ANALYSIS AND OPTIMIZATION OF MULTIPROGRAMMED
COMPUTER SYSTEMS USING STORAGE HIERARCHIES

Ashby Woolf

University of Michigan

Approved for public release;
distribution unlimited

FOREWORD

The research described in this technical report was accomplished
under Contract F30602-69-C-021L4, Job Order Number 55810000 at the
University of Michigan, Ann Arbor, MI. Mr. Rocco F. Iuorno (ISIS) was
the Rome Air Development Center project engineer.

This report has been reviewed by the Office of Information (OI) and
is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

e T Lo

Approved: ROCCO F. IUORNO
Project Engineer
Software Sciences Section

Approved:

Info Scdiences Division

ii

ABSTRACT

The research described in this report centers around the development
and application of a general and comprehensive mathematical model of com-
puter systems which use storage hierarchies consisting of 2, 3 or more
levels and in which the storage management is carried out automatically
(i.e. transparent to the user.) This model has been implemented in the
form of a highly interactive computer program which provides the user
with an animated view of the system performance as model parameters are
varied.

There are roughly 50 independent variables in the model. (The
number of independent variables is dependent on the hardware configura-
tion.) These variables describe the system architecture, data paths
and routing, storage device characteristics, CPU performance, and user
program behavior,

The overall model can best be described in terms of several com-
ponent models. The storage device models take into account the effects
of queueing for the device itself (such as a disk drive), queueing for
channel service, seek time, latency time, and transfer time. The
specific parameters may vary according to the specific device being
modeled. Models for a core or random access device, drum, disk and
data cell are described and implemented. The model which describes
user program behavior is dependent on the storage allocated at each
level in the hierarchy, the logical record or page size at each level,
the size of the user program, and five other system independent vari-
ables, The user program model and the storage device models are linked
together by a final model which relates user program behavior and the
storage device performance. The macroscopic model includes effects of
system architecture, data paths, queueing for the CPU, CPU lookshead
and system software overhead.

The solution of the combined system model involves numerical tech-
niques. A complete solution requires approximately 1 sec., based on
IBM 360/67. When the model is used in the context of optimization, an
evaluation can be obtained in approximately 50 ms. In practical terms
this means that in the case of analysis the printing of results is more
expensive than the analysis itself, In the case of optimization over
1000 systems can be examined in 1 minute or over 60,000 per hour.

iii

TABLE OF CONTENTS

Page

Chapter

I INTRODUC TION 1
1.1 A General Discussion 1
1.2 The Nature of the Problem 4
1.3 Objectives 5
1.4 A Preview 6

II A MODEL OF PROGRAM BEHAVIOR 16
2.1 A General Description of Program Behavior 16
2. 2 Basic Model Description 20
2.3 Effects of Program Loop Lengths on Page Faults 23
2.4 Effects of Allocation During Initial Paging 29
2.5 Consideration of a Distribution of Loop Lengths 37
2.6 Final Model Development 42
2.7 Examples of Model Behavior With Varying Allocation 55
2.8 Example of Model Behavior With Varying Page Size 68

III MACROSCOPIC MODEL 82
3.1 The N Level Hierarchy 82
3.2 Storage Allocation 33
3.3 Multiprogramming 91
3.5 Interlevel Data Traffic 94
3.6 Primary and Secondary Levels of Storage 101
3.7 Dedicated and Shared Levels of Storage 108
3.8 Traffic Description At Individual Levels 117
3.9 Storage Hardware Performance 125
3.10 Primary and Secondary Access Time 128
3.11 Interaction Between CPU and Primary Storage 143
3.12 System Performance 148
3.13 Soliution 155

TABLE OF CONTENTS (Continued)
Chapter

AY HARDWARE MODEL FOR INDIVIDUAL LEVELS OF
STORAGE

Basic Model

Solution of Basic Model
Solution Algorithm

Disk Model

Data Cell Model

Core Model

Drum Model

Effect of Specific Record Sizes

Ll ol o o af ol
Co-ID U W -

\' A CASE STUDY IN ANALYSIS

Program Description

System Description

A Hardware Modification

A Change in User Program Characteristics
Changing the Number of User Programs
Summary

GTOTOTO1O1 N
e e e o e (-]
A O W PN -

VI SYSTEM OPTIMIZATION

6.1 Objective Function and Method

6.2 A Simple Example

6.3 Changing the User Program Size
6.4 Changing the Number of Core Units
VII CONCLUSIONS

Appendices

A SOLUTION FOR INTEGRALS OF EQUATION 2. 54
B REQUEST DISTRIBUTION

C COMPUTATIONAL DIFFICULTIES IN COMPUTING

BIBLIOGRAPHY -

vi

162

163
172
176
179
189
191
192
195

198
198
201
242
246
253
259
261
261
266
278
281

286

289
299

311

316

Figure

[\ I \)

N

DN DN

H R OWW-JO U b WpN F i Wp =

-t
N =O

[y
w

fa—y
>

.15
.16

.17
.18
.19
. 20

.21
.22

. 23
.24

. 25

LIST OF FIGURES

System Analysis Model

System Model

Detailed System Model, Part 1

Detailed System Model, Part 2

Definition of W(t, 7)

The Lifetime Function for Random Accesses
General Lifetime Function

The Virtual Address Space

Access Loop

Loop Position

The A Distribution

gig as a Function of A

The Components of Hq(A)

The Generation of H;(A)

The Lifecycle Function Versus Allocation for the
""Standard' Case

The Lifecycle Function Versus Allocation With
Variations in p

The Lifecycle Function Versus Allocation With
Variations in e

The Lifecycle Function Versus Allocation With
Variations in H

The Lifecycle Function Versus Allocation for H = «©
The Lifecycle Function Versus Allocation With
Variations in ¢

The Lifecycle Function Versus Allocation With
Variations in q'

The Lifecycle Function Versus Allocation With
Variations in q

The Lifecycle Function Versus Page Size for the
""Standard' Case

The Lifecycle Function Versus Page Size With
Variations in H

The Lifecycle Function Versus Page Sice for H = ©
The Lifecycle Function Versus Page Size With
Variations in s

The Lifecycle Function Versus Page Size With
Variations in p

The Lifecycle Function Versus Page Size With
Variations in e

The Lifecycle Function Versus Page Size With
Variations in o

vii

Page

10
11
17
19
19
23
24
25
39
45
46
48
o7
59
60

62
63

64
66
67
69

72
73

75
7T
78

80

° °

WWWWwww
L] e o o
(o> 1N IV U

° °

o 0 . .

°

TN WNNFHEFOOWINMUI WM O

W OO-I0 U D WN DN DNDNDNDNDNDND DY =t bl e ok pd ek pd ek (O 0O =]

mmm.hp,p,pppp:pwwwf»wwwwwwwwwwwwwwwwww
° .) . ° ° ° ° . . .) . ° .

LIST OF FIGURES (Continued)

The Lifecycle Function Versus Page Size With
Variations in q'

A Four Level Hierarchy

Access Distribution

Multilevel Paging

Traffic - Primary Read to Level 4
T Array for Example 1

Transfer Pattern 4-Level Hierarchy for User
Induced Level 4 Read

Traffic Diagrams

T Array for Example 2

Example 3 Read to Level 1

Example 3 Read to Level 2

Example 3 Read or Write to Level 3
Example 3 Read or Write to Level 4
T Array for Example 3

Example 4 Read to Level 1

Example 4 Write to Level 1
Example 4 Read to Level 2
Example 4 Write to Level 2
Example 4 Read or Write to Level 3
Example 4 Read or Write to Level 4
T Array for Example 4

Regions of Storage

Periods of User Program Execution
G Array

3-Level Hierarchy

Tc Versus T

Primary Bound Operation

Secondary Bound Operation

Solution for r and r'

State Diagram for Basic Model

State Diagram for Basic Model

State Diagram for General Model
Service Rate Versus Arrival Rate
Disk Service Timing Diagram
Channel Queueing Model

State Diagram for Channel Queueing Model
Drum Sectors and Fields

System Diagram

System Variables

Level 1 Hardware Description

viii

Page

81
83
86
88
95
97

99

102
103
105
105
106
106
107
109
109
110
110
112
112
113
115
118
132
138
144
150
152
158
164
165
171
174
181
185
187
193
200
203
205

Figure

o .

. .

