [0,t] . (5.6)
~~ ~

By considering controllable motions in the narrower class of isotropic
solids. having a finite memory of duration T, we can avoid the above restric-
tions arising from the condition that the motion be continuously initiated.
For such solids, the stress at time t is determined by the deformation in the
interval [t-T,t], for some finite T > 0.

Suppose a motion is initiated at time T = 0 in an isotropic solid at rest
for t < 0. If we require that this motion be controllable at a time t¥< T,
then the material has a memoryvfor the entire interval,[o, t*]. By Theorem 2
the only continuous controllable motion is given by (5.6). Consequently, for
isotropic solids with finite memory of duration T, we require that a motion
initiated at T = O be controllable only at time t > T when the details of the
initiation of the motion cannot influence the present stress.

11



Let t now be the earliest time at which the motion is controllable, i.e.,
at which (4.1) is satisfied identically independently of the particular solid
considered. (4.2) must hold for all times after t. By Theorem 1, (2.1) must
have the form (4.11) for each T in the interval [t-T,t]. Now, let t* be a
fixed time in the open interval (t-T,t). (2.L4), (2.5), and (4.11) imply that
B‘l(t*) and.;f(T) are constant tensor fields for T in [t-T,t*]. If the motion
(2 1) is homogeneous during the extended interval [t*-T,t*] then QP () is a
constant tensor field for + in [t*-T,t*]. By (2.3), (2.4), (2.5), g must be
a constant tensor field for each T in [t*,t], during which the motion will
have to satisfy (4.2). Therefore, the motion is controllable at time t¥,
Since we assumed that t is the earliest time at which the motion is control-
lable, we conclude that (2.1) must be nonhomogeneous for ¥ <t - T. Conse-
quently for t* <t ¢(t*) is not a constant field, and (4.2) does not hold.

For T >t, (4.2) and (4.11) hold. Assuming a constant body force field,
our previous argument shows that F and b must satisfy (5.4) on this interval.
Integrating these conditions, we find that a motion which is controllable for
T > t must have the form

~

2
X571 = (Fo+R T X+g— +thrc, (5.7)

where F., F,, and b, ¢ are constant tensor and vector fields, respectively.
~o’ Al ~ o~

The above results are summarized in the following theorem.

Theorem 3. Let g be a constant body force field and (5.1) hold for = <o0.
Let the class of‘haterials consist of isotropic solids having finite memory
of duration T. In order that a motion be controllable at time t and be non-
rigid in materials of this class, it is necessary and sufficient that t > T
and that (2.1) be defined as follows,

E!%&T) ... continuous and arbitrary, 0<T<t-T,
= F(7) X +b(T), det F(T) # O, t -T<71<t,
~ ~ Vard — —_
= (B + BmE+gln), det (Fo + B7) # 0, 724, (5.8)

where E,, F; are constant tensors, §$T) is the rigid body motion part of (5.7),
and F(T) B(;} are continuous tensor and vector valued functions of T satisfying
(5.4) at T = t. The only restriction on the motion in the interval [0,t-T] is
that it lead to an homogeneous motion during the interval [t - T,t].

The necessity of the form (5.8) for the motion follows from the discussion
preceding (5.7). Its sufficiency is readily established from (2.3), (2.4), (2.5),
(3.1), (5.4), and (5.8). An analysis of the condition det (F, + F37) # O has

12



been given by Truesdell and Noll [3, § 28].

Finally, we consider isotropic solids having fading memory. For these
materials the deformations in the recent past influence the present stress
'g(t) more strongly than those in the distant past. In particular, in a mater-
ial with fading memory, the manner in which a motion is initiated has diminish-
ing influence on }Kt) as t increases. Thus, the material has a perfect mem-
ory for all deformations in any finite interval after the motion is initiated,
during which the only continuous controllable motion is the rigid one (5.6),
by Theorem 2, However, the previous results suggest that if a homogeneous
motion were to be established and maintained, then it would become controllable
a long time after its initiation, when the influence of the details of its
initiation on ¢(t) becomes negligible.

