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Abstract

Accuracy in discrete sampling with coordinate measuring machines is first
defined as the discrepancy of a finite point set, the lower bound for which was
established by a Fields medalist. Then, from number theory, a particular
sequence of numbers is used to compute the sampling locations -- resulting in
a nearly quadratic reduction in the sample size, over the uniform or random
distributions, at the same level of accuracy. Finally, experimental errors in
the measurement of machined surfaces modeled as random processes are
compiled, validating the number-theoretic predictions.
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1. INTRODUCTION

Quality has many connotations and implications, such as customer
satisfaction, management style, etc. In the engineering context, quality can be
associated with precision in manufacturing. In the life cycle of a product,
precision is expressed as tolerances in dimensioned drawings during the
design stage. Viewing the ideal shape (with nominal dimensions) as the input
to a manufacturing channel [1], its output (the realized shape) is corrupted by
noise in the channel. As there are encoding and decoding schemes in signal
communications, tolerance specification serves as a decoding scheme:
inspection detects errors (but does not correct them). The difficulty in error
correction is deeper than that which meets the eye. The signal in the
manufacturing channel is not only complex in its dimensionality (as products
are usually three-dimensional rather than one-dimensional bit streams),
there are semantics embedded in the signal as the functionality of the product.

Inspection, as an error detection scheme, should be in itself error free.
Confidence in the inspection process is however questionable. In 1988, R.
Walker of Westinghouse issued an alert, through a medium called GIDEP
(Government Industry Data Exchange Program) [2]: that the vendors of
coordinate measuring machines (CMMs) used different algorithms in their
machines -- resulting in a disagreement of as high as 60%! (An immediate
conclusion one can draw is that good parts may have been rejected and bad
parts may have been in service.) This phenomenon was subsequently termed
as the divergence of methods [3].

There are actually two places where methods are invoked during inspection:
for data gathering (or sampling) and for data interpretation (or fitting).
Section 2 of this paper reviews the methods for both and bring out an important
finding --the choice of a metric is subjective and is dependent on the implicit
function of the design; but within the same metric there exists an absolute
(hence objective) bound in accuracy leading to an optimal sampling strategy.
Section 3 clarifies optimality as accuracy and time in coordinate
measurement. Based on the work by K.F. Roth, the Fields medalist, accuracy
in approximation is expressed by a mathematical notion called the
discrepancy of a finite set of points, for which a lower bound exists [4]. For a
finite set of N sample points, the time for sampling and for fitting can also be
quantified in terms of N. Then, a sampling strategy based on the Hammersley
sequence [5] is compared to uniform sampling. It shows a remarkable
improvement of nearly-quadratic reduction in the number of samples, hence
time, yet maintaining the same level of accuracy. (Loosely speaking, a
quadratic reduction of 250,000 points yields 500.) Finally, implementation of
the algorithm and simulation of inspection on machined surfaces [6] are
conducted. The results confirm the theoretical prediction. This paper thus
contributes to the convergence of sampling methods.



2. SOURCE OF DIVERGENCE

Because the notions of distance and metric are central to the source of
divergence, it is useful to review them first. Then, divergence in fitting
algorithms is given a context.

2.1 Distance and Metric

The basic idea in fitting is that of an elevation in dimensionality. Sample
points are not only numerous, they are also zero-dimensional, topologically.
By fitting a curve through points, or a surface through curves, hence elevating
the dimensionality, two objectives are achieved. One, the size of data storage is
reduced -- for later algorithmic processing. Two, a group behavior emerges --
for interpretation and decision-making.