L])) o -] - o - L] e [] [] o @ o L] [] c e o e ® © . [] o e o
LN = WWWWWWWWWWNINDNDINDINDDNDN DD DN = et ek pd ek pd ek ok ek ek 0O 00 =F OO U1 i

CO-TO NP WHOHOOX-JTAUI KR WNEFEOWOWO-IDUIHhWN O

S
NN

LIST OF FIGURES (Continued)

Level 1 Performance

Level 1 Queueing

Level 2 Hardware Description

Level 2 Performance

Level 2 Queueing

Level 3 Hardware Description

Level 3 Performance

Level 3 Queueing

Traffic Patterns Resulting From User Program Reads

Traffic Patterns Resulting From User Program Writes

The Traffic Array for User Program Reads
The Traffic Array for User Program Writes

The Critical Read/Write Array for User Program Reads
The Critical Read/Write Array for User Program Writes

User Program Specifications

User Program Behavior

Dependent Variables, Part 1, ""Standard'’ Case
Dependent Variables, Part 2, "Standard’’ Case
Dependent Variables, Part 3, "Standard" Case
Dependent Variables, Part 1, for Drum RPM= 3600
Dependent Variables, Part 2, for Drum RPM= 3600
Dependent Variables, Part 3, for Drum RPM= 3600
Dependent Variables, Part 1, for p=.3

Dependent Variables, Part 2, for p=.3

Dependent Variables, Part 3, for p=.3

Dependent Variables, Part 1, for p=.7

Dependent Variables, Part 2, for p=.7

Dependent Variables, Part 3, for p=.7
Performance Versus Number of Programs

CPU Utilization Versus Number of Programs
Relative Effect Versus Number of Programs
Allocation Versus Number of Programs

% of Level 3 Accesses Versus Number of Programs
Queue Length Versus Number of Programs

Access Time Versus Number of Programs
Secondary Access Time Versus Number of Programs
Decision Variables for "Standard" Case

Decision Variables for Optimal $250, 000 System
Dependent Variables, Part 1, for Optimal $250, 000
System

Dependent Variables, Part 2, for Optimal $250, 000
Sy stem

206
207
210
211
212
215
216
217
219
220
222
223
225
226
228
229
232
233
234
243
244
245
241
248
249
250
251
252
254
254
255
255
257
257
258
258
268
269

270

271

Figure

LIST OF FIGURES (Continued)

Decision Variables, Part 3, for Optimal $250, 000
System

Decision Variables for Optimal $300, 000 System
Decision Variables, Part 1, for Optimal $300, 000
System

Dependent Variables, Part 2, for Optimal $300,000
System

Dependent Variables, Part 3, for Optimal $300,000
System

Performance Versus User Program Size

Optimal Number of Programs Versus Program Size
Allocation Versus User Program Size

Relative Effect Versus User Program Size

Optimal Performance Versus Number of Core Units
CPU Utilization Versus Number of Core Units

Optimal Number of Programs Versus Number of Core

Units

Allocation Versus Number of Core Units
Relative Effect Versus Number of Core Units
Circulating Queue

Open Queueing Model

272
274

275
276

271
279
279
280
280
282
282

283
283
284
300
305

Chapter 1

Introduction

The design and application of large computing systems involves
considerable risk. One can draw a parallel between those who have
designed and applied today's computing systems and those who, in the
early days of flight, strapped wings to their backs and jumped from
the roofs of barns. Neither had adequate methods of predicting system
performance. The work reported here attempts to contribute to compu-
ter system technology through the development of improved methods

of predicting system performance.

1.1 A General Discussion

Throughout the development of computing systems there has
been an effort to make a given hardware technology perform better as
a system. The primary emphasis in the early days of development
was on hardware technology. However, as computing systems have
progressed, there has been a continued and growing interest in the
design of systems which make the best and most efficient use of a
given hardware technology.

One important method of achieving efficient use of a given hard-
ware technology has been the use of storage hierarchies. Storage hier-
archies are not unique to computer systems. Your pocket, your desk
or dresser drawer and your basement represent a storage hierarchy.

The basic idea is simply to store those items used most frequently in

an easily accessible location. Those items seldom used may be stored
in less accessible and correspondingly less costly locations.

The storage hierarchy was first implemented in a computing
system developed at the University of Manchester in England in 1949,
As computer system designed have progressed, two things have happened.

First the complexity of the hierarchy itself has increased. We
commonly see systems with 5, 6, or more different kinds of storage
hardware capability, for instance registers, cores, drums, disks,
data cells, magnetic tapes, punched cards, and punched paper tape. A
second and very important change has occurred in the management
responsibility of the hierarchy.

The gains achieved by the storage hierarchy have imposed con-
siderable burden upon the programmer., At the outset the programmer
was responsible for deciding what information should be stored on what
device at each instant of time. In addition the programmer was respon-
sible for carrying out the necessary operations required to move the
information about as required. Lastly and very importantly, the program-
mer was responsible for keeping track of how and where everything was
stored as it was moved about in the system. As we have progressed
and hierarchies have become more complex the operating systems and
hardware have assumed these responsibilities in varying degrees. In
some cases all responsibilities for management of a hierarchy have
been assumed by the operating system and/or hardware and the hier-

archy is invisible to the programmer,

2

Another area of computer systems development has been in the
use of multiprogramming. A computer is often limited by its slowest
(or most overworked) component, often an If) device, One of the
methods used to alleviate this problem has been multiprogramming or
the practice of working with more than one user program at a time.

One of the effects of multiprogramming is to provide the sys-
tem with a more balanced workload. If a system processes one pro-
gram at a time, it will find some programs using a great deal of CPU
resource and leaving the IQ) devices idle, while others leave the CPU
idle and do voluminous If. On the other hand, if a system is processing
10 or 20 programs at once, it is unlikely that the system will see this
group of programs exhibit the wide variations in resource demand
exhibited by the individual programs in the group. In other words sys-
tem loading is more consistent and predictable when the sample space
grows larger,

The second effect of multiprogramming is to introduce parallel
paths in the workload as seen by the computing system. If a computing
system must follow a single thread of execution, a delay in any part of
the system holds up the entire system. Multiprogramming is one way
of providing the necessary parallel paths of execution which, if properly
used, can increase resource utilization.

The difficulty with multiprogramming is complexity. The prob-
lems of resource scheduling are difficult. The problems of protecting

one user from another, protecting the operating system itself, and

charging for resource use become most complex. However, the
rewards for efficient resource utilization can be great. There has
been considerable motivation for complexity in the effort to better uti-
lize computing system resources. This has been added to by the
response requirements of time-sharing and real time systems,

This need for complexity has placed the modern computing sys-

tem outside the capability of man's unaided intuition,

1.2 The Nature of the Problem

In very few words the problem is that of predicting and con-
trolling the behavior of complex computing systems using storage
hierarchies and multiprogramming,

A computing system using a storage hierarchy generally in-
volves 2 or more different types of storage devices. Different device
types have widely varying performance characteristics. Drums, cores
and disks all behave differently under load. A system's performance
may be determined by a complex balance of workload throughout the
system of devices or may be determined by the performance charac-
teristics of a single overworked device.

User programs can be big or small. They can access data in
a serial or random manner. They can do large quantities of I or
almost none at all.

The data paths and routing of information influence the load

seen by storage devices. The logical record sizes throughout the

system also influence the load seen by storage devices and in turn
their response times.

The number of programs running in a multiprogrammed sys-
tem affects the storage allocations of user programs. This in turn
influences the demands placed on the system by user programs.

All of these factors and many others combine to create an
enormously complex and remarkably difficult analysis problem. It is
difficult to merely determine what a given system will and will not do
in a given circumstance. It is even more difficult to design such sys-
tems especially if some kind of optimal or near optimal design is

required.

1.3 Objectives

The specific objective of this research is to develop and demon-
strate a mathematical model of a computing system. The computing
systems in question here fall into the class of those systems using
storage hierarchies of 2, 3 or more levels and multiprogramming,

The model will exhibit the following characteristics:
1. ‘The model will include the effects of user program behavior,
operating system characteristics and hardware performance,
2. The model will be versatile and easily applied to a wide range
of system configurations. The model should be useful as a
tool for the investigation of computing systems in general as

well as applicable to the detailed investigation of a particular

system.,

3. The model will be useful as a tool for both analysis and
optimization.
4, The results obtained from the model will approach the accuracy

and realism of those obtained from simulation models.

1.4 A Preview

At this point we will attempt a broad preview of the coming
chapters. It is hoped that this section will serve to place the contents
of the chapters to follow in proper perspective and serve as a reader's
guide,

The overall model for computer system analysis is shown in
Figure 1.1. On the left we see 3 categories of independent variables.
First we have the user program description. This includes independent
variables such as the size of the user programs and other characteris-
tics of user program behavior. Next is the storage device descrip-
tions. This includes such items as drum RPM, disk seek time and
variables relevant to storage device performance. Last we have data
traffic dependencies and architecture. This includes CPU perfor-
mance characteristics, logical record sizes, data transfer timing
dependencies and other global system characteristics. As an out-
put for the model we show performance. In the narrow sense, per-
formance is defined as the mean rate at which the collection of user
programs running on the system make reference or access to data and

instructions. In the broad sense the performance also includes many

User Program Description _._\

Storage Device SOTPU'CGI‘ perfo
Descriptions ySstem —=w» Performance
Model

Data Traffic Dependencies /
and Architecture A

System Analysis Model

Figure 1.1
Assumed
Performance
User Program
Description Y \L
: Computer
ls)t:;':fiepgi)srréce > System - Assumed
Model Performance
High or Low
Data Traffic Dependencies /

and Architecture

System Model
Figure 1, 2

details such as mean queue lengths at various devices in the storage
system and CPU utilization.

Figure 1.1 shows the model as seen by the designer when being
used for analysis. Figure 1.2 shows the model in slightly greater
detail and from a different point of view, It is this model that we will
deal with in the next 3 chapters. We see that the independent variables
on the left have not changed. However, the model shown here does
not give us performance (mean user program access rate) directly
but rather tells us if an assumed performance is greater than or less
than a given system's capability. For analysis we will carry out a
simple search to find the performance of a given system. The pri-
mary advantage of this particular approach to the problem occurs in
optimization where systems are compared in a search for a system
configuration with the greatest performance or mean user program
access rate.

