Psychological Review
1973, Vol. 80, No. 2, 126138

A THEORY FOR THE INDUCTION OF
MATHEMATICAL FUNCTIONS®

L. ROWELL HUESMANN 2

AND CHAO-MING CHENG

Yale University

A detailed theory is presented for how humans induce mathematical functions

to explain observed data.
verbal protocols.
rected generate-and-test process.

The theory is based on both solution times and
The theory proposes that induction is a heuristically di-
The order in which hypotheses are gen-
erated is mostly independent of the data.

Each hypothesis is maintained until

it is negated, but a false hypothesis that matches part of the data is fre-

quently retested.

A computer simulation program, incorporating these proc-

esses, accurately predicted solution times for subjects on different sets of

problems without any changes in parameters,

In addition, the program’s

solution protocols were indistinguishable from human protocols.

An individual engaged in solving a diffi-
cult problem is faced with two tasks: the
surface task is simply to solve the problem,
but the deeper coincident task is to derive
general heuristics, algorithms, and methods
of representation that can be applied to new
problems. Obviously, this process of ex-
tracting information out of specific examples
to form general rules is induction. On the
surface, induction in this situation seems
quite different from most concept-learning
situations constructed in the laboratory.
The problem solver knows only that al-
gorithms, heuristics, and representations ex-
ist which should be employed when indicated
by certain ill-defined quantitative features
from a large set of features related to the
problem. His goal is to learn which fea-
tures are relevant, and what the functions
are that map the features into the methods.

Most strategies that a problem solver de-
rives may be stated in many different equiva-
lent forms. One such form would be a
mathematical function that maps observed
values of relevant stimulus variables into
observed utilities of solution methods. Rep-
resenting strategies as mathematical func-
tions, however, is particularly useful if one

1 This research was supported in part by U. S,
Public Health Service Research Grant MH-19331-
01 from the National Institute of Mental Health.

2 Requests for reprints should be sent to L.
Rowell Huesmann, Department of Psychology,
Yale University, 333 Cedar Strect, New Haven,
Connecticut 06510,

126

follows the conception of Newell and Simon
(1961) that problem solvers form tables of
connections from characteristics of the task
environment to solution methods,

Our view is that a problem solver begins
the learning process by constructing part of
a table of connections between states of the
task environment and solution methods.
When enough data have been collected in
such a table, he induces rules that specify
which solution methods are good in each
situation. The induction of these rules based
upon the data in the table of connections
could be accomplished by an induction proc-
ess that maps classes of stimulus values into
utilities for solution methods. More for-
mally, we can say that to induce a rule for
solving a problem one must find a function
f(x,, #sy ... xp), such that if v, &, ... 1
are stimulus variables and y is a variable
representing the utility of a particular solu-
tion method, then f(#,, x,, ... a,) =y for
all observed instances of (x, 4., ... 25, y).

By modeling the derivation of problem-
solving strategies as a case of inducing a
mathematical function, we have not intended
to imply that humans necessarily see stra-
tegy formation in such a light. Rather, we
wished to show that the induction of a
mathematical function is typical of the type
of induction task that problem solvers face.
Thus, an understanding of how mathemati-
cal functions are derived should contribute
to an understanding of how problem-solving
strategies are learned.

INpDUCTION OF MATHEMATICAL FUNCTIONS

INpUCTION OF MATHEMATICAL FUNCTIONS
AND CoNCEPT ITORMATION

Clearly, the problem of inducing a mathe-
matical function is a concept formation task.
Yet the induction of a general mathematical
function to explain observed numerical data
is different enough from the concept-learning
tasks studied in the laboratory that little can
be inferred with certainty. Traditional con-
cept formation experiments have investi-
gated the attainment of Boolean functions
rather than arithmetic or other types of
functions. Hunt, Marin, and Stone (1966)
have suggested a general model for induc-
tion based on concept-learning studies, but
the assumptions underlying that model are
violated when the function being induced is
not Boolean. In particular, the induction of
arithmetic functions differs from learning
Boolean rules for pattern classification in
that (a) the number of output classes may
be infinite in the arithmetrical task (e.g.,
the real numbers), (&) the input attributes
may assume an infinite set of values in the
arithmetical task, and (¢) there may be no
limit of possible arithmetical rules for map-
ping the input variables into the output vari-
able.® However, many of the processes em-
ployed in Boolean concept learning are sug-
gestive of processes that could be employed
in deriving general mathematical functions.
The hypotheses-testing theories of Restle
(1962), Bower and Trabasso (1964), Gregg
and Simon (1967}, and their supporting ex-
perimentation suggest that induction is pri-
marily a heuristic generate-and-test process.*

Studies of serial-pattern processing (Feld-
man, Tonge, & Kanter, 1963; Gregg, 1967 ;
Leeuwenberg, 1969; Restle, 1970; Simon
& Kotovsky, 1963; and Simon & Sumner,
1968) also suggest that subjects construct
formal rules for specifying sequences by
means of heuristic generate-and-test proc-
esses, For example, the Simon and Kotov-

3 With a Boolean function of p variables, the
number of possible functions is equal to the num-
ber of different truth tables, that is 2%,

¢ By heuristic, we mean that the generation and
testing of hypotheses is directed by rules (heuris-
tics) designed to locate a solution rapidly but which
allow the possibility that no solution will be found.