While there is abundant literature on approximation such as (7], distance is
the basic element in computation. Consider the familiar Euclidean distance
between two points (x1, yi1, z1) and (xg, yg, z2). For each of the three components
of a vector, the difference, e.g. (x1-x2), is first captured. Then, the differences
are squared, summed, and a square root taken over the sum, hence the root-
mean-square or RMS difference:

d2 = [(x1-x2)2 + (y1-y2)2 + (z1-22)2] V2 (1)

The metric applied to (1) is the so-called Ly metric and it has the general form
under the Lp metric [8] as:

dp =[Ix1-x21P + ly1-y2|P + | z1-21P]VP (2)

Absolute value is taken so as to accommodate the odd and even nature of the

exponent p. When p 2 2, one finds a variety of distances, each having its own
merit. In particular, when p = «, (2) becomes a mechanism for selecting the
largest of the three components -- as supremum, or the maximal element in
the set:

deo = sup [1x1-x21, ly1-y2l, 121-221] 3)
Transition from (2) to (3) can be understood by assuming that one of the terms,

say ly1-yal, is the largest of the three. Dividing the entire right hand side of (2)
by this term yields

ﬂ: x1-x21 ly1-y2! | z1-221 ]I Ip}lfp @)
ly1-ye! )p‘(lyryzlr*(lyryﬂ)p yry2




The first and the third terms in (4) vanish when p becomes very large, hence
effectively rendering the supremum as in (3). Figure 1 illustrates the various
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Figure 1
2.2 Fitting Algorithms

Having seen that distance can adopt infinitely many measures, it should not be
surprising that there are a variety of algorithms for elevating the
dimensionality of point data -- by fitting them into curves and surfaces [9]. The
word "fitting" implies a pre-conceived notion of some ideal geometry. Indeed,
there must be some polynomial of a fixed degree into which the data fits; for,
otherwise, fitting becomes arbitrary.

The kinds of ideal geometries in computer aided design (CAD) are: linear,
quadratic, cubic, and higher order. Examples of linear geometry are lines and
planes; and examples of quadratic geometry are cylinders, cones and spheres.
When the geometry is cubic or higher, there are few familiar shapes with the
possible exception of a torus (which can be used to blend surfaces as fillets). In
CAD, these high order surfaces are called free-form surfaces, implying the
degrees of freedom that a designer has in expressing the desired shape
through a set of control points. By virtue of the degree of local control the
designer has on the shape, there are various interpolators [10, 11], such as
Hermite, Bernstein and other polynomials, giving rise to Coons, Bezier, B-
spline, non-uniform B-spline (NURB) curves and surfaces that are familiar to
the CAD community.

Conceptually, there are three basic criteria to fit data to these ideal geometries:
INNER, OUTER, and THROUGH. (By the distinction of INNER and OUTER,
there is an implied direction that indicates the material side of the workpiece
under inspection.) Data can be fitted so that they all lie on the inside (the
material side) of the ideal geometry, or conversely, on the outside. While one
can take the two extremes by taking both the INNER and OUTER, giving rise to
a "tolerance zone," fitting an ideal geometry THROUGH the data, such that
some lie on the inside and others on the outside, is a third alternative -- giving
a sense of an "average." (It may be conjectured that the criterion for fitting
data and the choice of a metric depend on the functionality of the component as
implied by the intent of the design [12].) To ensure that the ideal geometry
satisfies any of the three criteria, a distance function must be invoked, which
can be linear, as in (3), or non-linear as in (1) or (2). Thus, fitting algorithms
are seen as linear or non-linear optimization problems in general [13] whereby
some form of a (linear or non-linear) distance is minimized [14] as constrained
by an ideal (linear or non-linear) geometry. When the ideal geometry is



simple, as in the case of lines, circles, planes, and cylinders, analytic solutions
are possible [15].

After the data has been fitted, it is compared to the ideal geometry. Here,
again, the notion of distance must be invoked. For speed, one may choose the
largest component, as in (3), for an approximation to distance. For accuracy,
the RMS distance as in (1) is adopted. Recall that the objective of fitting point
data is to elevate the dimensionality. Now that the zero-dimensional points
have been raised to one-dimensional curves or two-dimensional surfaces, the
distance between the fitted and the ideal curves and surfaces once again
invokes that of the points: to find the distance between two curves, for
example, one computes the distance between a pair of closest points on the two
curves, and treats it as the distance between the curves. Adopting the
paradigm of the Lp metric, one can take the square of the closest points, the
cube, . .. as so on -- as distances. Without compounding the divergence in
methods for assessing the distance between the elevated entities, the irony of
elevation may be noted: the dimensionality of point data is elevated from zero
to one (or two); yet the distance used is for zero-dimensional entities.