One formulation of the property of fading memory has been given by
Coleman and Noll [8]. This formulation leads to an integral approximation
to the response functional in (2.3) which contains (2.7) as a special case
when T > = and @y depends linearly on the invariant w(t) defined in (2.9).
Furthermore the material functions 6(s), V(s) have the property that they tend
to zero as s * », We assume that © and V¥ tend to zero sufficiently rapidly
so that the integrals in (hﬂl) converge uniformly. We can then justify inter-
changing differentiation and integration.

The analysis and results of Section 4 now apply. In particular, (4.11)
holds for T in (-w,t). Let t, be an arbitrary time in this interval. It
follows from (2.4), (2.5), and (4.11) that E;l(tl),and cfl(z) are constant
strain fields for 7 in (-m,tl]. Furthermore, the general constitutive equa-
tion (2.3), with T taken as =, shows that the stress field g(t1) is constant.
This, together with (3.1) implies that (L4.2) holds at T = t,. Since t, was
chosen arbitrarily, (4.2) must hold on the entire interval -m,t]o Applying
(4.2) to (4.11), we conclude that the motion has the form (5.7) on (-wo,t].
From (2.4) and (5.7) we see that ﬁf(r) becomes unbounded as T + -», i.e., the
distance between particles in previous configurations becomes arbitrarily
large compared to this distance in the current configuration. Since for some
solids the deformation gradients must be bounded, we conclude the following
result,

Theorem E. Let g be a constant body force field. A necessary and sufficient
condition that & motion be controllable in isotropic solids having fading mem-
ory is that (2.1) have the form

x(X,7) = E X +g(r), t in (~x,t] (5.9)

~ ~ s

vhere F_ is a constant tensor, and g(T) is defined as in (5.8).
~ o~

13



In other terms, ignoring the effects of gravity the only possible control-
lable motion in an isotropic solid with fading memory is one in which the
material is held in a fixed deformed state. In other terms the only test
situation common to all isotropic solids with fading memory is a stress relax-
ation test.

1



6., SIMPLE FLUIDS

The analysis for simple fluids is similar to that for isotropic solids.
A motion which is to be controllable at time t in homogeneous compressible
simple fluids must be possible in the particular fluid whose constitutive
equation is given by (2.10). The condition that a motion be controllable
is obtained by substituting (2.10) into (3.1),

t ot v oV
c . t-T;p)dT + p,s c = (t-T;p)drT
{-T P ,l(T) Ilj( p. Psi {_T pp(T) ap ( T Q)
t At : toot L
+{_T ClJ,j(T) e(t-T)p)dT + p}j {_T Cij(T) ap (t T’p)dT

a ..
- 3% Py tPE; = pXy (6.1)

In order that a motion be controllable at time t, (6.1) must hold for arbi-

trary choices of the material parameters p, p(p), ¥,0,0V/dp, d6/3¢. Arguing
as in Section 4, we conclude that (4.2) must hold attimes beginning with t,

while the following system holds for T in the interval [t-T,t],

t () - t _
Cii,j(r) - OJ ClJ,J(T) O) (6'2)
() o, = 0, ct(T)p, = 0, 0, = O (6.3)
1i J ) 1J ):] ) )i .

The system (6.2) is the same as the system (4.8). Requiring the Riemann-
Christoffel tensor based on QF(T) to vanish for each T in [t-T,t], we find
that QF(T) mist be a constant strain tensor field so that on this interval
the motion has the form (L4.10).

Considering now the system (6.3), we see that it is satisfied if and only
if p,i(t) = 0. Applying this condition to the equation of conservation of
mass

ox, (1)

1

bxj(t)

p(t) = p(T) , (6.4)

and observing that the Jacobian of the mapping (4.10) must be independent of
the coordinates x;(t) and nonzero, we conclude that dp(T)/dx4(T) = O for

15



t in [t-T,t]. By (4.10) and (6.4)

o(r) = p(t)(aet F(r))L . (6.5)

We now turn to the restrictions on these motions implied by the range of
memory involved. For the present, we assume the fluids are initially at rest,

(t)), T<0. (6.6)

Ax(t),r) = X(

X
L

Some fluids may have a perfect memory over any finite time interval, that
is, the duration of memory T equals the present time t. Therefore, (4.10)
must hold on [0,t]. Let t] be some instant in this interval. By arguments
similar to those used for the discussion of isotropic solids having perfect
memory, we conclude that gtl(T) is a constant strain tensor field for T in
[0,t7]. It follows that g(t;) is also a constant field. Since t; is arbi-
trary, (4.2) must hold on [0,t]. Again allowing at most a constant body force
field g, we are led to the conclusion that in (4.10)

