1340 DOI 10.1002/pmic.201000650

TecHNICAL BRIEF

Proteomics 2011, 11, 1340-1345

Abacus: A computational tool for extracting and pre-
processing spectral count data for label-free quantitative

proteomic analysis

Damian Fermin', Venkatesha Basrur’, Anastasia K. Yocum' and Alexey I. Nesvizhskii'?

" Department of Pathology, University of Michigan, Ann Arbor, MI, USA
2 Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA

We describe Abacus, a computational tool for extracting spectral counts from MS/MS data
sets. The program aggregates data from multiple experiments, adjusts spectral counts to
accurately account for peptides shared across multiple proteins, and performs common
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normalization steps. It can also output the spectral count data at the gene level, thus
simplifying the integration and comparison between gene and protein expression data.
Abacus is compatible with the widely used Trans-Proteomic Pipeline suite of tools and comes
with a graphical user interface making it easy to interact with the program. The main aim of
Abacus is to streamline the analysis of spectral count data by providing an automated, easy to

use solution for extracting this information from proteomic data sets for subsequent, more | = '

sophisticated statistical analysis.
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In the last several years, label-free MS based protein quan-
tification methods have received significant attention and
have become commonly used [1-3]. Label-free approaches
offer several practical advantages over generally more accu-
rate labeling-based methods. They often offer savings in
terms of costs of the analysis, are easier to implement, and
allow for complex experimental designs unlike labeling-
based methods where comparisons can be made only for a
limited number of samples.

One of the most commonly used label-free quantitation
methods is spectral counting. In this approach, the number of
tandem mass (MS/MS) spectra assigned to the peptides of a
protein, after a proper normalization, is used to measure the
protein’s abundance in the sample [4, 5], for a recent review
see, e.g. [3]. A number of statistical approaches and software
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tools have been described for assessing the significance of
differential protein expression based on spectral count data
[6-13], including our previously described program Qspec [7].
These programs take as input a spectral counts matrix (i.e. a
table listing all proteins identified with high confidence and
the corresponding spectral counts in each of the experiments)
extracted from the MS data. While conceptually simple,
accurate extraction of spectral counts and their use as a
measure of the protein abundance nevertheless requires
addressing several challenges. First, the analysis naturally
involves processing of multi-sample data sets (biological and
technical replicates, multiple cell lines or patient samples,
etc.). The accession numbers of proteins identified in different
samples need to be aligned across the experiments to create a
single protein summary list. This task is complicated by the
ambiguities in inferring protein identifiers from shotgun
proteomic data — the protein inference problem [14]. Directly
related to this issue is the uncertainty in the contribution from
shared peptides, i.e. peptides present in multiple different
proteins, to the spectral count of each their corresponding
proteins [7, 15, 16]. Furthermore, protein-level data often
needs to be matched to genomic data, which require mapping
of protein to gene accession numbers.
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In this work we describe “Abacus” — a software tool for
extracting spectral counts that is compatible with the Trans-
Proteomic Pipeline (TPP) suite of computational tools [17].
The overview of Abacus is shown in Fig. 1. Abacus takes as
input PeptideProphet [18] and ProteinProphet [19] output
files (in pepXML and protXML format, respectively). The
program aggregates data from multiple experiments, adjusts
spectral counts based upon how the peptides are shared
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Figure 1. Overview of Abacus. Schematic representation of the
workflow including processing of the data through Abacus. In
this illustration, three individual MS experimental data sets were
searched with a standard protein search engine (i.e. SEQUEST,
MASCOT, etc.) and then post processed using PeptideProphet.
The resulting pepXML files (Pep1, Pep2, and Pep3) were then
processed through ProteinProphet to create three individual
protXML files (Prot1, Prot2, and Prot3). The pepXML files were
also processed together through ProteinProphet to merge all of
their results into a single, combined protXML file (Prot
COMBINED). All of the pepXML and protXML files were then
parsed into Abacus and filters were applied to the merged
results to filter out false positives and select a representative
protein for each protein group. Statistics for the representative
protein were then extracted from each of the individual protXML
files and used to generate the final output that is produced by
Abacus.
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among the proteins reported in the experimental results,
and performs common normalization steps. In order to use
Abacus it is necessary to generate a list of all the proteins
that were identified from all of the individual MS experi-
ments. This is achieved by using ProteinProphet (by the
user and prior to running Abacus) to create a combined
(“merged”) protXML file from the peptide-level results of
each independent experiment. The resulting combined file
more accurately represents the protein-level identifications
across all experiments. After a combined protXML file is
obtained, Abacus parses the individual pepXML and
protXML result files storing their respective data into an
internal database. Abacus then performs the following steps
to arrive at the final results it reports:

