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k Thermal conductivity
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P static pressure
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NOMENCLATURE (CONT'D)

R Reynolds number at probe tip, defined in Equation (B-1)
r constant
S constant
T fluid temperature, funection of xl, xg, N
T* fluid-wall temperature difference, T*(x%) = Ty-Too
Ty fluid stagnation temperature
T, temperature of flow surface, Ty (x%)
To temperature of mainstream, T (x%)
Uo constant
u, Ugy, contravariant and covariant boundary layer velocity components
in x® direction respectively
Ua, Un contravariant and covariant mainstream velocity components
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— "o
Y, u physical components of mainstream and boundary layer velogcities
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0, V,w velocities in X,y,z directions respectively
v veloclty
v physical comporients of boundary layer velocity normal to
gsurface
:@j, x*a, coordinate systems imbedded on surface, o = 1,2
e
X
ﬁ,&,% Cartesian coordinates
y* physical coordinate normal to fiow surface
y y“’%{F
(0
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1
jk}
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NOMENCIATURE (CONT'D)
first and second differential parameters of the surface
similarity parameter, n = yg(x%)

function of similarity parameter n, ©(n) =

coefficient of absolute viscosity
coefficient of kinematic viscosity
fluid density

geodesic curvature of coordinate lines, xl, x° respectively

turning angle of velocity V

o angle between coordinate lines x©

Subscripts:

Hej denotes covariant differentiiation with respect to surface
coordinates x&

,1 denotes covariant differentiation with respect to space
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primes denote differentiation with respect to p

Tensor Indices:
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CHAPTER I

INTRODUCTION

Since the introduction of the boundary=layer concept in fluid
mechanics in 190&4 by Prandtl (l), a great deal of work, both analytical
and experimental, has been directed toward its application. The first
analytical application of Prandtl's theory was an investigation of the
flow of an infinite uniform stream over a thin flat plate at zero inci-
dence by Blausis (2) in 1908. 1In the intervening years research in
boundary-layer theory expanded rapidly. Accounts of the fundamental
concepts and the important achievements in the general field of boundary
layers can be found in References 3, 4, 5, 6, 7, 8. Cooke & Hall (9)
give a general review of some of the recent advances in the theory of
three dimensional boundary layers.

To efficiently design various turbomachine configurations it
is important to analyze and understand boundary-layer phenomena. In
the design of turbomachinery two critical problems arise. They are:
(a) the transport of low momentum fluid to undesirable regions in the
blade passage and (b) choking of the blade passages due to boundary
layer growth (this is particularly critical when operating with flow
near mach one in the blade passage). Neither of these problems could
be accurately explained nor corrected on the basis of two dimensional
boundary-layer concepts. This is due to the fact that two-dimensional
boundary layer concepts will only account for boundary layer velocitiés
normal to the surface and parallel toa mdinstream velocity that consists

of a single component directed along a coordinate line which is a

-1-



geodesic of the surface.* The effect of the geodesic curvature of the
external flow streamline on secondary flows is discussed by Sedney (lo).

With three dimensional boundary layers, on the other hand,
the boundary layer velocity component parallel to the surface is no
longer parallel to the velocity of the potential flow near the surface.
This is true whenever the potential flow streamline on the surface has
a geodesic curvature with respect to that surface which is different
from zero. For instance for flow over a plane surface, the geodesic
curvature of any streamline, which is not straight, is different from
zero. In three dimensional boundary layers the streamline of the bound-
ary layer flow curves away from the mainstream streamlines (sometimes
sald to "under cut" the mainstream). This type of boundary layer flow
is also referred to as secondasry flow. Because three dimensional
boundary layer concepts could more readily explain the flow behavior
which gives rise to the problems in turbomachinery design, theoretical
and experimental investigations of three dimensional boundary layers
were initiated.

Theoretical research in three dimensional boundary layers is
continually hempered by the inherent complexity of the governing equa-
tions. In many practical cases the flow is turbulent, for which case
the equations are all but impossible to solve. Considerable analytical
work on laminar three dimensional boundary layefs has, however met with

success. The practical importance of the laminar flow analyses can be

*A curve C on the surface S is a geodesic of S if at each point on
C the principal normal of C coincides with the normal to S; its geodesic
curvature with respect to S vanishes identically. The geodesic curva-
ture of the Curve C on surface S at point P is the curvabure of the
curve C1 at P where cl is the orthogonal projection of C onto the tan-
gent plane of the surface S at P.
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summarized as follows: (a) experimental investigations by Herzig & Hane

(12) (12) ' and Kofskey & Allen (33) indicate that lanm-

sen , Rohlik et al
inar boundary-layer flows can provide qualitative information concerning
the behavior of turbulent boundary layers, (b) certain boundary layer
problems such as external=-surface boundary layer flows for high altitude
flight might well be encompassed by a laminar flow analysis.

The analytical work in boundary layer investigations has been
both of the approximate type and exact type.* The approximate techniques
consist mainly of the integral methods and series expansions. Recent
reviews of these methods are presented by Cooke & Hall (9> and Cooke (14).
An integral method for compressible flow is presented by Yangl(l5), Be-
cause the approximate solutiens are not rigorously established from physi-
cal laws but are devised in such a manner as to readily supply design
informetion, each new approximate method presented must rely on some
independent check to establish its domain of validity and usefulness. It
is in this respect that the investigations of exact solutions of the bound-
ary layer equations obtain their greatest justification. This fact has
been emphasized by Cooke & Hall (9).

Exact solutions of the boundary-layer equations have mainly been
found by using the similarity technique. In this technique the partial

differential equations of the boundary layer are reduced to ordinary

differential equations which are then usually solved numerically. Solutions

*
The word "exact'" here is used in the sense that no further assump-
tions beyond those of boundary-layer theory have been made.



obtained by similarity techniques are referred to as similar solutions.
In this technique flows are restricted to the basic assumption that the
velocity profile varies at most by a scale factor along the coordinate
lines., 1In view of this, as might well be expected, the type of coordin-
ate system used governs to a great extent the types of flows for which

exact similar solutions can be obtained.

7

(16) and Geis (17) present a general approach for ob-

Hansen
taining similar solutions. They use this method to establish the classes
of mainstream flow components for which the incompressible boundary-
layer equations will admit to similar type solutions when the coordinate
system is orthogonal. Numerical solutions to two of the types of flows

(16) (18)

found by Hansen are presentdd by Yohner and Hansen A second
general method (group theoretic techniques) for obtaining similar solu-
tions for partial differential equations in general is presented by Michal
(19) and Morgan (20) and the specific application of this method, by Mor-
gan, to the three dimensional boundary-layer equations is presented as
an extensive discussion following Reference 16. The exact solutions for
three dimensional compressible flow are not as extensive; the case of the
infinite yawed cylinder has been quite thoroughly presented by Reshotko
and Beckwith(gl)°

None of the analytical solutions presented in References 7, 13-18
has been experimentally verified. Although the two-dimensional exact
solution of Blausis (2) has been experimentally verified by Burgers (22),
van der Hegge Z&en (23>, M. Hansen (24), and Nikuradse(25), no expérimental

effort has been directed toward the verification of the exact solutions

for three-dimensional boundary layers. Visual studies of three-dimensional
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(11)

boundary-layer behavior are presented by Herzig & Hansen , Rohlik

et al (12), and Kofskey & Allen (l3>. Velocity measurements for three

dimensional boundary layers have been carried out for turbulent flow

26) and Johnston (27) and for special boundary wall

(28) (29)

by Gruschwitz (

geometries by Kuethe et al and Senoo none of which has corres-
ponding exact solutions.

The work presented here consists of both analytical and experi-
mental studies in three dimehsional, incompressible, laminar boundary-
layers. 1In the analytical studies presented, new classes of conditions
are found with which the partial differential equations describing the
three-dimensional, laminar, incompressible, boundary-layer behavior re-
duce to ordinary differential equations which yield similar type solutions.
The method used in this work is similar to that used by Hansen (16), The
associated boundary layer energy equation for constant properties is also
analyzed for the conditions with which it will admit to similar solutions
along with the momentum equations.

In the experimental phase of the work presented here two main-
stream configurations over developable surfaces (flat plates in both cases)
are invesfigated. Under the conditions of each case the boundary layer
equations admit to a similar-type solution. The mathematical proofs that
these flows admit to similar-type solutions both exist; one is from
Hansen (16) and the other is one of the class of sulutions found in this
work. The numerical solutions to the ordinary differential equations in
both cases are presented by Yohner and Hansen (l8).

The results of the experimental investigations show, that under

proper conditions, similarity solutions are physically, as well as
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mgthemstically valid, and that they can be applied with a good degree of

accuracy and confidence to finite channel flows.



CHAPTER II

MATHEMATTICAL ANALYSIS

Exact solutions of the laminar, incompressible, boundary-layer
equations are generally obtained by the use of similarity transformations.
By means of such transformations the governing partial differential equa-
tions are reduced to ordinary differential equations which can then be
solved numerically. Unfortunately, the conditions under Which this trans-
formation of the governing equations takes place are such that only very
restricted types of mainstream flows, surfaces, and imbedded coordinate
systems will satisfy them. It was with the intention of relaxing these
restrictions that this work was carried out.

Since the similar solutioms assume that the velocity profiles
vary, ab most, by a scale factor along the coordinate lines, the choice
of the coordinate system used is very critical in determining the types
of fiows which admit similar solutions. The work presented here, there-
fore, approached the governing partial differential equations in general
coordinates, (non-orthogonal curvilinear) imbedded on the surface, using
the methods presented by Hansen (l6>, who considered orthogonal-curvilinear
coordinates. t was found, by requiring the angle between the coordinate
lines %o remain constant (although not % ) and with the proper transforma-
tion of variables that extensive generalization of the conditions for

similarity can be made.

A. Governing Equations

The original derivation of the boundary layer momentum equations

by Prandtl (1) was done assuming orthogonai coordinates and using an order

-7
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of magnitude argument based on physical intuition. The boundary-layer
momentum equations used here are derived in the more mathematically
rigorous fashion of s series expansion of the Navier-Stokes equations

by Michal (8>°

Michal's work was carried out using general coordinates
on the surface which makes the form of these equations useful for this
work.

The Navier-Stokes equations from which they are derived are
restricted to steady motion of a fluid without any external body forces.
In addition the fluid is assumed to be homogeneous, i.e. incompressible
and constant density p.

During the derivation of the boundary-layer momentum equations
from the Navier-Stokes equations an additional restriction is imposed.
The restriction is that the boundary-layer thickness must be less than
the minimum magnitude of the principal radii of curvature over the sur-
face under consideration.

Under these conditions the boundary-layer momentum equations
are found to be the first approximation to the Navier-Stokes equations

when they are solved by a method of series expansion. The momentum and

continuity equations take the following form.

W A _ D Uer 118
W +\§—Q——-—— —-3—8-{ +U Uoc;@ (1)

o/
ac

LoV
;QLN 8 O (2)
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where the usual indicial notation of tensor calculus is employed. In
these equations y is the coordinate normal to the surface which is equal
to the actual physical normal distance y* divided byWJ;n. The velocity
v 1s the physical component of the boundary layer velocity in the normal
direction. The pressure gradient term has been replaced by its equiva-

lent in terms of the mainstream velocities. u®

are the conbravariant
components of the boundary layer velocity in the x% directions and U%
are the contravariant components of the mainflow at the surface defined
by the joining of the boundary layer flow and the mainflow. The U% are
obtained by evaluating the inviscid solution of the flow configuration
at the surface. The metric tensor is a (xl, xg), which is the metric
tensor of the surface, and which is equal %o the metric ftensor of the
space evaluated y = 0. The metric tensor defines the element of length
on the surface by

(ds) = a, d*dvf (3)

i

The metric tensor a  1s a double covariant tensor symmetric in q4B.
The contravariant components of the metric tensor, aQB, are dJdefined by

YA
P SX (%)

i
where 6a is the Kronecker delta.

’ It is assumed throughout that the distance separating the
surface over which the flow takes place and the surface defined by
the joining of the boundary layer region to the inviscid mainflow is
sufficiently small such that the outer surface can be assumed to be
a parallel displacement of the flow surface itself.

The surface is considered as a two dimensional Riemannian

space and the semicolon denotes surface covariant differentiation, i.e,
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Figure 1. Coordinate System and Orlentation of Velocity
Components for Flow over a Surface.
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and
Oy Y
LLW@ 3 %} ux (6)

The Christoffel symbols are, by definition,

oY
7 _ o0 [ %gp y 0%y _ 00y
S@x]ﬁ"‘ 2 [zﬁ“ 3 mﬂ ()

Equation (1) is in terms of the covariant velocity components
%1. The following relations between the covariant velocity component Uy
the contravariant velocity component ua, and one set of physical compon-

—-Q
ents u , exists

-0
The set of physical components u defined here are summed by the fam-
iliar parallelogram rule to obtain the total physical velocity.