127

sky model for series-completion tasks asserts
that subjects first search for a regularity that
defines a cycle and then generate and test
hypotheses until one is found that explains
the series. Recently, Simon (1972) has
shown that these various theories proposed
to explain serial pattern processing are es-
sentially the same, and all include the gen-
eration of a formal rule by the subject and
his production of new sequences with the
rule,

Other evidence for this view of induction
as a heuristic search process stems from arti-
ficial intelligence research. As Plotkin
(1971) and others have pointed out, prob-
lems in induction are theoretically insoluble
in that no general method can exist for find-
ing laws to explain particular phenomena.
One can only prove that a particular must
follow from a generality, not vice versa. It
should not be surprising, then, that many
computer programs which have been built to
perform induction employ heuristic generate-
and-test techniques. Pivar and Finkelstein’s
(1964) program for inducing the serial pat-
tern in a sequence of letters or numbers
uses a variety of clever devices to generate
plausible pattern descriptions for the given
ceries. Each is a heuristic technique not
guaranteed to succeed, but the combination
of them constitutes an impressive program,
Similarly, Williams (1972) and Buchanan,
Sutherland, and Feigenbaum (1969) em-
ployed heuristic generate-and-test processes
to solve induction problems typical of intelli-
gence tests and organic chemistry, respec-
tively. On the other hand, induction pro-
grams, particularly in the pattern recognition
field, have frequently used techniques quite
different from the hypotheses-generating al-
gorithms mentioned above. Most notably,
the use of linear discriminant functions and
error correction training (Nilsson, 1965)
has been prevalent.

Bongard (1970) has used these devices in
a program called ARITHMETIC that
“learns” discriminant functions for recog-
nizing the mathematical functions relating
one variable to several others. While such
“perceptrons” may have the potential for
being models of perceptual processes, their
limited applicability to induction in problem

128

solving is well known (Minsky & Papert,
1969). Finally, one should recognize that
the problem of inducing a mathematical func-
tion to explain observed data is quite similar
to the problem of inducing a grammar to
explain an observed language. Hence, it is
worthwhile to note Feldman’s (1972) proof
that a program that generates grammars in
order of increasing complexity can find the
best grammar for a language.

Studies of problem solving have also un-
covered information suggestive of how peo-
ple proceed with induction problems. Wa-
son (1968) asked subjects to supply the
rule that governed what the next element
of a numerical series would be. While the
rule actually used was that the next number
had to be greater, subjects generated a wide
variety of complicated hypotheses. Interest-
ingly, when a subject was told to generate
the next instance in the series, he tended
to try to generate an instance confirming
his current hypothesis rather than one that
might disconfirm.

Other evidence of (apparently) inefficient
search behavior in hypothesis testing has
been reported by Smedslund (1967)., He
found that humans do poorly at detecting
correlations between dichotomous variables.
Smedslund suggests that the overreliance of
subjects on positive instances supporting in-
correct hypotheses contributed to this deficit.
At the same time, evidence exists that some
subjects, when given the opportunity, use
very systematic search procedures to induce
rules rapidly. Duncan (1967) found that
when subjects in an induction experiment
were allowed to control the variation of the
stimulus variables, those who varied them
one at a time derived the principle most
rapidly. To summarize, induction seems to
be characterized by a heuristic generate-and-
test process during which positive confirma-
tions add to the credibility attached to an
hypothesis. Subjects who use systematic
search techniques seem to learn more
rapidly.

ANALYZING INDUCTIVE BEHAVIORS

While the preceding evidence has been
suggestive of how people might induce math-

L. RoweLL HuesmMAN aND Cuao-Ming CHENG

ematical functions from observed data, the
differences between most concept formation
tasks studied and the task of inducing a
mathematical function are not trivial. Hence,
before proposing a theory, one should obtain
more specific information about the processes
that humans employ in solving such induc-
tion problems. To do this, we designed a
problem-solving experiment in which our
objective was to obtain verbal protocols and
solution times for subjects who were solving
problems of inducing arithmetic functions
from data.

Experiment I

Problems. Nine problems requiring the
induction of an arithmetic function were
used in this experiment. Each problem con-
sisted of six instances of the form ¢ $ b = c.
The two operands on the left, o and b, could
be mapped into the operand on the right, c,
by some arithmetic expression constructed
from the two operands; the operator’s addi-
tion, subtraction, multiplication, division, and
exponentiation; and integer constants be-
tween 1 and 4. No more than three opera-
tors were used in any expression. The
nine problems and their solutions are shown
in Table 1.

Subjects. Eighteen undergraduates were
employed as subjects, Only those subjects
were analyzed who solved at least two out
of three problems. In order to obtain 18
valid subjects, 22 subjects had to be tested.

Procedure. The stimuli for one induction
problem consisted of six simple mathematical
equations of the form ¢ $ b = ¢, for example,
2$ 3 =28. Each of the six equations repre-
sented a positive instance of the correct con-
cept (function). No negative instances were
provided. The problem was printed on a
large white sheet about 2 meters from the
subject. The six instances were listed in
one column beginning at the top of the page.
All six instances were exposed simul-
taneously.