F(r) = 0, b(r) = g. (6.7)
These restrictions, along with

x(x(t),t) = x(t), (6.8)

~

imply that (4.10) must have the form
x(x(t),m) = [-(t-1)F)x(t) + g 5 (B-18) + (r-t), (6.9)

where Fj is a constant tensor. F; represents a uniform velocity gradient at
time t. From (6.9) we find that the initial velocity gradient field is
El[l'tgl]-l' Since in some compressible fluids the motion must begin con-
tinuously, we require that this field vanish. As (6.9) is not defined at

T =0 if [1-tF1]71 = 0, we conclude that Fj = 0.

Theorem 5. Iet g be a constant body force field. Iet the class of materials

considered be simple fluids having perfect memory on [0,t]. In addition, let
(6.6) hold for T < 0. Then a continuous motion is controllable at time t in
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materials of this class if and only if it is uniformly accelerated motion,
that is, (2.1) has the form

) . (6.io)

o}\s(zs(t),‘r) = }_(t) +§’(T2'2-‘t2

We now consider fluids having finite memory of duration T. The determina-
tion of the controllable motions for the case is similar to that for the cor-
responding isotropic solid except that the appropriate reference configuration
is always the current configuration. Let t be the present time and tp be an earlier
time at which the motion first becomes controllable. There will be no loss in
generality if to is in [t-T,t]. By the same argument as was used for isotropic
solids with finite memory, we conclude that the controllable motions will be
nonrigid and continuous if and only if tp > T. Furthermore, for 7 in
[0,t2-T] the motion is arbitrary, while for t in [tp-T,tpl, (6.2) implies the
form »

x(x(t),7) = E(r)x(t2) + bfr) . (6.11)

Since the motion is to be controllable at all times greater than to, we con-
clude that it must have form (4.10) on the extended interval [to-T,t], while
(4.2) holds on [tp,t]. Assuming that the body force field is constant, this
last condition implies that x[x(t),7] has the form (6.9) on [tp,t].

The following theorem combines these results.

Theorem 6. Let g be a constant body force field and (6.6) hold for T <O.
Let the class of materials considered consist of simple fluids having finite
memory of duration T. A motion will become controllable at time tp < t and
be nonrigid in materials of this class if and only if (i) tp > T and (ii) the
motion has the structure

x[x(t),7] ... arbitrary and continuous, 0<T< to-T,

F()x(t) +b(1), det E(T) £ 0, ty = T<T<t,,

(L - (e=mE)x(t) + g(r), det [1 - (+-1)R] £ 0, t,<7 <4,
(6.12)

where Fy is a constant tensor and g( ) represents uniformly accelerated rigid
motion. The corresponding density variation on [tp,t] is

17



o(r) = plt)aet(1-(t-7)F1]71 . (6.13)

This last result follows from (6.5) and (6.12).

The discussion for fluid with fading memory is also analogous to that for
solids. An analysis leads to the conclusion that both (4.2) and (4.10) hold
on the interval (-o,t]. The controllable motion then has form (6.9) on this
interval. In order that this motion be defined it is necessary that for T in

(det1-(t-r)F, 1)t

2
det[1-(t-T)F1] = 1+ (v-t)tr F1 + ﬁl-'gl- [(tr gl)z-trﬁ]+(1--t)5detgl # 0.
(6.1k4)

This is possible only if the set of proper numbers l/ T-t) of. Fl consists of
0 and two complex numbers, or 0,0 and O- The first possibility requires

that det F; =0 and tr F <2 (tr Fl)z-tr Fl] However, it follows from
(6.13) and (6.14) that as T + -, p + 0, which is not physically meaningful.
The second possibility requires that tr F; = tr Fy = det F; = 0, in which case
det[l;(t-TXEl] =1 and p(r) = p(t). An example of such a motion is steady
simple shearing flow.

Theorem 7. lLet g be a constant body force field and the simple fluid have
fading memory. A necessary and sufficient condition that a motion be con-
trollable in fluids of this class is that it have the form (6.9) on the in-
terval (-co,t] and be isochoric.