(i) Filter out low scoring proteins from the combined file.
(ii) Select representative protein identifiers from the
combined file.
(iii) Collect summary information about the representative
proteins from among independent experiments.
(iv) Calculate peptide/spectral counts for each protein.

The first step in the Abacus algorithm is to remove low
scoring protein identifications recorded in the combined
file. Abacus allows filtering of protein-level identifications
based on several features: the ProteinProphet posterior
protein probability from the combined file, the maximum
protein probability observed across the individual experi-
ments, as well as the maximum peptide probability observed
for the protein. These parameters are adjustable allowing for
precise control over what proteins are retained for subse-
quent analysis. It should be noted that in the context of this
work, merging of multiple MS runs implies that all of the
individual results from each MS run are combined together
regardless of how often a particular protein is identified
across all the replicates. This merging of multiple MS run
results tends to increase the number of false positives [20].
Since the probability-based estimates provided by Protein-
Prophet may not be accurate in the case of very large multi-
replicate experiments, filtering can be performed in such a
way as to achieve a desired false discovery rate (FDR) based
on the target-decoy strategy [20, 21].

In the second step of the algorithm, Abacus chooses a
single protein identifier to represent each of the remaining
entries in the combined file. ProteinProphet collects
proteins that share peptide evidence into protein groups
[14]. When there is ambiguity, Abacus selects a single
representative identifier from within each of the protein
groups of the combined file to report in the final output.
This representative protein is chosen based on the following
hierarchy. The first two heuristics are applied across the
independent experimental results. The last four are executed
on the data within the protein group of the combined file.
These heuristics are followed sequentially until any ties are
broken or the last rule is reached: (i) The protein identified
the most often among independent experimental results;
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(ii) The protein with the highest protein probability among
the independent experiments; (iii) The protein with the
highest scoring peptide assigned to it; (iv) The protein with
the most number of distinct peptide sequences matched to
it; (v) The protein with the highest spectral count; (vi) The
top protein identifier after alphanumeric sorting of all
remaining identifiers.

Having selected a representative protein accession
number, the third step in the algorithm is to collect basic
statistics about this protein from the results of the
independent experiments. In addition to computing the
total (i.e. regardless of whether the peptides are shared
across multiple proteins) peptide and spectral counts for
each protein, adjusted spectral counts are computed for the
representative protein across each of the individual experi-
ments. ProteinProphet already addresses the problem of
shared peptides in the context of protein identification
[14, 19] (and other approaches, e.g. [22-24]). In Protein-
Prophet, peptides shared across multiple proteins provide
varying contributions (i.e. weight) to the protein’s final
score. Peptides that are highly redundant contribute less,
whereas peptides unique to a single protein are given more
importance. In Abacus, the same framework is applied to
the calculation of spectral counts, leading to a more realistic
quantitative measurement of a protein’s abundance. A
similar spectral count adjustment approach was investigated
in [15], which showed that adjusting spectral counts based
on how shared peptides are distributed gave the best
agreement between computationally and experimentally
derived measurements of protein abundance.