The subject was told before the experi-
ment that the symbol “$” could represent
one of the simple mathematical operators
(+, ~, * /, 1), or some combination of
them, but not more than a four-level com-

INDUCTION OF MATHEMATICAL FUNCTIONS 129
TABLE 1
INDUCTION PROBLEMS USED IN EXPERIMENT 1
Number of alternative functions fitting at least half the instances of data and
aving no more operators than the correct function
Number of operators
in correct function Solution
0 1-2 >2 7(A, B)
1 f(1,0) =1 72,2) =4 f(2,2) =4 a8
f(=2,2) =4 f(1,0) =1 j1,0) =1
7(3,0) =1 H=12) =1 f(=1,2) =1
f1,4) =1 f2,3) =8 f@,1) =2
f(=3,2)=9 f(=3,2)=9 f3,1) =3
f2,1) =2 f(=1,3) = -1 f(=3,2)=9
2 f(2,2) =3 2, 1) =3 fe,1nH=3 AB + 1
72, -1 =-1 FO, —-1) =1 f(1,0) =1
f(2,3) =1 f3,2) =1 fG3,2) =1
f@2,1) =3 f(2,2) =35 f(=1,3) ==2
f(=3,2) = =5 @2, -1) = —1 f(1,2) =3
7@, —1) = -2 f2,0) =1 S, 4) =35
3 f3,2) =5 f3,2) =5 fG3,2) =35 A* — 2B
@1 =2 f2,2) =0 f(=2,2) =0
f(3,3) =3 f4,2) = -3 f4,2) =12
f4,3) =10 f2, 1y =2 F(1,2) = =3
f2,4) = —4 f3,3) =3 f4,4) =28
f5,5) =15 72, 4) = —4 f(=3,4) =1

bination. He was also told that the function
might include a constant, for example, 3o
— b% but that any constant would be an
integer between one and four inclusive. The
subject was reminded of these requirements
if he violated them. The subject was told
in written instructions to say whatever came
to his mind and to specify whatever instance
he was looking at at any moment during the
experiment.

While no time restriction was announced,
the time for solving any one problem was
limited to 25 minutes. If the subject failed
to solve a problem, he was told the correct
answer and then was asked to perform the
next one, Before beginning work on the
test problems, the subject performed three
examples of different difficulties, Then, if
he had no questions, he was given the first
test problem. During the problem-solving
period, his verbalizations were recorded, and
his solution time was measured, Whenever
the subject was silent for long periods, the
experimenter asked him to speak up.

Each subject was tested on three prob-
lems, A 3 X 3 Latin square design (Table

1) was used with the nine cells representing
nine problems. One side of the square rep-
resented the number of operators in the
correct function, that is, one, two, or three,
while the other side represented the number
of alternative hypotheses that had no more
operators than the correct function and that
fit at least half of the instances of data.
Results. Two types of data were avail-
able for analysis: solution times and verbal
protocols. The solution times (see Table
2) support the theory that subjects begin
generating simple hypotheses and then sys-
tematically increase the complexity of the
hypotheses they try. Solution times in-
creased significantly with the number of
operations in the correct hypothesis (F =
7.88, df =2/ 30). In addition, the greater
the number of alternative hypotheses fitting
the majority of instances, the longer were
the solution times (F = 3.60, df =2/ 30).
This latter result indicates that subjects had
difficulty abandoning a wrong hypothesis
that fit a major portion of the data.
Protocois. The protocol data, while less
easily quantitized, contain more specific in-

130

TABLE 2

MEDIAN SOLUTION TIMES IN EXPERIMENT |

Number of alternative functions
fitting at least half the instances of
data and having no more operators

Number of operatots than the correct function

in correct function

0 1-2 >2 i
1 52,5 97.5 | 137.5 95.8
2 180.0 | 180.0 | 382.5 | 247.5
3 502.5 | 675.0 | 690.0 | 622.3
M 2450 { 317.5 | 403.3 | 3219

Note, All times are in seconds.

formation. One way to test the hypothesis
that functions with ¢ operators are generated
hefore functions with ¢ 4+ 1 operators is by
extracting the order in which the hypotheses
were generated from the protocols, Having
found the order for the initial problem every
stbject solved, we computed a correlation
between the number of operators in a hy-
pothesis and its rank in the sequence of
hypotheses. The correlations ranged from
30 to .95 for the 17 subjects with usable
protocols. The average correlation was .65.
Such correlations are imperfect and conser-
vative measures since even a perfect order-
ing would not yield a correlation of unity.
Furthermore, many of the later occur-
rences of simple hypotheses were repetitions
of earlier occurrences. Hence, it seems fair
to say that every subject displayed a tend-
ency to generate hypotheses with ¢ operators
before those with 7 + 1 operators. One can
perceive some regularities in the discrepan-
cies from this procedure. For example, the
majority of the discrepancies on the six
more difficult problems were characterized
by the subject skipping ahead to try a few
more complex functions and then backing
up to see if he missed a simpler function.
The number of operators was not the only
factor that could be seen to influence the
order of generation. Within a set of hy-
potheses having the same number of opera-
tors, subjects appeared to have fairly rigid
orderings based on a variety of rules: (a)
Addition, subtraction, and multiplication
were usually tried before exponentiation or
division. For example, in only 2 of 51 prob-

L. RoweLL HuesmMaAN aNDp Cwao-Minc CHENG

lem protocols was a hypothesis with division
attempted before at least two operators from
the set (+, —, *) were tried. Similarly,
in only 21 of 51 problems was exponentia-
tion used before two of the others even
though exponentiation occurred in the cor-
rect solutions of six of the nine problems.
(b) Subjects displayed a clear left-to-right
bias in generating noncommutative hypothe-
ses. Ilor example, while virtually every
subject generated a/b, @ — b, and ¢® at some
time, ouly two subjects generated b/e¢ and
none generated b —¢ or 0% (c¢) If an
additive constant was appended to a func-
tion, it was usually done right after the func-
tion had been negated by an instance.