3. SAMPLING ALGORITHM

Discrete sampling is inherently an approximation process. If the number of
samples is infinite, one may imagine that the error in approximation
approaches zero. And when the sample size is finite, the error must be non-
zero. This observation induces two practice questions: For any sampling
sequence of size N, how small can the error be? (Section 3.1 answers this
question.) And, in what way should the N samples be located in space? (This
is answered in Section 3.2.) Together, these two sections address the accuracy
and the time for coordinate measurement.

3.1 Sampling Error

It has been noted that once a metric is adopted, the variety of methods is less
divergent than otherwise. But this still leaves open the question: Suppose one
adopts the Lo (or L..) metric, what is the best method for sampling? In the last
section, the measure of "goodness" has been heuristic (or subjective): taking
the least of the squares or minimizing the maximum. This section reports an
objective criterion for assessing sampling errors.

Not that such a criterion contradicts the works of Gauss, Newton and
Tschebychev [7,9,14], it was discovered at least a century later by K.F. Roth of
the Imperial College, who received the equivalent of a Nobel in mathematics --
the Fields medal -- in 1958. Roth's contribution is in establishing a lower



bound in the discrepancy D between a finite set of N points and any function, in
d dimensions [4].

d-1
D = O(N-I(log N) 5)
The significance of (5) is that the lower bound is expressed only in terms of N
and d; it is devoid of any constraint on the function which the samples
approximate. Most important to coordinate measurement is that one can
determine if a finite set of samples of size N, giving rise to a discrepancy D,
meets Roth's bound: hence giving the least amount of error possible. For
calibration of the sampling sequences in the next section, Roth's bound in low
dimensions are:

d=2, D=zO0(\logN/N) (6)
d=1, D=O(UN) (7

As important as discrepancy is to coordinate measurement, the concept may
be unfamiliar. The remainder of this section gives an outline of the basic idea
along with definitions.

It is convenient to begin in two dimensions with a unit square [0,1] x [0,1] in
which a region of interest bounded by some function resides. The area of the
region can be approximated with points pi, p2, . . . PN by the fraction:

1 N
area =7 ¥ % (B (8)
where y (p;) is the characteristic function indicating whether a point p; € [0,1]2
is in or not in the region:

¥ (pi) =1 if pjisin the region
0 otherwise

Generalizing (8) to d dimensions whereby the unit square becomes a unit
hypercube Id = [0,1]d bounding a function f{t), t € Id, one has:

Jomasd ¥
@ fit)dt = i_zlx (pi) 9)
Calling the difference between the two sides of (9) as the residual:

N
R(t, N, pi) JId ft)dt - 5 21 (e (10
1=

i



the discrepancy in the Lg norm, or Ly discrepancy, is defined as (16]:

2
De = {J . [R(t,N,pi)]zdt} (1)

Note the square root, the mean (by taking the integral in the sense of (9)), and
the squaring of R. Likewise, in the L., norm, the L., discrepancy is defined by:

Dw= 14 IREN,p)I (12)

While there is a similarity between dg in (1) and D2 in (11), and likewise
between d.. in (3) and D.. in (12), it is noted that f{t) in (10) is a real-valued
function that must be Riemann integrable. A variation of the residual (10) is to

take the difference between the volume of a hypercube and its approximation
[16]:

. d 1N
R*(t,N,pj) = .HltJ"N‘ .le (P (13)
J: 1=

giving rise to Dg* and D..*, respectively:

1/2
Dg* = {j i [R*(t,N,pi)]2dt} (14)
D."= 1 IR'(tNp)! (15)

And Roth [4] established the lower bound:

d-1
D..* 2 D2 > k N-1(log N) (16)
where the constant k is in terms of the dimension d only. The existence of

such a bound triggered a flurry of activities in the construction of sequences of
numbers, one of which is the subject in the next section.