Figure 1.3 and 1.4 show a detailed breakdown of the
model of Figure 1.2. Beginning at the left of Figure 1.3 we see the
User Program Model. The independent variables supplied to this
model fall into two classes, the user program description and the
storage system characteristics. The user program description con-
sists of 5 independent variables which describe the characteristics of
the user program. The variables are shown in brackets here for reference

in later chapters. The storage system characteristics consist of the

storage allocation at each level in the hierarchy and the logical record
size at each level. The user program model, given this information,
determines what fraction of a user program's accesses will be directed
to each level in the hierarchy of storage. This is referred to and shown
in the figure as user program demand. For example, in a two level
system with a core and a drum, this would be the fraction of user pro-
gram references or accesses to storage which are satisfied at the core
and the fraction which require drum activity.

The user program model is discussed at length in chapter 2.
The model is an outgrowth of the "lifetime function' concept proposed
by Belady and Kuehner [6]. The model is also indebt ed to the "working
set" concept introduced by Denning [21] .

The next block in Figure 1,3 shows the System Traffic Model.
This model has as its independent variables the assumed mean user
program access rate (assumed performance), the user program de-
mand and the data transfer specifications. The data transfer specifi-
cations describe what happens when a user program accesses a given
level in the hierarchy. We are treating the user program access to
a given level as a cause and the activity generated in the system as a
result of that access as the effect. The effect takes the form of data
transfers in the system. The data transfer specifications describe the

data transfers which occur as a result of user program accesses to

[(-)'d]
WL
asuodsoy
~~HWA |
agea038

/

I i)

T9POIN
99149
98va1038

€°1 2an31g

T 3red ‘1epoN walshs parrerad

[ed£y ao1A0p UO
juspuadsp sarqerIea]

suoryeo110adg
\ 90149 98v1038

-

n—”
)

JUSWUOITAUT

L[
['g D

{
¥ «.U ?<H_

—— - — o — -]

ouFRIL

(g "dey))

[9pPOIN
orye L
was £g

[nfL]

__suoryeo1j1oads

\ 19Isued] vyed

H._”U n._“mu_

SOT)S1I9)0RIBY D

— WIS A4S
\ 93vJ103S

I9s

L]

(z °dey))
['n]
puEwad 19POIN
<rerdorg | ELS0dd
9]

[Hd 0 D)
uvonydixosa(]
wexdoxd

/ a1y SS900y wexdold /
— I9sN

TTTTJI9S[] UBSA pauwunssy

10

MOT J0 YS1H

9)ey SS90V
~& Wessoad 1980

UBO\ POWINSSY

¥ 1 9an3tg

¢ 1red ‘19poN weysAS parrerad

Y

(¢ “dey))

TopPOIN
Surwi,
uoryoung
Jofe]n

[Te 2 W 1 1 N

uorydixosa(

9aN309TYOIY

pue NdD
dﬂ —Mmk\ am..h nQ u
T9POIN UOTYE W IO U]
aoue B Surwii],

—wroprad [UOTouny iole
wajsAg
[]
4/ 9y SS90y

wexdoxd JIas()
UBSIA powWINSsy

™

A!(

— (9]
sarouspuada(
Sutwir,
I9jsued] ele(q

L mes e

werdold JosM

[
[(-)d]
awr], asuodsay
~90149(93ra038

11

some level in the hierarchy. Using this information along with the
mean user program access rate and the fraction of user program
accesses to each level (user program demand) the System Traffic
Model generates a description of the traffic environment at each level

in the hierarchy. The traffic environment is given in terms of the
mean rate at which records are being read and written at each level,
the mean record size being read and written at each level, and the max-
imum number of requests for service that can be generated by the sys-
tem for each level. This System Traffic Model is discussed in detail

in Chapter 3.

We arrive now at the Storage Device Model at the right hand
side of Figure 1.3. The storage device model is actually a collection
of models, any one of which can be used to represent the hardware at
any level in the storage hierarchy. The device models give us the
mean time required to read or write a record of a given size at a given
level in the hierarchy. The model independent variables are the traffic
environment seen by the level in question and device specification rele-
vant to the device type at that level,

The storage device models are discussed at length in Chapter 4.
Models for core or random access devices, drums, disks, and data
cells have been developed. The models are not particularly unique or

special in any real sense. They are based on finite Markov chains

12

and require a numerical solution. The models were designed to pro-
vide generality of application, realistic results and rapid solution.

Backing away from the details of Figure 1.3, we can review what
goes in and what comes out of this portion of the system model. We
provide as independent variables a description of user program beha-
vior and some storage system characteristics. From this we learn
how the user program behaves inthe system. Next,assuming a mean
user program access rate and given the data trasfers which occur as
a result of user program behavior, we compute the traffic flows at each
level in the system. Given this and a description of the hardware at
each level we compute the mean time required to read or write records
of various sizes at each level. The principal result of the portion of
the model shown in Figure 1,3 is simply the mean response time for
each of the levels in the hierarchy.

We will now turn to Figure 1.4 where the second portion of the
system model is shown. On the left we have the Major Function
Timing Model which is discussed in detail in chapter 3. This model
is responsible for timing information such as the mean time that a
user program remains ineligible for execution following an access to
some lower level of storage. The independent variables of this model
are the storage device response times,the user program demand,and
the data transfer timing dependencies. The data transfer timing depen-

dencies require some explanation,

13

Imagine a system having a core and a drum. If a user program
references some piece of data that happens to be on the drum a record
or page will be read from the drum and written in core. There may
also be a transfer from the core to the drum in order to make room
for the new information coming into core. Here we see the possibility
for 4 reads or writes. There is the operation of reading a record from

the drum and writing that record in core and reading a record from

core and writing it on the drum. However, in a typical system the only
delay experienced by the executing program is that of reading the re-
cord from the drum, The other reads and writes do occur and do con-
tribute to the congestionin the system but are generally carried out

in such a way as to avoid a direct delay in execution. The data trans-
fer timing dependencies specify precisely which reads and writes con-
tribute directly to delays in program execution,

Finally on the right of Figure 1.4 we have the system perfor-
mance model again covered in Chapter 3. This model has as its inde-
pendent variables the assumed mean user program access rate, the
major function timing information and certain items of a CPU and
architecture description. This submodel determines if in fact the
assumed mean user program access rate is too high or too low, This
completes the model giving us the final result as shown in Figure 1. 2.

This description of the model has been necessarily incomplete

and simplified somewhat to aid in explanation. The detailed description

14

of the various model components are found in Chapters 2, 3, and 4 as
indicated. Chapter 5 is concerned with examples involving analysis
and Chapter 6 with examples of optimization,

Chapters 2, 3,and 4 are long and concentrate on the detailed
development of the various parts of the model described. The difficul--
ties of placing the numerous but necessary details in proper perspec-
tive may be greatly reduced by becoming familiar with the examples of
Chapters 5 and 6. Section 5.2 of Chapter 5 is of particular interest in
this regard. A complete example is covered in Section 5. 2 including

some mention of all of the independent and dependent variables,

15

Chapter 2

A Model of Program Behavior

In an effort to identify and describe the characteristics of a
computer program or process L. A. Belady and C. J. Kuehner [6]
proposed the lifetime function. The lifetime function expresses a
program's mean execution interval between references to secondary
storage, as a function of the storage allocation in core or primary
storage. Belady and Kuehner are not alone in attempting to model
this aspect of a process. Very similar constructs have been con-
sidered by Peter J. Denning [21]. These efforts are at least in part
attempting to determine what part of a program or process must be
located in core to avoid an excessive number of transfers between

core and drum.

2.1 A General Description of Program Behavior

It is generally agreed that most processes have a non-uniform
storage access behavior and that it is meaningful to discuss the cur-
rently active part of a process. The concept of the currently active
part of a process has been expressed in several different and useful
ways. This idea is basic to the question of what part of a process
should be in core.

P. J. Denning [21] refers to this currently active part as the

working set. In Denning's words, "We define the working set of

information W(t, 7) of a process at time t to be the collection of

16

information referenced by the process during the process time

interval (t-7,t) .

t-7 t

LLL T T 7T
zz///////////l//_! > process time

@‘T .

L {paﬁeo referenced in this }

interval constitute W(t, 7)

Figure 2.1 Definition of W(t, 7)

There are many other ways to define a set of currently active pages.

For instance we may modify the working set by considering t and 7of
W(t, 7) to be real time instead of process time. We might consider a
different parameterization such as the set W'(t, n) defined as the n most
recently used pages as a function of process time t. This is very similar
in concept to the work by L. A. Belady and C. J. Kuehner [6]. Belady
and Kuehner define the locality of storage references as a basic pro-
gram property. '""Locality is defined as the total range of storage
references during a given execution interval." The remainder of the
paper [6] if not the definition of locality would indicate that Belady's

notion of locality is very similar to if not W'(t, n).

The Two Level Hierarchy

The concept of a lifetime function was developed by Belady

and Kuehner [6] in the context of a paging system consisting of a

17

core and a drum. Here we will extend this concept in several ways but
first we will consider it in a form close to Belady's original form as
developed for two levels of sforage.

When a program begins execution following a page fault (a reference
‘requiring a page transfer from the drum) some of its pages will be in
core and others generally will not. The precise information contained
in core will determine the number of execution cycles required to gene-
rate another page fault. Since we are considering a paged system the
information contained in core is determined by three factors:

1. The method of selecting pages to be paged in and out.
2. The number of pages remaining in core.

3. The page size.

If we consider 1 and 3 to be fixed we may express the average
number of execution cycles required to produce a page fault as a
function of 2,

Belady defines his lifetime function as a relation between the
size of the core allocation and the average length of an execution
interval. In order to get a feel for the general shape of this function
let us consider the simple case of completely random accesses. In

this case the lifetime function is given in [6] as

() = ;Lo = /e + (/) % 4 (1) . (2.1)
where r is the size of the program in bits and s is the core allocation
in bits.

