Bitpict-IDR-Bitpict G. Furnas

Lisp Glosses for Bitpict-IDR-Bitpict

i
M
S
e
36 S A e i %
e || L i
IiE B AN i
% e
: S
i - i e
ﬁﬁﬁ -
e % i ﬁ i i
ok i i i i
= il i i L
§ i S ! R
§ i SR R L R e HHHE
—t
i & SEb gl
o fggﬁ L *% - o
ﬁﬁ i i %%ﬁ%ﬁ@ﬁ% R
i e A S mgmmﬁﬁ il
ST B

The exercise here was for Bitpict’s small pixel rewrites to implement a version of InterDiagrammatic
Reasoning (IDR) that was powerful enough to then further a small version of Bitpict itself. More
precisely, a 8bit-color-2Dim-Bitpict was used to implement 2Bit-grayscale-1Dim-IDR implementing
2Bit-grayscale-1D-bitpict.

To create a Bitpict version of IDR that can actually do anything serious, it was necessary to create a
graphically-represented and graphically-computed high-level language corresponding to the LISP
that IDR uses for its conditionals, loops, defuns, etc. The language created is basically a functional
programming language, a kind of pseudo-lisp. The videos show various aspects of this machinery in
action. The pages here show the “code” in detail, with approximate LISP glosses of the functions used
in the Bitpict-IDR-Bitpict implementation.

Note that the correspondence to LISP is not exact. For example, built-in operators with a fixed
number of arguments do not use any bracketing syntactic markers (where parentheses would appear
in LISP). Funcalls do have an EndBracket, and Loops have a Loop-End marker. Setting a variable is
really a function call to a corresponding function. If required, variables can be set to a whole
sequence of values; we just present it here as “(Set VarName <values>...)". Also various syntax
elements, e.g., for Loops of various kinds, are represented with special colors, which, like the colors
for other operators are treated by the language like reserved words. With the exception of the
‘divider marker, they are not quoted in the pseudo-Lisp below. A few columns of color (‘divider and
emptyspace) appear in the “code” just for visual separation, to help human visual parsing, much as
extra line breaks are used in text-code.

Routine Functions Colors
Main () -
» GetMatches() Green-Red
> Match-FD (LHS, Mask, RHS) Blue-Red
—» AbsDiff(D1,D2) Red-Blue
» ApplyMatches(FD, Green-Blue
LHS1, Mask1, RHS1,
LHS2, Mask2, RHS2, ...)

Bitpict-IDR-Bitpict

Main ()

A

G. Furnas

Ruleset A AFieldDiagram A MainDolLoop

Saves the Ruleset, and the Field Diagram, then iteratively, as long as there are matches, applies those
matches to the Field Diagram.

(‘divider ;7 (purely for visual separation)
(Set RuleSet

LHS1
Maskl
RHS1
LHS2
Mask2
RHS2

LHS9
Mask9
RHS9
)
‘divider ;7 (purely for visual separation)
‘divider ;7 (purely for visual separation)

;;emptyspace (purely for visual separation)
‘divider
(Set FD ;; the Field Diagram

<the FD>
)

‘divider

;; emptyspace
;7 for results of Loop

Bitpict-IDR-Bitpict G. Furnas

;; emptyspace
;; for results of Loop

(LOOP-BEGIN

WHILE ;;;:Loop while there are matches:

(BNot ;; BooleanNOT (T->F; F->T)
(NULL-P i
(EmptyGroupToNull ;; Built-in returns 0-diag iff nothing btw dividers
‘divider ;; to begin Group for EmptyGroupToNull

(Set MatchList
(GetVariable Matches

;; space for return values from GetMatches

) ;7 end GetVariable-Matches
) ;; end Set Matchlist
‘divider))) ;; to end Group for EmptyGroupToNull

DO ; i+ apply the matches, and reset the match list:

(SetVariable FD

(ApplyMatches

(GetVariable - FD

)

(GetVariable - MatchList

;; space for returned MatchList values

) ;; end Get Matchlist
) ;; end ApplyMatches

) ;;end Set
‘divider ;; for visual separation of successive FD results
(Set MatchList ;; resets (unsets) Matchlist

<special ‘reset value>

) ;; end Set (unset) - returns nothing

LOOP-END)) ;; also end of MAIN

Note that the part of the WHILE loop that comes after the “DO” is refilled whenever the WHILE condition
evaluates to TRUE, using the same basic mechanisms used to restore Defuns after they have been executed.
That is, rewrite rules use the small color marks (1-2 pixels) to construct the appropriate operator columns
(here, rows, because everything is rotated for commenting). Two-pixel marks are needed for what will
become function calls (including Get/Set of variables), since user-defined functions are labeled by color
pairs.

Bitpict-IDR-Bitpict G. Furnas

GetMatches() ;;Function Colors: Green-Red
Takes no arguments.
Returns a sequence containing all the rules that match

the Field Diagram.