The frequencies with which particular hy-
potheses were used adds some other evidence
in support of a primary generate-and-test
process. If the same clues in the problem
were used extensively in the same way by
subjects to control what hypotheses were
attempted next, one would expect to find
many hypotheses used by a large number of
subjects even when the hypotheses were
quite complex. On the other hand, a less
directed generate-and-test process with more
random variation between subjects would
yield extensive common use among subjects
of the simple hypotheses which everyone
generates and little agreement on the more
complex hypotheses at the bottom of the
generation tree. The distribution of non-
correct alternatives supports this latter view.
While every subject tried each of five one-
operator hypotheses, only two of the 23
three-operator and four-operator hypotheses
used were tried by more than one subject.

Two facts about the testing of hypotheses
on the data were also apparent from the
protocols. In the majority of the cases a
subject clearly began testing an hypothesis
on either the first (top) instance or on the
instance that negated the previous hypothe-
sis. In addition, subjects more frequently
retested an hypothesis that had been negated
if that hypothesis had been supported by
other instances previously. For example,
the incorrect alternative solutions to the
problems in the rightmost column of Table
1, each of which was supported by at least
three instances of data, were repeatedly

INDUCTION OF MATHEMATICAL FUNCTIONS

tested an average of 1.1 times per subject.
On the other hand, other alternatives were
repeated only .2 times per subject.

Discussion. The analysis of the subjects’
solution times and protocols has yielded evi-
dence consonant with the results of other
researchers and specific enough to be the
basis for a theory of inductive processing.

The central finding was that subjects ap-
pear to generate and test hypotheses in an
order that is independent of the data, but
in accord with several well-specified heuris-
tics, The most important of these was that
functions with 4 operators were tried before
functions with more than 7 operators. The
evidence from protocols and solution times
also supported the theory that subjects per-
severe on those wrong hypotheses for which
some confirming evidence exists.

ForMaL MobpEL For INpUCTION

We will now present a formal theory for
how humans induce mathematical functions
from data. This model is based upon the
results of our induction experiment and pre-
vious concept-learning experiments. Of
course, the validity of the theory must be
confirmed by demonstrating its predictive
utility. In order to specify the details of
the model as precisely and unambiguously as
possible, it was formulated as a computer
simulation model called INDUCT-1. The
program was designed so that its perform-
ance on a particular problem would vary
from run to run in accord with the between-
subject variations found. TIts average per-
formance should predict the average per-
formance of the group.

The essence of the induction model is
that subjects generate and test hypotheses
in an order that is mostly independent of
the data and partially determined by heuris-
tics. To represent this process for problems
of the type studied in Experiment I, the
hypotheses that subjects had used in Ex-
periment I were divided into pools. Within
each pool the model selects any hypothesis
for testing at random without replacement.
However, the order in which the pools are
generated is determined quite precisely in
accord with heuristics discovered in Experi-

131

ment I. Pools of hypotheses having i op-
erators are tried (with a few exceptions to
be noted below) before pools with i+ 1
operators. Within hypotheses having the
same number of operators, order is partially
determined. In particular, (¢) noncommu-
tative operators are used in the order “a
op b” before they are used as “b op ao”;
(b) additive constants are tried before any
addition of one of the parameters is at-
tempted; (¢) addition, subtraction, and mul-
tiplication are tried before division and ex-
ponentiation ; and (d) multiplication and ex-
ponentiation by a constant are attempted
before the same operation by a parameter.

Within a pool the search procedure is to
generate a hypothesis at random (without
replacement) and test it on either the in-
stance of data that negated the previous
hypothesis or the first instance in the se-
quence of data. The hypothesis is tested
successively on every instance in the se-
quence of data until it is negated or all
instances are fit. If all instances are fit,
the solution has been found; but if a nega-
tion is found, the current hypothesis is im-
mediately rejected and a new one from the
same pool is generated. When the current
pool is exhausted, generation of hypotheses
from the next pool begins. One should
recognize that under this procedure the
order in which hypotheses are generated is
independent of the problem being solved.
This basic search algorithm is specified for-
mally in Figure la.

The program deviates from this basic
search algorithm in only two ways. Some
subjects were observed skipping certain
pools and only trying them much later after
more complex hypotheses had been found
wanting. To model this phenomena, we
associated a probability with each pool that
approximated the observed probability that
a subject would leave that pool on any
generation trial and skip ahead to the next
pool. At the same time, a probabilistic de-
cision branch was added so that a subject
would (after a minimal time had elapsed)
go back to recheck simpler pools for un-
tested hypotheses. The probabilities were
estimated from the protocol data and then
left unchanged during the simulations,

132

00 Te—1;TJ«1;

1.0 Generate a hypothesis, H, randomly without
replacement from POOL [I7];

2.0 If POOL [1] is exhausted, go to 9.0;

3.0 With equal probability J« 1 or J remains
unchanged;

4,0 Test H on INSTANCE (]);

5.0 I test fails, go to 1.0;

6.0 If all instances have been tested, then solution
has been found;

7.0 If J = 6 then J+ 1; otherwise J «— J 4 1;

8.0 Goto4.0;

9.0 I+I+41;

10,0 If I > NUMBER OF POOLS, then quit
with fatlure;

11.0 Go to 1.0;

F16. 1a. The basic generate-and-test algorithm.

