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We describe Abacus, a computational tool for extracting spectral counts from MS/MS data

sets. The program aggregates data from multiple experiments, adjusts spectral counts to

accurately account for peptides shared across multiple proteins, and performs common

normalization steps. It can also output the spectral count data at the gene level, thus

simplifying the integration and comparison between gene and protein expression data.

Abacus is compatible with the widely used Trans-Proteomic Pipeline suite of tools and comes

with a graphical user interface making it easy to interact with the program. The main aim of

Abacus is to streamline the analysis of spectral count data by providing an automated, easy to

use solution for extracting this information from proteomic data sets for subsequent, more

sophisticated statistical analysis.
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In the last several years, label-free MS based protein quan-

tification methods have received significant attention and

have become commonly used [1–3]. Label-free approaches

offer several practical advantages over generally more accu-

rate labeling-based methods. They often offer savings in

terms of costs of the analysis, are easier to implement, and

allow for complex experimental designs unlike labeling-

based methods where comparisons can be made only for a

limited number of samples.

One of the most commonly used label-free quantitation

methods is spectral counting. In this approach, the number of

tandem mass (MS/MS) spectra assigned to the peptides of a

protein, after a proper normalization, is used to measure the

protein’s abundance in the sample [4, 5], for a recent review

see, e.g. [3]. A number of statistical approaches and software

tools have been described for assessing the significance of

differential protein expression based on spectral count data

[6–13], including our previously described program Qspec [7].

These programs take as input a spectral counts matrix (i.e. a

table listing all proteins identified with high confidence and

the corresponding spectral counts in each of the experiments)

extracted from the MS data. While conceptually simple,

accurate extraction of spectral counts and their use as a

measure of the protein abundance nevertheless requires

addressing several challenges. First, the analysis naturally

involves processing of multi-sample data sets (biological and

technical replicates, multiple cell lines or patient samples,

etc.). The accession numbers of proteins identified in different

samples need to be aligned across the experiments to create a

single protein summary list. This task is complicated by the

ambiguities in inferring protein identifiers from shotgun

proteomic data – the protein inference problem [14]. Directly

related to this issue is the uncertainty in the contribution from

shared peptides, i.e. peptides present in multiple different

proteins, to the spectral count of each their corresponding

proteins [7, 15, 16]. Furthermore, protein-level data often

needs to be matched to genomic data, which require mapping

of protein to gene accession numbers.
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In this work we describe ‘‘Abacus’’ – a software tool for

extracting spectral counts that is compatible with the Trans-

Proteomic Pipeline (TPP) suite of computational tools [17].

The overview of Abacus is shown in Fig. 1. Abacus takes as

input PeptideProphet [18] and ProteinProphet [19] output

files (in pepXML and protXML format, respectively). The

program aggregates data from multiple experiments, adjusts

spectral counts based upon how the peptides are shared

among the proteins reported in the experimental results,

and performs common normalization steps. In order to use

Abacus it is necessary to generate a list of all the proteins

that were identified from all of the individual MS experi-

ments. This is achieved by using ProteinProphet (by the

user and prior to running Abacus) to create a combined

(‘‘merged’’) protXML file from the peptide-level results of

each independent experiment. The resulting combined file

more accurately represents the protein-level identifications

across all experiments. After a combined protXML file is

obtained, Abacus parses the individual pepXML and

protXML result files storing their respective data into an

internal database. Abacus then performs the following steps

to arrive at the final results it reports:

(i) Filter out low scoring proteins from the combined file.

(ii) Select representative protein identifiers from the

combined file.

(iii) Collect summary information about the representative

proteins from among independent experiments.

(iv) Calculate peptide/spectral counts for each protein.

The first step in the Abacus algorithm is to remove low

scoring protein identifications recorded in the combined

file. Abacus allows filtering of protein-level identifications

based on several features: the ProteinProphet posterior

protein probability from the combined file, the maximum

protein probability observed across the individual experi-

ments, as well as the maximum peptide probability observed

for the protein. These parameters are adjustable allowing for

precise control over what proteins are retained for subse-

quent analysis. It should be noted that in the context of this

work, merging of multiple MS runs implies that all of the

individual results from each MS run are combined together

regardless of how often a particular protein is identified

across all the replicates. This merging of multiple MS run

results tends to increase the number of false positives [20].

Since the probability-based estimates provided by Protein-

Prophet may not be accurate in the case of very large multi-

replicate experiments, filtering can be performed in such a

way as to achieve a desired false discovery rate (FDR) based

on the target-decoy strategy [20, 21].

In the second step of the algorithm, Abacus chooses a

single protein identifier to represent each of the remaining

entries in the combined file. ProteinProphet collects

proteins that share peptide evidence into protein groups

[14]. When there is ambiguity, Abacus selects a single

representative identifier from within each of the protein

groups of the combined file to report in the final output.

This representative protein is chosen based on the following

hierarchy. The first two heuristics are applied across the

independent experimental results. The last four are executed

on the data within the protein group of the combined file.