1see (3, §28]
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T. ANISOTROPIC SIMPLE SOLIDS!

The results obtained in Section 5 for isotropic simple solids can be:
readily extended to include transversely isotropic solids and solids belong-
ing to one of the crystal classes.

By means of the polar decomposition theorem of algebra [9, § 831, the
nonsingular deformation gradient F(t) defined in Section 2 can be decomposed
into the product of an orthogonal transformatlon R(t) and positive definite
symmetric matrices U(t) V(t) as follows,

Et) = ROY(L) = V(6)R()
R(t)EN(t) = L,
gt = g, ye) = e’ (7.1)

»E-represents the rigid rotation of the neighborhood of a particle at time t
relative to its position in the reference configuration. EKt), z‘t) represent
pure deformations.

The constitutive equation (2.2), when subjected to the restrictions of
‘the Principle of Material Indifference, reduces to the form

a(t) = R 4l ct

[

'T) ; RIB~1R]IRT (7.2)

—12’;0'_3

(
=T

~ee

where R = R(t). We will use the notation
~

¢(r) = RC®(nR, B - Kylr. (7.3)
o N At 0 NS

The symmetry properties for any simple solid are defined by a group of
orthogonal transformations (H}, called a material symmetry group. For example,
for transversely isotropic materials, the group consists of rotations in a
plane and possibly a reflection about an axis perpendicutar to or lying in
the plane. The material symmetry property for a given material implies that
the response functional:z satisfies the condition

.E]HT

t
nE BB - H /g(ﬂ, E -
‘ ~ Y T.= t-T 7.
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identically in C Ct(r) and B for each transformation H in the group (H) of
symmetry transformations. A response functional satisfylng (7.4) is said
to be form-invariant under the transformations of the symmetry group (HJ.

The theory of representations for form invariant response functionals
has been developed by Rivlin and his co-workers. In the present section we
will state and use the form of the constitutive equation for a given anisotropic
material which is most convenient for our purposes. In the next section we
shall indicate its derivation.

For transversely isotropic materials and materials of the cubic, tetra-
gonal and hexagonalsystems, there is no loss in generality if the response
functional is written in the form

7 = o 1ol 5ol B i b Tinetemar+ £ (1.9)

L td

where © is a scalar function of t-T. The tgpsordgpdepends on certain combina-
tions of gland Et(T) which are appropriate only £o the specific symmetry group
under consideration.p'®’ depends on the invariants (2.8), (2.9) and other scalar
invariants appropriate to the given group. Substituting (7.5) into (7.2) and
using (7.3), we see that the constitutive equation for a typical material having
one of the above-mentioned symmetries has the form ‘

3(t) = q,(l)i+ q,(e)j;:l + ‘P(3)352 + {ET,gt(T)Q(t-T)dT +R(£)C R T(t) o
T.

In order to determine the controllable motions for simple solids having
the above mentioned symmetries, the system of equations (3.1) and (7.6) must
b? fati?f}ed %dﬁntically,independentlyoi‘the nature of the material functions

» 6, and those contained ti; . As in Section 4, the appli-
cation of this restriction to the system (3.1), (7.6) leads to a new system
of equations among which are (4.2) and (4.3)-(4.5). We can thus now apply
precisely the same analysis as was used for isotropic solids. Since the'only,
controllable motions will be homogeneous motions, the equations in the above
system arising from the terms‘ggt)CZigg(t) will be identically satisfied.
Thus, all the results of Section 5 apply to materials having transverse
isotropy, or belonging to the cubic, tetrogonal or hexagonal systems.

>For,materials of the triclinic, monoclinc, and rhombic systems, the pos-
sible response functionals are written most usefully in the form

T = 01 +7H (7.7)

la

wherg%?* represents terms depending an certain combinations of‘E_andlzt(T)
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which are appropriate to the specific symmetry group under consideration.

@ is a scalar material function in which the components B; 13 OF their squares
(313)2 appear as arguments° ¢ also depands on the components Cj (T) or their
squares [C (T) .0y means of a combination of the functionals

(1) t ‘
aiy = [0 Tyl WY (4o as,
wgi) = iﬁT {fT wgﬁ) (t-rp, t-1p)Tsy (1T oK j(mplamyar, . (7.8)

appropriaté to the group considered.