If Equation (1) is now multiplied thru by &%

and Ricci's

Lemma applied, which states that the covariant derivative of the metric
tensor is identically zero, we obtain an equation which is all in terms
of the contravariant components of velocity instead of the covariant com-
ponents. This is desirable because the contravariant components are more

readily transformed into physical components. Equations (1) and (2) now

take the following form



¢ Lo A w8

\ -
oL _.L a'\_f - =12
U-30L+ﬁ3'j @) y % (10)

In the intrinsic geometry of surfaces the first term of the
continuity equation, Equation (10), is known as the surface divergence of
the contravariant surface vector ua. It can be shown by the use of Equa-

tion (5) and Equation (7) that this invariant takes the form,

& A :Q_ =%
L 2 (e u) (21)
where
a,
as=| """ ‘ (12)
a'l O'ZL

Equation (10), the continuity equation, now becomes

) u) i

_ w]"‘ + — = O 1

o u.( r b\a (13)
The boundary-layer energy equation for steady flow and constant

fluid properties can be written in the general coordinates used here as,

LLME A 3T 1T aBu u (1)
wE TR R G ey oy |
The derivation of this form of the energy equation is presented in Appen-

dix A. It should be noted here that, as before, y is not the physical

normal distance but that distance divided by"Jv which accounts for the
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form of the coefficient on the viscous dissipation term which is the last

term on the right hand side of Equation (14). The basic momentum, contin-

uity, and emergy equations to be analyZed for similarity solutions are:

e ;Ll%z:ﬁ_@ LTS =

W u3%4r{§_ ﬂ D%z *'U'Tf;@ 3 3 (9)
T‘E%@(\ﬁf)ﬂ-;}@%‘:O (13)
*ol y_l:_'_}i:_.q__‘_a M_Lb.\ﬁ L
MB)@‘-}-\]’\TBJ Ry G Ay b\a =

These are subject to the following boundary conditions

\
® y=o03 W=v=0 ,T=T,
i ’g’:':m o= U \ (15)
L. -
%—DOOT _Tw
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B. Conditions for Similarity

Following the usual approach in obtaining similarity solutionms,

the boundary layer velocities are assumed expressible as follows:

=U*F'm (16)

n= _J%“— 309 = \‘HW) (17)

The dimensionless temperature profile is also assumed to be expressible

as a function of the similarity parameter as

T - Ta
eMm) = —= 18
0 =T =y (18)
Substituting Equations (16) and (17) into Equation (13), the

continuity equation, yields

3 _ BF\S i
6%_ 3&{‘: nE R U" Y" Y\h_%] (19)

By integrating Equation (19) with respect to 7

v = ‘}"— bgf F Ve \3“%1%3(%“ %)}

ﬂ"%(?fé) (20)

a
#The superscript on F(n) or any of its derivatives 1s not a tensor

index and is placed directly over the F to distinguish it from tensor
indices. The functions % @ etc. always occur as a multiple of ¥ and

the superscript on F takes the same numerical value as that of Ua.
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The arbitrary function £(x%) will be assumed zero. It has been shown by
Hansen (50) that no loss of generality results from this assumption.

Now substituting for u¥, ¥, n, and T from Equations (16), (20),
(17), (18) respectively into the momentum and energy equations, Equations

(9) and (14) respectively, gives

FVTE vt (5 B
T L)l v 3]

v' o Le2 Yo BX
PR v ] - (4]
R B ] e

3
+<r‘-ﬂ‘-”’—3 i f}] FE ;;;}5 ZSM

At A R Rt
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—{u'%%i*w'e-wz%-ﬂ-;é*]ﬁ'e
g VU] T e

+{C§;\:" OLZZUzUZ]{%") =0 (23)

It is obvious that if the terms in brackets [ ] are proportional or
zero in each of Equations (21), (22), and (23) that these equations
will be ordinary differential equations in %(n), o(n), and 1. This
proportionality of the bracketed terms is a sufficient condition for
similarity solutions of'the equations. No attempt has been made to
determine if it 18 also a necessary condition. Conseguently the re-
quirements for similarity obtained in the following work may not be
the only requirements with which similarity solutions could be ob-

tained. In the cage of xl,x2 being orthogonal, if 810 =0 in the

above equations, it has been shown by Geis (17),that these are the
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necessary as well as sufficient conditions for similarity. There is a

coefficient g;2 or (const)g2 in all three equations, therefore the coef-

ficients of all three equations must be mutually proportionai or indiv-

idually zero. This requirement can be expressed as:

g=b [ +u (] =B ¥ 2 v
[ ) b v ]
o[ Tl 0

-\-% %% w0y, +%> {l',_ﬂ

S ﬁﬂ - baﬁ; %%LJ“ Al ]
=[S b L B R ()
+ w'{;‘} m— \D“KU\ aM’/ }

p [ Y] =, 0BT ) o [ 3T

I

(24)

-\-b

"

K

IS

=b H’ 0, UV = b [ 45 0V 0]
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Z

=b {——%O‘ vty ] (24) Cont'd.

The following observations can now be made. From Equations (17)

we know that g2 cannot be zero. Therefore if the terms

RARIE A AT

|
and ~—=— 112_ are each proportional to g2 or ident-

ically zero, then the term

g R+ )

is also either proportional to g2 or identically zero. Similarly if

2 ) L
U vzl s G W v {2

* SRRV ¢
|
and QLLl 2 are either proportional to 2 or identicall
\fl X prop g y
zero then

2 “L
R R IHRENAE

is also either proportional teo g2 or identically zero.
Therefore the conditions imposed by Equation (24) reduce to
the requirement that sixteen coefficlents be mutually proportional or

identically zero. These terms are:

ONY Z (25)
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(25) Cont'd
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Conditions @» are associated with the momentum equations only and
conditions -—> are the added requirements for the energy equation.
Conditions @—> are the conditions required to make Equations (9)
and (14) ordinary differential equations and shall be referred to as
O0.D.E. conditions.

Through considerations of the intrinsic geometric properties
of the surface the Christoffel symbols in Conditions (25) can be explic-
itly described in terms of properties of the coordinate system imbedded
on the surface.

The general equation for the geodesic curvature of a curve

imbedded on a surface is (31, p. 186).

2, (| X
ig} HAT T A - o fy  dx (26)

%X as ds 8 ds
where S is the distance measured along the curve C whose geodesic curva-

ture with respect to the surface is ¢. The symbol

8&(3 — eo(@

L
\N

is defined by

Q&%:O )oc=§



D]

y L=2, (=]

Employing Equation {26 the following expressions relating the geodesic

curvature of the coordinate iines and the Christoffel symbols are ob-
taineds

o
{ﬁ% = 6= (28)
a
and

(29)
Coburn (32, p. 169) gives the relation
ot :{§’§ (30)
Xt %
and Eisenhart (33, p- 153) glves
& .[xiL}JF_L%‘aq
S 2 Y )
2 2 Gy U1 0y VR (51
and

1)

SKE = -\ [ é‘ﬁﬁ?j e {23?;}]

o

where o is the angls bstween the coordinate lines on the surface.

By
manipulating Equations (28)-»{32) the following expressions for the

Ckristoffel symbols can be obtained:
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(33) Cont'd.

Some additional observations can be made. From conditions @ R

@, and it is seen that

C,a, U = Co, UV = ¢, a,, (v

or
C = 0, U* _0al’
4 - 0. 'U" ) CS' - Q. -U-L
I 22
Therefore
L
_ _ (an)
C‘) - C4C -
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From the intrinsic geometry of surfaces it is known that this is equal
t0 the square of the cosine of the angle between the coordinate lines,
7
Kiz) 2 —
ro ( i1Z - b
= = U W \
“~ a.a (54)
2z
Therefore the coordinates may be non-orthogonal but must be constant
angle coordinates.
The requirement for conshant angle comes from the viscous
dissipation ferm in the energy equation and if viscous dissipation were
Y
neglected may not be required by the remaining ceonditions. But because
of the complexity of the system of 0.D.E. conditions, it was necessary

to find some means of sirmplifying them and, still obtain profitable

&

esults, In the author's opirnion it is doubtfui that a meaningful
aralysis could bz male in the more general case. The assumphtion of
constant angle betwzen the coordinate iines wag, for this reason, used
throughout this work,

Trom Equations {34) and {i2) it follows that

S -
a=a, R,y A 0 (35)

0.D.E conditions (::}»(:), which are from the momentum equa-
hions, are now considered. Th2 application of 0.D.E. conditions

s N iqe : - : (9 i
(10}—= @ will be applizd to the results from ee o determine
e N = \" ,

*

T" and any additional rsquirsments necesszary to obtain similarity

solutions of the energy equation.
If in Equation (26), the curve ¢ is considered to he the

: n , -
coordirate curves xt = constant and x° = constant respectively, the
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following relations for the geodesic curvature of the coordinate lines

are obtained:

W6=%,(%)-—%%' (56)

and

_— 0 ( Qe OV Qar
“Q_ff = — 4 2
2 Dx? (w('“au\) X (37)

For the constant angle case Equation (34) can be applied to give

6, = wes 332 20

and

W6, = —wa® %g’ "'B{Ig;l (39)

Multiplying Equation (38) by cos @ and subtracting it from

Equation (39), it follows that,

-l-zziéz% = ' SRV SNS)
Tyl adwl

In similar menner

1oy _ ___.!___XL@—\.. m@ez] (1)

Under the conditions of constant angle coomdinates, applying

Equations (8), (28), (29) and (33-41), 0.D.E. conditions @@ of

Conditions (25) become

n (40)
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An additional equation from the geometry of surfaces can also
be employed. Laguerre's formula, McConnell (31 p°l9l)’ relates the
Gaussian or total curvature, K, of the surface to the coordinate system

imbedded on it. Laguerre's formula is

B w __‘a :a_ .
K = F[bxa% W(siﬂz\nlz(@‘.m)} (53)

2 —

The term is zero for the constant angle case under considera-

L
tion. By using the 0.D.E. Conditions (42), in Equation (43) it will be
shown that for certain Gaussian curvatures the mainstream velocity com-
ponents must be proportional if the O0.D.E. conditions are to be satisfied.

Under the condition of constant coerdinate angle Laguerre's

formula, Equation (43), becomes

\ﬁj K = DXZ Gr"\ ( m_j

or

K- S B\Ei? 4_4::L E)G;l EiL.aquk— {_;L §E§}
R T e U U

From Equations (L0) and (41), —l-ziRZ;1 and - ZQjER‘ respec-
AR Vo ¥

tively can be substituted to obtain,

95 _
oo ¢ o oV
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From 0.0.E. (1) end () , Conditions (L2),

=] |d1

S, = C73

5. = Z-—J—)
AN 7bx (T

B GR%% %%‘ BB%FU ]

This can be further evaluated. From 0.D.E. (&) and OF

o R (NP [
(}) Ly (T dwis ZAMS

From 0.D.E. (2) and @ ,
BJLVU U Fu ] + 6-\(—‘ Qﬁ' W

axl U YWY

Substituting Equations (47, 48, 49) into Equation (46),

0%, _ 2Cq (T)’

2\ 4 7‘\‘ ‘
6 — 6 0-\\
it AR e

+( L LSS g o5t

(48)
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e - =
—Z"_gle ‘%’“7_\@ SIGZ-Zﬁu[MwGIGZ-‘_%E] (%0) Cont'd.

LTV
0
In the same manner 5_:?2: can be evaluated. From 0.D.E. @ and @ s
U,z
S =C, wwa T (51)
Hence,
RS T 2T
ﬁ'?. — b\LL% +G | OXE — 25, XL (52)
And from 0.D.E. (6) and (9) ©)
PR CPASY
be% Cn( ) ’Z'\J_;L i 3B ,Amoo (53)
From 0.D.E. @ and @ ,
AT T\ SV = R
S - el o I, G, & (54)

From 0.D.E. @ and @

aﬁl;y Av\ﬁ_i'_wa& - +SAE| 9

Therefore Equation (52) becomes,

B, 7~RLU| (__L) ZH LTSI m(_f

e s Ty
—@zglbzmw“mmfg ("3
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—Zﬁ"ﬂz[ +0>j“06} (56)

With Equations (50), (55) & (35), Equation (45) becomes,

Kol = [ (200 +Ca =26, )L~ 5]8
— {zcgﬁ%_ﬁl_ 3] 5, +[1cm—cq] %—L s, (57)

If this is now divided through by 02 (division by 02 would also be
1 2

wccoptanie), Bquaion (57) becones,
—\;r‘l Ul = =5 +{3- ZCQG%T\Z](%)
+laeoe]BZ)
+[ac a2 )& .

Fron 0.D.E. () end OF

G N
_61\- - Cts UZ)

and 1f H is defined as
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Equation (58) becomes

K.

. 3 A
—6—7_ o a = ?)C:s H ‘\"(ch“cq'— lcgcas\) CIS L (61)
[

+(2C, + ¢, =2C )M —5

From Equation (61) and the definition of H, Equation (60), it is seen

that H must be a positive constant whenever Eé or 5; is a constant
o 2

1 2

or identically zero. The same result is obtained when either one of
the coordinate line geodesic curvatures 1s zero and the other non-
zero. In this case, any time the ratio of the Gaussian curvature of
the surface to the square of the non-zero geodesic curvature of a
coordinate line is constant H must be a positive constant. This in-
cludes any developable surface (K = 0) where either one of the coordin-
ate line geodesic curvatures is non-zero. This does not include sur-
faces where the coordinste lines are constant angle and both have zero
geodesic curvatures. By Laguerre's formula, Equation (L43), the Gaussian
curvature is zero and this formula cannot be applied.

Consequently, two conditions of constant angle coordinate
systems will now be considered: ‘(l) systems where K or K is con-

02
2

N

stant, and (2) systems where K = o) = 05 = 0.
In the fellowing two sections, it will be shown that the
0.D.E. conditions for the case of constant angle coordinates have the

same form as those obtained for orthogonal coordinates by Geis(l7) and
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Hansen (51*). Consequently the systems presented in (34), which satisfy
the 0.D.E. conditions, can be extended to the more general constant angle
case by simply referring them to the constant angle coordinate system.

1. Coordinate Systems for which

r i% is constant.
2

ol >
|

From Equations (60) and (61), it is known that

|

ﬁz = (const.) U (62)

and then from 0.D.E. (:) and (:) or Equation (59),

6;_: (const.) 6-\ (63)

With Equations (62) and (63), 0.D.E. @ or @ , can be written in the

following forms

J T2
@ (const..) U 6;
|

@* (const.) Tj‘

Since Conditions (64), 0.D.E. @ and @ , must be either proportional
to g2 or identically zero, it is assured that in Conditions (L42) the
second terms of 0.D.E. @ and @ and the third terms of 0.D.E. @
and will also be prépertional to g2 or identically zero. Conse-
quently these terms can be removed from the O0.D.E. conditions as writ-

ten in Conditions (42). The 0.D.E. conditions now become,
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Further terms could be removed by the above argument but instead of
removing the terms it will be noted that each term in the 0.D.E. con-
ditions must be individually proportional and not just proportional
in the added combinations shown. The form shown above has consider-
able advantage. This will become obvious in the next few paragraphs.