00 T1;J«1;

1.0 Generate a hypothesis, H, randomly without
replacement from POOL [1];

2.0 [If POOL [I] is exhausted, then RECHECK
any hypothesis in POOL [I] that worked
on at least 3 instances and go to 9.0;

2.1 If RANDOM FRAC < PROB SKIP [13,
then go to 9.1;

2.2 If H has been tried before, then go to 1.0;

3.0 With equal probability Je« 1 or J remains
unchanged;

4.0 Test H on INSTANCE (J);

5.0 If test fails, go to 1.0;

6.0 If all instances have been tested, then solu-
tion has been found;

7.0 If J = 6 then J« 1; otherwise J «— J 4 1;

8.0 Goto4.0;

9.0 If RANDOM FRAC < 1/3, then RE-
CHECK all past pools (that have not been

rechecked) for skipped hypotheses;

91 T«I+41;

10,0 If I > NUMBER OF POOLS then RE-
CHECK all past pools that have not been
rechecked and quit with failure if a solution
is not found;

11.0 Go to 1.0:

F16. 1b. The modified generate-and-test algorithm
used in all simulations.

The second variation in the search algo-
rithm was derived from our discovery that
subjects fixated on incorrect hypotheses that
fitted a fair portion of the data. Hence,
whenever a hypothesis was discovered that
worked for half or more of the instances,
the simulated subjects would retest that hy-
pothesis on all the instances before aban-
doning the current pool. These two varia-

L. RoweLL. HuesmMaN AND Cuao-Minc CHENG

tions are incorporated in the algorithm in
Figure 1b.

The simplicity of this model should be
apparent from Figure 1. For predicting so-
lution times the INDUCT-1 model has four
free parameters representing times for gen-
erating and testing hypotheses. Given that
a hypothesis has # operators, the time for
generating it once would be #T,; the time
for regenerating it, after it had been tried
at least once, would be #7T,; and the time
for testing it on one instance of data would
be Ttl + nth. While Tg, Tr, Ttly and th
are free parameters, they represent times
and were constrained to be positive and to
obey the relation T, > T,. In other words,
the time to generate a hypothesis initially
must be greater than the time needed to
regenerate it.

Evaluating the Model

The model was used to predict the aver-
age data on the nine problems used in Ex-
periment I. During the simulation runs all
the characteristics of the model remained
fixed except for the four time parameters
which were varied to achieve goodness of fit.

The simulation program produces two
types of output that can be compared with
the solutions humans generate. The pro-
gram prints a protocol of its solution process,
and it computes the simulated time needed
to reach any point in the solution process.

In Figure 2 the median times obtained on
10 simulation runs are compared with the
median times observed on each of the 9
problems for the human subjects. While the
time parameters were varied systematically
to minimize the squared discrepancies be-
tween the predicted and observed times, no
analytical procedure could be used to deter-
mine the optimal values of the parameters
because of the form of the model, and it is
quite probable that the final values of the
time parameters were nonoptimal.® The ac-
tual deviations between observed and pre-
dicted times obtained with these simulations
are shown in Tables 3 and 4. These data

5 The final values obtained for the four parame-
ters were T, =4 seconds, Tr=1 second, T1 =2
seconds, and T =3 seconds,

InpucTion OF MATHEMATICAL FUNCTIONS 133
800 O-<0 Predicted
—_ @=® Observed
[Z]
g %
2 600 ~ 4
N ,I
3} d
- /
H 400 7
[=] » ,
.8 4
z e
s .
200 |- -;;_7,.;
__--9=-——""-8-""
===
] 1 1 1 1 1 1 L 1
11 1.2 13 21 22 23 A 32 33
Program

Fic. 2. A comparison of the predicted and observed solution times
for the problems used in Experiment I.

seem to indicate that the model’s solution
times have close to the same central tendency
as the observed times.

Unfortunately, most traditional quantita-
tive measures of goodness of fit cannot be
applied to this situation. One way we can
measure the fit is to compute the ratio of
the discrepancy between predicted and ob-
served to the standard deviation of the
observed. As can be seen from Tables 3
and 4 the discrepancy on most problems is
very small compared to the standard devia-
tion of the observed times. In addition, the

TABLE 3

DISCREPANCIES BETWEEN PREDICTED AND OBSERVED
MEDIAN SoLuTiON TIMES

Discrepancy A divided by
between
Problem Dr%gfetf\?e(alnd desvté\??oanr%f m((?t]i) f:i?:zrﬂit
F(A) observed
1 17.5 290 67-33
2 9.5 .080 50-50
3 23.0 077 16-84
4 52.0 827 33-67
s 31.0 204 1 50-50
p 107.5 203 | 50-50
7 7.5 025 50-50
8 12.0 037 50-50
9 9.5 031 50-50

distribution of predicted and observed times
about the medians yields a chi-square value
of only .347. Hence, it seems fair to say
that the model is highly accurate in pre-
dicting the observed times.

Despite these results one may question the
validity of the model on the grounds that a
computer simulation model with four free
parameters is not very falsifiable. While
we agree that the weight to be given to the
matching of fine grain statistics should be
downgraded as the number of free parame-
ters increases, other factors in a model are
of equal importance in determining the fit.
In this case we suggest that the constraints
placed upon the simulation program by hav-
ing it duplicate the processes subjects use
make it highly falsifiable despite its {ree

TABLE 4
OVERALL MEDIAN TEST

Group
Solution time
Simulation Observed
program subjects
Below median 47 25
Above median 43 29

Note, X2 = 347,

134

parameters. In fact, as shown below, the
program duplicates the processes of humans
so closely that its protocols cannot he dis-
tinguished from human protocols.

Comparing observed and predicted proto-
col data is somewhat difficult. While the
observed and simulated protocols can be
shown to be identical on many aspects, this
agreement only reflects the face validity of
the model which was based on the observed
protocols. A sample simulation protocol is
shown as follows.

