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ABSTRACT

Generating a sequence of motions for removing components
in an assembly, one at a time, is considered -- the robot motion
being strictly translational. We map the boundary representation
of an assembly to a tree structure called Disassembly Tree (DT).
Traversing the DT in in-order yields a minimal sequence for
disassembly. Traversing the DT in pre- or post-order yields

a minimal sequence for assembly.

For certain repair and maintenance applications, it may
be required that several defective components be removed. An
algorithm is developed for the generation of a DT, the traversal
of which corresponds to the removal of more than one component.
It is shown to take, on the average, O(N) time, where N is the

total number of mating edges in the assembly.



1. INTRODUCTION

Motion planning in robotics can be described informally as
navigating an object in a room with obstacles. The "Sofa Moving
Problem" [4] is an instance in which a collision-free path from
source to destination is sought. If we associate a sofa in a
warehouse with a component in an assembly then motion planning
is concerned with the generation of a geometric solution that
achieves some objective function (shortest path from initial to
final position) under certain constraints (without collision).
Assembly planning is concerned with the generation of a logical
sequence of steps each of which is a motion plan. The "Ware-
houseman's Problem" [2] is an apt characterization of the
assembly planning problem in which several sofas are to be
unstacked in order to reach a particular sofa, which is proven

to be PSPACE-complete.

The difficulty of motion planning and assembly planning lies
in the degrees of freedom of the object under consideration. If
we restrict the motion to translation, significant improvement
can be made in the efficiency of the algorithm from doubly
exponential [5] to polynomial time. For example, if N is the
number of walls, the motions for a circular disk can be planned
in 0 (N log N) time (3], and for two disks in 0 (N3) time [6].

We are motivated by the practicality of restricting our assembly
robot to translational motions (with two degrees of freedom in

the plane). For an assembly of k components with a total of N



edges, we show that it can be constructed, one component at a

time, in O(N) time.

We study the problem of assembly from the point of view of
disassembly. If we visualize the process of assembly as having
a finite number of "states", each being captured by a single
frame on film, then rolling the film backward corresponds to
disassembly. The process of disassembly is reversable, if the
components are rigid and there is no internal energy stored.
(Such would not be the case with components of variable geometry

such as a spring or a clip fastener.)

To define the domain, we characterize the inherent

difficulty of the problem by the logical complexity of the

solution. If the components of an assembly can be removed one
at a time we call it a sequential assembly. If, on the other
hand, several components must be removed in parallel, we call it
a parallel assembly. Consider the assembly shown in Figure
l.1(a). cbmponent a, can be removed by a manipulator while
component a, is held by a fixture, or vice versa. Now, consider
the assembly shown in Figure 1.1(b). None of the components can
be removed individually. However, disassembly is possible if
components b1 and b2 are removed "simultaneously". (We can
consider a parallel assembly of k components as requiring k
manipulators operating in parallel or as requiring one manipu-
lator that removes a fixture that keeps the k components together
during the removal.) Thus, in parallel, components b. and b, can
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be removed either by two manipulators or by assigning them to a



temporary subassembly variable b12 and removing it by a single
manipulator. In this paper, we deal with assemblies that are

sequential.
< Insert Figure 1.1 >

Let us take a closer look at sequential assemblies by com-
paring component a, in Figure 1.1(a) to component ¢, in Figure
l.1(c). The component a, can be removed in one step from the
assembly by translating it in the positive Y direction. The
removal of c,, on the other hand, involves two translations =--
one in the negative X direction and another in the positive Y
direction. We say that ¢, is 2-disassemblable. It is not
difficult to see that the sofa in the Sofa Moving Problenm is
a k-disassemblable component, where k>l1. In this paper, the

components in a sequential assembly are all assumed to be 1-

disassemblable.