Some observations concerning the nature of the coordinate
geodesic curvatures under the conditions imposed on the problem can
now be made. Equations (38) and (39) are the equations for the coor-
dinate geodesic curvatures under the condition of constant angle. It
has been found that the condition of constant angle imposes the condi-
tion of proportional mainstream velocity components which in turn re-
quires proportional geodesic curvatures of the coordinate lines.
Therefore Equations (38) and (39) give

- B\ml _ Bﬁ«l - _ N Bm B\ST()L
R nE C'“& @O T

or

Bﬁz — |-¢ v d BWI
X (B -C, X

C, = ovds

Consequently the coordinate geodesic curvatures from Equations (38)

and (39) can now be written as,

5 - i Y ¥

— 2 (67)
\ — %)-_q)_(f)_ 1a, a, X
1o
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and

Yy X [
G, = — — (68)
l_clbmm 'JO"“ azz B-X.
where C”o}{ Cos5 o and CH: CoSs co é§ ’,

The following definitions will now be made,

o 0 I3
C‘-{ - - (o 33 J C,é éF w
Cie
| l
- 1 6
Ce=TCmm * 6 ¥ (65)

Substituting Equations (67), (68) and (69) into the 0.D.E. Conditions

(65) they become,

D
® faw

75 AT~ =2
9 Vo, ¢ CWUW ¢

(70)

(sz)z l V00
@ ek
T % V,a, X

o 1 e T g
U CISw[a“an BX, Z\IE“‘ bl'%
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Va, oX UG 2,0, X
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U "To,a, dX

(70) Cont'd.

These O.D.E. conditions are now compared with those found by

Hansen (54) for the orthogonal curvilinear case. The 0.D.E. conditions

for the orthogonal curvilinear case (34) are

® © & O

32

12U

2

5* 2T e 1
o TV e
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—— — e

/

In Reference %) the h_ by definition is
h, = ()

YRR

where S is the distance measured along the curve x¥ equals a variable
on the surface. This is by definition precisely equal to~féOa in this
analysis. Therefore the two sets of O0.D.E. conditions are equivalent
except for the constants 017 and C18 in O.D.E. conditions <:> , (:) ,
@ , and . Although it was not done so in Reference 34, it can

be established, by the same argument as was used proceeding Conditions

(65), that under the conditions of (34) the individual terms of each
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0.D.E. conditions must be proportional. In view of this, the constants
Cl and 018 do not constitute real differences between the two sets of
0.D.E. conditions because they can always be absorbed in the proportion-
ality constant. Hence the requirements for similarity which are obtained
from the solution of the 0.D.E. conditions in Reference 33 are precisely
the requirements for similarity needed in this analysis when the require-
ments from (33) are referred to a constant angle curvilinear coordinate
system.

No restrictions hawe been placed on the magnitude of the angle
® between the coordinate lines. The special case of 5 = % , of the anal-
ysis presented here, 1s the orthogonal coordinate case.

The additional O0.D.E. conditions Y @ from the energy
equation can be reduced under the conditions of constant angle coordin-

ates and K or EL being constant.

1 2
0.D.E. conditions and @ can be expanded using Equations

(35) and (8) becoming,

' oS EN—;z Iilibjkkﬁaj _ T Uma
© TR S L - L T

ONEE ARSI S Y8 L B bpMc%
Voo ¢ g, AN @ G
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By Equations (40) and (41), 0.D.E. and @ become,

& T Ot T g
U—-— UcémeJr\n ST E e

The first and last terms of 0.D.E. and @ are exactly equal to
0.D.E. (:) and. (:) respectively and hence are already satisfied and
need not be included. The second terms in each 0.D.E. and @
are of the same form as 0.D.E. (:) or <:> , as shown in Conditions

(64) and therefore may be removed here. Hence 0.D.E. and @

reduce to

T g,
o, I

T 2%
Ay W*

Upon changing to physical components, it is clear that with

constant angle coordinates and proportional mainstream components that

0.D.E. Conditions @ ; @ and @ differ only by a constant and

therefore may be reduced to only one condition,



-39-

4 ).

Therefore the 0.D.E. conditions from the energy equation for

j% or 5% equal to a constant are,

9 02

®
|
o/
=

(A
® +(U)
If viscous dissipation is neglected O0.D.E. condition (:) of Conditions
(73) need not be satisfied.

Therefore Conditions (65) and (73) constitute the 0.D.E. con-

ditions for the boundary layer momentum and energy equations when the

surface and imbedded constant angle coordinate system are such that K
K 1
or — are constant.
o

2
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2. Coordinate Systems for which K = oi E_Oé = 0.

Again the assumption of constant angle coordinates is made
and in addition it will be assumed that at most a constant change of
scale occurs along a coordinate line. In this system, where the
Gaussian curvature is zero, the two dimensional Riemmanian space is
gald to be developable or isometric with the Euclidean plane. When
the surface is the Euclidean plane the constant angle geodesic coor-
dinate lines consist of two coplanar sets of equally spaced lines
parallel, in the Euclidean sense, and interseéting at any angle w.
When the angle ® is I this is the common Cartesian coordinate system
of the plane. :

If, to 0.D.E. Conditions (42), which arise from the momen-
tum equations with constant angle coordinates, the additional restric-

tion of 01 = = 0 1s applied, the following O0.D.E, conditions are

%

obtained:

~

N

(Th)

®
sil-
%

3]
~

o/
g
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(74) Cont'd.

a l| Bxl

Under the conditions that K = ol = Oy = 0 and at most a

constant scale change is allowed to occur along a coordinate line,

the metric components 8y and a?e are constant. Therefore the follow-

ing coordinate transformation can be made

_ oL |
XOL' = @o{ X (No sum on Q) (75)

Then 0.D.E. Conditions (74) become,

©
QO

®
==
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(76) Cont'd.

These O0.D.E. conditions are exactly the same as those found
and solved by Hansen (54) for the case of rectangular coordinates.
Therefore the above O0.D.E. conditions show that the requirements for
similarity in rectangular coordinates found in Reference 34 are also
the requirements for similarity when referred to constant angle geo-
desic coordinates on a developable surface.

0.D.E. conditions e@ , for the energy equation are

now considered for this case. O0.D.E. conditions and@ for
constant angle are found in condition (71). Applying the conditions

of 0p = 0p = 0, the metric tensor components equal to a constant,
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and the change of coordinates shown in Equation (75), they become,

From 0.D.E. conditions (5) and (6) , (76), it is noted that both

and (:) are required to be proportional to g2 or identically zero
and therefore O.D.E. conditions and @ are already satisfied
and may be dropped.

Now, with O0.D.E. (:)—9@:) written in terms of physical
velocity components and the new coordinates ZJ' and Ezz the energy

equation O0.D.E. conditions become,

®
=

\ ]5_QW:T*
X'

©,

<l
N
o/

7

®
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It is clear from O.D.E. (:) and (ED that the mainstream
velocity components must be proportional if similarity solutions of
the energy equation are to be obtained. But, because of the type
surface and coordinate system in this section, if the mainstream
velocity components are proportional there would be no three dimen-
sional boundary layers generated. That is, the mainstream stream-
lines would be straight lines when the surface is the Euclidean
plane and a simple rotation of the coordinate system to aline one
coordinate liﬁe with the mainstream streamline will show thils to be
a two dimensional problem. 0.D.E. Conditions (B)- , from
which this requirement is obtained, are from the viscous dissipa-
tion term in the energy‘equation. Consequently to obtain similar-
ity solutions to the energy equation fpr three dimensional boundary
layer flows on developable surfaces and constant angle geodesic
coordinates, viscous dissipation must be neglected.

In this case the 0.D.E. conditions for the energy equation

become,

<
<

<l
N
o/
2
*

@
®

o/
2
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Therefore Conditions (76) and (77) constitute the 0.D.E. condi-
tions for the boundary-layer momentum and energy equations (neglecting
viscous dissipation) when the surface is developable and the imbedded

coordinate system is constant angle and geodesic.

C. Solutions of the Conditions for Similarity

Proportionality between the various 0.D.E. conditions presented
in the last two sections constitute systems of partial differential equa-
tions which, when solved, yield the requirements for the existence of
similarity solutions of the boundary-layer momentum and energy equations.

1. Coordinate System for which 5% or EL’ is constant.

T2
Conditions (65) constitute the 0.D.E. conditions for the momen-

tum equations in this case. As was shown in Conditions (70) these 0.D.E.
conditions are identical to those already analyzed in Reference 34 for
the orthogonal case.

It has been shown in Reference 34 that the most general form

of the metric components in Conditions (65) is

i N
Vo, = (b Y +53)

.MZ;_: (blxl + baxlyf\

For the constant angle case it is known frbm Equation (34) that

a5 =\/alla22 cos w, therefore in this general metric tensor the ajp 1s
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— n
a,= mw(b\w +bzxz>

Therefore the differential quadric

(ds)" = a, X} + 0, () + 20, dx di
(ds)'= (b blfi“wucf 5 () 4200 d d¥]

I l* . i#
X = X pwx — X oo

2 |* ik .
Y» = Y\ Qﬁmﬂi~Jk'¥v A oL

where @ is constant. The differential quadric becomes,

(A

(ds)

N ‘ *.20
[ (bt by eeod) o + (B tinec b |
x

K(I +2 05 /alm%mm)(dﬁ )ZJr(\—Z 0@ planocanasd) (dX )

X *
+2 i (Ol — s A dod ]
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Since o wag arbitrary it is possible to choose o such that

blMu,-%bzmu =0

Then

(et = Y W (4 Vo (- 0 )

+2 o 0 (ntot - o) M*OQXZ*J

where = sz AL -b\ M%L\n and
L= 2 RS vl o oL

1f the following transformation is performed,

where n \ -1 , the differential quadric becomes,

l-__

T ()

+I>‘

(ds)’ :(F\T\’) G
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From the above it i1s noted that the general metric components obtained

from the 0.D.E., Conditions (65) can always be transformed, without loss

of generality to systems for which a.. is unity. This fact was also

22

proven and used in Reference 54 for orthogonal systems.

Because 2y = 1 in Reference 34 and here, the results of(34)

may be extrapolated. In Reference 34 three sets of solutions of the

conditions for similarity were found to exist. They are:

= constant

Case I: l&
2
o
1

o o |

Va, = ()" ,Va, =1 s nxo,
vl :A;UZ: (\Z(X’LYV\

2 T!
%"As?

Case II: K = constant (nonzero) and cl and 02 constants,

nx
C%l =€ > Vzi;; = , > Y\SECD
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Case III: K =0, * + - = 0,
1 2

Z ‘

\JE,, R 4

T=aT"=p,00) e

Q_.Q
7<‘\CI

To obtain the requirements for similarity solutions of the
energy equation, for each of the above cages, 0.D.E. conditions —9@,
of Conditions (73), must be satisfied., O.D.E. Conditions and (D)
are identically zero for each case because a11 is not a function of xt
and 8o is not a function of xg in any of the cases,

0.0.E. (I8 , of Conditions (73), when set proportional to 0.D.E.

<:> , requires that
* _
T — AAU | )L (1)

If this 1s substituted into 0.D.E. <:> and (:) of Conditions (73)
these reduce identically to O0.D.E. (:) and <:) of Conditions (70) re-
specitvely and are therefore satisfied.

Therefore Equation (81) constitutes the only additional require-

ment needed to obtain similarity solutions of the energy equation in
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in Cases I, II, III, when viscous dissipation is included.

When viscous dissipation is neglected 0.D.E. condition (:) no
longer needs to be satisfied. Hence O0,D.E. (:) and (:) must be pro-
portional to, ssay, g2 (0.D.E. (:) ), where g2 is obtained from each of
the above cases, Solving these for each of Cases I-—+III relations for

T*, the wall-fluid temperature difference, are obtained. They are:

Case I:.
T = A4(Xz)b (82)
Case ITI:
2
T = A, e (83)
Case III:

* r s
T =A00¢ (84)

It should be noted that when viscous dissipation is neglected
a condition of constant T*, constant wall-fluid.temperature difference,
will always yleld a similarity solution of the energy equation if the
momentum eqﬁation yields a similarity solution, Whereés when viscous
dissipation is included this is only true if the mainstrsam velocity
comporents ﬁj' and ﬁg are also constant,

2. Coordinate Systems for which K = 0 = 05 = O.

Conditions (76) constitute the 0.D.E. conditions for the
momentum equations of these systems. These are exactly the same con-

ditions that have been completely analyzed by Hansen (3%) for the
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rectangular coordinate case, Therefore it has been shown that the re-
quirements for similarity obtained in Reference 34 are also the require-
ments for similarity when these requirements and the governing equations
are referred to the non orthogonal constant angle coordinate system.

In Reference 34 four sets of requirements for similarity were

obtained. In the notation used here they are:

Case IV: ’JZZ: = VQE;;==/

T = a0
Tr=p,e™ ()"
9 = AT’

case v: YA, =Ya,, =|

Case ¥I1: {Zi:‘==ivzi;;L==l
T =AY

—

U%= A,00"
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) jif

% - As X!
Case VII ‘\/al-; :VCTZZ: '
T'=pe™
! }

=2 EZWAX'
U - Az
2 5!
9"= AU
To obtain the requirements for similarity solutions of the energy
equation, for each of the above cases, 0.D.E. conditions @ and @ s
Conditions (77), must be satisfied. Setting these corditions proportiocnal

to g2

in each of Cases IV-wTII will give equations which can be solved
for T*,

The results are:

Case IV:

T*= p e ef

Case V:

% r S

T =7, 00 ()

Cage TI:

x ¢ e

T =A(X) €
where S = O ifm%n -1,

Case VII:
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Agein it is noted that T = const. will always yield simil-
arity solutions of the energy equation when viscous dissipation is
neglected and when the momentum equation admits to a similarity solu-
tion,

3. Comments on Mainstream Velocity Components

The mainstream velocity components [ ﬁi, ﬁe ] are the values
of the non-viscous solution evaluated at the surface. These components
are the only quantities of the non-viscous flow which this analysis will
specify explicitly. To determine the non-viscous mainflow the surface
shape must be specified completely but, as will be seen in the follow-
ing section, this analysis only demands that the surfaces be of a given
class. The determination of the classes of non-viscous flows which have
surface components of the form required over the general classes of sur-
faces required is an investigation in its own right and has not been
attempted here. In such an investigation the analyticity of the non-
viscous flow may place further restrictions on the above systems which
admit the boundary layer equations to similarity solutions.