3.2 Sample Size and Locations

It may be intuitive that, the larger the sample size, the more accurate the
measurement is. Such an intuition is confirmed by (7) in that the minimal
error of approximation is inversely proportional to the sample size of N, in one
dimension. But as the dimensionality of the sample points increases, the error

()\



is also directly proportional to some power of the logarithm of N, as in (6). The
outstanding question is: are there sequences of numbers that approach or
even reach Roth's bound, as in (5)? The answer turns out to be in the
affirmative, from the works of researchers in number theory.

Before going into sequences, a word on the dimensionality d of the samples is
in order. For a surface under inspection to be visible to an inspection machine,
the surface can only be assumed to be single-valued. When the machine is a
point sampling machine, it may be assumed that a command coordinate pair
(i, yi) is issued and a value z; is read. When the machine is a line sampling
machine, it may be assumed that a command coordinate (x;) is issued and a
pair (y;, z;) is read. The dimensionality of a sample, though always 3 after the
data is read in, differs by the type of machinery used. In this work, sampling
with the CMM is discussed; hence d = 2. To choose freely among the pairs (xj,
yi), (xi, zi), and (yi, z), the command coordinate (s;, t;) is identified with the
term sample.

The sequence of numbers that Roth used to exhibit the tightness of his bound
[17] is the Hammersley sequence [5]. Its coordinates (s;, t;) in two dimensions
are defined by:

si =N an

k .
ti= 3 b2d!
i=0

where

[O,N '1]

total number of points

[log i]= ceiling of (log i)
binary digits for representing i

i
N
k
b;

nmaununm

As the binary representation of integers is used, logarithm will be taken to the
base 2.

Suppose N = 10 Hammersley points are used for inspection. The procedure for
computing the Hammersley coordinates are as follows:

1. Determine k: Sincei ¢ [0,9], [logil= 4.

2. Determine bj: The four-bit representation (bg bg by bo) fori are: (0000),
(0001),---(1001).



3. Compute si: According to (17), the s; coordinates for the N = 10 points are:
0/10, 1/10, 2/10, . . . 9/10.

4. Compute ti: The binary representation for the t; coordinate is obtained by
taking the "mirror image" of the binary representation for i, about the
decimal point. For instance, fori=1=(000 1) or s; = 1/10, the mirror
imageis(1000)ort; =8/16. Fori=7=(0111)ors; =7/10, the mirror
image is (1 11 0) or t7 = 14/16.

The N = 10 Hammersley points are illustrated in Figure 2. The 10x10 grid is to
be interpreted as the locations for the 100 uniform samples.

Figure 2

In the construction of his sequence, Hammersley shows [5] that the
discrepancy in d dimensions is of the order:

Dy = O(N-1(log N)d-1) (18)

which is off by a factor of one-half power as compared to the absolute lower
bound established by Roth in (5). While slightly suboptimal, the Hammersley
sequence shows a nearly quadratic reduction in the number of points needed
by uniform sampling -- for the same level of accuracy as measured by
discrepancy.

More precisely, it is known from Monte Carlo methods that, as the number of
samples N approach infinity, the error becomes indistinguishable from that of
a uniform sequence [16]. In particular, the error for a uniform sequence is
O(N-Vd), To compare the number of uniform points Ny against the
Hammersley points NH, suppose that they yield the same discrepancy in two
dimensions:

L.l gNg (10)

Ny ~Na

where Ny denote the number of uniform points and Ny the number of
Hammersley points. It becomes immediately obvious that there are almost
quadratically many Ny as there are Ny:

NH
Ny= (log NH)Z (19)

A plot of the relation between Nyy and Ny is given in Figure 3.




Figure 3
4. IMPLEMENTATION

The confluence of mathematics and precision engineering has yet many
bridges to be established. In his article [18], R. Hocken reports that there needs
to be characterization of errors in the kinematics and dynamics of the CMM,
lobing errors in the probe of the CMM, and the uncertainty in the
manufacturing processes that create the workpiece. As the characterization
of machine by machine, probe by probe, and workpiece by workpiece can be
precise but laborious, the classical mathematization of manufacturing as
random processes [19] seems once again attractive.