Proceeding as before, we find that a motion will be controllable only if

- —t
2By Lo, T, (7.9)
axk(t) axk(t)

We note from (7.1) and (7.3) that E =‘gfl = gfl(F-l)T. (7.9)l now implies

that the right Cauchy-Green strain tensor C = F-F is a constant tensor field
with respect to the reference configuration, i.e.,

-_a_ C.. = _é_ (aXP(t) aXp(t))
a%, U A Ay Xy

0. (7.10)

(7.10) implies that (4.9) holds, i.e., the deformation field at time t is
homogeneous. (4.9) and (7.1) now imply that the rotation field R(t) is also
constant. By (7.3) and (7.9)o, NF(T) must also be a constant tensor field.

We conclude, at last, that (4.11) must hold; the controllable motions must

be homogeneous. It is easy to see now that the results of Section 5 now apply
to materials of the triclinic, monoclinic and rhombic systems.
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8. REPRESENTATIONS OF RESPONSE FUNCTIONALS

In this section we will summarize the method of constructing representa-
tions for response functionalsjf which are form-invariant under the transfor-
mations of an arbitrary material symmetry group. The general forms (7.5) and
(7.7) will then be verified.

Associated with each symmetry group is a finite set of basic tensors,
gﬁl yooesQ n)’ oforders r(1),...,r(n), respectively, called the anisotropic
tensors [10] for that group. Each tensor Q PJ has the property that its
components are unaltered by the transformations of the symmetry group i.e.,

(p) _ (p)
%yipttir(p) ﬁilleieje"'Hir(p)Jr(p) %313p- + - 3x(p) (8.:2)

for each transformation H of the symmetry group {H]}. If H' is an orthogonal
transformation not in {H), then (8.1) fails to hold for at least one of the

anisotropic tensors g 1 PRI ), For example, for the full isotropy group,
the set of anisotropic tensors consists solelyof the Kronecker delta, 8jj.

The primary use of anisotropic tensors is in the construction of certain
basic scalar invariants and basic form-invariant tensor-valued functions in
terms of which E?Will be expressed. In [11], Pipkin and Rivlin illustrated
the use of the anisotropic tensors for the special case in which the response
functionals reduce topolynomials of, say, Efl and -a finite number of vectors.
Green and Rivlin [12] used essentially this technique in obtaining the repre-
sentation for response functionals for isotropic materials which depend on
a single second order tensor history‘gF(T).

The first step in developing the representation forlzfis to construct
a set of basic scalar invariants. Each scalar invariant has the form

TR e s Trgds B @Yol ] = 1E7g)5 B)
—t _ -t
= %1017t ipdgttirds Cipgp(T)ees Biqu' o Ciris( w) (8.2)

where Qiljl"'iris is an outer product formed from Afl),...,gfn). A complete
set of basic scalar invariants, denoted by I, is constructed by using all pos-
sible combinations of g(l),... ,g(n) and B, Ct(my),... ,Et( T,) in (8.2) and then
eliminating those invariants which can be shown to be redundant. Each such
invariant is considered a function of Ty,..., Tp and satisfies the following
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invariance condition for each transformation H of the material symmetry group

[H])
I[Et(‘rg)}_é] = I[Eg(‘rg)}-{? ; EJEET]’ (8.3)

In a similar fashion one constructs a set of basic form-invariant tensor-
valued functions. Each has the form

(V)[_t("fl),...,c ()5 B a(l) ,,‘g(n)] = P(ig) [T%(7g); B

= . . . TTE (1 B . T
= O&jllgl...lpgq...lrls CllJl(Tl)'"BlpJq'f‘Clrls(Tm) ) (8.4)

where 04 3i,3j,...1i.i_. 18 an outer product of 94 ),...,a(n) in some order. (V)
is to be considered a function of 1.,...,T . Each tensor-valued function (8 L)
satisfies a condition similar to (7.4),

PV (g Trg) BT kB ET] = 1 (V) (TE(rg); BIET . (8.5)
~ ~ o~ ~ ~ ~ ~~ ‘

~ o~

For this reason the set formed by eliminating redundancies of form (8.4) is
called a set of basic form invariant tensors.