The adjustment procedure in Abacus is performed as
follows. First, the number of unique spectra, s, assigned
to each protein, i, is calculated. For each peptide p present
in multiple proteins j=1,...N, its contribution to the
spectral count of protein i is weighted by an adjustment
factor, o,

o=
" Zfil 5

Given this definition, o« weights range from zero to one. In
essence, o determines what proportion of the spectral
counts from peptide p should be ascribed to protein i. The
sum of the peptides’ adjusted counts constitutes the each
protein’s adjusted spectral count. The calculation of o and
how it is applied to a single peptide case is illustrated in
Fig. 2 using a subset of the prostatic secretion (EPS) data set
from nine prostate cancer patients [25] (this data set is
also provided as a sample data along with the Abacus soft-
ware). After analyzing the X! Tandem search results with
PeptideProphet and ProteinProphet, Abacus was used to
extract adjusted spectral counts for one of the nine patient
samples. Figure 2 focuses on four related immunoglobulin
proteins (IGHG1 through IGHG4) that were identified with
high confidence in the sample. These homologous proteins
share numerous peptides in common. Figure 2 shows how
the spectral count of a single one of these common peptides
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is distributed among these proteins. Following spectral
count adjustment, IGHG1 protein is assigned to five of the
peptide’s eight spectral counts. The remaining three spectra
are assigned to IGHG2 and IGHGS3, respectively. IGHG4 is
not assigned any of the spectra from this peptide. These
adjusted counts are based on the unique spectral evidence
ascribed to each of the proteins independently as described
above. Without spectral adjustment, all eight of the peptide’s
spectra would have contributed equally to each protein’s
final spectral count.

In some cases, the use of adjusted counts is helpful for
achieving accurate biological interpretation. This is illu-
strated in Fig. 3 using data from a recent study of an
embryonic stem (ES) cell chromatin remodeling complex,
esBAF [26]. In [26], the analysis was performed using a
semi-manual spectral count adjustment procedure, for
which Abacus now provides an automated software solution.
The mammalian BAF (Brg/Brahma-associated factors)
chromatin remodeling complexes play a key role in estab-
lishing and maintaining pluripotency. These complexes
contain 11 core subunits, several of which are encoded by
gene families. The diversity of BAF complexes is derived
from the combinatorial assembly of alternative family
members, some of which have a high degree of sequence
homology to each other. As a result, accurate characteriza-
tion of the composition of this protein complex requires
appropriate adjustment of the spectral counts to account for
the high number of shared peptides. Figure 3A shows the
difference between the total and adjusted spectral counts for
proteins identified in the analysis of the BAF complex in the
mouse ES cells. A number of core complex components,
notably BAF170 (protein Smarcc2), have substantially
reduced protein abundance after adjustment. This is further
illustrated in Fig. 3B, which shows the sequences of BAF170
and BAF155 (Smarccl, 61.7% sequence homology with
Smarcc2), and the peptides mapping to these two proteins
identified from MS data. The comparison of the normalized
abundances of these two proteins (NSAF factors) within the
complex at two different stages of differentiations (ES and
mouse embryonic fibroblast, MEF), computed using the
spectral adjustment procedure is shown in Fig. 3D. Of key
biological importance is the significant reduction of BAF170
in the BAF complex purified from ES cells, in agreement
with quantitative immunoblotting data and other evidence
[26]. At the same time, the abundance of BAF170 in ES cells
based on the total (unadjusted) counts is overestimated
(Fig. 3C). For example, without the adjustment the ratio of
estimated BAF 155 versus BAF 170 protein abundances in
ES cells is ~3:1, compared with ~12:1 after the adjustment
for shared peptides (the latter shows a much better agree-
ment with quantitative immunoblotting data shown in
Fig. 3C in [26]).

Adjusted spectral counts allowed more accurate quanti-
fication in the study described above, and more accurate
reconstruction of protein complexes from affinity purifica-
tion-mass spectrometry (AP-MS) protein interaction data in
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Figure 2. lllustration of the spectral count adjustment procedure. Example of how the o factor is calculated for a single peptide shared
among four immunoglobulins (IGHG1-IGHG4) identified in the EPS data set. The upper panel shows the protein sequence alignment
between the four immunoglobulins and highlights a peptide common to all of them. This specific peptide has eight unique spectra
assigned to it making its spectral count 8. The lower panel shows how « is computed for each of the proteins that share this peptide. The o
factor is based upon the unique spectral count of each protein. In this example, P01857, P01859, P01860, and P01861, each have unique
spectral counts of 140, 56, 14, and 9 respectively. These unique spectral counts are derived from the peptides that are exclusive to each of
the proteins in the example. The peptide’s total spectral count of 8 is multiplied by the o factor of each protein. The resulting values
indicate how the peptide’s 8 spectral counts are to be distributed among each of the four proteins.