In the regquired forms of the mainflow velocity components at
the surface, a negative exponent would correspond to a decelerating
flow or filow with an adverse pressure gradient. In such systems there
is a strong tendency toward separation in which case neither the bound-
ary layer assumptions nor the assumed similarity transformations are

valid and the analysis can‘t be used.,
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D. Classes of the Admissible Surfaces and Imbedded Coordinate Systems

Knowing the metric coefficients for each case, the admissible
types of surfaces and imbedded coordinate systems can be obtained

through the use of the intrinsic differential geometry of surfaces.

1, c%ex,f§1=(fY“i Qe = | ,

The differential quadric of the coordinate system is
. N Z z — n 1
(dsy = 0e] dx] ™+ [df] +2eowe (T drdld (#5)
If the coordinates are transformed by,

W= LB el ]

n§o,l (86)

the differential quadric on the surface in the new coordinate system

dey={B @] ) + @] 5 nven

A theorem from Eisenhart (33, p. 108) states;

When the linear element of a surface is reducible to the form
(ds)™= N[ (duf +(dv)’] (89
where )\ is a function of u or v alone, the surface is applicable to
a surface of revolution.

The significance of the term "applicable" is that the portion

of one surface in the neighborhood of every peint can be so bent as to
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be made to coincide with the corresponding portion of the other surface
without stretching or duplication. The application of one surface upon
another necessitates a continuous array of surfaces applicable to both
surfaces. The process of transformation is called deformation and one
surface is called the deform of the other.

(33, p. 156)

Another theorem from Eisenhart states:

Two applicable surfaces have the same total curva-
ture, K, at corresponding points.

Two surfaces with the same quadric differential form (or lin-
ear element, i.e. Equation (88) in this case) are applicable, but the
fact that the quadric differentials of two surfaces are unlike is not
a sufficient condition to prove that they are not applicable. An ex-
ample of this fact is the difference in the quadric differential forms
of the polar and Cartesian coordinates of the plane,

The problem of determining the necessary and sufficient condi-
tions for two surfaces to be applicable is known as the "Problem of
Minding" (33, »- 521), being named for the man who first proposed it.
The results of the "Problem of Miﬁding” which pertain to surfaces of
revolution with variable Gaussian curvature are given in the following

theorem (55) b. 526);

The equations
AK=TK) AQK:¢(K> (89)

constitute a necessary and sufficient condition that a surface be
applicable to a surface of revolution.
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In Equation (89) f(K) and ¢(K) represent arbitrary functions of K, the

Gaussian curvature of the surface, and A and Aé represent the first
1

and second order differential parameters,

A K Ow(%%ﬂl" 20,3 ¥ %K‘ z&%@

‘ a

2K 2K K. K~
Ak =z | S B ). e ?)

which are invariants of the surface.
Therefore the necessary and sufficient conditions for a surface

10 be admissible 1in this case are:

A particular example of a class of surfaces which are applic-
able to surfaces of revolution are the heliceoids. The theorem of Bour
(33, p. 147) states:

Every helicoid is applicable to some surface of
revolution, and helices on the first correspond to the
parallels on the latter.

Helicoids are generated by revolving a space curve about a fixed line
axis and at the same time translating the curve along the axis at a

velocity which is in a constant ratio with the velocity of rotation.

For the differential quadratic of the form of Equation (88) on a
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helicoid the lines of constant u would be the helices and the lines of
constant v would be the orthogonal trajectories of the helices. ' A sec-
tion of the helicoid by a plane through the axis of rotation is called
the meridian. The meridians of a helicoid and the surface of revolu-
tion to which it is applicable are not the same unless the surfaces are
also developable in which case the meridian curves are straight lines.

In the following analysis only the surface of revolution itself
will be discussed without considering other applicable surfaces,

The surface of revolution corresponding to a differential quad-
ric of the form of Equation (88) is analyzed in Reference 33, p. 109.
For the particular differential guadric under considerstion, namely
Equation (87), the equation of the meridian curve or generatrix in

three dimensional space is

" na2 Ak
o {U‘%’d kﬁ%i\n} —\}zdr ) 030 (91)

where Z is the axis of revoiution and r the distance from the meridian
to the € axis. Also the following relation exists between r and the

coordinates on the surface

= Wl—f (92)

where )\ = A(u) in Equation (88) and in the particular case under consid-

eration
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Consequently the lines EEEZ constant, the Ejgcoordinate lines, are the
parallels of the surface. That is, the circles described by a point on
the generatrix as the generatrix is rotated about the axis of revolution.
The §:l= constant lines, the x 2 coordinate lines, are the meridians or
generstrices of the surface.

Returning to the original coordinates (xl, x2), at constant
angle ®, by the transformation, Equation (86), it is now known that
the lines of x2 = constant, the xl coordinate lines, are also the paral-
lels of the surface. The lines xl = constant, the x2 coordinate lines,

1 coordinate lines at constant angle ®. These must

must intersect the x
be, by definition, the loxodromic curves of the surface of revolution.
The equation of the xe coordinate lines, the loxodromes, as a function

-1 -2
of the orthogonal x , x coordinates on the surface is

bX'+ b, X" +b,=0 (94)

where bl’ b2’ b5 are constants. When the coordinate angle £ is g the
x2 coordinate lines coincide with the meridians of the surface.

Combining Equation (93) and the second of Equations (86) the
relation between the x2 coordinate and the distance r from the axis of
revolution to the surface is

= Moo (X’L\n L NX 0 (95)
=N
By consideration of the metric components and the relation

for the Gaussian curvature of the surface, it is known that

K = — nn=1)

- N%O0 6
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From this the following can be noted: if (a) n > 1 or n < O the surface
is one of negative total curvature, and if (b) O < n < 1 the surface is

0O or 1 has al-

]

one of positive total curvature. The possibility of n
ready been excluded because the analysis of this case assumed from the
beginning that the surface was nondevelopable.

Consideration of the derivative of Equation (91) with respect

to r, which is
=N

/
_dg(; _ {[(\;\n\ (A_%Q_) ]1— |}Z > N O, (97)

gives some indication of the shapes of the surfaces of revolution in-

volved. Figure (2) depicts the shapes of the generatrices of the sur-
faces.

In Figure (2), r* are those values of r at which the quantity
under the radical of Equation (91) becomes zero.
That 1is

h

x . o —( n__\ImM

r :mmo:s(————ry N%xo,l (98)
(- " )

The surfaces only exist for values of r where the integrand of Equation
(91) is real. Therefore for values of n such that n <O orn>1, r < *
and for values of n such that 0 < n <1, r > r¥ give the ranges of r for
which the surface exists. Also, beesuse this integrand must be real, it
is noted that only specific values of n are allowable in the range n > 1.
These values are all the odd integers in this range. That is n =2m + 1,
m=1, 2, 3, ..000000.10 the other range of values of n there are no

restrictions; n can have any real value, integral or not.
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H
ﬂ
n<o
o<n< |
n>1
* r*
ﬂ
Figure 2. Generatrix Shapes for Surfaces of Revolution for

Case I.
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From the above restrictions on r for the various ranges of n,

2 coordinate, it is clear that

for n <0 and 0 < 1n < 1 that the location of the x> origin (x= = 0) is

and Equation (95), relating r to the x

not on the surface. This may raise serious doubt, for physical reasons,
as to whether or not these surfaces are acceptable. But this difficulty
may not be encountered on other surfaces which are applicable to these.
For the case of n > 0, n being any of the old integers beginning with
three, the integration of Equation (91) gives a relation for which r

2

is zero for periodic values of Z . Hence the x“ origin is on the Z

axis.

z
2. Case = ™,
ase II, J;Hj_ e ) a22

The differential quadric is
2 (N
(ds) = (™) + (d12) +2eui €™ didit (99)

If the coordinates are transformed by

XI = Q_D'%QDT_ K X+ éﬁhﬁ Tj (100)
N nxo
X =5

the differential quadric becomes

(ds} = (LB VT (T +(at) ] o

By the theorem from Eisenhart, quoted in the last section it is known
that the admissible surfaces in this case must also be applicable to a

surface of revolution.
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The equation for the generatrix of the surface revolution being,
. — 2. yZ
MM L0 102
Z‘==\Jﬂ{( nNe > ——‘} Cir‘ ) n*0 ( /

Again, the coordinste lines are the parallels and the loxodromes.
The following relation exists between the x2 coordinate and r, the dis-

tance from the surface to the axis of revolution,

SRS
M;\"w e y NXO (103)

r =
With the given metric components the Gaussian curvature is,

R
:-ﬁz: s NXO (104)

Therefore the surface 1s one of constant negative Gaussian curvature.
A surface of revolution with constant negative Gaussian curvature is
known as a pseudospherical surface. Equation (102), the equation of
the generatrix, is known to be the equation of a tractrix (33, p. 274)
and therefore the surface of revolution is a pseudospherical surface of
the parabolic type, or a pseudosphere. The tractrix is shown in Figure

3 . In Figure 3 r¥ corresponds to the value of r for which the radi-
cal in Equation (102) becomes zero, namely

= e
N
By Equation (105) it is known that the x2 origin in this case corresponds
to the parallel described by the point r* on the tractrix.
The necessary and sufficient condition that a surface st be

applicable to a surface S of constant total curvature is that the total
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+

—r

Figure 3.

-

The Tractrix, Generatrix for
Case II.
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curvature of S1 is constant and equal to6 the totdl curvature of §

(33, p. 321). Therefore the necessary and sufficient condition for a
surface to be admissible in this case is that its total curvature sat-
isfy Equation (104).

2
3. Case III, «/—all=x, fa22=l.

The differential quadric is
LS —_
(ds) = (K2 dr)" + (dr®) + 2eeed X di (105)

Consideration of metric coefficients and Equatién (43) shows that the
Gaussian curvature is zero. That is, the surface is developable or is
sald to be applicable to the Euclidean plane. Consequently it is suf-
ficient to consider this case as being represented by a plane surface.

If the coordingfhes dre transformed by

)L'__ ~Jnr +m6
Incy

(106),
\’ 7, '

M

the differential quadric becomes

(o) = (dr)= +(rd6)- (o),

where r, © are the ordinary polar coordinates of the plane. There-
fore from the transformation, Equation (106), the equations of the
xl and xg coordinate lines can be obtained as a function of the polar

coordinates r, ©.
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The xl coordingte lines are lines of x2 = const, hence are cir-

cles. The x° coordinate lines are lines of x+ = const. hence satisfy

the relation,

©

r=Be" (108)

This 1s the equatior of logarithmic spirals in polar coordinstes. If a
scale change of r is made such that T = fnr, the {;, @} coordinates are
orthogonal and are circles and radial lines. In terms of this set of
coordinates the xl coordinate lines are represented by T equal a constant

but the x2 coordinate lines are represented by the linear relationship.

r-me+C=0 (108a)

This is pointed out because in the last two sectione it was seen fthat

2 coordinate lines were loxodromes of the surface of revolution

the x
and could be represented by a linear relation between the orthogonal

set of coordinates on the surface and it will be seen in the follow-

ing sectione that in all cases the new admissable coordinates can always
be represented by a linear relationship of an orthogonal set of coordin-
ates.

The angle & between the xl, xa cogrdinates determines the

constant m in Equation (108) by the relation

— _ |
v W = T (109)
Y2+
This system becomes the polar system as m o , il.e. ® = % . The coor-

dinate system is shown in Figure L,
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Figure L4, Circle-Log-Spiral Coordinate System Case III.
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b, Cases IV »VII, Ja =& =1,
11 22
In cases IV - VII the surface must be developable, and the ad-
missible coordinate systems are all of the same class. Again, because
the surface must be applicable to the Euclidean plane, it is sufficient
to consider this case with respect to a plane surface.
When referred to the plane surface the coordinate lines must be

straight lines becsause thelr geodesic curvature is zero. The differential

quadric for the coordinate lines is
P N2 2\% — \ 2
(de) = (dX) + (A1) + 2 and d' dy (110)
If the coordinstes are transformed by

Y=o X

(111)

-l

V= Y2 -wtd X

the differential quadric becomes,

(dof = (4T} + (d3?)" (112)

-1 -2
Hence the system {x ; X } is the ordinery Cartesian coordinate system

in the plane, and the system {xl; X 2} consists of any two sets of paral-
lel straight lines intersecting at a constant angle w. The special case

of = g is the ordinary Cartesian system. As in Cases I — III, the con-
stant angle coordinates can be described by linear relationships of ortho-

gonal coordinates on the surface. Figure 5 shows the coordinate system

[x1, x7}.
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E. Summary of the Systems which Admit to Similarity and the Associated

Ordinary Differential Equations.

In the last section the admissible types of surfaces and coordin-
ate systems were listed. In this section the required systems of main-
stream velocities and the similarity parameters will be repeated along
with the ordinary differential equations which result from them. The
requirements and ordinary differential equations are in each case refer-
red to the admissible coordinate systems of that case.

To obtain the ordinary differential equations the requirements
for similarity in each case are substituted into Equations (21), (22)

and (23). The boundary conditions are the same in each case. They are:

Fm=Fip=0 @mn=0 sx=i2

b i) = | T %o =
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Whers

T\ - % %(X')Xz> (17)

(The following abbreviations will be used in this section in
connection with the similarity requirements on T*, the wall-fluid temp-
erature difference, and the ordinary differential forms of the energy
equation: (I.V.D.) - including wviscous dissipation, and (N.V.D.) -

neglecting viscous dissipation.)

1. Case I ~J€11 = (xg)n‘sza =1 .

T = A0 (1.7.D.)

T = [.\.\Ar(ﬁ (£.7.D.)