While we have defined our problem domain to be sequential
assemblies whose components are l-disassemblable, the objective
of a fast algorithm for disassembly is not necessarily within
immediate reach. Consider the assembly with L + R components
stacked as shown in Figure 1.2. Suppose there are L of them to
the left and R of them to the right. If the R components are
removed first, thén the L components become l-disassemblable.
However, if the L components are attempted first, they are at
best 2-disassemblable. But, to determine which one of the k =

(L + R) components is l-disassemblable suggests a decision pro-



(a) A Sequential Assembly

(b) A Parallel Assembly

(c) A 2-Disassemblable Sequential Assembly

Figure 1.1 - Types of Assemblies



cedure that could take k + (k-1) + (k=2) + ... steps resulting
in an 0(k2) time algorithm. In this paper, we give a linear time
algorithm for constructing a disassembly tree. An example is

given in Figure 1.3.
<Insert Figures 1.2 and 1.3>

Traversing a disassembly tree depth-first gives the level of
the domponent. In a disassembly tree with k nodes, the height
(the level of a terminal node) is not necessary log k. Revisit-
ing the assembly in Figure 1.2, we see that the height of its
corresponding disassembly tree is O(k) if there are k/2 compo-
nents on the left. The observation thaﬁ a disassembly tree is
not necessarily balanced leads to the requirement in its con-
struction: that a node corresponding to a component resides at
the minimum level possible. Our O0(N) algorithm ensures the
minimality of the path from the root of the disassembly tree to

any node.
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Figure 1-2. A 1-Disassemblable Sequential Assembly
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Figure 1.3 An Assembly and Its Disassembly Tree



2. DISASSEMBLABILITY

For simplicity, we shall first consider assemblies with only
two components -- one being the component under consideration for
removal and the other representing the subassembly (the rest of
the assembly). Observe the two examples in Figure 2.1. It is
clear that the component c in Figure 2.1(a) is disassemblable
while the one in Figure 2.1(b) is not. We distinguish these two
cases by computing a range of directions along which a component
can be translated such that it does not interfere with the

subassembly S.
< Insert Figure 2.1 >

Definition 2.1 A component c is said to be linearly disassem-

blable (or just disassemblable, for short) from a subassembly S

in the direction d if, for all points p in ¢, a RAY (p,d), which
is a semi-infinite line from p in the direction 4, does not

intersect S.

Definition 2.1 implies that component c, if disassemblable, can
be gripped at any point p in c and pulled in the direction d
without interference. If p is the center of mass for c then
there is no angular moment when c is pulled. If the center of
mass lies outside-c (or lies in a hole of c), two or more grip
points will ensure an interference-free removal [8]. In Figure

2.1(a), the direction d lies between d1 and dz.

The range of directions can be determined from the mating



2 1
»
/4 N
f N\
’ O
Y .
’ .
¢ B
¢ 4
v B
“ N
f &
[}
c 3
¢ .
¢ O
’ .
¢ y

\\\\\\\\\\\

(a) Component c is disassemblable from subassembly S

[\

S

(b) Component c is not disassemblable

Figure 2.1 Linear Disassemblability and Visible Region



edges, the sequence of edges shared by ¢ and S. If a viewer

(the robot) can "see" (from infinity in the opposite direction of
the ray) all points p on the mating edges without having to go
through S then c is removable. We need the notion of a region in

which the viewer should reside.

Definition 2.2 A visible region VR ({ei)) for a sequence of

edges.{ei} is the intersection of half space HS (eg) induced by

edge e.

We are ready to state the condition for disassembling c
from S and the determination for the existence of such a

condition.

Lemma 2.1 A component c is disassemblable from a subassembly S

if the visible region VR ({ei}) is unbounded.

[Proof] If the visible region is bounded, by Definitions 2.1
and 2.2, there cannot be a point at infinity from which
a ray reaches all points x on the edges {ei}, and vice

versa.

An edge e of a polygon naturally partitions a two-dimensional

space into two half spaces -- the inside and the outside of the
polygon. When the notion of a visible region is applied to the
inside of a polygon and when the sequence of edges is the entire

boundary of the polygon, we recall the definition of a kernel [1].