The problem is:

() f(z2,2) =4
(2) §(1,0) =1
3) f(=1,2)=1
(4 §(2,3) =8
(5) (=3,2)=9
©) f(=1,3)=~1

“Let’s try A + B. It works on number 1.
It works on number 2. It works on num-
ber 3. But it won’t work on number 4.
0.K., let’s try another one, Ah, how about
A * B, Tt works on number 1. But it
won't work on number 2. OK., let’s try
another one, Ah, how about A — B. It
works on number 2, But it won’t work
on number 3. O.K,, let's try another one,
Ah, how about, . . . O.K. just scan and
see what happens. A + B—It fits num-
ber 1; it fits number 2; it fits number 3;
no good on number 4; no good on number

5: no good on number 6. . .. Something
more difficult . . . Let’s go back and check
again. A 4 B, T've tried that. A — B,

T've tried that. A * B, I've tried that.
Well, T guess T didn’t miss it. AB, Tt
works on number 1. It works on number
2. It works on number 3. It works on
number 4. It works on number 5 Tt
works on number 6. Oh, T got it, that’s
my solution.”

Simulated solution time = 120 sec.

One accepted technique of comparing hu-
man and machine protocols is by Turing’s
Test. We converted the generation sequence
in the protocols into a form in which gram-
mar could not be a clue to the speaker’s

1.. Rowerr. HursMAN AND Cuao-Ming CHENG

identity. A group of college students was
then asked to separate the human protocols
from the nonhuman. Such a procedure with
19 judges yielded a hit rate of only 52%.
While the goodness-of-fit data provided
above suggest that our process model is a
good predictor of human behavior, a critic
might argue that we have enough free pa-
ranmeters to make such a fit possible even
if humans employed processes that were
quite different. One way to refute such an
argument is to test the model’s predictiveness
on a new set of problems for a new set of
subjects without changing any parameters.
This is a very rigorous test of a model.
In principle, to obtain a good fit our esti-
mate of the time parameters must be good
estimates of the population’s time parameters,

PrepicTiNnG BEMAVIOR wWITH THE MODEL

To provide as rigorous a test as possible
of the theory, we devised three new induc-
tion problems whose solutions, we knew,
could be found by the program. The correct
solutions to the three problems were re-
spectively: b/a, ¢’ + b, and a* — b% The
INDUCT-1 simulation program was tested
on these problems for 10 trials per problem.
The same values of all its parameters were
used (including times) as had been used in
the previous simulation runs. We then con-
ducted a second experiment in which we
tested subjects on these three new problems.

Experiment 11

Subjects. The subjects were eight under-
graduates from the same population as that
used in Experiment I.

Procedure. This second experiment em-
ployed the same basic procedure as Experi-
ment I with the following exceptions:

(a) Each of the eight new subjects was
tested on three new problems in a counter-
halanced design; (b) each of three new
problems was written on a blackboard as
six instances of the form f(a,b) = ¢, for ex-
ample, (2,3) =8; (c¢) subjects were al-
lowed only 15 minutes in which to solve
a problem. For each problem this procedure
yielded eight solution times.

Results. A comparison of the predicted

InpucTIiON OF MATHEMATICAL FUNCTIONS

and observed solution times is shown in Fig-
ure 3. While the two curves are slightly
separated, the pattern of predicted and ob-
served times are quite similar. Considering
that the second experiment was conducted
by a different experimenter on different
subjects with a slightly different procedure,
the predictiveness of the model seems to be
quite good.

The sensitivity of the mode! to the order-
ing of the data for a problem can be seen
by comparing the solution times it yielded
above for Problem 2 with the solution times
it yielded for Problem 2 when the order of
the six data instances was reversed. As
shown in Table 5, the reversed order for
Problem 2 placed the three instances that
strongly suggest alternative hypotheses (e.g.,
A+ B, A*B + 1) at the top. The model
assumes (hased on the protocols) that sub-
jects process the data from the top down
even though all the data is exposed simul-
taneously. Hence, the INDUCT-1 program
generated solutions for the reversed order
in a mean (simulated) time of 650 seconds
compared with 329 seconds for the original
order. But what about human subjects?
Four subjects were given the problem in
the reversed order and their mean time was
400 seconds compared with 291 seconds for
the four who solved it in the original order.

Discussion. Our model has ignored some

TABLE 5

COMPARISON OF OBSERVED AND PREDICITED
SoruTioN TiMES For PROBLEM 2 wWITH
Two DIFFERENT ORDERINGS OF
ITs INSTANCES

Normal ordering: | Inverted ordering:
Mean time in f@3,3) =30 a4,y = 2
seconds 72, 4) =20 4,0 =1
f(4,2) =18 f1,2) =3
f1, 1) = 2 f(3,3) =30
f(1,0 = 1 f(2,4) =20
f(,2) = 3 f(4,2) =18
Predicted 328.6 650.0
N =10
Observed 291.0 400.0
N =4

Note. All instances were revealed to the subject simul-
taneously,

135

~~
wy ©O=-0 Predicted
'g ®—® Observed
ot
»
g eoot L
S //
) e
=) -
.= 400 - s
= -0l
- L
=} -
£ 20 ~ o~
ol L4
=
=
o
1221 Y WU T S,
1 2 3
Problem

Fre. 3. A comparison of the predicted and ob-
served solution times for the three problems used
in Experiment II. (The values used for the pa-
rameters of the model were the values determined
in the first simulation.)

potential sources of information that might
make even more accurate predictions possi-
ble. For example, there was evidence in the
protocols that a few subjects infrequently
did make use of information in the data
instances to guide their search for the for-
mula. One subject remarked that “output
values are quite high with small increases
in the input values; so I'll concentrate on
exponentiation.” In addition, the order in
which subjects generated hypotheses on
one problem was influenced by what they
had found useful on the previous prob-
lem. For example, in Experiment II the
subjects who solved Problem 2 before Prob-
lem 3 were 360 seconds faster on Problem
3, while those who solved Problem 3 first
were 214 seconds faster on Problem 2.
These differences are quite probably due to
the fact that the correct functions for both
problems involve exponentiation and addi-
tion or subtraction, that is, A%+ B for
Problem 2 and A* — B2 for Problem 3.