Momentum Equstions

hm@\“t(k}p)ﬂ;(j:'\l—(g&- ;]—\r A\(m-nyﬁﬁ&ar\—zﬂ%’\%’—ﬂ

(2

P2 |
—{m+zn-) [x\u}wl‘ sEE _ (A) (\afwﬁ o Fm =0 (114)

ozt (-] tneslF 1] -Wn -] s
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2
//

TN

—(m+2r\+l)wo—o 7 -—P\l\ JM%CSF”I—O (115) Cont'd,
Energy Equations:
;T
Bl ot @rom) EE — 2 mb'e
K (116)

S i ey 2\
ik by KM#”) 170w F +(f?_ } =0
Gohs

7z

2‘/
(8.7.0.) %_\Q\ée +(2n—m+\)%\—: ~bF &6 =0 (117)

2
2. Case I, Na =™ Ja =1.
11 22

T = A4€ (N.V.D.)
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Momentum Equations:

noes] [+ () =03 Hinryiim e [FF -
i L (128)
~ (2 3 EE — AWl E =0

2,2 . (119)
(mtzn) sl - gt -0
Energy Equations
2 2
(1.7.D.) —'}kj\:{\ g -\--———an—m g'F —2Lmb'B
R
u\\iﬁ L\* Ly (%':”Y- = (120)
+—L—EAG)+2%UBF%4- =0 Ve
C? A4 ! 2
- .
(:l\z‘qch_) _E_\_\SE\}_ @” -+ Z’.QQ_-Y‘_'_\. e'% —_— bF 6 = O (1,2.1.)
R

~ T 2 -
3. Case IIT, \fallx 5 '\/_822 =1 .

|

T=plt=p,00) e™
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2 I
3= Agﬁ-
Tx= A+<ﬁ'>z (1.V.D.)
|
T\k: MQ&L{GSX (N.V.D.)

Momentum Equations:

U\\\z{m P+ e & [ [FY-(]+ A‘[m-nw(s +L]EF’\%’— \]

.wma[(é 'M— p\\w a—‘g-“ {m A\\F +(n+3) ﬂ

Lo

"Q\\\z ‘\% M T =0 (122)

(nawd T3 —cmZQB% ¥- [\ + A (MG —Zcmo—oﬂ\':’!%’-\]

(123)
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Energy Equation:

I ) 1 L
(1.v.D.) % 8 _m{_k_\e[{- —%GF —2mANFE B

Ry
1.”7._
+&E§\>‘l: ) (124)

—%M':IG‘V&/@=O (125)

20 =

% ' SN
1= M(i (13 (N.V.D.)



Momentum Equations:

("r/)?._EZ_E_‘_i_ :\; (m_l){\,\-f—/_ﬂ

—Be (i \"Y%—i\i' " =
Zl\\r\( OF n F =0 (126)

™M L Zm
NN &
P‘\?_‘:\ T =0 (127)
Energy Equations
wvo) A _TAnE I\ZQM-M] /

C, 2,
"D\T F+ P\L%F ]9 =0 (128)

5. Case V, J—all = J_agg =1

U= 00" 0"

U =p,00 08"



-76-

{2 by
T - ,f\Af bd\r (X’L)S (N.V.D.)

Momentum Equations:

n/2 A ZAn
Ay
_| — % Fm — O (129)

b g -

Energy Equation:

Na A (-1 | N m-) &7 A
(x.7.D.) A?i\ B —V\g\ ) F +~———va“ I F]@
-\ -hsF e =0 (131)

6. Case VI, \/—al.l = \/—8‘22 =1,

U =hn)



—" N
U=, (x)
7 el
N
% B p‘s X
% 5
T = p\drmr e (1.7.D.)
WhereSinfm\f'n-l
Momentum Equations:
(%/)1_%¢IIF_\__E§_—%:!II=O (152)
7 | 2z
FE- g bEa- R <o oo
Energy Equations:
(N,V.D.) if m§¥n - 1
| \,
Mg _Abd ey £ cFB =0 (154

(N.V.D.) if m=n - 1

Abs Al Fo'-Thr £l AZ%%’:] 5=0 (135)
® 2



-T8-

7. Case VII, Jall. = «[aee =1 .

. !
U=he

T emx'
VA
Y
T*= f&4 er (v.v.D.)

Momentum Equations:

N \

F =551 28" =0 0
[ ,,I Z

S e (3

Energy Equations:
\ )\ A n ’ / L _
(N.¥.D.) J\:%l@ "—E*F@ —ArFe=0 (138)

8. Comments on Ordinary Differential Equations.

Except for special cases the above ordinary differential equa-
tions must be solved by numerical methods, preferably by a computer pro-
gram, No attempt has been made herd to make such calculations.

It is interesting to note that Equations (126 - 138), fér Capes

IV - VII, are independent of the angle between the coordinate lines.
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Consequently the numerical solutions to these equations are valid for a

coordinate system at any angle when the mainstream velocity components

and. the wall-fluid temperature difference satigfy the requirements in

that coordinate system. Yohner and Hansen (18) have presented solutions

for the momentum equations of Cases V & VI, Equations (129, 130) and (132,
133), for orthogonal coordihates and a wide range of m and n. These

solutions can now be used when referred to nonorthogonal coordinates.



CHAPTER TIII

EXPERIMENTAL INVESTIGATION

A. Introduction

The experimental program consisted of the direct measurements of
three-dimensional boundary-layer velocities of two physical systems, for
each of which exact similarity solutions exist. This program was carried
out to determine the applicability of exact similarity-type solutions for
flows of infinite extent to finite channel flows and to experimentally test
the similarity solutions of the three-dimensional boundary-layer equations
in general. The experimental program was conducted in the Mechanical Engi-
neering Department's Fluid Flow Laboratory in the Fluids Engineering Build-

ing.

B. Experimental Apparatus

Basically the experimental equipment consisted of an open-circuit
wind tunnel operating with compressed air, two test channels, and the neces-
sary associated instrumentation. A general view of the experimental equip-

ent is shown in Figure 6.

1., Basic Equipment

The wind tunnel had a settling plenum obtained from the Aeronautical
and Astronautical Engineering Department which was installed with the neces-
sary piping, control valve, filter, and contraction section.

The settling plenum had an aluminum frame and covering and a wooden
liner supporting eleven screens. The air entered the plenum through a two

inch pipe. A diverging section from the inlet pipe to the main settling
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Figure 6a. Filter and Control Valve at Plenum Entrance.

Figure 6b. General View of Test Channels and Associated
Instrumentation.
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chamber was 32" long and contained four of the eleven screens. The screens
in the diverging section had 150 wires to the inch. The main settling cham-
ber had a rectangular crossectional flow area of 23" x 10" and was 78" long.
Seven equally spaced screens in the chamber had 50 wires to the inch.

A contraction section was built with a 7.66 to 1 contraction ratio.
This contraction section was 18" long and had an outlet cross section of
5" x 6", The outlet of the contraction section was designed such that the
test channels could be attached directly to it.

Four feet upstream of the plenum entrance was mounted a Fischer-
Governor control valve. It was initially thought that this control valve
would maintain steady volumetric flow rates through the system but due to
the poor dynamic response of this control unit relative to supply fluctua-
tions this was not possible. 1Instead, all experimental runs were made with
the control valve in a full-open position and the alr compressor operating
continuously. The contraction section had been designed to give the desired
velocities in the test channel with the compressor operating continuously at
full load. TFortunately the losses in the system were such that with the con-
trol valve fully open the compressor would run continuously and maintain a
constant supply pressure. Precautions were taken to insure that during the
programmed tests no other laboratory equipment was supplied with air from
the compressor. This insured steady flow conditions.

Just upstream of the control valve was a Cuno Model No. 6F1G air
filter to remove the fine particles of dirt, water, and oil from the com-
Pressed air.

The plenum, filter, and control valve were connected to the receiver

of the air compressor with approximately 100 feet of three inch pipe and
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20 feet of two inch pipe. The receiver, which had a volume of approximately
750 cubic feet, served to remove the fluctuations in the flow due to the re-
ciprocating nature of the air compressor.

The air compressor was a Joy Model B with a 100 hp drive producing

550 efm of free air.

2. Test Channels

The curved test channels were shaped to cause the flow to have pre-
determined streamlines for which exact similarity solutions exist. The two
channels used are shown in Figure 7.

The channels were made with 1/2” plexiglass tops and bottoms, and
l/h” curved plexiglass sidewalls. The flat 18 gauge sheet steel plates on
which the boundary layer grows were mounted in the center of each channel.
The surfaces of the flat plates were polished and a sharp leading edge formed
on each,

The exact shapes of the side walls were determined during visuali-
zation studies using smoke. Since only specific types of flow fields have
similarity solutions, it was necessary for the walls to direct the flow in
such a manner that its streamlines coincided with streamlines of flows for
which similarity solutions existed. One set of streamlines for which simi-
larity solutions exist was choosen for each test channel and white dots de-
scribing the streamlines were superimposed on the buff-black surface of the
flat plate of the channel. The smoke in the visualization studies traced
out the streamlines of the flow in the channel and the walls were adjusted
until the smoke traces coincided with the white dots on the plate. This in-

sured that the streamlines of the flow in the channel were known and were for



-8l

Test Channels.

Figure T.
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flows which admit similarity solutions of the boundary layer equations. The
paint was cleaned off the plates after the smoke studies to make it possible
to use an electrical contact method for determining the probe location accur-
ately.

The channels were held together by using eight tie bolts in each
connecting the top and bottom plates forming a clamp which held the side walls
in place. The holes in the top of the channels for mounting the probe holder
were made after the smoke studies to allow unobstructed views during these

studies.

3, Smoke Generator

A schematic diagram of the smoke generator used in the visualization
studies is shown in Figure 8. A white smoke was generated by blowing low pres-
sure compressed alr through two cigars in a steel tube. The cigars were each
injected with approximately 5 cc. of No. 15 lubricating oil prior to insertion
in the tube. The smoke from the cigars was directed immediately into the bot-
tom of a 1000 cec. flask with about 1" - 2" of water in the bottom. The flask
served three purposes: (1) to settle and filter out drops of tars and unburned
0il, (2) to accumulate smoke, (3) to condense some of the water vapor in the
products of combustion from the burning cigar. The partial condensing process
was necessary to make the smoke more opaque so that a better contrast existed
between the buff-black plate and the smoke for photographic purposes. The
condensation was brought about by immersing the 1000 cc. flask in an ice water
bath which cooled the flask and its contents down to such a temperature that

the water vapor in the combustion products would tend to condense.
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REGULATING VALVE

OIL SOAKED CIGARS

/—BLEED VALVE

% TO INJECTING NOZZLE
IN TEST CHANNEL

STEEL WOOL FILTER

:)‘:'W ¥ Vi
PO
i OM 177 047
f 3 ?’)/’)‘;1‘
( 12 -g,w-y o ”fm-u,
‘V’G'é .3' AL, X
= =] /-ICE BATH
A
60 . J 3% » -
G%O%o%% o e
WATER FILTER

Figure 8.

Schematic of Smoke Generator.
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In the neck of the flask was a steel wool filter through which
the smoke passed. Upon leaving the flask the smoke could either be bled
off into the atmosphere or directed to the nozzle in the test channel.
The bleed was used when the flow rate of smoke into the nozzle in the
test section was too low to keep the cigars burning.

The nozzle for injecting the smoke in the test channels was

made of 1/16" 0.D, by 1/64" wall thickness brass tubing.

4, Instrumentation

The instrumentation in the visual observation program was a
photographic system while in the velocity measurement program it was s
system of pressure and temperature probes and thelr respective sensing
devices.

A 3" x 5" graphic press camera, mounted above the channel, was
used to photograph the smoke studies. The area of interest in the test
channels was the only area visable to the camera, all other areas being
mesked off with black cardboard to eliminate undesired glare and refiec-
tion. In conjunction with the camera, a small "source light" was di-
rected into the exit of the channel and axially down the smoke trace.
The entrance velocity to the test section was continually monitored
during the visual observations for both its level and steadiness.

Alr velocities and pertinent physical quantities were measured
by pressure snd temperature probes and thelr respective sensing devices.
A1l velocities were determined by measuring the impact pressure at the

location of interest.
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The principal instrumentation was the boundary-layer combination
total head and yaw probe, its positioning apparatus, and pressure sensing
gauge.

A photograph of the combination probe is shown in Figure Oa.

The probe was constructed by threading three 1/32" 0.D. copper tubes
through a piece of 13 gauge stainless steel hypodermlc tubing. The stain-
legs steel hypodermic tubing served as a rigid housing for the probe stem.
The yaw portion of the probe was made by bending two of the copper tubes
at right angles with the stem and soldering them together. The tlp was
then flattened and sheared off with an included angle of 60°. This angle
was recommended in Reference 35 to give the best pressure-difference sen-
sitivity between openings to the angle of alinement with the flow. The
total head probe was formed by bending the third copper tube at right
angle to the stem sc that the lmpact and yaw probes form a tee with the
stem.

The tip of the total head probe was formed by a method developed
by Bradfield and Yale (36), The copper tube was put under tension so that
1t would neck down ani yield at the positlon where the tip was to be placed.
After inserting a piece of shim stock steel 0.001 in. thick by 0.030 in,
wide the end was flattened. The wall thickness at the prcbe mouth was
further reduced by using the probe tip as an anode in an electrolytic
cell with a copper sulfate solution. Care was taken to insure that all
sulfate deposits were removed from the inside of the probe, for they
could seriocusly lengthen the response time of the probe if not plug

the probe. The final operation in forming the stagnation pressure probe
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Figure 9a. Boundary layer Combination Pitot and Yaw Probe.

h

=

h =1.98x10 " in.
H =6.79xl(53 in. B/h?I7
B =34.0xI0°in.
§ =3.25xI0° in.

Figure 9b. Dimensions of Pitot Probe Opening.

Figure 9c. Photomicrograph of Pitot Probe Opening
(Approximate magnification Xu48).
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tip was to hand hone the tip with a fine hone and lapping compound to
insure that the plane of the tlp face was oriented parallel to the probe
stem and perpendlcular to the line between the tip and the yaw probé tip.
The work on the tip was continually checked under a X30 microscope.