18

f(s)

0 S r

N,

The lifetime function for Random Accesses

Figure 2.2

f(s)

S
—_—
General lifetime function

Figure 2.3

19

This function is clearly convex and a curve of this form is
shown in Figure 2.2. The general shape of a more realistic lifetime
function is shown in Figure 2.3 with a solid line as well as an approxi-
mation proposed by Belady. Belady's approximating function is of
the following form where a and k are constants to be adjusted to fit
specific program behavior

k

f(s) =a s (2.2)

2.2 Basic Model Description

Belady's functional model for approximating program behavior
has several deficiencies.
1. The model parameters a and k are not clearly related
to propefties of the program being modeled.
2. The model is valid only over part of the range of s for
realistic programs.
3. The value of the lifetime function is expressed in units of
execution time which limits its use in certain contexts.
In addition to removing the above deficiencies we would like to develop
a model which considers the lifetime function as a function of both
allocation, s, and page size, q.
We will refer to the model of program behavior developed here
as the lifecycle function. This name reflects a change in units from
execution time to the number of user program storage references

required to produce a page fault.

20

conclusion by noting that with independent and equally probable random
accessing, the specifics of what information is in core are irrelevant.
Thus the lifecycle function is only a function of s and is independent of q.

As an aside we might consider what the optimal page size would
be if programs did in fact behave in this manner. Since the lifecycle
function is independent of q we have no motivation to make q larger
than 1 word. A larger q and its associated information movement
would be without effect on the lifecycle function and serve only to
clutter channels and devices. This is of course an extreme case and
has few representatives in the real world.

Now we will consider a second extreme case one which is the
antithesis of the above. Consider a process which accesses storage
sequentially from its first location to its last and then continues by
repeating these accesses forming a large loop. Here accesses will
be made proceeding sequentially through a page and into the next,
producing a page fault. If the entire process is not in core (i.e.

s <qlQ/q] where [x] is the smallest integer > x and Q is the actual
program size) the page needed will have always been paged out.
This of course assumes a first in first out, least recently used or
similar page out selection algorithm. Since we will produce a page

fault at the end of each page we can write

f(s,q) = q for s < qlQ/A1. (2.3)

21

Where Q is the actual program size [Q/q] is the smallest integer > Q/q
and q[Q/q] is the apparent program size as seen by a system with a
page size q.
When s >q[Q/q] we may write
f(s,q) = oq for s >qlQ/] (2.4)
where o is the number of times the loop is executed.

Again we may stop to consider an optimal page size for pro-
cessing such a process. It is clear that q should be large, in fact
on the order of s,thereby refreshing the entire allocated storage with
each page fault. Having considered these two extremes we will now

turn to a more realistic model.

A Process Model

We will consider here a stochastic model of a process which
is in some sense a combination of the two extremes just discussed.

We may describe the access behavior as follows:

1. Randomly select a location g in the virtual address space
of the process.
2. Randomly select a loop length A.

3. Access the A locations in the loop of 2 above sequentially
o times.

4, Repeat the above steps.

Where a loop which extends beyond the last virtual address
of the process is continued at the beginning of the virtual address

space.

22

Our pattern of access is then one of a series of loops where
both the position and size of the loops change in a random fashion.
Our immediate concern will be to develop the lifecycle function (s, q)

for such an access behavior.

2.3 Effects of Program Loop Lengths on Page Faults

The first step in developing this lifecycle function is to determine
the number of distinct pages accessed when accessing the loop. This
is a function of two things, the loop length and the position of the loop
in virtual address space. The virtual address space can be repre-

sented as shown in Figure 2.4.

This boundary is part of this page
yisp pag

/
Vo
l ' le— q — |
The page size
is q bits

The Virtual Address Space

Figure 2.4

The line A-B in Figure 2.4 depicts a segment of virtual address
space. The division lines represent page boundaries and the boundary

is assumed to be part of the page to the right. The page size is q and

is in bits.

We will now consider a loop of length A which begins on a page

S

!1‘i
L e e e

boundary at the beginning of a page.

R

K< A >
a Access Loop
Figure 2.5

Here we may write the number of unique pages accessed in the loop

as [A/q], where [x] is defined as the smallest integer >x.

Examining Figure 2.5 we can see that if we move the position of
the loopa tothe right the number of unique pages accessed will remain
[A/q] until the right end of the loop crosses a page boundary. At this
point the number of pages accessed will increase by 1 to [A/q] + 1
and remain so until the left end of the loop crosses a page boundary.
Thus the number of unique pages accessed by a loop of length A will
be either [A/q] or [A/q] + 1 depending upon the position of the loop
in the virtual address space.

We will now consider what positions of the loop will involve
[A/q] unique pages and what positions of the loop will involve [A/q] + 1
unique pages. We will consider the position of the loop in virtual
address space to be indicated by the starting address of the loop or
the left end when diagrammed. We will first point out that if it is
positioned or begins on any one of the first [A/qlg - A bit positions

a page [A/q] unique pages will be accessed by the loop.
24

< [A/q]q >
| ;
| : |
A)
I<- R
\\\ A \\\ I“‘— o [A/q]q - A
™
\
[A/q]q - A

Figure 2.6 J.o0p Position

As shown in Figure 2.6 there are [A/q]q bits in the unique pages
accessed by a loop of length A when the loop is positioned on a page
boundary. Thus it is clear that in this case there are [A/q]q - A

bit positions not used by the loop. Thus one may position the loop
on any one of the first [A/q]q - A bit positions of any page and access
only | A/q] unique pages. Correspondingly if the loop is positioned
on any one of the q - ([A/qla - A) or g - [A/q] + A bit positions of

any page the loop will access [A/q] + 1 unique pages.

We will consider o the position of each loop, to be a uniformly
distributed random variable whose range is the entire virtual address
space of the process. Thus we may write the probability of accessing

any given number of unique pages in a loop as:

25

P(accessing N unique pages) = [A/q] - A/q for N=[a/q] (2.5
=1-[A/Ql+A/M for N=[aQQ]+1
=0 otherwise

Page Faults

Up to this point we have considered the number of unique pages
accessed by a loop of length A in a system with a page size q. Here
we will consider the number of page faults generated while accessing
such a loop.

There are two important factors that must be taken into con-

sideration here. We must determine if the number of unique pages

accessed by the loop is greater than the space allocated s/q. If this
is the case we will exhibit almost continuous paging. This is the
simple result of the fact that as we access sequentially around the
loop pages will be paged out before we complete the loop and access
them again. Here one might say that the working set is larger than

the allocated space.

A second condition occurs if the allocated space, s/q, is larger
than or equal to the number of unique pages accessed in the loop.
Here we will experience an initial burst of page faults as the pages
associated with the loop are paged in and then a period of execution

uninterrupted by additional page faults.

26

A second factor to be considered is that of finding needed pages
in core (or some equivalent high level in the hierarchy) as a result
of paging which occurred earlier. This means that as we begin each
new loop of accesses we may find some. of (and possibly all of) the
needed pages resident in core.

Our immediate interest will be to find the ratio between the
number of accesses made and the number of page faults which occur
while accessing a loop A bits in length o times. At least initially
we will be interested in this ratio as a function of A the loop length.
Thus we will define

_ #of accesses
ga) = # of page faults.

(2.6)

In order to express g(A) it will be necessary to consider several

special cases. We will begin by considering the two special cases

i

g(A) gl(A) when « falls in the first [A/q]q - A

bits of a page

W

g€5(4) when afalls in the last q-[A/q]q + A

bits of a page (2.7)

where o is the virtual address position of the beginning of a loop.
The need for these two cases is generated by the different

number of unique pages accessed in each case . In Case 1, for

g4(a), [A/q] and in Case 2, for gz(A), [A/q] + 1 unique pages

are accessed. The development of gl(A) and gZ(A) are quite

27

similar with this difference of a single page being the only distinction.
Thus we will develop g1(A) in some detail and write gZ(A) by extending

the same arguments.

An Expression for gl(A)

As we vary A we find that gl(A) itself falls into two rather
special cases. We will consider these two cases as Case 1a and

Case 1b and write them as
g,(8) = g,,(A) for [A/q] < s/q
= 81,(2) for [A/q] > s/a (2.8)

To begin, notice that s/q is the number of pages allocated

in core. In Case la the number of unique pages accessed is less

than or equal to this allocation. Thus after the initial accessing of
all the pages in the loop no further paging will be required. It should
be clear that at most there will be [A/q] page faults during the accessing
of this loop for after the loop has been accessed once all the required
pages will be in core and repeated accesses in this loop will produce
no further page faults.

Let us now consider Case 1b. Here [A/q] > s/q, or more
unique pages are accessed in the loop than the allocated space in
core. This means that as we reach the end of the loop more pages
will have been accessed than space has been allocated for. Assuming

a least recently used, first in first out or similar page out selection

28

scheme we may be sure that after accessing the first s/q unique
pages in the loop a page fault will occur each time the sequence of
accesses crosses a page boundary. This will continue as long as
the loop is accessed. Since the loop will be accessed o times a

maximum of [A/qlo page faults will occur.