Expanding the model to incorporate these
problem-dependent features could improve
its predictiveness. Yet the model’s accuracy
without them indicates the extent to which
the generate-and-test process used to induce
functions is controlled by probleni-independ-
ent heuristics,

TarricaTions or TiE MobDEL

The major implication of this study is
that humans induce simple mathematical

136

functions by a process that is neither mys-
terious nor complicated. They generate
hypotheses from predetermined pools with-
out replacement. The pools are ordered in
accord with a few heuristics independently
of the data. Among the most important
heuristics is that hypotheses with ¢ operators
are generated before those with more than ¢
operators. Once generated, an hypothesis is
tested until it is negated, However, negated
hypotheses that have been supported by
some data may be periodically retested.

While a few readers may have difficulty
accepting the central thesis of this model—
that induction, the major process in scien-
tific inference, is primarily a generate-and-
test process—the conclusion is consistent
with most of the other research on induction
in humans. One should not be surprised
by this assertion unless one believes that
men are above the laws of logic that govern
every automaton’s behavior, Nor should
one conclude from this finding that men are
blind and unintelligent induction machines.
Intelligence in induction can only mean that
the problem solver heuristically directs his
generate-and-test process to find a solution
rapidly.

While few data-dependent heuristics were
employed on the problems studied, good
data-independent heuristics were used exten-
sively. What evidence is there that more
complex heuristics would have yielded
guicker solutions to these problems? Omne
cannot conclude that data-dependent heuris-
tics would not be used on more difficult
problems because they were not used on the
studied problems. On other tree-searching
problems, for example, games, the findings
have been that humans only employ complex
heuristics when the tree becomes too massive
for simpler techniques. When that point is
reached, however, humans wield quite so-
phisticated heuristic generate-and-test tech-
niques as has been amply demonstrated in
studies of chess and other games (Newell &
Simon, 1972).

With the appropriate heuristic techniques,
a problem solver need not enumerate all or
even a major portion of the tree or hypothe-
ses before finding the solution, To one
familiar with the recent progress in arti-

L. RowrLL HuesMaN AND Cuao-MinG CHENG

ficial intelligence, it seems quite reasonable
that the major inductive feats of man could
be accomplished by an automaton using a
heuristically directed generate-and-test proc-
ess.

Perhaps a more important criticism of
man’s inductive ability raised by this model
is its assertion that he holds on to a theory
disconfirmed by negative evidence if it has
been confirmed by positive evidence. This
tendency has been observed before (Wason,
1968) and appears to pervade even the
most sophisticated types of inductive reason-
ing. As Kuhn (1970) has pointed out, the
history of science is rife with cases where
anomalies have not led to the rejection of
a theory. Old theories are usually rejected
only when a new theory is devised.

Why should man possess such inefficient
persistence? Part of the reason may lie in
man’s recognition that he is not an errorless
processor and should not trust a single dis-
confirming computation, The role of noise
in the world may add to man’s skepticism.
Scientists certainly are aware that any single
test can be erroneous. One might also argue
that it is better to maintain a theory that
brings some order to the data than to have
no theory at all. Yet anyone who studies
the protocols showing how subjects time and
again fixate on incorrect functions that fit
part of the data must question the adequacy
of the above explanations,

Without rejecting any of the above theo-
ries we would like to suggest that a subject’s
persistence in maintaining a false hypothesis
may also be due to his misperception of the
probability that a false hypothesis could be
confirmed. In particular, we propose that
the a priori probability of a confirmation of
a false hypothesis is perceived by most sub-
jects to be much lower than it is. As a
result, the decreases in subjective probability
(of a hypothesis being correct) caused by a
disconfirmation are erroneously offset by the
increases that prior confirmations produced.
For example, assume that the a priori proba-
bility that some hypothesis is correct is per-
ceived to be .50, and the a priori proba-
bility of a confirmation of a correct hypothe-
sis is presumed to be .90; then, if the a
priori probability of a confirmation of an

INpucTION OF MATHEMATICAL FUNCTIONS

incorrect hypothesis were viewed as only
.10, the computed probability that some hy-
pothesis is correct following two confirma-
tions and one disconfirmation would be (ac-
cording to Bayes’ law) .90. On the other
hand, if the a priori probability of a con-
firmation of an incorrect hypothesis were
perceived (more realistically) to be .50, the
computed probability of correctness after two
confirmations and one disconfirmation would
be only 39. Thus, too low an a priori esti-
mate of the likelihood that a false hypothesis
could be confirmed can lead a subject to
believe that a negated hypothesis has a higher
probability of being correct than one that
has not been tried.

CoNCLUSIONS

We have presented a detailed process
model of how humans find mathematical
functions that explain observed data. It was
suggested that this model could serve as a
formalization of the inductive process used
in learning strategies for solving problems.