The important dimensions of the probe were measured with the
ald of a Bausch and Lomb microscope. This microscope had a scale in the
occular eye piece which was calibrated with a standard etched scale. The
microscope magnifications available were X35, X100, X430, Only the X35 was
used because at the higher magnifications the loss of definition was too
great to make meaningful measurements. The measurements of the probe are
shown in Figure 9b. In addition to the dimensions of the probe, other
geometric features of the probe were checked. These were: (1) the perpen-
dicularity between the stem and a line between the two tips, (2) the per-
pendicularity between the normal to the impact probe opening and the steu,
(3) the apposition of the probe tips.

Because of the small dimensions of the total head probe tip
and the low velocities to be measured in the boundary layer, the prcbe
pressure measurements could be expected to display a so-called, viscous
effect, This phenomena 1s manifested by the fact that the pressure the
probe tip detects is no longer equal to the static pressure of the stream
plus the dynamic pressure, % p!V]? No theoretical work cn this phenonena
has been carried out for the tip shape used here, but some experimental
work for this shape has been done by Macmillan (37), The total head

probe was calibrated for the viscous effect following the methods used by
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Macmillan. The results of the calibration are shown in Figure 10, and the
calibration procedure is described in Appendix B.

Because of the steep velocity gradients existing in the relatively
thin boundary layer which was observed, the location of the geometric cen-
ter of the probe tips must be established with a high degree of accuracy.
This was accomplished with the traversing mechanism as shown mounted in a
test channel in Figure 11. This traversing mechanism was designed and -
constructed so that it could be rotated about the center of the brass plug
which was Inserted in a hole in the upper surface of the channel. The cen-
ter of the hole in the upper surface of the channel was then put at the la-
teral location where the traverse was to be made. The tap for the static
pressure was located at the center of the brass plug. The hole in which
the probe stem was inserted was located so that the tip of the probe was
directly opposite the channel wall static pressure tap and on the center
line of rotation of the complete assembly. With this construction the
complete assembly could be rotated to aline the probe with the flow at any
given distance from the surface without changing the lateral location of
either the probe tip or the static pressure tap. The probe gtem was
clamped in a spindle which, in conjunction with two stops, allowed the probe
to be rotated exactly 180° at any given height from the surface. When the
probe stem was properly clamped in the spindle and the spindle held against
one of the stops the yaw probe would be on the center of rotation directly
below the static tap. Rotating the spindle 180° against the other stop

would put the total head probe in the same desired location.
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Boundary Layer Probe Calibration.
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Figure 11. Traversing Mechanism Mounted in Test Channel.
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The angular measurement was made with the yaw probe af a given
location by rotating the positioning mechanism until no pressure difference
could be detected between the two yaw probe openings. The angle measured
was that between the actual flow and the direction of the uniform flow
entering the test channel. The traversing mechanism had an eight inch pro-
tractor mounted on it with a vernier scale scribed on the mounting plate.
This arrangement made possible angular readings of l/lO degree. It 1s be=-
lieved that the differences between angle readings are reliable to this
accuracy. However, due to the difficulty in making the yaw probe tip sym-
metric on such a small scale and in mounting the probe in the holder the
angle reading itself may be in error by as much as 1 1/2 to 2 degrees. This
error would, of course, be constant and always have the same sign.

The position of the prcbe normal to the plate was determined with
a dial indicator mounted on the traversing mechanism. The traveling fcot
of the dial indicator rested on the top of the spindle which clamps the
probe stem. The top portion of this spindle was threaded so that the
probe could be moved normal to the plate by turning an adjusting wheel.

A lock wheel was provided to lock the adjusting wheel in any locatioen.

The determination of the zero position, i.e., that pcsition where
the probe just touches the surface, was very critical in obtaining accu-
rate data. In order to adequately check analytical results the position
of the probe tip must be known within, at least, a half of one thousandth
of an inch. It was possible to read the dial indicator toc 0.2 x 10-3
inches. Consequently the accuracy with which the probe location was known
depended on the accurate determination of the zero position cr some posi-

ticn whose distance from the plate 1s accurately known.
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A fixed position of the probe tips was determined by placing a
gauge block 0.100 in. thick on the plate surface directly below the probe
tip. A low voltage circuit, was connected from the plate to the probe stem
with two flashlight batteries in series with a highly sensitive galvano-
meter. Contact of the probe tip with the gauge block was indicated by de-
flection of the galvanometer. When contact of the impact tip was detected
the dial reading was set at 0.100". When contact of the yaw tip was de-
tected the dial readling was recorded.

The dial indicator scale was marked in thousandths of an inch and
could easily be estimated to one fifth this value. The procedure used to
locate the prcbes at the 0.100" position eould be reproduced to within the
accuracy of the dial indicator readings. For these reasons it is believed
that the probe location was accurately known to within 0.2 x 103 in., with-
in the accuracy necessary to make a meaningful check with the analytical re-
sults.

The dynamic head of the uniform stream entering the test channel
was conbinually monitored on a slant gauge by observing the difference be-
tween the total pressure as sensed by a NACA Keil-type probe and a static
pressure tap located one inch across the channel from the Kell probe. The
Keil-type probe was chosen because of its relative insensitivity to aline-
ment with the flow. The main purpose for monitoring the flow at this point
was to establish its steadiness during the time in which a boundary-layer
traverse was made.

Boundary-layer impact pressure and yaw pressure differences were
also continuously monitored on slant gauges. The reason for monltoring the
boundary-layer impact and yaw pressures was to obtain an estimate of those

pressures to preset a Chattock-Fry tilting manometer before applying the
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pressure to the nulling chamber of that gauge. This presetting was
necessary to lnsure accurate readings from the gauge.

Final pressure measurements for boundary-layer traverses of both
yaw and impact prcbes were made on a Chattock-Fry tilting manometer
Figure 12 (often referred to simply as a Chattock gauge). The connections
between probes and the gauge were made with a system of 1/32 inches I.D,
rubber tubing, tee connectors, and four-way valves (3 inlets on the valve,
each of which could be connected to one outlet by rotation of the valve |
stem). This system made it possible tc ccnnect any one set of the probes
simultanecusly to the monitoring slant gauge and the Chattock-Fry gauge.

The Chattock-Fry gauge, shown 1ln Figure 12, consists of two
glass cups of 2 inches diameter with centers 13 inches apart. The tube
leading from the base of one cup 1s Jjoined to the central vessel which
surrcunds a vertical tube Jjoined to the base of the other cup. The latter
tube 1s ground flat on the top surface. Both tubes from the cups are
fitted with taps to isolate the central vessel from the cups. The gauge
is filled with distilled and deaersted water up to sbout half way in each
cup with the exception of the central vessel which is filled with mineral
0il. There are thus twe surfaces of separation between water and oil.
Cne 1s arranged to be ilmmediately above the central tube and the other sbout
half way down the outer part of the eentral vessel. The former Interface
has the appearance cf a bubble resting on the central tube. The upper sur-
face of this bubble, observed through the microscope, gives a sensitive
indication of any displacement of the liquid due to a pressure change in

the cups. The bubble is clearly shown in Figure 12. In order tc make the
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Chattock-Fry Tilting Pressure Manometer.

Figure 12.



-98~

calibration dependent only on the dimensions of the gauge and the mano-
metric liquid the null method is employed, that 1s, the glass-work is
mouhted on a frame which 1s tilted so that the bubble is always brought
back to its zero pesition. The frame is tilted by a micrometer screw
mounted in the base. The micrometer screw has 20 threads per inch and is
fitted with a large wheel marked in 100 divisions. The distance between
the pivot points and the point on the micrometer screw is 10 inches. Thus,
one division on the wheel corresponds o a change in pressure of 13/10 x
1/2000 inches or 0,00065 inches of water. It is possible to estimate read-
ings to one-tenth this value. The maximum range of the gauge 1is 0.65
inches water. A complete description and evaluation of the Chattock-Fry
gauge can be found in the reports by elther Pannell (38) or Falkner (39).
The température of the alr pagsing through the test channel was
determined by means of a stagnstion thermocouple at the entrance to the
channel., The thermocouple was made of 30-gauge copper-constantan wires.
An ice-bath was used as & reference junetion. The thermocouple wire was
calibrated using the ice point and steam polnt and was found to be with-
in l/h of a percent of the standard copper-constantan thermocouple tables
for this temperature difference. The thermocouple e.m.f. was measured
with a Leeds and Northrup Potentiometer Model 8662. Nc correction was
applied to the stagnation temperature measured to obtain the static tempera-
ture of the stream because under the conditions of the experiment this
correction would amount to somewhat less than the uncertalnty of the measure-

ment itself.
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C. Experimental Program

1. Physical Systems.

The two physical systems chosen for investigation correspond
with Case VI of the analytical solutions. The two systems are identical
in theilr mathematical formulation and solution but differ by being referred
to different coordinate systems. The first system is referred to an ortho-
gonal coordinate system and the second is referred to a coordinate system
with the coordinate angle ® = 60°.

The constants in Case VI were choen so that the mainstream com-
onents were

—|
U=, = Wt
U= U, X (139)

the similarity parameter was

LEFRER S wo

and the governing momentum equations were

| !
+F'F +F"=0 (141)

L2y 2,40 Zy
~F R R EAE =0 (11
These equations have been solved by Yohner and Hansen (18) for the ortho-

gonal case. In light of the analytical analysis presented in Chapter II

these solutions are also valid when referred to a coordinate system with
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the coordinate angle ® = 60°. The numerical solutlons to these equations
are reproduced in Appendix C from Reference 18.
From the mainstream veloclty components, the eguation for the
mainstream streamline ig
A
2 _ (1)
X‘T+W~ (143)

Reference 18 gives the limiting streamline of the boundary-layer on the

surface as
= 4270 (x')z+ it (1)

Figure 13a - 13b show the mainstream and limiting streamlines for ® = 90°
and @ = 60°, respectively. As seen from Figure 13 the system of ® = 90°
corresponds to a uniform flow crossing the leading edge of the surface at
right angles and the system of w = 60° corresponds to a uniform flow cross-
ing the leading edge of the surface at an angle of inclination.

In both systems the analytical model has no xe dependency.
That is, the flow 1s a translate flow. Since the physical system requires
side walls and hence a finite % dimension, wall effects might be expected.
Therefore it was necessgary to shape the test channel walls so that the
physical system sufficlently epproximated the analytical model over a re-
glon large enough to meke meaningful measurements to compare with the
analytical solutions.

To accomplish the shaping of the channel walls and determine the
region in which the physical system closely approximated the analytical

model, smoke studies were executed. In each system the desired malnstream
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Figure 13a. Mainstream and Limiting Streamlines of Analytical
Model - T = 90°.
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Figure 13b. Mainstream and Limiting Streamlines of Analytical
Model - @ = 60°.
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and limiting streamlines were painted on the plate and the channel walls
adjusted until the maln-flow streamline, traced out with smoke, coincided
with the paint warkings. Figure lha - 1hb show the smoke traces ccinciding
with the paint markings when the walls were properly adjusted for @ = 90°
and ® = 60° respectively.

Although the coincidence of the smoke trace and the stream-
lines painted on the surface 1s necessary, it is not sufficient to insure
that the physical system correspoads to the analytical model formulated
above. Fer instance mainstream components of E& = A(xl)®  gnd T = A(xl)n+l
would give the same shape wailnstream streamlines.

From the smoke studies it is known that within the accuracy of
the visualization methods the flow in the major portion of the channel is
independent of %2, And because the channel neither diverges nor converges
in the diréction normal to the plate there 1s no mainstream component in
the y direction. With these two facts, if the continuity equation 1s
applied with the above mainstream compcnent combinaticn, which for any
value of n will yield the desired streamlines, it can be seen that the
only value of n that will satisfy the continuity equation is n=0, that is,
the system of mainstream velocity components chosen, Equations (139)°
The above argument is true on the average throughout the channel but does
not, of course, exclude the possibllity of small nomuniformities in the
flow field.

With the above argument, it can be sald that for thls channel
configuration the smoke studies are sufficient to establish a corre-

spondence between the physical system and the analytical model which has

a similarity solution.
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Figure lhka. Smoke Traces of Streamlines @ = 90°.

Figure 1lh4b. Smoke Traces of Streamlines & = 60°.
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The question to be answered by the experimental measurements iss
given a physical system for which the mainflow appears to colnelde with
flow system which, if it is infinite in extent, will yield an exact simi-
larity solution of the boundary layer equations, how well will the similar-
ity solution of the boundary layer equations predict the behavior of the
physical system. In particular, how well will the exact solutions predict
the boundary layer velocity profiles, the turning of boundary layer flow,

the boundary layer thickness, and wall shear stress?

2. Test Procedure

Through the smoke studies, the wall shapes and the regions where
the mainstream streamlines best corresponded with the analytical model
were determired.

The flow followed the desired pattern very well on the pressure-
side-half of the channel a distance somewhat greater than the width of
the channel, 5 inches, back from the leading edge. On the suction-side-
half the flow did not follow the pattern as well. The deviation in-
creased as the suction-gide wall was approached and ag the distance from
the lesding edge increased. From thls information four latersl locations
were chosen in each channel for making boundary layer traverses.

Figure 15 shows the locations where the measurements were made.
Since the systems were to be independent of xg, two x° loca“ions were used
for each of two x! locations in each channel.

At all four locations in each channel a boundary layer traverse
was made for both the flow angle and the velocity magnitude. The stag-

nation temperature was recorded with each impact pressure measurement.
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A complete traverse at a given locetion was made without interrup-
tion. The entrance velocity to the channel wes approximetely 45 fps being

constant for any complete traverse.

3. Analysis of Data.

The magnitude of the velocity, |V|, for a given location was

determined from the relation,

R-p =Gy gl

where Pp - p ls the pressure difference measured between boundary layer

2.
| (145)

ilmpect probe and the stetic pressure at the surface sbove the probe,
Ep the probe constant to correct for the viscous effect (see Appendix B),
end p the fluid density.

The locatlon ebove the plate at which the veloclty exlsted wes
determined by the summetion of: (1) the distance the probe moved normel
to the plate as recorded by the dial indicator, (2) the distence from
the bottom of the probe face to its geometric center, (3) & correction
due to the "dlsplacement effect'.