These heuristics are followed sequentially until any ties are

broken or the last rule is reached: (i) The protein identified

the most often among independent experimental results;

Figure 1. Overview of Abacus. Schematic representation of the

workflow including processing of the data through Abacus. In

this illustration, three individual MS experimental data sets were

searched with a standard protein search engine (i.e. SEQUEST,

MASCOT, etc.) and then post processed using PeptideProphet.

The resulting pepXML files (Pep1, Pep2, and Pep3) were then

processed through ProteinProphet to create three individual

protXML files (Prot1, Prot2, and Prot3). The pepXML files were

also processed together through ProteinProphet to merge all of

their results into a single, combined protXML file (Prot

COMBINED). All of the pepXML and protXML files were then

parsed into Abacus and filters were applied to the merged

results to filter out false positives and select a representative

protein for each protein group. Statistics for the representative

protein were then extracted from each of the individual protXML

files and used to generate the final output that is produced by

Abacus.
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(ii) The protein with the highest protein probability among

the independent experiments; (iii) The protein with the

highest scoring peptide assigned to it; (iv) The protein with

the most number of distinct peptide sequences matched to

it; (v) The protein with the highest spectral count; (vi) The

top protein identifier after alphanumeric sorting of all

remaining identifiers.

Having selected a representative protein accession

number, the third step in the algorithm is to collect basic

statistics about this protein from the results of the

independent experiments. In addition to computing the

total (i.e. regardless of whether the peptides are shared

across multiple proteins) peptide and spectral counts for

each protein, adjusted spectral counts are computed for the

representative protein across each of the individual experi-

ments. ProteinProphet already addresses the problem of

shared peptides in the context of protein identification

[14, 19] (and other approaches, e.g. [22–24]). In Protein-

Prophet, peptides shared across multiple proteins provide

varying contributions (i.e. weight) to the protein’s final

score. Peptides that are highly redundant contribute less,

whereas peptides unique to a single protein are given more

importance. In Abacus, the same framework is applied to

the calculation of spectral counts, leading to a more realistic

quantitative measurement of a protein’s abundance. A

similar spectral count adjustment approach was investigated

in [15], which showed that adjusting spectral counts based

on how shared peptides are distributed gave the best

agreement between computationally and experimentally

derived measurements of protein abundance.

The adjustment procedure in Abacus is performed as

follows. First, the number of unique spectra, s, assigned

to each protein, i, is calculated. For each peptide p present

in multiple proteins j 5 1,yN, its contribution to the

spectral count of protein i is weighted by an adjustment

factor, ap,i:

ap;i ¼
si

PN
j¼1 sj

Given this definition, a weights range from zero to one. In

essence, a determines what proportion of the spectral

counts from peptide p should be ascribed to protein i. The

sum of the peptides’ adjusted counts constitutes the each

protein’s adjusted spectral count. The calculation of a and

how it is applied to a single peptide case is illustrated in

Fig. 2 using a subset of the prostatic secretion (EPS) data set

from nine prostate cancer patients [25] (this data set is

also provided as a sample data along with the Abacus soft-

ware). After analyzing the X! Tandem search results with

PeptideProphet and ProteinProphet, Abacus was used to

extract adjusted spectral counts for one of the nine patient

samples. Figure 2 focuses on four related immunoglobulin

proteins (IGHG1 through IGHG4) that were identified with

high confidence in the sample. These homologous proteins

share numerous peptides in common. Figure 2 shows how

the spectral count of a single one of these common peptides

is distributed among these proteins. Following spectral

count adjustment, IGHG1 protein is assigned to five of the

peptide’s eight spectral counts. The remaining three spectra

are assigned to IGHG2 and IGHG3, respectively. IGHG4 is

not assigned any of the spectra from this peptide. These

adjusted counts are based on the unique spectral evidence

ascribed to each of the proteins independently as described

above. Without spectral adjustment, all eight of the peptide’s

spectra would have contributed equally to each protein’s

final spectral count.

In some cases, the use of adjusted counts is helpful for

achieving accurate biological interpretation. This is illu-

strated in Fig. 3 using data from a recent study of an

embryonic stem (ES) cell chromatin remodeling complex,

esBAF [26]. In [26], the analysis was performed using a

semi-manual spectral count adjustment procedure, for

which Abacus now provides an automated software solution.

The mammalian BAF (Brg/Brahma-associated factors)