Definition 2.3 A kernel with respect to a set of edges {ei} is a

region R such that, for any point p in R, and another point gq on



any edge ey the line segment pq lies entirely in R.

A kernel applies to "internal" visibility because it always lies
inside a polygon. A visible region, by contrast, applies to
external visibility as the viewer is assumed to be at infinity.
Since a kernel can be constructed in time linear in the number of

edges [1], we have a linear construction time for a visible

region.

Lemma 2.2 A visible region VR ({ei}) can be constructed in 0(n)

time, where n is the number of mating edges in {eg}.

Since an unbounded VR is necessarily convex, there must be
two half-lines or rays extending to infinity. As illustrated in

Figure 2.2(a), we denote these two rays by their polar angles in

the counter-clockwise direction.

Definition 2.3 If c is disassemblable from S the visible region

VR ({ei}) is said to span a cone of visibility CV (dl' d2) with

angle d2 - dl'

< Insert Figure 2.2 >

A special case for computing CV (dl’ d2) arises when dl = dz‘
This situation as illustrated in Figure 2.2 (b) occurs when two
half-planes HS(ei) and HS(ej) are parallel (intersecting at in-
finity). As an alternative, we can decompose the mating edges
{ey} into subsequences, find their respective CVs, and compute

the intersection of the CVs. This motivates the following lemma.
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Lemma 2.3 A cone of visibility CV (dl, dz) can be computed from
the intersection of CVi (dl’ dz)' each corresponding to the

cone of visibility of a subsequence in (e4}, if they exist.

[Proof] We are concerned with the efficiency of finding the
maximum and the minimum of the spanning angles of the
individual cones. Given a set of dls and dzs, the
maximum of the d,s and the minimum of the d,s can be
found in 0(n) time. Hence, the method by Lemma 2.3

has the same time complexity as the one inferred by

Lemma 2.2.

Disassemblability of a component c with respect to a subassembly

S can now be expressed as a predicate.

Function Disassemblable (c,S)
1. From the mating edges of c and S, construct a visible
region VR.
2. If the VR is bounded, return 'false'. Otherwise, return

a cone of visibility CV(dl,dz).

Step 1 of the function can be done in 0(n) time, where n is the
number of mating edges for c with respect to S. Step 2
involves traversing the boundary of the VR to detect closure

which is again 0(n) time. Thus, we have the following result:

Lemma 2.4 The disassemblability of a single component c can be
determined in 0(n) time, where n is the number of mating edges

between ¢ and the subassembly S.

10



3. DISASSEMBLY TREE

We are ready to consider an assembly with more than two
components. First, we describe the data structure to be used by

the algorithm. The assembly is given as a boundary graph BG of

vertices, edges and faces. Each vertex points to all of its
incident edges. Each face points to all if its surrounding
edges. Each edge points to its two end points that are ver-
tices, its two faces that are mating components, and four edges
with two at each end [5]. If one of the two faces of an edge is

the background then it is a boundary edge. Otherwise, it is a

mating edge. In Figure 3.1(a), edge e, is a boundary edge

while edge e 4 is the mating edge for components a and b. Note
that an edge with more than one mate is split. Thus, every edge
in the BG has exactly two mates. From the BG, we construct a

dual mating graph MG. The arcs in MG connect nodes that are

mating components. As illustrated in Figure 3.1(b), component a
mates with components b and d as well as with the background B.
As there are k components, and each access in the boundary graph
involves constant time [5], the planar graph MG can be con-

structed from BG in time linear in k.
< Insert Figure 3.1 >

We begin the construction of disassembly tree DT by deter-
mining if components with boundary edges can be disassembled
first. Using the example from Figure 3.1, we find four

candidates a, b, ¢ and d. We next determine if these candidates

11



Vi4

V15

el4

)

el7

V13

(a) Boundary Graph

v

PERR SRR S ,vs,,
st o

CS *y

RS
RN
RS
o

s,
5“
e,
,
2,
%,
%,
2o,
%,
%,
e,
*,
¢/
%,
%,
%,
™!
\3
o
o~
o
o~
&
o~ s
O )
Oy 5
4 8
o )
\l o ;'o
\J
£ N
8
$
’ 3] $
] 'y
v, 8
() S
) S
0 &
() )
", s
* d
. )
K S
C/ J
.. Y
., O
*, &
s, aoo
&
"
C)
<