Wineman and Pipkin [13] have shown that any form-invariant response func-
tional %ann‘be represented in a certain canonical form in terms of the basic
scalar invariants I and the basic form invariant tensors Efv). Representations
of & having this form and which are of most use for our present purposes are
given by

~

N
W = Zl @(V)P(V) [ﬁl + £tT G(V+l)(t-T;I)P(V+l) rgt(-r);g]d-r
v= ~ [ - ~

+...+,[vac ...f,"é'(“)[t.-Tl,...,t-'r,; I]/P/(“) [Q'(Tl),... ct( Ty B]d'r ...dTy

t-T (8.6)
where tensors P(V), v = 1.2,...,N, are independent of G TU(T). gl v+1) NI4T
are material scalar functions of Tys+-+5Ty- They can albo be taken as func-

tions of multiple integrals of the scalar invariants I. It is readily veri-
fied that (8.6), with (8.3) and (8.5) satisfies (7.L4).

The anisotropic tensors for 31 of the 32 crystal classes are derived in
[14]. The anisotropic tensors for the remaining class, the gyroidal class of
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the cubic system, have not been determined.

Cubic System

For each crystal class of the cubic system, except the gyroidel class,
the corresponding set of anisotropic tensors contains the Kronecker delta,
Si + The forms of the invariants for a single symmetric tensor and a vector
which have been calculated for the gyroidal class listed in [15] are such that
it appears that Bij will be one of the anisotropic tensors for the class.
We will assume this is so. The remaining anisotropic tensors in the set serve
to distinguish the given crystal class from all the others.

From (8.2) and the fact that bi is an anisotropic tensor, we see that
the basic scalar invariants for each crystal class of the cubic system contains
as a subset the invariants (2.8), and the kernel Cgi(r) of (2.9). Further-
more, from (8.4) we see that among the basic form invariant tensors P V) are

L d ~

’I:Sl) = ‘l, p(2) . B, p(3) - B, (n+l) ct(r). (8.7)

By (8.6), (8.7) and the preceding remarks, it follows that possible response
functionals for materials of the cubic system have the form (7.5).

Materials of the Tetragonal System, Hexagonal System and Having Transverse
Isotropy

The anisotropic tensors for transverdely isotropic materials are [10],

8 I (8.8)

11 O15 * %ot

The .anisotropic tensors for each class of the tetragonal and hexagonal systems
contains among them ;4 and either 833 or 833 835. The condition that 831 or
831 B34 satisfy (8.1) restricts the transformations H of the symmetry group

to rotations in a plane and certain reflections. The condition that Q&j sa-
tisfy (8.1) gives no further restrictions on the transformations. Thus, there
is no loss inigenerality if @y is replaced by aﬁj + 531 5] =~6i . By the

- same discussion as was used for the cubic system, we see that possible response
functionals the present classes of materials also have the form (7.5).

Triclinie, Monoclinic, and Rhombic Systems
For each crystal class in these systems, the set of anisotropic tensors
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contains oé;)'= 811 or a(ll) = 8y 81 s a(g) =8y or a 22) _ 521623, ag5) =
851 or a(53) = 531 33 an& poss1bly other products of tﬂls form, In each case,
upon subsgltutlng these tensors into (8.2) in all possible comblnatlons, it

is found that each component Blj’ E&a(T) or the form BlJBlJ, [ (Tﬁ Cpq(TE)
(no summation intended) is one of the basic scalar inveriants. Slmllarly,

it is found that upon substituting these tensors into (8.4) in all possible

comblnatlons, the set of basic form-invariant tensors contains, among others,

P(1) = (ll) B(2) = of22), p(3) = (33)

Since these form invariant tensors are formed as outer products of
anisotropic tensors, they automatically satisfy (8.1). (22) and a(55)
satisfy (8.1) only for orthogonal transformations whose matrlces have com-
ponents HiJ =0, i # j and Hlj =+ 1, 1 =j. The condition that a(ll)
must satisfy (8.1) yields no further restrictions on the transformatlons.
Thus, there is no loss in generality if P(l) = a(ll) is replaced by P(l) 1,
which satisfies (8.1) for all orthogonal transformations.

In view of these remarks, we see that the response funcfionals for

materials of the triclinic, monoclinic and rhombic systems can always be writ-
ten in the form (7.7).
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