2.4 Effects of Allocation During Initial Paging

Another factor to be considered is that of finding one or more
of the [A/q] unique pages needed, in core. When the loop now being
considered is begun there will be s/q pages in core as a result of
one or more previous access loops. These pages may very well
be some of those needed in the new loop and may remain in core
(i.e. not be paged out) at the time of its first access in the new
loop. It is clear at the outset that the number of page faults avoided
in this manner is a random variable. It is also apparent that this
random variable's mean and density function may be a function of
all previous A's and a's. We will avoid these complications by
making certain assumptions and replacing this random variable
with its mean. Before we proceed with this, let us recall that our
ultimate objective is not to accurately model the described process
but to develop a function which may be used to approximate the life-
time functions of real programs. Thus we have a great deal of
flexibility in the assumptions we may make as we proceed as long

as the final result is suitable and useful for our purposes.

29

As we begin a new loop we will assume that the s/q pages
remaining in core from previous accesses are scattered about
randomly in the virtual address space of the process. Thus as we
begin the new loop the

s/q
[Q/]

probability of finding the first page in core =

probability of finding the second page in core = sq-1
[Q/ql-1

or in general

_sfa-i+l (5 g
[QMql-i+l

This only holds true for the first s/q pages or the number of pages

probability of finding the ith page in core =

accessed in the loop whichever is smaller. In the case of the first
page accessed there are s/q pages in core and the process uses [Q/q]
pages. On each successive access the number of these left over pages
is reduced by one either by the paging out process caused by a page
fault or by its use and lack of availability. This of course assumes
that s <q[Q/q]for if s > q[Q/q] no such paging out will occur and

the probability of finding the i-th page in core will always be 1.

Thus we may write

Prob(ith page in core) = s/q - 1+1 for s < q/Q/AQ]
[QA] - i+l

=1 for s> q(Q/q] (2.10)

30

Unfortunately this expression of probability leads to excessive
complications later when we consider a distribution of loop lengths,
A, and integrate with respect to A. However we can successfully
approximate using
_ _S/q-i+l

[Q/4]
=1 for s > q[Q/q] (2. 11)

Prob(ith page in core) for s < q/Q/q]

There are several reasons why this approximation serves
us well. First it is reasonably accurate for small i and small i's
predominate. The value of i cannot exceed s/q or [A/q] + 1. This
means that in order to be involved with large i's, we must have
both a large allocation s and a long loop length A. Second we will
be using a summation of these probabilities for i = 1 to [A/q] or in
some cases [A/q]l + 1. The values of the terms in both Equation 2. 10
and 2. 11 decrease with increasing i. Thus the dominant terms in
the series are those with small i for which the approximation is
most accurate.

We may write the expected value of the number of such "free"

p'ages which will occur with each new loop as

31

K
K(s/q + 1) - Z i
i=1

K .
Z s/q ~ i+l _
i=1 [Q/A] [Q/q]
_ Ksh+ FQ;(:(KH)/Z (2. 12)
for s <q[Q/ql

and

K

Z 1=K for s >qlQ/q]

i=1

where K = [A/q] in case 1a
and K = s/q in case 1b
We will digress for a moment to insure that the source of the two values
of K'above is clear. In case la the number of pages referenced is
less than or equal to the number allocated. In this case we must
terminate the sum at the number of unique pages accessed which is
[A/q]. In case 1b the number of unique pages referenced is greater
than the number allocated. The number allocated is s/q and we can
only expect to find "free" pages during the first s/q unique page
accessed.

Making these substitutions for case 1a and 1b:
Case la substituting K = [A/q]

when s < q/Q/q]

32

s/a [a/q] + [6/q] - % (a/al® - 3 18/]

[Aiq] s/ - i+l _
i=1 [
i [Q/q] Al (2. 19)
/a]6/a - 5 [8/a1) +5 [A/a]
) [Q/q]
when s >q[Q/q]
A/ql
i=1
Case 1b substituting K = s/q
when s <q/Q/q]
E%q s/a-i+l _ _s/a(s/a+1) - s/q(s/q+1)/2
=1 [QA] [Q/q] (2. 15)
- L (%% + sm)
2(Q/q1
Recalling that case 1b occurs when
[a/a]l > s[Q/4], Equation (2.8), and that [A/q] < [Q/q]
we see that in case 1b
s < q/a/q]l < q[Q/A] (2. 16)

Thus in case 1b it is always the case that s <q[Q/q]

Here we will substitute the expected number of 'free' pages

for the actual number of the pages which is a random variable

33

(except when s >q[Q/q]) . By subtracting the number of “free"
pages from the number of possible page faults we will obtain the
number of actual page faults. There are several cases:

Case la:

[a/](s/q - -%— [a/a]) +—%—fA/q1
of page faults (1a) = [A/q] -

[Q/]

- (a1 - 2 LENN. S JV |

q/Q/q1) 2(Qal 2[QAl
for s <q(Q/A]

=[a/] - [a/q]=0 for s > q[Q/q]
Case 1b: (2.17)
of page faults (1b) = [A/q] o - 1 (s2/q2 + s/q) (2. 18)

2(Q/q]
for s < q[Q/q]

(Note s never equals q[Q/q] in case 1b)
In all cases the number of accesses made is the same.
of accesses = A g/q' (2.19)
where q' = # of bits in a word.

Thus we may write:

34

g,(8) = A ofg’ (2. 20)

aaf-—2— -2 1 1a/m]]
qQal 2(QAal 2(Q/A]

for [A/q] < s/q

and s <q[Q/q]

= 0 = (2. 21)
for [A/q] < s/q
and s >q[Q/q]
and
g1p,(8) = A o/g’ (2. 22)
[a/alo - (s2/a® + s/a)

2[0/q]

for [A/Q] > s/q

The expressions for gza(A) and ga(A) may be obtained
directly from gla(A) and glb(A) by substituting {A/q] + 1 for
[A/q]l. This does not fall into the category of those things which are
intuitively clear even to the most casual observer. However we will
not go into a lengthy justification here because the development of

case 2 is identical to case 1 which we have just considered. Any

35

questions concerning case 2 may be resolved by referring to the
discussion of case 1 and substituting 2a, 2b and [A/q] + 1 in the
appropriate places.

We may write gZa(A) and gzb(A) as follows.

g, (A) = A ofy’ (2. 23)
2a 5 1 1
(la/q]+ D[- -) + ([a/ql+1)]
ad/QAl 2Q/4l 2(QA]
for [A/q] + 1 < s/q
and s <q[Q/q]
= 00 (2- 24)
for [A/q1 + 1 < s/q
and s >q[Q/q]
and
g0 () = A ofy’ (2. 25)
2b 1 2, 2
(la/a]l+1) o - (s"/4” + s/q)
2[Q/q]
for [A/q] + 1 > s/q
Note:‘

We will make a small alteration to the expressions for

gla(A) , glb(A) , gza(A) and ga(A) at a later point in the text.

36

2.5 Consideration of a Distribution of Loop Lengths

In order to compute E[g(A) | we must have a density function for
A. The question arises as to what should such a density function look
like. One would imagine that a real program would be best modeled
by a number of fixed length loops in addition to several variable length
loops. The fixed length loops are generated by such things as actual
DO loops. Variable length loops are generated by such activities
as searching a list for some value. This would produce a density
function containing a number of ''spikes'. However, the level of this
model does not lend itself to such a detailed description of a program.
We can however consider a density function with a single dominant
peak with appropriate variables which allow control over the sharpness
and the position of the peak. A function of the form

1
a+(b-A)2

provides us with the needed peak and control over the sharpness of
the peak. Here the peak will occur at A = b and will have a maximum
value of 1/a.

For our purposes we will choose the constants in the equation

to more closely suit our problem. Thus choosing

1

i (2. 26)

+(p - 2)2
BV [Q/qlq

e

37

as our basic function we may position the peak at any point in the
virtual address space by choosing a p in the range 0 <p <1.

Thus if we wish to locate the peak of the distribution of A's at

. 2 of the length of the program then we choose p = . 2. Notice that
as we change the size of the program the peak will remain in the
same relative position. We will consider this aspect in more detail
later.

In order to make this function into a density function we must

normalize it. Taking the integral

[Q/ala
J 1 da

o —5 t (p - -
e [Q/ala

][Q/q la

o

7 - Aatan’ NregaT A - oP)

= q[Q/qle[tan” 1e(1-p) + tan_ 1ep]

(2. 27)
and normalizing we have a density function for A

1
fA(A) =
q[Q/q]e[—li- +(p - A)2][tan- 1e(l-p) +tan 1ep]
e [Q/ala
(2. 28)
for 0 <A <[QAla
=0 for 0 >A >[Q/la

Although this appears to be rather complex it is simply of the form

1
5 :
aA +bA +¢

where the constants a, b and ¢ are rather cumbersome.
38

This density function was purposely constructed so that changes
in the program size Q produce reasonable changes in the density
function f A(A) . The assumption has been made that as the size of a
program increases the size of the access loops increase proportionally.
The inclusion of [Q/qlq, the number of bits associated with the process,
in this function performs exactly that function. We may draw a graph
to illustrate this. Figure 2.7 shows what happened to the density func-
tion when the number of pages used by the program is doubled. Curve
A depicts the density function for a program using [Q/q] pages. Here
p = . 25 making the most frequent loop length 1/4 the size of the
program. A program using twice as many pages 2[Q/q] but with the

same p and e parameters would appear as curve C. Curve C may

be obtained by

——

0 afQ/q! 24/Q/a]

The A Distribution
Figure 2.7

39

first making a simple linear scale change to obtain curve B and then
normalizing to obtain curve C.