(b) Mating Graph

Figure 3.1 Data Structures



should be attached as nodes to the root of the tree denoted by 3,
the assembly. In Figure 3.2(a), each of the candidates is tested
for disassemblability with respect to a subassembly. For
component d, the subassembly is S = A - d. If it is found to be
false after calling the function Disassemblable (d,S) then it is
not attached to the tree as illustrated by a shaded circle. The
total number of attached nodes, not counting the root node A, is

recorded in an integer variable NODES.

We next expand the tree by retrieving the mates of each of
the leaf nodes and by testing their disassemblability. From the
mating graph, the non-background mates are retrieved for each of
the newly attached leaves. If a retrieved mate occurs elsewhere
in the tree, it is discarded from further consideration. 1In
Figure 3.2(b), the component a has two mates b and d. Since b
occurs previously, it is marked by a circle and not considered
for further testing. The mate d has not occurred previously and
is tested for disassemblability against subassembly S = A - a -
d. (The new boundary for S is updated by replacing all occur-
rences of a and d by background B for all the edges in the
boundary graph.) Following the example, it is found that d is
disassemblable, hence inserted in the tree and NODES is incre-
mented by 1. Next, the mates for component b are retrieved.
They are shown as a, ¢, d, e in Figure 3.2(c). Since a, c, 4,
has occurred previously, they are excluded from further con-
sideration. The mate e is tested and is found to be disassem-

blable. At this point, the count for NODES equals the total

12
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number of components in the assembly and the process terminates.
The resulting tree is shown in Figure 3.2(d). The algorithm for

generating such a disassembly tree can be described as follows:

Algorithm Disassemble
input: boundary graph BG and mating graph MG
output: disassembly tree DT

(Initialization]
1. NODES <=-=- 0

TOTAL <-- total number of non-background nodes in
MG.

2. Make a root node A for the empty tree DT.

[First level]
3. Identify all components in MG that are connected to
the boundary B.
4. For each such component c
If c is disassemblable
then insert c as a leaf in DT
NODES <=-- NODE + 1
else return 'failure'.
[Subsequent levels]
5. While NODES < TOTAL do
5a. For each leaf L in DT

retrieve its mates from MG

13



5b. For each mate M
If M is not in DT and is disassemblable
then insert M as a leaf node of L
NODES <--- NODES + 1

else return 'failure'.

We show that the DT constructed by Algorithm Disassemble
gives a minimal sequence. This is done by induction on the
height of the tree. Steps 1 and 2 of the algorithm give level 0
of the tree. Steps 3 and 4 give level 1 of the tree. Components
in level 1 cannot occur in level 0, by construction. Now,
suppose there are (v-1) levels in the tree and we examine a leave

node L at level v. There are three possibilities.

Case 1. [L occurs at level < v]
By Step 5b, this is not possible. For a mate M

to become a leaf L, it must not already be in DT.

Case 2. [L occurs at level V]
Again, by Step 5b, this is not possible, unless it is
disassemblable. And, if so, there is only one
occurrence of L anywhere in the tree, including
level v.

Case 3. [L occurs at level > v]
A leaf L that should occur later in the tree gets
mistakenly placed at level v is not possible. By

Step 5a, only mates that are leaf candidates at level

v are retrieved.

14



This proves the minimality of the sequence obtained from

traversing a DT, hence the following theoren.

Theorem 3.1 Algorithm Disassemble generates a DT the traversal
of which yields a minimal number of removals for the disassembly

of a single component.