Not only because random processes offer first order (mean), second order
(variance) and higher order statistics [20] that capture ensemble behavior of
manufactured surfaces, evidenced in a beautiful catalog of machined surfaces
[21], it turns out that random processes also provide a crucial link to Roth's
bound and Hammersley's sequence [22, 23]. It is in this connection that the
measurement for the roughness of a machined surface, modeled as Wiener,
Gaussian or any process, permits the employment of discrepancy [24] hence
the Hammersley and other sequences [25].

A number of experiments have been conducted to assess the accuracy of the
Hammersley points for coordinate measurement. The number of samples
range from 16 to 15,625 -- for two reasons. First, the uniform distribution of
Ny = 10x10, 25x25, 50x50 and 125x125 = 15,625 points are used as benchmark.
Secondly, the Hammersley points are chosen at Ny = 16, 32, 64 and 128 to
approximate the reduction in (19).

Machined surfaces are simulated with two models: Wiener and Gaussian.
For each of the two surface models, the uniform and the Hammerslsy points
are used as samples so that their (respective) accuracies can be assessed. to
give meaning to the notion of discrepancy (11,14), the roughness of a surface is
measured, such that the average heights h at a point (s,t) on a surface is
aproximated by N discrete measurements:

1 1
1 N
_[ OI o Ih(eDds dt = 3 Ihipis, pip) (20)

where pjs are the s-coordinates of the ith point in a sequence of N points.
(Absolute value is taken on h(s,t) in (20) so as to ensure that the asperities do



not cancel out.) the similarity between (20) and (9) may be noted here. Calling
the difference between the two sides of (20) as the error:

1 1
N
e(s,t.N,pj) = J’ OI ) IhsDlds dt - § 3, 1h(pis, piv) (@1)
1=

the root-mean-square error in surface measurement €, by invoking the Lg
metric, is simply:

) ”
Eaus =|d o d o [E(8:LN,DII2 fls,t)ds dt (22)

where f(s,t) is the probability density function (for the Wiener and the
Gaussian distributions). Again, note the similarity between (22) and (11).

Figure 4 shows thirty-two Hammersley points superimposed on a Wiener
surface and on a Gaussian surface. It may be seen that the Wiener surface is
smooth and periodic, simulating single-point cutting with a rotary tool. The
Gaussian surface is more textured, simulating such processes as electro-
discharge machining or sand-blasting.

Figure 4

Twenty runs are made for each of the Wiener and the Gaussain surface
models and the RMS error in using the Hammersley points versus the
uniform points are calculated based on (22). Table 1 shows the experimental
results, on the RMS errors for the Wiener surfaces, with approximate
correspondences in the equivalent number of sample points.

uniform Hammersley
number RMS error number RMS error
50x50 0.01414 64 0.00678
25x25 0.03295 32 0.01081
10x10 0.09469 16 0.01407

Table 1. RMS Error on Wiener Surfaces

Table 1 shows that, for approximately a quadratic reduction in the numbr of
points, the Hammersley samples are more accurate that uniform sampling.
Results on the twenty Gaussian surfaces are given in Table 2.

o)



uniform Hammersley

number RMS error number RMS error
125x125 0.02254 128 0.01766
50x50 0.08092 64 0.04398
25x25 0.06107 2 0.05453
10x10 0.52517 16 0.08300

Table 2. RMS Error on Gaussian Surfaces

For approximately a quadratic reduction in the number, the Hammerslay
points are of the same order in accuracy as the uniform points, as shown in
Table 2, with the possible exception of the last row.

5. CONCLUSION

This work introduces the application of the Hammersley sequence to
coordinate measurement, hence bringing some convergence to sampling
methods. The basis upon which the Hammersley sequence applies is that it
exhibits a discrepancy approaching the number theoretic limit asserted by
Roth. And disrepancy is related to the RMS error in measuring surface
roughness.

For point sampling, users of the CMM may wish to examine the reported
strategy, over random or uniform sampling. For line sampling, practitioners
in computer vision may take heart that a scan of 500 x 500 points can now be
dramatically compacted [26]. And likewise for plane sampling, such as in
computer tomography, a similar saving in data storage is in hand.
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