The "displecement effect”" is a phenomena which occurs when to-
tel pressure probes are placed in e transverse total pressure gradlent
end 1s menifested by the fact that the effectlve center of the probe 1ls
dilspleced from the geometrie center in the dlrection of increesing total
pressure, Investigations into the magnitude of the displacement effect
have been acnduated by Young snd Maas (40) and ILivesey (41 &nd L2)

For rectangular faced probes References 4O and 41 suggeet & constent
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correction of 0.15 - 0.24 times the external dimension of the probe face
in the direction of the traverse. A value of 0.18 was used throughout
the data reduction.

The fluid properties were obtained from the National Bureau of

Standards Circular 564, The Thermal Properties of Gases (M3)’ using the

stagnation temperature and the atmospheric pressure for each traverse.

The stagnation temperature measured was used because, with the velocities

of the experiment, the correction to be applied to cbtaln the static tempera-
ture would be lesgs than l/lOth degree Fahrenheit which is within the accu-
racy of the measurement itself. The atmospheric pressure was used becausg
the static pressure in the test channel was less than 1 inch of water
different from the atmosphere into which the air was discharged.

Because the velocliy measurements were expected to be more
accurate than the angle weasurements it was considered desirable to
compare the two measurements individually with the analytical sclutions.
Therefore from the analytical solutions, which are in terms of velocity
components, a reduced velocity magnitude profile and the turning angle
of the velocity vector as a function of the similarity parameter n were
calculated for each traverse location. Upon vectorially adding the
velocity components from the analytical solution, the reduced velocity

magnitude becomes

Y \’L,—L‘ \IL/ _ '/
V)l [EY+(KE) 2 Fewss | (146)

Vs | | +21 eds 4 ()
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The angle ¢ which the velocity vector makes with the x1 coordinate

line is

2
F'Y pm®©
Bir)= oz +E/Y o33 e

L. Results

The results of the experiment, as shown in Figures 16, 17, 18
and 19, show a substantial agreement with the analytical solutions. The
reduced velocities appear to be in best agreement with the analysis.
Significant deviations occur only at the locations nearest the suction
side in the case of ® = 90° (Figure 16 position R-1 and Figure 17 posi-
tion R-3).

In Figures 16 and 17, which are for @ = 90°, it can be seen that
the experimental veloclty data agree very well with the analytical solution
for positions R-2 and R-4 (see Figure 15 for locations) but some deviation
occurs at positions R-1 and R-3. That 1s, as the point of measurement
moves toward the suction side wall the deviation increases. The increase
in deviation with movement toward the suction side wall can also be seen
in the angular measurements.

It can be seen from Figures 18 and 19, which are for ® = 60°,
that the experimentally measured reduced velocity profiles agree very
well with the analytical solutions for all locations.

In Figures 16 - 19 it is seen that in almost every case the
angular measurements show that the boundary layer velocity doesn't turn

as much as predicted. This is to be expected because in the physical
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system the suction side wall presents an obstruction for the boundary
layer flow which undercuts the mainflow. In the analytical model the
boundary layer is allowed to continue tc turn and undercut the mainflow.
In the physical case it is restrained from doing so by the sidewalls. In
the vicinity of the suction side wall the boundary layer f£low tends to
roll up and form a vortex traiiing out the channel. The influence of the
suction side wall extends into the mainflow in an amount diminishing with
distance.

In both the ® = 90° and @ = 60° cases the sngular measurements
show greater deviaticn at the positions nearest the leading edge (i.e.,
Figure 17 as compared with Figure 16 and Figure 19 as compared with Figure
18). This may be due to small differences between the physical systems
and analytical models in entrance regicns of the channels which could not
be detected by the smoke studies.

The velocity profiles in each channel at the locations nearest
the pressure side wall (R-2 in Figure 16 and S-2 in Figure 18) show a
velocity defect in the approximate region of 1.75 < 1 < 4. In the analy-
tical model the boundary layer flow, at a location which corresponds to
the pressure side wall in the physical system, ccmes from the region which
corresponds to being outside the channel in the physical system. In the
physical system there is flow off the pressure side wall into the boundary
layer. The fact that the flow off the pressure side wall is insufficient
to make up for the lack of flow through the pressure side wall is mani-

fested in the velocity defect.
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The slope of the velocity profiles is a measure of the shear
stress in the flow. It is noted that in all cases the slope of the
experimental data is in good agreement with the analytical solutions at
n = 0, which corresponds to the surface. Hence the surface shear stress
as determined from the experimental measurements should be in good agree-
ment with that predicted from the analytical model.

It should be noted that the experimental data with the smallest
values of 7 are for positions at which the probes are resting on the sur-
face of the plate, and for 1 = 75 the probes are approximately three-
quarters of an inch above the surface.

The boundary layer thickness measured is, at each location, in
good agreement with that predicted by the analytical model.

From the experimental results it can be said that the similarity
solutions will yield meaningful information for finite flow configurations
where the mainstream streamlines and wmainstream velocities approximate
those necessary to admit the boundary layer equations to similarity solu-
tions. The amount of turning of the boundary layer velocity is not pre-
dicted as well as the velocity profile, the boundary layer thickness, and
wall shear stress. The prediction of the velocity profile, boundary layer
thickness, and wall shear stress by the similarity solutions is in particu-

larly good agreement with the experimental measurements.



CHAPTER IV

RESULTS AND CONCLUSIONS

1. The momentum equations for the three dimensional, incom-
pressible, laminar, boundary layer have been analyzed for possible simi-
larity solutions. It was fcund that by requiring the angle between the
coordinate lines to be a constant but unspecified value, that considerable
generalization of the classes of mainstream flows which admit to similarity
could be made.

2. For each class of mainstream flow systems only particular
groups of surface geometries and imbedded coordinate systems are admissible.
The admissible surface geometries fall in two groups: (a) surfaces which
are apblicable to certain surfaces of revoluticn and (b) surfaces which
are develcpable. For those mainstream flow systems for which the admissible
surfaces must be applicable to certain surfaces of revolution, the surfaces
of revolution are determined and the necessary and sufficient conditions
which cother surfaces must satisfy to be applicable to them are found.
Admissible coordinate systemz imbedded on the surfacegs of revolution are
found. In every case the coordinate lines are the parallels and loxodrcmes
of the surface of revolution. For those mainstream flow systems for which
the admissible surfaces must be developable, the admissible coordinate
systems are determined when the surface 1s the Euclidean piane. The
coordinate lines in this case are elther a system of circles and logarithmic
gpirals or two sets of parallel straight lines. In all cases the coordinate
lines can be described by a linear relation of some orthogonal ccordinate

system on the surface.
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3. The boundary layer energy equation for the time steady be-
havior of a constant property system was derived and analyzed for simi-
larity solutions of the temperature profile for each flow system which
admits the momentum equations to similarity solutions of the velocity
profiles.

4. It was found, in the cases where the surface 1is developable
and the coordinate lines are geodesics, that viscous dissipation must be
neglected if similarity solutions of the three-dimensional energy equation
are to be obtained, and that the ordinary differential equations for mo-
mentum and energy are independent of the coordinate angle. Therefore ex-
isting numerical solutions where Cartesian coordinates have been used are
also the solutions for flow configurations whose mainstream components
vary aslong any two sets of parallel geodesic lines in the same manner as
the mainstream components in the orthogonsl case vary along their respec-
tive Cartesian coordinate lines.

5. With the experimental measurements it has been found that
similarity solutions will reliably predict the boundary layer thickness
and boundary layer profiles in those regions of channels where the main-
stream flow components approximate those which are necessary to admit the
boundary layer egquations to similarity solutions. Within the capability
of the experiments it appears that the wall shear stress is also reliably
predicted by similarity solutions. The prediction of the boundary layer

velocity turning angle by similarity solutions is not as good in general.
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Appendix A

DERIVATION OF THE BOUNDARY-LAYER ENERGY EQUATION, EQUATION (1L4)

The boundary layer energy equation in the general boundary layer
coordinates, such as those used by Michal (8) for the momentum equations,
to the best of the author's knowledge, does not exist in the usual litera-
ture sources,

The form of the boundary layer energy equation in the coordinates
used for the momentum equations will be obtained in two ways. The first
method uses the three dimensional boundary layer energy eguation in Car-
tesian coordinates. By applying "correspondence principles" to the opera-
tion in each term a form of the equation in the desired coordinates is
obtained. Although it is easier to work with the Cartesian form and gen-
eralize it, an objection to this method is that there is no guarantee
that all the important terms in the more general situation will appear.
This is because the boundary layer energy equation is not a complete state-
ment of a fundamental law but is a truncated form having been reduced by
applying assumptions for the boundary layer. The second method uses the
general energy equation. It is transformed to the coordinate system used
for boundary layers and then reduced by applying physical assumptions for
the boundary layer.

The second method produces the same form of the equation as the
first method. This form is therefore considered to be the correct form
of the boundary layer energy equation.

For the first method the three dimensional boundary layer energy

equation for time steady flow of an imcowmpressible fluid with constant
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viscoslity and thermal conductivity in Cartesian coordinates (x, v, z)

is obtained from Pail (hh P“142)° Tt 1s

(6T+UT ) b 3T vRaYJrz_‘o;_\
R Yt ERTONVRR PR (a-t)
where ﬁ, Q, %, are the fluid velocitles in the i, &, z directions respec-
tively; and the ccordinate system is oriented with x and z on the surface
and § the normal to the surface,

The left hand side of Equation (A-1) is the intrinsic deriva-
tive of the scalar T(i, &, ;) and from tensor calculus (i.e., Reference 31),
it is known that the intrinsic derivative of a scalar has the same form
in any coordinate system. Therefore in the general coordinates [ O,x , x2]

where [Xl, xg] are imbedded on the surface and xo is normal to the sur-

face, the first term in Equation (A-1) becomes

Tl aT bT
i e TR

or

LFL b-r o;i:[
o e

9 O(._—— \32. (A-2>

The first term on the right hand side of Equation (A-1) can be

written as

e D (T
qe m& Bké
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The covariant derivative, in general coordinates, corresponds to the or-
dinary partial derivative in Cartesian coordinates. And the covariant
derivative of the scalar T is the ordinary partial derivative in any co-

ordinate system. Therefore the above term becomes

5 £ o ATJ

By the definition of covariant differentiation the above term becomes

QQ\/ ont] z@g -1l

But for the coordinate system used, the metric components whose indices

(A-3)

involve zeros are

00 Ok _ -0,
% =%°°=\ 3% %oco °

Therefore, from the definitlion of the Christoffel symbols, any Christ-

offel symbol with two or more zero indices 1is zero. Consequently this
term is

R 2

756;7 2)(x? 2

(a-4)

In the remaining term of Equation (A-1), the viscous dissapation
term, the partial derivative is again replaced by the covariant deriva-

tive giving

Cg %00 u"‘so u%"’o]‘
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With the definition of covariant differentiation this becomes

C?T(gowf Lo }[ { AN e

Again using the metric components and the definition of the Christoffel

symbols, the Christoffel symbols in the above expression are

{;;} = %d% ?X%@ (A-6)

It is well to note that the energy equation has only one inde-
pendent variable, namely T (xo, xl, %°), because the velocities are known
from the solution cf the boundary layer momentum equations. Also, that
the thermal boundary layer thickness is at most approximately the same as
the hydrodynamic boundary layer thickness. This 1s known from the fact
that the Prandtl Number 1ls a measure of the capacity of the fluid to diffuse
momentum as compared with its capacity to diffuse heat and that all gases
and liquids, with the exception of liquid metals* , have Prandtl numbers
which are approximately cne or larger. From the above then it can be
sald that the energy equation need only be valid in the same spatial re-
gion as the boundary layer momentum equations. In the boundary layer mo-
mentum equations it has been assumed that in the reglon of validity the

0o .1 2
)

space metric components, gaB (x7, x~, x7), a,B = 1,2, can be replaced by

* Equation (A-1) is not valid for liquid metals becaugse of the implicit
assumption that the thermal conduction terms in the x1 and x° directions
are neglibible as compared with the thermal convection terms in the same
directions. This may not be a valld assumption for liquid metals because
of their high thermal conductivity.
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the first fundamental metric of the surface, which is

AN l 2 _ A
Og(%(wc)— gd%<o,x)x> , oL,P =12 (a-7)

Therefore the Christoffel symbol in Equation (A-6) is zero and Equation

(A-5) reduces to

Oojbug‘bu§
At " S B

or

9, oW (4-8)

Lo S

G B e NC

Combining Equations (A-2, A-4, A-8), Equation (A-1), in the

general coordinates of the boundary layer, becomes

bT_Hka \QBT LN o AL 5@3
o 0T SGweT Gy @ N (8-9)

v
Equation (A-9) may not be complete because it was derived from
a truncated, i.e., not complete, form of a fundamental law. A second
approach to the boundary layer energy equation will now be presented. In
this approach the complete three dimensional energy equation will be re-

duced for the special case of boundary layer flow.
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The time steady energy equation in general coordlnates for an

imcompressible fluid with constant properties is

AT _ kM v R b (a-10)
| %0(\ {Wl;l%% ] e
where

5 o= _|
=L (u, +u; (-2
% 2 'A %7L>

and

i=0,1, 2.

The desired coordinate system has x! and x° imbedded on the

0

surface and x~ normal to them. The domain of space in which the equa-

tion is to be used, as discussed above, 1s sufficiently close to the

0

surface defined by x> = O that the space metric can be assumed to be

ad@(x',xz) , o, B =12 (a-12)

F= 9%

where aaB is the first fundamental metric of the surface.

In this coordinate system Equation (A-10) becomes
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oLl el _ k| 4B o 3T
U s ¥ U g g@VOLQ > 1 20

S o
20 eo(% ™ +eooemcM +L€&€ 5% (A-13)
oL = 1,2

The term aQB{:gix] 8 represents the thermal conduction parallel
3

to the surface and will be neglected in comparison to the thermal con-
vection parallel to the surface. The fluld therefore may not be a liquid
metal.