;7 (Return Data pathway)

;; emptyspace for accumulating results

(LOOP-BEGIN ;; MAPk passes args, k-at-a-time, to a function
Match-FD ;; The function - which takes three args

;; k=3 lines of emptyspace
i for MAPk to fill in repeatedly from
i the sequence of diagrams that follow

MAPk-divider ;; This pattern of three layers marks the end of
LOOP-divider HY) the input arg space for Match-FD and the
MAPk-divider Y beginning of the sequence to be MAPped over
(Get RuleSet ;; GetVariable (special funcall)

;; —-- its value (a list of rules, each comprising
i three diagrams) will be fed, one rule at a time
H (3 diagrams at a time) to Match-FD

;7 Space for returned data from
;7 Get RuleSet variable

) ;; End Get Ruleset
MAPk-divider s
LOOP-END)) ;+ End of Loop

The MAPk loop feeds k diagrams at a time to the specified function. Its syntax is based on a generic
LOOQP construct that consists of a LOOP-BEGIN, a LOOP-divider, and a LOOP-end. This generic
structure invokes rewrites that do generic loop things — like restoring the body of the loop for each iteration,
and cleaning up afterwards. The specific behavior of the MAPk loop is invoked by surrounding the LOOP-
divider, and preceding the LOOP-end, with a special MAPk-divider color. Then the correct local rewrite
rules can be triggered to produce the MAPk behavior.

Bitpict-IDR-Bitpict

Match-FD (LHS, Mask, RHS)

Compares the Field Diagram, masked by the mask, to the LHS of the rule:
If they match, it returns the rule (i.e., the triple: LHS, Mask, RHS).

Otherwise, it returns nothing.

(IF-G
B (NULL-P
B j (AbsDiff
l (AND
| Arg2
(Get FD
ﬁ))
Argl
=))
5 tj ‘divider
| Argl
Arg2
Arg3
:; “divider
_1 ‘divider)
-5

;; Function Colors: Blue-Red i

(Return

; IF/THEN
; Returns
; Returns

G. Furnas

Data pathway)

construct working on groups of diagrams
TRUE iff following diagram is null diagram
null diagrams iff its two argument

diagrams are equal

; Built-in IDR AND operator
; € Mask
; GetVariable

(special funcall)

(end Get FD) (end AND)

; € LHS
(end AbsDiff)
; Marks beginning of THEN
; € LHS
; € Mask
; € RHS
; Marks beginning of ELSE

; Marks end of IF, also is end of Match-FD

This uses the IF-G (IF for Groups) construct. Its syntax is:

IF-G color (a particular yellow)
Predicate (must evaluate to T/F)
“divider

Group_of Diagrams_1

“divider

Group_of Diagrams_2

“divider

(end NULL-P)

If the predicate evaluates to TRUE, it evaluates to the first group, otherwise it evaluates to the second
group. Either group may be just a literal sequence of diagrams, or somehow computed.

FYTI: It is a more complicated version of the simple IF:

IF color (a slightly different yellow)
Predicate (must evaluate to T/F)
Diagraml

Diagram2

The simple IF returns Diagram1 if the predicate is TRUE, and Diagram?2 otherwise.

Bitpict-IDR-Bitpict G. Furnas

AbsDiff(D1,D2) ;; Function Colors: Red-Blue

Computes the pixel-by-pixel absolute difference between two diagrams.
The result is the null (0) diagram, iff the two are equal.

;; (Return Data pathway)

| (OVELAY ;; Built-in IDR OVERLAY operator
(PEEL ;; Built-in IDR PEEL operator
Argl ;; € LHS
Arg?2 ;; € Mask
(PEEL ;; Built-in IDR PEEL operator
Arg?2 ;; € LHS
Argl)) ;; € Mask

The arguments are placed correctly by the cross-bar switch, seen in the diagram upper right.

Bitpict-IDR-Bitpict

ApplyMatches(FD, LHS1, Mask1, RHS1, LHS2, Mask2, RHS2, ...)
Function Colors: Green-Blue HH

Applies up to three matched rules to the Field Diagram, FD.

Returns the new Field Diagram.

(OR
(AND

(NOT

(LOOP-BEGIN
ACCUM-Loop
OVERLAY
0-diagram
Arg3

Arg6

Arg9
ACCUM-Loop
LOOP-END)

Argl

(LOOP-BEGIN
ACCUM-Loop
OVERLAY
0-diagram
Arg4

Arg’

Argl0
ACCUM-Loop
LOOP-END))))

;

;

G. Furnas

(Return Data pathway)
Built-in IDR OR operator
Built-in IDR AND operator
Built-in IDR NOT operator

This layer and the next mark the beginning

of an Accumulate loop

& Maskl

empty space required by geometry of
crossbar arg distrib mechanism

& Mask2

empty space required for crossbar

& Mask3

This and the next together specify the end of

an Accumulate loop

& FD

This layer and the next mark the beginning

of an Accumulate loop

& RHS1

empty space reqd for crossbar

& RHS2

empty space reqd for crossbar

& RHS3

This and the next together mark the end of

an Accumulate loop;

This function uses the new Accumulate loop. This is a different implementation of Accumulate than that
shown in Anderson&Furnas (2010), in that it uses much of the general-purpose loop machinery, instead of

the one-off mechanism in the paper.

*One other difference from the paper is that Accumulate here is done on an OVERLAY operator not an
OR. The result is the same under the assumed condition of disjoint matches after conflict resolution.