In accord with previous research on the
attainment of Boolean concepts, it was found
that mathematical functions are induced pri-
marily through a process of generating hy-
potheses and testing them on the observed
data until they are negated. The generation
order is mostly independent of the charac-
teristics of the problem’s data, but the order
can be specified closely with a few heuristics,
for example, hypotheses with ¢ operators are
generated before those with i + 1 operators.

Subjects test each hypothesis on the data
in a relatively fixed sequence beginning with
the instance that negated the previous hy-
pothesis or the initial instance in the se-
quence. A false hypothesis which matches
several of the instances is often repeatedly
considered even though it has been negated.
The INDUCT-1 computer simulation model,
incorporating these processes, accurately pre-
dicted solution times for subjects on both
the set of problems on which it had been
designed and a new set of problems without
any changes in its parameters. TIn addition,
the program’s solution protocols were indis-
tinguishable from human protocols,

137

REFERENCES

BonGarp, M. Pattern recognition. New York:
Spartan, 1970.

Bower, G, & Tramasso, T. Concept identifica-
tion. In R, C. Atkinson (Ed.), Studies in
mathematical psychology, Stanford: Stanford
University Press, 1964.

Bucnanan, B. G., SutHERLAND, G. L., & FEIGEN-
BauM, E. A, Heuristic DENDRAL: A pro-
gram for generating explanatory hypothesis in
organic chemistry. In B, Meltzer & D. Michie
(Eds.), Machine Intelligence 4. Edinburgh:
Edinburgh University Press, 1969.

Duw~can, C. P. Induction of a principle. In
C. P. Duncan (Ed.), Thinking: Current experi-
mental studies. New York: Lippincott, 1967.

FerpmaN, J. Some decidability results on gram-
matical inference and complexity. Information
and control, 1972, 20, 244-262.

Feuomanw, J., Toneg, F. M., Jr, & Kanter, H.
Empirical explorations of a hypothesis-testing
model of binary choice behavior. In A. C.
Hoggatt & F. E. Balderston (Eds.), Symposium
ot Stnulation Models. Cincinnati, Ohio: South-
Western, 1963,

GreGg, L. W. Internal representation of sequen-
tial concepts. In B. Kleinmuntz (Ed.), Con-
cepts and the structure of memory. New York:
Wiley, 1967.

Grecg, L. W,, & Smmon, H. A. Process models
and stochastic theories of simple concept forma-
tion. Journal of Mathematical Psychology, 1967,
4, 246-276.

Hunt, E. B, Marin, J.,, & Stong, P. J. Experi-
ments in induction. New York: Academic Press,
1966.

KunnN, T. S. The structure of scientific revolu-
tion. Chicago: TUniversity of Chicago Press,
1970,

LeEeuweENBERG, E. L. L. Quantitative specifica-

tion of information in sequential patterns. Psy-
chological Review, 1969, 76, 216-220.
Minsky, M. & Parert, S. Perceptrons. Cam-

bridge: M.I.T. Press, 1969.

Newerr, A, & Sivmon, H. A. GPS, A program
that simulates human thought. In H. Billings
(Ed.), Lernende Automaten. Muchen: Olden-
borg, 1961.

NeweLL, A., & SivoN, H. A. Human problem
solving. Englewood Cliffs: Prentice Hall, 1972,

NiLssoN, N. J. Learning machines. New York:
McGraw-Hill, 1965.

Prvar, M., & FinkeLstein, M. Automation,
using LISP, of inductive inference on sequences.
In E. C. Berkeley & D. G. Bobrow (Eds.), The
programming langrage LISP, Cambridge,
Mass.: Information International, Inc., 1964.

ProtkiN, G. D. A further note on inductive
generalization. In B. Meltzer & D. Michie
(Eds.), Machine Intelligence 6. New York:
American Elseiver, 1971,

Resrtie, . A, The sclection of strategies in cue

138

learning, Psychological Review, 1962, 69, 320-
342.

RestLE, F. Theory of serial pattern learning:
Structural trees. Psychological Review, 1970,
77, 481-495.

Simon, H. A. Complexity and the representation
of patterned sequences of symbols. Psychological
Review, 1972, 79, 369-382.

Smmon, H. A, & Korovsky, K. Human acquisi-
tion of concepts for sequential patterns. Psycho-
logical Review, 1963, 70, 534-546.

L. RoweLr. HuesMAN AND Cuao-Ming CHENG

SmEpsLUND, J, The concept of correlation in
adults,. In C. P. Duncan (Ed.), Thinking:
Current experimental studies. New York: Lip-
pincott, 1967.

Wason, P. C. “On the failure to eliminate hy-
potheses . . .”—A second look. In P. C. Wason
& P. Johnson-Laird (Eds.), Thinking and rea-
soning. Baltimore: Penguin, 1968.

Wieiams, D. S, Computer program organiza-
tion induced from problem examples, In H. A.
Simon & L. Siklossy (Eds.), Representation and

Simon, H. A, & Sumner, R, K. Pattern in : Engl 1 Cliffs. N . Dremtica.
music. In B. Kleinmuntz (Ed.), Formal repre- ﬁg‘ﬁmllgg}z. nglewood iffs, N. J.: Prentice
sentation of human judgment. New York: ’

Wiley, 1968. (Received July 24, 1972)
Erratum

On the {ront cover of the January 1973 issue (Vol. 80, No. 1) there
was a typographical error in the title of the Theoretical Note by
Peter H. Schénemann, Thomas Cafferty, and James Rotton. The
correct title is “A Note on Additive Functional Measurement.”

Sorry!