Because of the nature of the boundary layer, the principal con-
tribution to the viscous dissipation term, the last term in Equation
(A-l3), comes from the tangential shear in the plane parallel to the
surface, Therefore the energy dissipation due to the normal stresses
and the remaining shear stresses may be neglected. In the viscous dissi-
pation term of Equation (A-13), only the relation

00 D(G
Zeuco@% o
contains the terms of the energy dissipation due to the tangential
shear pargallel to the surface. The above relation also contains terms
which are negligible and will therefore be examined more closely. Using

the definition of éO@ the above relation becomes
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Only the second quantity in each set of parenthesis 1s assoclated with

the energy dissipation due to the tangential shear in the plane parallel

to the surface. The first quantity 1n each set of parenthesis represents

the tangential shears in planes normal to the surface and hence are neglected.

The relation now becomes

._(_ = )
2% QQU\%OU . (a-15)

With the space metric defined in Equation (A-12), the covariant differentia-
tion in the above reduces to the partial derivative of the uy with re-

spect of xoo The relationship is then

L %°° o7f duy ?&Q
z X° X (A-16)

or

PIS

0 )
2B
With the above assumptions the energy equation, Equation (A-13)

takes the following form for the boundary layer:

« AT | 0T _ ke BT] BUE’LBU&
S T e TR ey CNQO@ o e
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Equation (A-17) is identical to Equation (A-9) which was obtained by
an independent method.

To obtain the form of the boundary layer energy equation used
in the text, Equation (14), two remaining steps must be performed, neither
of which have any bearing on the above derivations. The first step is to

make the following substitutions;

0

L=
)(o ::'\fgr Eﬂ .

The second step 1is to replace Cy with C_ so the Prandtl number may be

by

introduced. This substitution is valid for an incompressible fluid be-

cause thermodynamic relations require them to be identically equal [see

L5 p,hlu)]o

for instance VanWylen ( Therefore Equation (A-17) takes the same

form as used in the text, namely,

WU
Qo(

o/

P
oK

o/
oSS

(13)



Appendix B

CALIBRATION OF BOUNDARY-IAYER PITCT TUBE FOR VISCOUS EFFECT

As stated in the text, the method of pltot tube calibration was
that used by Macmillan (37)° The pitot tube was calibrated cver a range
of velocities of 1.9& V< 49.1 fps. For the temperatures encountered,
this corresponds to a range of Reynolds number of 1.8 < R& 46.8. The
Reynold's number variation covered the range of conditions encountered

in the experimental investigation. The Reynold's number was defined as

R = -l%b—- (B-1)

where h is the internal height of the probe opening, v the kinemdtic
viscosity of the air, and |V| the magnitude of the veleocity of the un-
digturbed stream at the prcbe tip.

A probe coefficient, Ep, is defined as

= - P . (B-2)
A
where Pp is the pressure in the Pitot tube, p the density of the air,
and p and |V] are the static pressure and the velocity of the undisturbed

stream. The density and ebsclute viscosity, and hence the kinemetic vise

cosity, of the air were obtained from the NBS Circular %64 Table of Thermal

Properties of Gases, Reference 43. The pressure and temperature used in

this case were the atmospheric pressure and temperature as measured with
a mercury barometer and mercury-glass thermometer both in close proximity

of the calibrating equipment.
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The probe was mounted on the centerline of a vertical pipe
Just below the entrance section as shown in Figure 20. In the side wall,
directly opposite the Pitot tip, a static pressure tap was located. Di-
rectly below the pipe was a tank from which the air was continually re-
moved with a variable speed suction fan.

With the experimental configuration used, the total pressure at
the probe tip should be atmcspheric pressure Pa, (neglecting any viscous
losses in the entrance region.) The difference between the pressure in
the pitot tube and the atmospheric pressure is then a measure of the
viscous effect at the probe.

In Reference 37 a flow meter was placed down-stream of the pipe
entrance to obtain the velocity of the undistrubed stream at the probe
tip. No difference could be detected between the dynamic head, % p]VIg,
cbtained from the use of flow meter and that which 1s obtained by mea-
suring the difference between the atmospheric pressure and the static
pressure in the tube wall opposite the pitot tube. In Reference 37, the
atatic tap pressure reading was used tc obtain all the dynamic pressures,
% piv]g, and velocities of the undistrubed stream IVi when calibrating
the flst-mouth probes. This was alsc the method used here. This method
is Justified here becausge the pipe entrance and probe body are the same
sizes as used in Reference 37, only the shape and dimensions of the prcbe
opening itself are different.

As

P=p+s¢V (B-3)
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Equation (B-2) can be expressed as

~ B-1)
- \ _% F> (
C\o < =
In view of the method described above for obtaining the dynamic head,

Equation (B-4) can be written as

Go= |+ 528
F@.‘ S (B-5)

The second term on the right hand side is simply the ratio of the pressures
measured between the pitot tube and the atmosphere, and the static tap

and the atmosphere. All these measurements were made on the Chattock-

Fry Tilting Manometer.

The results of this calibration are shown in Figure 10, p.92.
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Appendix C

NUMERICAL SOLUTIONS FRGM YCHNER AND HANSEN (18)

Numerical solutions for Equatiocns (141) and (142), which are
\ A
" 1t
%F F+F" =0 (141)

%”Elr +\%”’+ | =0 (142)

where

Jiv ey = |
X\T» ‘Tl

Jiowa E71N _
,W@Fwwl>

are found in Yohner and Hansen (18)

They are:
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1 1 1 1 L 1 1 1 1
t 1" 1"
n F(g) F'(q) F'(q) q___ F(p) F(n) F'(n) 1 F(n) F@) F'(n) |
04000 | 04000 04000 04332 24500 00996 0.751 00217 54000 34283 04992 04016
2050 +000 «017 0332 24550 14034 0762 0212 54050 34333 «992 s015
+100 «002 0033 ¢332 24600 14073 0772 2206 54100 34383 0993 ¢013
150 « 004 «050 0332 24650 l.111 2783 «201 5¢150 34432 0994 0012
0200 «007 066 0332 24700 14151 «793 0195 54200 34482 0994 «011
250 «010 +083 332 24750 1,191 802 ¢«190 5250 34532 995 #010
+300 +015 0100 0332 24800 14231 0812 «184 54300 34581 0995 010
350 020 o116 ¢332 24850 14272 821 «178 54350 34631 0996 0009
+400 «027 133 0331 24900 14313 829 0173 54400 34681 996 4008
0450 «034 0149 331 24950 14355 +838 0167 5450 34731 0997 007
500 o041 0166 0331 34000 14397 846 s161 54500 34781 0997 #007
550 «050 182 331 34050 14439 854 156 54550 34830 997 ¢006
0600 «060 0199 ¢330 34100 14482 862 ¢150 54600 34880 0997 +005
0650 «070 0215 0330 34150 14525 +869 0145 54650 34930 +998 +005
s+ 700 «081 0232 0329 34200 14569 876 0139 54700 3.980 998 004
750 0093 0248 328 34250 14613 +883 o134 54750 44030 0998 0004
+800 0106 0265 0327 34300 14657 +889 )28 54800 44080 2998 0004
850 +120 0281 326 34350 14702 «896 «123 54850 44130 0999 003
+900 o134 0297 0325 34400 14747 «902 o118 5900 44180 2999 4003
0950 0149 o314 ¢324 3.450 14792 908 o113 54950 44230 +999 +003
14000 0166 330 323 34500 14838 913 +108 64000 44280 «999 002
1,050 182 346 0322 34550 14883 0918 0103 64050 44330 0999 0002
14100 ¢200 0362 320 34600 14930 0923 +098 64100 44380 0999 0002
14150 0219 378 318 34650 14976 0928 093 64150 44429 0999 +002
14200 «238 0394 317 34700 24022 933 +089 64200 44479 0999 0002
14250 258 0410 315 36750 24069 0937 0084 60250 44529 0999 0001
14300 0279 0425 313 34800 24116 0941 +080 60300 44579 14000 #001
14350 301 ol4l «310 34850 24163 0945 076 64350 | 44629 14000 +001
14400 323 0456 308 34900 24211 2949 8072 64400 44679 14000 «001
14450 0346 «472 ¢305 34950 24258 952 0068 64450 44729 14000 +001
14500 «370 487 ¢303 44000 24306 0955 0064 64500 44779 1l.000 +001
14550 0395 502 +300 44050 24354 «959 0061 645%0 44829 14000 «001
14600 420 517 0297 44100 24402 «962 057 64600 44879 14000 001
14650 o4b7 0532 0293 44150 24450 0964 +054 64650 44929 14000 +001
14700 o473 0546 0290 44200 20498 967 +051 64700 44979 14000 «000
14750 ¢501 0561 287 44250 24546 2969 0047 6e7%0 50029 1.000 2000
14800 «530 0575 0283 44300 24595 0972 0044 64800 54079 1,000 + 000
14850 559 +589 279 44350 20644 974 0042 64850 5¢129 14000 «000
16900 «588 603 0275 40400 20692 976 #2039 64900 50179 12000 «000
14950 0619 0616 0271 44450 26741 «978 +036 64950 50229 14000 000
24000 0650 630 0267 44500 20790 +980 0034 74000 50279 1.000 «000
24050 0682 0643 0262 44550 24839 981 0032
24100 o714 0656 0258 44600 24888 «983 0029
24150 o747 0669 253 44650 24937 984 o027
20200 «781 0681 0248 44700 24987 985 «025
24250 «816 0694 0243 44750 34036 «987 0024
24300 851 0706 0238 44800 34085 +988 0022
24350 «886 o717 0233 44850 34135 «989 020
24400 0922 e729 0228 44900 34184 990 o019
24450 0959 o740 0223 44950 30234 991 o017
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2. 2 2 2 2 2 2 .2 2__
1 " "
n_ F(n) E() F(n) n _Fln) Flo) F'(q) _n  Fln) F'l) F'(n)
04000 | 04000 04000 10418 24500 26229 14154 | -06070 54000 | 44887 14008 | -04014
050 0002 «070 14368 24550 24287 14151 -4075 56050 | 40937 14007 -e013
«100 «007 0137 14318 24600 24344 10147 | -,079 54100 44987 14006 -e012
+150 «015 #2012 14268 24650 24401 14143 | -,082 54150 54038 14006 -¢011
200 i ¢027 0264 14219 24700 24458 14139 | -,085 54200 54088 14005 -e010
250 «042 323 14170 24750 24515 1e134 -+087 5250 54138 1.005 -4009
300 +059 381 1e121 24800 24572 14130 -4089 54300 54188 14004 -s009
350 +080 435 14073 24850 24628 14126 -+090 54350 54239 14004 -¢008
#400 0103 488 1,025 24900 24684 1e121 -¢090 54400 54289 14004 -¢007
0450 128 538 0978 24950 26740 14117 -4091 54450 54339 14003 -4007
500 0157 «586 0931 34000 24796 1e112 -4091 54500 54389 14003 -+006
¢550 +187 631 +886 3,050 24851 1.107 -4090 54550 5439 1,003 -4005
600 0220 674 841 34100 24907 14103 -e¢090 54600 5¢489 14002 ~e005
650 254 o715 797 3,150 20962 1.098 -+089 54650 54540 14002 -+004
700 ¢291 0754 «753 34200 3,017 14094 -e087 54700 54590 14002 -2004
«750 0330 791 o711 3,250 3.071 1.090 ~+086 54750 54640 14002 -4 004
+800 «370 825 0670 24300 34126 1.085 ~e084 54800 54690 14002 -e003
850 0412 858 0629 34350 34180 1.081 ~¢082 54850 50740 l.001 -4003
+900 0456 +888 590 34400 34234 14077 | -4080 54900 54790 14001 -4003
4950 501 917 552 34450 34287 14073 -+078 54950 54840 14001 -+002
1,000 $548 0943 ¢515 34500 34341 1.069 -e076 64000 54890 14001 -¢002
1,050 «595 0968 0479 34550 30394 14066 -e074 64050 54940 1.001 -+002
1,110 644 +991 sh44 34600 3e448 14062 -+071 64100 54990 14001 -¢002
1,150 694 1,012 +410 3,650 34501 14059 -¢069 64150 60040 1001 ~e002
14200 0746 14032 +378 34700 34553 14055 -4066 64200 64090 14001 -e001
1,250 2798 14050 0346 3,750 34606 14052 -+064 64250 64140 1,001 -9001
14300 #851 14067 316 3,800 34659 14049 -e061 64300 64190 14000 ~¢001
14350 «904 14082 2287 34850 3,711 1.046 -¢059 64350 64240 14000 =001
14400 +959 14096 2260 34900 34763 14043 -4056 64400 64290 14000 -+001
10450 1e014 14108 233 34950 34815 14040 -+053 64450 64340 14000 -e001
14500 14069 14119 +208 44000 34867 14038 -e051 64500 64390 14000 -+001
14550 14126 14129 0184 44050 34919 14035 -e048 64550 60440 1.000 -e001
14600 14182 14137 0161 44100 34971 14033 -e046 64600 64490 1.000 -001
14650 14239 le145 0139 44150 44022 1,031 -e044 64650 64540 14000 | -4001
14700 14297 14151 118 44200 44074 1.028 -e041 64700 64590 14000 000
14750 1e35¢ 14157 0099 44250 44125 14026 -4039 64750 64640 1.000 2000
14800 le812 14161 +081 44300 44176 14025 -e037 64800 64690 14000 « 000
14850 14471 14165 1064 44350 44228 14023 -4035 64850 | 64740 14000 «000
14900 14529 1,168 0048 44400 | 44279 14021 -4033 64900 64790 14000 «000
14950 14587 14170 ¢033 44450 44330 1.019 -¢031 60950 64840 14000 +000
24000 le646 14171 2019 44500 44381 1,018 -4029 74000 64890 14000 «000
24050 1,704 le171 2006 44550 44431 14017 -4027
24100 14763 14171 ~s006 44600 4e482 14015 ~-e025
24150 14822 14171 -+017 44650 44533 1+014 -¢023
24200 1.880 14170 ~-2027 44700 44584 14013 -e022
24250 1,938 10168 -+036 44750 4e634 1.012 -+020
24300 14997 lel66 -e045 44800 40685 14011 -+019
24350 24055 14164 | =052 44850 49735 14010 -e018
20400 20113 14161 -4059 44900 44786 1.009 -e016
24450 2,171 14158 -9065 44950 44836 1,008 -e015
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