15



4. ALL DISASSEMBLY SEQUENCES

The DT generated by Algorithm Disassemble gives a minimal
sequence if a single component is to be removed. However, if
multiple components are to be removed from the assembly,
Algorithm Disassemble may not give the optimal solution.
Consider the assembly in Figure 4.1(a) and suppose that two
components ¢ and 4 are to be removed from it. The Algorithm
Disassemble could generate a tree with root A requiring the
removal of three components a, d, and c. On the other hand, if
the components to be removed (c and d) are in the same path in
the tree with root B, as shown in Figure 3.3(b), only two

removals are necessary for this instance.
< Insert Figure 4.1 >

To generate all optimal sequences for multiple component
removal, two modifications to Algorithm Disassemble are neces-
sary. First, disqualifying a retrieved mate M from disassem-
blability test should be postponed. Second, the termination
condition for the algorithm should not be the total number of
components. The first modification can be effected by changing,
in step 5b of Algorithm Disassemble, "If M is not in DT and ..."

to "If M is not at a higher level in DT and ...". The second

change can be effected by noting the situation when the tree
ceases to grow. In other words, if none of the retrieved mates M
at that level are added to the tree then the algorithm should

terminate.

16
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We now present Algorithm Multiple Disassemble reflecting the
two modifications. It is made compact by treating the first
level of the tree as components that mate with the boundary.
Thus, the root (the first new leaf of an empty tree) of the DT is

the boundary B.

Algorithm Multiple Disassemble
input: boundary graph BG and mating graph MG
output: disassembly tree DT with multiple

occurrences of components

(Initialization]
1. Insert boundary B as NEW_LEAF in DT
2. LEVEL <-- 0
[Grow tree]
3. While NEW_LEAF at LEVEL is not empty do

For each NEW_LEAF at LEVEL

retrieves its mates from MG
LEVEL <-- LEVEL + 1
For each mate M at LEVEL
If M is not at level < LEVEL and M is
disassemblable
then insert M as NEW_LEAF in DT

else return 'failure'.

As a component can now appear more than once at the same level in
the tree, Algorithm Multiple Disassemble performs more work.

However, we shall show that its time complexity is still O(N), on

17



the average.

Within the same level, a component can appear as many times
in the tree as the number of mates it has in the mating graph MG.
Given k components in an assembly, it is known that its MG is
maximally connected if the k nodes form a triangulation graph.

In other words, there can be a total of
m=3K -6

possible edges in MG. Averaging m over k components, we have

m 3k - 6 6
-—-o = eececoees - 3 - e
k k k

Hence the average number of edges per node in MG is bounded by 3.
Since each mating edge is tested at most twice (for its two
mating components), the total work for Algorithm Multiple Dis-

assemble is at most 6N or O(N). This proves our next theorem.

Theorem 4.1 All minimal sequences for multiple disassembly can

be constructed on the average in O(N) time, where N is the total

number of mating edges in the assembly.
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5. DISCUSSION

We have presented two algorithms for computing disassembly
sequences by generating a disassembly tree DT. Traversing a DT
in in-order yields a disassembly sequence. Traversing it in pre-
or post-order yields an assembly sequence. We showed that any
such sequence is the shortest possible, hence optimal. Algorithm
Disassemble constructs a DT for the case in which one component
is to be removed from the assembly. Algorithm Multiple Dis-
assemble constructs a DT for the case in which the removal of
more than one component is desired. The latter is shown to run
in time linear in the number of mating edges in the assembly, on
the average. If there are k components with a total of N mating
edges, it is possible that in the worst case it takes 0(k) time
to construct a DT. Since it handles multiple components, 0(k)
time is the best case as well. Since multiple disassembly

subsumes single disassembly, our algorithms are optimal.

The two algorithms extend naturally to three dimensions. A
visible region for a set of n mating faces involves the inter-
section of n half-planes and a visible cone will be a solid angle
bounded by at most n such half-planes. However, computing a
disassembly sequence for a parallel assembly is expected to take
more than linear time since the components must be grouped in
combinations of two, three, ... up to (k-1), where k is the total

number of components.
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