There is another aspect of normalizing with respect to q[Q/q]
which must be considered. The term q[Q/q] represents the apﬁarent
size of the program when the actual size is Q and the page size is
q. Thus we see that the probability of a given loop length is affec-
ted by the page size. For instance if a program's actual size Q
is "poorly' matched to the page size q the program will appear
larger due to wasted space. We will assume that this wasted
space is scattered at random throughout the programs virtual add-
ress space and thereby expands the length of loops being executed.
This has one effect which must be corrected for. Earlier we said
that the number of accesses made by a loop of length A traversed
o times would be Ao/q' where q' is the word size. However the
process of normalizing the distribution of A to the apparent size
of the program means that loops contain wasted space which does
not contribute to actual program accesses. In order to account for
this wasted space contained in loops we will express the number of

program accesses in a given loop as:

of accesses = A,G Q (2. 29)
alQ/q]
The term Q can be recognized as the ratio between the actual
a/Q/ql

size of the program and the apparent size of the program. Including

40

this change the expressions for g4 a(A) , glb(A) , gza(A) and g2b(A)

become:

(A 0/q") (QalQ/l)
(A) = (2. 30)

aalfn - —S— - 141 yagq
aQal 2[Qal 2[Q/A4l

gla,

for [A/q] < s/q

for s < q/Q/q]
Ao _ (2.31)

for [A/q] < s/q

and s > q[Q/q]

(A 0/q") (QAIQ/ql)

(a/qlo - —2— (%42 + s/q)
21Q/q]

for [A/q] > s/q

(A 0/9") (Q/a]Q/Al)

(a) =
®2a s 1) 1

- + (Ia/ql+ 1)]
a[Q/al 2[Qal 2(Q/Al

(fa/al+ 1) [(1 -

(2.33)
for [A/q] +1 < s/q

and s < q/Q/4q]

41

= © (2.34)
for [A/q1+1 < s/q

and s > q/Q/q]

and
(A 0/q") (QAIQAQT)
Eop(A) = (2. 35)

((a/]+1) o - —— (s%42 + s/)
2[Q/q]

for [A/Q]1+1 > s/q

2.6 Final Model Development

We may express the expected value of g(A) as

alQ/a]
Elg(a)] = fo [g4(A)P(Case 1]a) £, (a) (2. 36)

+ g,(A) P(Case 2[a) £,(4)]da

This integral must be divided into three separate integrals in
order to accommodate the changes in functional representation which
occur at A = qs[Q/q]- 1 and A = qslQ/q]. Thus it will take the form

(s-q)
E[ga)]= [[8,,(A) P(Case 1|A)f, (&) +g,,(A) P(Case 2|At, () Jaa
o

S
+ [[84,(A) P(Case 1|a)1,(A) + g4 (A) P(Case 2|2)f, ()]dA
s-q

a/Q/q1
+ [g,,,(8) P(Case I[A)fA(A) + g9y, (8) P(Case 2|A)fA(A)]da
s
(2.37)

42

The probabilities P(Case 1|A) and P(Case 2|A) may be taken from

Equation (2.5). They are:
P(Case 1|a) = [a/q] - A/q (2. 38)

P(Case 2|a) = 1 -[a/q] + A/ (2. 39)
We can at this point simplify our equations considerably. We will
proceed by examining the terms in the above integrals in some detail.
Beginning with the term in the first integral we will factor out f A(A)

giving us
[8,,(4) P(Case 1|a) + 8, (8) P(Case 2|a)] £,(A) (2.40)
Let us now consider the function gla(A) in some detail. Rewriting it

(A o/q") (QMlQ/ql)
gla(A) = (2.41)

[AQ](1-s- L) + 1 [a/a]]
2[QMal 2(Q/A]

for [A/q] < slQ/A]
and s # 1

Notice that between values where [A/q] changes abruptly gla(A) increases
linearly with A, This is simply because only the numerator contains a A
that is not in the form [A/q] and this A is in effect multiplied times a
constant except in the neighborhood of points where A/q is an integer.
Thus we would expect a graph of gla(A) to be a series of straight lines

connected by discontinuities.

43

The form of gza(A) is the same as gla(A) except that [A/q] is
replaced by [A/q] + 1. It should be clear that our comments about
gla(A) also apply to g2a(A) .

Another most important characteristic of these two functions
is that

gza(A) = (lglf(l) gla(A +€) for A/q = integer (2.42)

In Figure 2.8 we show a graph of gla(A) and gZa(A) showing
the characteristics we have just discussed.

Next we would like to turn to a detailed examination of the term
[81,(A) P(Case 1|a) + g9,(8) P(Case 2|a)] (2.43)

over a range of delta from nq to (n+1)q. Figure 2.9 shows three
graphs one displayed a detailed graph of gla(A) and gZa(A) and two
others showing P(Case 1 IA) and P(Case 2|A) over the same range.

If we examine these graphs and the term in question we can see
that at a poiﬁt just to the right of A = nq (or A = nq + € where € is
arbitrarily small) the Expression 2,43 is equal to gla(A) . Corres-
pondingly at the other end of the range where A = (n+1)q the expression
is equal to gy a(A) . The value of the expression clearly begins on
the left equal to gla(A) and progresses between the two function
g4 a(A) and g9 a(A) equaling gza(;A) at the page boundary. The

expression is clearly never greater than gla(A) nor less than gza(A) .

44

of accesses
of page faults

v g
: ;0 s gza(A)
.' % ‘
— i ’ 4 | i
nq (n+1)q (n+2)q (n+3)q
A ——>

g, 25 2 function of A
Figure 2.8

45

of accesses

of pagﬁ- faults
N
| |
nd A (’-}tlﬂ')%
g4, (A) and g, (A) vérsus A
1
\\
P(casel|A)
0 -~
nq A (n+1)q
——
P(case 1 A)|versus A
N
- %
P(case 2|4)
0 - -
nq (n+l)q
"
—

P(case 2 A)|versus A

The Components of HI(A)
Figure 2.9
46

We will replace Expression 2.43 with the function
(A 0/a") (QAlQ/al)
S 1 1
-) +
alQal 2(QAl 2[Q/A4]

H,(a) =

4

(A + 1)[(1 - (8/q +1)]

209Q A (2. 44)
a (A +q)(2a[Q/A] - 8) +A)

We can recognize HI(A) as gZa(A) where [A/q] has been replaced by
A/q. Hl(A) is clearly an exact replacement for Expression 2.43 at

page boundaries and is a smooth function which conforms to

g9,(8) < Hy () < g,(8). (2.45)

Keeping in mind that we will be integrating the product HI(A) f A(A)
it is clear that any errors introduced by the use of HI(A) are trivial
when compared to the rather arbitrary choice of f A(A) .

If we examine the other two integrals of Equation 2. 37 we see
that the situation in each is approximately the same. In each we have
two functions which are straight lines between page boundaries and
have discontinuities at the page boundaries. Figure 2.10 shows
the general form of the functions gla(A) , gza(A) , glb(A) and g2b(A) .
In this plot we have plotted these functions over the ranges where
they appear in the integrals of Equation 2. 37 in the case of s = 5q.

Turning to the third integral of Equation 2. 37 we will replace

the term

47

of accesses

of page faults

0 g 29 39 49 59 6g 79 8a 99 10q

A—>
The Generation of Hi(A)

Figure 2.10

48

[g,,(4) P(Case 1]a) +8g(A) P(Case 2[A)] (2.46)

with

(A o/q") (Q/AIQ/A)
H3(A) = (2.47)

(8/q + 10 - —— (s%/4” + /)
2[Q/q1
= Q X A
VMl (5 q- -2 (2 + 5/))
20(Q/]

The function H3(A) can be recognized as ga(A) where [A/q] has
been replaced by A/q. Again H3(A) is equal to the expression in
question at page boundaries and satisfies

Eop(8) <hg(a) <gyy(a) (2.48)

In the case of the second integral of Equation 2.37 we will factor out the

term
[81,(A) P(Case 1|A) + g, (A) P(Case 2]a)]. (2.49)

This term combines both cases a and b and is illustrated in Figure 2. 10
in the range of A from 5q to 6q. We will replace this term with a
straight line which connects the values of the term at the page
boundaries. The general form of this approximation will be simply

Hy(A) = (slope) A + (constant). (2.50)

Since the value of Hl(A) and HZ(A) is exact at the page boundaries

we may compute the slope as

49

Hg(s) - H,(s - q)

slope
s-(s-q

Hg(s) - Hy(s - q)

= (2.51)
q
and slope for the constant
constant = H3(s) - (slope) s
Expanding these terms we see that
r~ =
s(Q/alQ/al) 20Q(s-aq)
HZ(A) = -
q 2, 2
a'(s +q - (s°/a” + s/a)) a's(2(a/Q/ql-s)+s - q)
L ZU[Q/Q] -

—

((q - s) s)(QalQ/A])

20Q(s - q)

d (sz/q2 + s/q))
201Q/q]

q'(s+q -

q'(2(q[Q/q - s) +

s - q)

v

(2. 52)

We can now write E[g(A)] using the approximating functions.