chromatin remodeling complexes play a key role in estab-

lishing and maintaining pluripotency. These complexes

contain 11 core subunits, several of which are encoded by

gene families. The diversity of BAF complexes is derived

from the combinatorial assembly of alternative family

members, some of which have a high degree of sequence

homology to each other. As a result, accurate characteriza-

tion of the composition of this protein complex requires

appropriate adjustment of the spectral counts to account for

the high number of shared peptides. Figure 3A shows the

difference between the total and adjusted spectral counts for

proteins identified in the analysis of the BAF complex in the

mouse ES cells. A number of core complex components,

notably BAF170 (protein Smarcc2), have substantially

reduced protein abundance after adjustment. This is further

illustrated in Fig. 3B, which shows the sequences of BAF170

and BAF155 (Smarcc1, 61.7% sequence homology with

Smarcc2), and the peptides mapping to these two proteins

identified from MS data. The comparison of the normalized

abundances of these two proteins (NSAF factors) within the

complex at two different stages of differentiations (ES and

mouse embryonic fibroblast, MEF), computed using the

spectral adjustment procedure is shown in Fig. 3D. Of key

biological importance is the significant reduction of BAF170

in the BAF complex purified from ES cells, in agreement

with quantitative immunoblotting data and other evidence

[26]. At the same time, the abundance of BAF170 in ES cells

based on the total (unadjusted) counts is overestimated

(Fig. 3C). For example, without the adjustment the ratio of

estimated BAF 155 versus BAF 170 protein abundances in

ES cells is �3:1, compared with �12:1 after the adjustment

for shared peptides (the latter shows a much better agree-

ment with quantitative immunoblotting data shown in

Fig. 3C in [26]).

Adjusted spectral counts allowed more accurate quanti-

fication in the study described above, and more accurate

reconstruction of protein complexes from affinity purifica-

tion-mass spectrometry (AP-MS) protein interaction data in
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another of our recent works [27]. At the same time, our

experience with label-free quantification data suggests that

different research questions warrant the use of different

counts (or simultaneous use of multiple measures). While

adjusted counts can be more informative than total counts

for relative quantification of highly homologous proteins,

they may underestimate the absolute protein abundances.

For example, when using spectral count-based quantifica-

tion measures as a basis for separating between true and

false protein interactions using the SAINT statistical model

[28, 29], we routinely utilize total peptide or spectral counts

(instead of adjusted counts) in order to perform more

conservative assessments and to eliminate non-specific

binders. Thus, Abacus reports a number of different abun-

dance metrics, including adjusted, total, and unique counts,

for spectra and peptides, as well as normalized spectral

abundance factors, NSAF [30]. It is worth noting that similar

challenges of dealing with shared sequence counts are

present in other data, most notably RNA-Seq data (‘‘multi-

read’’ counts), for examples see [31, 32].

Abacus can also provide counts (both spectral and

peptide) at the gene level. The members of a protein group

are often related isoforms derived from the same gene locus.

For gene-centric consolidation, proteins are mapped to their

parent gene. Once proteins have been mapped, their

peptides are then associated with the parent gene. Spectral

counts are still adjusted as described above except that

a factors are computed based upon genes not proteins. The

genes are assigned the maximum protein probability

reported from among their observed protein products in the

combined file. This gene-centric output is often useful for

performing quantitative comparisons between protein and

gene expression data. As next-generation sequencing

methods become more established, such comparisons will

become more popular [33–35]. It must be emphasized that

mapping proteins back to their parent gene loci is not a

trivial task and is an on-going challenge. For this reason,

Abacus requires the user to provide a gene-to-protein

mapping file. Such files can be easily generated for the

public databases and we provide example programs in the

Supporting Information.

A key aim in the development of Abacus was making it

user friendly. Abacus comes with a graphical user interface

making it easy to interact with the program (see Supporting

Information for a detailed description of the software). This

interface allows users to easily apply filters and choose what

information is reported. The flexibility provided by Abacus is

one of its strongest features. The user is given a great deal of

control in deciding what to report as well as how the data are

filtered. Currently there are few other open source tools that

provide a platform independent method to extract spectral

counts from proteomics data sets in a user-friendly manner.

Figure 2. Illustration of the spectral count adjustment procedure. Example of how the a factor is calculated for a single peptide shared

among four immunoglobulins (IGHG1–IGHG4) identified in the EPS data set. The upper panel shows the protein sequence alignment

between the four immunoglobulins and highlights a peptide common to all of them. This specific peptide has eight unique spectra

assigned to it making its spectral count 8. The lower panel shows how a is computed for each of the proteins that share this peptide. The a
factor is based upon the unique spectral count of each protein. In this example, P01857, P01859, P01860, and P01861, each have unique

spectral counts of 140, 56, 14, and 9 respectively. These unique spectral counts are derived from the peptides that are exclusive to each of

the proteins in the example. The peptide’s total spectral count of 8 is multiplied by the a factor of each protein. The resulting values

indicate how the peptide’s 8 spectral counts are to be distributed among each of the four proteins.
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In its simplest usage, Abacus can provide summary statis-

tics for a large collection of experiments that would other-

wise be too complicated to manage. An option for creating a

QSpec-compatible [7] output format is available, which

simplifies the subsequent statistical analysis of differential

expression. Should the existing options be insufficient,

users can directly query the database that holds all the

information for their data. Abacus uses the HyperSQL

database as a back end to store and query the information it

extracts from the pepXML and protXML files (HyperSQL

Database Engine, 2010, http://hsqldb.org/). Having this

database distributed with Abacus allows users to directly

access their data in a robust relational database should the

default output of Abacus not fulfill their needs. Abacus is

written in JAVA and has been tested to verify reproducible

results on Windows, Linux, and MacOS X platforms. The

software is open-source and distributed under the Apache

License 2.0. The software, source code, documentation and

sample data are available at http://abacustpp.source

forge.net.
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