another of our recent works [27]. At the same time, our
experience with label-free quantification data suggests that
different research questions warrant the use of different
counts (or simultaneous use of multiple measures). While
adjusted counts can be more informative than total counts
for relative quantification of highly homologous proteins,
they may underestimate the absolute protein abundances.
For example, when using spectral count-based quantifica-
tion measures as a basis for separating between true and
false protein interactions using the SAINT statistical model
[28, 29], we routinely utilize total peptide or spectral counts
(instead of adjusted counts) in order to perform more
conservative assessments and to eliminate non-specific
binders. Thus, Abacus reports a number of different abun-
dance metrics, including adjusted, total, and unique counts,
for spectra and peptides, as well as normalized spectral
abundance factors, NSAF [30]. It is worth noting that similar
challenges of dealing with shared sequence counts are
present in other data, most notably RNA-Seq data (“multi-
read” counts), for examples see [31, 32].

Abacus can also provide counts (both spectral and
peptide) at the gene level. The members of a protein group
are often related isoforms derived from the same gene locus.
For gene-centric consolidation, proteins are mapped to their
parent gene. Once proteins have been mapped, their
peptides are then associated with the parent gene. Spectral

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

counts are still adjusted as described above except that
o factors are computed based upon genes not proteins. The
genes are assigned the maximum protein probability
reported from among their observed protein products in the
combined file. This gene-centric output is often useful for
performing quantitative comparisons between protein and
gene expression data. As next-generation sequencing
methods become more established, such comparisons will
become more popular [33-35]. It must be emphasized that
mapping proteins back to their parent gene loci is not a
trivial task and is an on-going challenge. For this reason,
Abacus requires the user to provide a gene-to-protein
mapping file. Such files can be easily generated for the
public databases and we provide example programs in the
Supporting Information.

A key aim in the development of Abacus was making it
user friendly. Abacus comes with a graphical user interface
making it easy to interact with the program (see Supporting
Information for a detailed description of the software). This
interface allows users to easily apply filters and choose what
information is reported. The flexibility provided by Abacus is
one of its strongest features. The user is given a great deal of
control in deciding what to report as well as how the data are
filtered. Currently there are few other open source tools that
provide a platform independent method to extract spectral
counts from proteomics data sets in a user-friendly manner.

www.proteomics-journal.com
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Figure 3. Comparison of total
and adjusted spectral counts:
application to BAF chromatin
remodeling complex [26].
(A) The difference between the
total and adjusted spectral
counts for proteins identified in
the analysis of the BAF
complex in the mouse ES cells.
Selected core components of
the complex most affected by
the adjustment procedure are
marked. (B) The sequences of
two homologous proteins,
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In its simplest usage, Abacus can provide summary statis-
tics for a large collection of experiments that would other-
wise be too complicated to manage. An option for creating a
QSpec-compatible [7] output format is available, which
simplifies the subsequent statistical analysis of differential
expression. Should the existing options be insufficient,
users can directly query the database that holds all the
information for their data. Abacus uses the HyperSQL
database as a back end to store and query the information it
extracts from the pepXML and protXML files (HyperSQL
Database Engine, 2010, http://hsqgldb.org/). Having this
database distributed with Abacus allows users to directly
access their data in a robust relational database should the
default output of Abacus not fulfill their needs. Abacus is
written in JAVA and has been tested to verify reproducible
results on Windows, Linux, and MacOS X platforms. The
software is open-source and distributed under the Apache
License 2.0. The software, source code, documentation and
sample data are available at http://abacustpp.source
forge.net.
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data in the ES cells (identified
peptide sequences are in bold,
and those that are shared
between the proteins are in
gray boxes). (C) The normal-
ized abundances of these two
proteins (NSAF factors, addi-
tionally normalized to levels of
Brg protein [26] in each cell
line) within the complex at two
different stages of differentia-
tions (ES and mouse embryo-
nic fibroblast). (D) Same as (C),
but using adjusted spectral
counts.
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