E[g(a)]=1
for 0 < s< g

s-q

=fo

S
H,(A)f,(A)dA + fs_qHz(A)f A(8)da

a/Q/q]
+ fs

H3(A)fA(A) dAa

50

(2. 53)

(2. 54)

for g < s < q[Q/A]T
= (2. 55)
for s > alQ/q]

This integral is evaluated in Appendix A and the results follow:

E[g(A)]=1 (2. 56)
for 0 < s< ¢

a;+s-q A, + 8-

\
)+Kzﬂn(a2 7

E[g(a)] = All[K1 £n (.

2
g+ a4(s-q) + a5(s-q)

5 ag

)l Qale[tan” {252 _ep) 4 tan™L(ep) |]
5 q/Q/a]

, 2
1 agt @, S+ap s

2
5 Ag+ a4(s-q) + a_5(s-q)

A -1, e(s-q)
+(K,-K)a[Q/ale[tan” (- ep) - tan “(—— - ep]]
6 75225 q{Q/ql a[QAal
ag +a[Q/q]
+ AgK, (n (=2 o)
1 ag+a, q[Q/ql + ag *re/ar
+ K8 5 2 £n (N
gt @y S+a S
+ (Kg K)qu/q]e[tan e(1 -p) - tan 1(- ep)]]

a/Q/a]
(2. 57)

o1

for q < s < dfQ/]
E[g(a)] =
for s > q/Q/Al

Where
20(Q/[Q/41

Ay = 1 -1
q' e[tan ~ e(1-p) +tan ~ (ep) |

1

Q
Ag = 1 1
a/Q/qle[tan ~ e(1-p) +tan “(ep)]
A - Q/q

8- q'[Q/q]e[tan"1 e(l-p) + tan'l(ep)]

a;=4q

ay = 2(qQ/q] - s)

1 2
3= P
e
a, = - 2p
q/Q/al
N oo 1
°" %qur?

ag=a- —4— (%4 + s/g)
201Q/q]

52

(2.

(2.

. 58)

. 59)

. 60)

61)

.62)
.63)

. 64)

. 65)

66)

. 67)

K, = 5 (2.68)

_az
K, = (2. 69)
2 (aq- a,)(ag- a, ag+ a az)
17 9271937 94 9™ 95 99
Ky = -(K;+Ky)ag (2.70)
a a
3 3
K, = -K, 2 - K, 2 (2.71)
S 209/ Q/q(s-q)
Ky = - (2.72)
q'(s + a6) sq'(a2+ s-q)
(q-9s 209/ Q/q1(s-q)
Ke = + (2.173)
a'(s +ag) q'(ag+ s - q)
-a6
K7 = 5 (2.74)
a3- a4 a6+ 3.5 a6
a3
1 + K7 (—a—é— - 34)
Kg = (2.75)
a
6
a3
Kg = —K,7 (2.76)
A6

To begin, E[g(A)] is the expected ratio between the number of
accesses and the number of page faults or in other words the average
number of accesses required to produce a page fault. Thus we may
express the lifecycle function as a seven variable function

53

f(S, q"q, Q, o, D, e) = E[g(A)] (2' 77)

Before continuing we would like to add one additional considera-

tion. We will define
H = the number of storage accesses between I interrupts. (2.78)

Here I¢) involves interaction outside of the storage system, possibly

with a terminal user. The rate of I{) interrupts per access is

then 1/H and the rate of storage interrupts will be . We
E[g(a)]
may express the combined rate as
1 1
Interrupt rate = +—H (2.179)
E[g(a)]

We may now write an expression for an eight variable life cycle

function which includes IQ interrupts as

f(S, Q', qa, Q, o,Dp, €, H) = 1 1 (2' 80)

E[g(a)]

where
s = absolute allocation in bits
0< s
q' = word length in bits
0<q'<q
q = page size in bits
qQ'< q

54

Q = program size in bits
0<Q

o = cycle repetition number (dimensionless)
1<o

p = the normalized mode of the cycle length
0<p<1

e = a control of the A distribution
0< e

H = # of storage accesses between IQ interrupts

0 < H

2.7 Examples of Model Behavior With Varying Allocation

Here we want to study the lifecycle function and its behavior.
We will consider a number of graphs of the function. To begin we

will consider a specific case where:
q' = 32 bits
(a 32 bit word)
q = 16384 bits
(a 2048 byte or 512 word page)
Q = 163840 bits

(a 10 page program)

55

=20

(loops are accessed 20 times before

a random jump)
p=.5

(the most frequent loop length is 1/2

the length of the program size)
e=20

(the distribution of loop lengths has a

moderately sharp peak)
H = 4000

(I interrupts occur at a rate of 1 out of

every 4000 accesses)

These parameters were selected with two goals in mind.
First reality and second a demonstration of functional behavior as
we varied the parameters away from this '""standard' case.
Examining Figure 2. 11 we see a graph of this ""standard" lifecycle
function plotted as a function of the absolute allocation s. We may
describe this graph in terms of three regions; the under allocated
on the left, the fully allocated on the right, and the transition region
in the center where we see that the lifecycle function grows rapidly

with respect to allocation.

56

f(s,q',9,Q, 0, p, e, H)

4000 T

3200 T

2400 -

1600

-+

800 |

} i } [[l i i J

i
Al

40,000 80,000 120,000 160, 000
allocation (s in bits)

The Lifecycle Function Versus Allocation
for the ""Standard' Case

Figure 2.11

57

In the under allocated region the mean number of accesses
required to produce a page fault is most strongly affected by the
page size q and the word size q'. In fully allocated region the
number of times a loop is accessed before beginning a new loop,

o, and the number of accesses per IQ interrupt, H, have the
greatest consequence. The location and sharpness of the transition
region is affected most strongly by the variables that control the
loop length distribution p and e.

In Figure 2. 12 a graph is displayed showing the lifecycle
function for three different values of p (normalized mode of the
loop length). All the other variables are the same as our ''standard"
case just considered and the plot for p = . 5 is the "'standard " case.

Here we see that as we increase p and thus increase the length
of the loops the transition region moves to the right or to a higher
allocation. Likewise reducing the value of p reduces the allocation
required to reach the transition region. In terms of the working
set we could say that increasing p increases the size of the working
set and decreasing p decreases the size of the working set.

Turning to Figure 2. 13 we also see a graph containing three
plots of the lifecycle function. Here we have varied e which
controls the sharpness of the distribution of loop lengths. Small
values of e produce a broad distribution of loop lengths and large

values produce a sharply peaked distribution with low variance.

58

i(s,q',4,Q, 0, p, e, H)
4000 T

3200 |

2400 +

1600 T

800 +

}] $ } I 1]

-+

L] T T L)

0 40, 000 80, 000 120, 000 160, 000
allocation (s in bits)

o

The Lifecycle Function Versus Allocation

With Variations in p

Figure 2. 12

59

i(s,q',4,Q, 0,D, ¢, H)

4000

3200

2400

1600

800

-

L

-

] i { Il i | 1

1

L L 4 L

40, 000 80,000 120,000 160, 000

allocation (s in bits)

The Lifecycle Function Versus Allocation

With Variations in e

Figure 2.13

60

Again we display the '"standard' curve and two variations from it.
The standard curve is in the center where e = 20.

Here we see that the broad distribution of loop lengths in the
case of e = 4 produce a wide transition region. In the case of e = 100
we have a sharper distribution of loop lengths and corresponding a
sharper transition region. In terms of the working set, if the size
of the working set is sharply defined we can expect a sharp rise in
the lifecycle function when the allocation exceeds the size of the
working set. Correspondingly if the size of the working set varies
as the program is executed and has a broad distribution we can
expect a broad to non-existent transition region.

In the fully allocated region the two variables H and ¢ have
a large effect. In Figure 2. 14 a graph is shown with three plots of
the lifecycle function. Here we have varied H, the number of
accesses between I interrupts. The '"standard' curve is as
usual in the middle where H = 4000. The effect of varying H can
be dramatic but is generally predictable. Notice that in the case
of H = 8000 the curvature in the fully allocated region is different
from the other two cases. In Figure 2.15 we show a case which is
"standard" except that H = 0. Notice here both the scale of the
graph and the distinct change in curvature.

Figure 2. 16 shows a graph of three cases where o = 20 is

the "standard" case. If we disregard the effects of 10 interrupt

61

f(s,q',9,Q,0,p, e, H)

8000

6400

4800

3200

1600

]

-

L] I [} }. } i
L] T]

t 1

80,000 120,000 160, 000

allocation (s in bits)

40, 000

The Lifecycle Function Versus Allocation
With Variations in H

Figure 2. 14

62

f(s,q',9,Q,0,Dp, e, H)
40, 000T

32, 000-

AJ

0 - + —+ t } t -+ —+ 4
0 40,000 80, 000 120,000 160, 000

allocation (s in bits)

The Lifecycle Function Versus Allocation

for H= o

Figure 2. 15

63

f(s’ q" q’ Q’ 09 p’ e, H)
4000 T

3200 T

2400 +

1600 T

800 +

-4
L

I8 i i J
T

160, 000

|
~ 1

.

0 - ; .
0 40, 000 80, 000 120, 000

allocation (s in bits)

The Lifecycle Function Versus Allocation

With Variations in ¢

Figure 2. 16

64

we would expect that changes in the lifecycle function in the fully
allocated region would be approximately equal to changes in o.
However in this case these changes are suppressed by the IQ
interrupts. In fact since H = 4000 the lifecycle function cannot
exceed 4000.

The variables o and H cannot be described in terms of the
working set concepts. Both ¢ and H describe what happens when
we do allocate sufficient space for the working set.

Figures 2. 17 and 2. 18 show the effect of changing the word,
q', and page, q, size. In general increased word size means a
decrease in the lifecycle function. In the case of page size, an
increased page size results in an increased lifecycle function.
Great caution must be exercised in the interpretation of either of
these results. In the case of page size, q, we are considering
here pages which are exact divisors of the program size resulting
in no wasted space. Also the three page sizes used here are con-
siderably smaller than the allocation s. The effects of varying
page size will be examined in considerable detail in the following
pages. In the case of word size, q', the effects on the lifecycle
function are representative but changes in word size are accom-
panied by other important system changes. For example we would
expect the useful work per access and the number of accesses
between IQ interrupts to change. The important point here is that

the lifecycle function is a function of word size.

65

f(s,q',4,Q, o, p, e, H)

4000 T

3200+

1

2400

p—t
(=]
(=]
o
1

i

40, 000

4

i
T

80, 000

allocation (s in bits)

120, 000

The Lifecycle Function Versus Allocation
With Variations in q'

Figure 2. 17

66

160, 00

ot

f(s’ q" q’ 9’ G’ p? e, H)

4000

3200

2400

1600

800

r

i 1 A4 J' 1L 4 i -4

40, 000 80, 000 120,000 160, 000

allocation (s in bits)

The Lifecycle Function Versus Allocation

With Variations in q

Figure 2. 18

67

2.8 Example of Model Behavior With Varying Page Size

We will now consider the effect of varying the page size, q,
in detail. The graph of Figure 2, 19 displays the lifecycle function
as a function of page size. This represents the ''standard' plot
from which we will make variations. In our previous "standard"
there was obviously no need to specify s as there is no need to
specify q here. This ""standard'" here is identical to the previous
standard except that we have chosen s = 122880. This means that
the allocation is 3/4 of size of the program. This places us in a
rather well allocated region or we might say that this is sufficient
allocation to get the working set in core.

We will divide the graph of Figure 2. 19 into three regions. On
the left the life cycle function rises sharply with page size. We will
refer to this region as the initial region. In the middle values of
page size we see a sawtooth-like variation which increases with
page size. We will refer to this region as the sawtooth region.

On the right beyond a page size of 122880 bits we see a region where
the value of life cycle function is suppressed. We will refer to this
region as the suppressed region.

Beginning again on the left in the initial region we see a sharp
rise in the value of the life cycle function with increasing page size.
In this region of very small page sizes the life cycle function is

dominated by the necessity to bring in an enormous number of

68

f(s,q',q,Q, 0, p, €, H)

4000 T

3200 +

1600

800 T

Il
L

-+ 4 4 4
¥ L] ¥ T

-+

40, 000 80, 000 120, 000 160, 000
Page Size (q in bits)

.

The Lifecycle Function Versus Page Size
for the "Standard' Case

Figure 2. 19

69

pages every time any new information is needed. In the case of a
32 bit page (the smallest value calculated here) the page and the
word size are equal. Thus every time a new loop is started almost
as many page faults will occur as there are words in the loop. In
this case we have a 32 bit page, a 32 bit word and we access each
loop 20 times, o = 20. Thus we will get somewhat more than 20
accesses per page fault. The "somewhat more' is the result of
finding desired pages in core from previous loops.

As we increase the page size farther the general shape of the
curve begins to flatten out and a sawtooth variation appears. The
sawtooth variation is caused by the discrete size of the pages. The
peaks of the sawtooth represent page sizes for which some exact
multiple of pages is equal to the size of the program. As we
increase the page size from one of these peaks we see that the
apparent size of the program increases. That is the program is
spread out by the inappropriate page size and consumes more space.
As we further increase the page size we reach another '"perfect"
fit and the value of the life cycle function again peaks.

If we increase the page size farther we reach a point where
the page size exceeds the allocation. In this case this occurs at
q = 122880 bits. From this point on the value of the life cycle
function is suppressed and the program behaves as though it were

severely under allocated. Notice that in these graphs the page

70

size runs from the word size to 10% larger than the actual program.
Turning to Figure 2. 20 here we see the effect of varying the
I interrupt rate. The "'standard' curve is shown in the center
where the value of H is 4000. In Figure 2. 21 we see the relative
value of the life cycle function when H = w and H = 4000 (the
""standard' curve).
The curve of Figure 2. 21 with H = « demonstrates an effect
of page size which has been evident but not pronounced in the
previous graphs. Let us consider the value of the life cycle
function when the program size is multiple of the page size. That
is at the peaks of the life cycle function. Notice that in the sawtooth
region the value at the peaks first increases and then decreases.
The increase can be explained easily as an extension of the behavior
in the initial region, however the decrease has yet to be examined.
Considering this specific case we see that with a page size
of 81920 bits we have a two page program. Likewise with a page
size of 54614 bits we have é three page program and with a page
size of 40960 bits we have a four page program. Notice that
each of these page sizes 'fits'" the program either exactly or almost
exactly. However in the case of the two page program only 1 of
the two pages or 1/2 of the program can be allowed in core since the

allocation is 3/4 of the total size of the program. Correspondingly,

71

f(s’ q', q.’ Q’ 0.’ p’ e’ H)
8000 -

1

6400 | H = 8000

4800

3200

1600

r

d
L

J — i 4
L L 1 L])

0 40, 000 80, 000 120, 000
Page Size (q in bits)

The Lifecycle Function Versus Page Size
With Variations in H

Figure 2. 20

72

160, 000

f(s,q',9,Q, 0, p, e, H)

40, 000

=

32, 000"

A

24, 000-

16, 000t

8, 000}

H = 4000

1l

i

0

+4+

40, 000

for H= o

73

-

80, 000
Page Size (q in bits)

Figure 2. 21

i
T

120, 000

-

The Lifecycle Function Versus Page Size

L

160, 000

i
T

in the case of the three page program we can keep twq pages in core
using 8/9 of the allocation and in the four page program we can use
all of the allocated space. Thus in addition to the effects of "fitting"
the program size we have some effects involving "fitting' the
allocation.

Before going on to other graphs notice that the IP interrupts
are a major factor in the "standard" lifecycle function we have
chosen and this will reduce some of the effects that we will observe
as we proceed to examine changes in other variables.

In Figure 2. 22 we show the effect of varying the allocation s.
Here our "standard' curve is the upper curve where s = 122880.
There are several notable effects of changing s. First as we
reduce the allocation we see the expected reduction in the value of
the life cycle function. We also see that the suppressed region
extends further to the left. That is, the page size exceeds the
allocated space sooner. Notice that in thé case of s = 40960 bits
the program is under allocated and appears suppressed over the
entire range of page sizes. The effect of not having the working
set in core (i.e. most loops bigger than the allocation) is similar
to the effect of the page size being larger than the allocation.

As we change the allocation we see a marked change in the

curvature of the life cycle function between peaks in the sawtooth

74

f(s,q',4,Q, 0, D, €, H)
4000 T

3200 +

2400 T

s = 40960 bits

s = 81920 bits

s = 122880 bits

i

-

i

d
T

0 40, 000

80, 000

4

T

120, 000
Page Size (q in bits)

T

160, 000

The Lifecycle Function Versus Page Size

With Variations in s

75

Figure 2. 22

region. When we move from one peak to another increasing page
size we are in effect expanding the apparent size of the program,
an thus reducing the relative allocation. As we change the value
of the absolute allocation s we are in effect picking a different
point on the life cycle function versus s curve. We can think the
variation which occurs between peaks in the sawtooth region as
roughly corresponding to a variation in the allocation in the life
cycle function versus s curve where an increased page size
corresponds to decreased allocation. Thus when we choose s in
a concave regidn of the life cycle function versus s curve we can
expect a tendency for concave behavior between peaks in the saw-
tooth region and vice versa for s chosen in convex regions of the
life cycle function versus s.

Turning to Figure 2. 23 we see a graph displaying three plots
where we have varied the size of the mode of the loop length or in
effect the working set. The "standard'" curve is in the center
where p = . 5. Notice that the beginning of the suppressed region
is the same for all cases. Here we see again large changes in the
curvature. Notice also that the largest p, or mode of the loop size,
represents a loop size .7 times the length of the program. In all
of these cases we have an allocation of 122880 bits or .75 times the
length of the program. Thus we do not show a sharply under

allocated situation.

76

f(s,q',4,Q,0,p, €, H)

4000

3200

2400

1600

800 |

T

-

I

=+

i | i } 4
L) L T T 1

40, 000 80, 000 120, 000
Page Size (q in bits)

The Lifecycle Function Versus Page Size

With Variations in p

Figure 2. 23

77

160, 000

f(s,q',4,Q, 0, p, €, H)

4000 T
3200 +
2400 T
00 oo 4
T e =20
1600 T e = 100
800 -
0 } } } { -+ { y +
0 40, 000 80, 000 120, 000 160, 000

Page Size (q in bits)

The Lifecycle Function Versus Page Size

With Variations in e

Figure 2. 24

78

In Figure 2. 24 we show the effects of changing e. Here the
"standard' curve is shown with e = 20. It is interesting to compare
these curves of Figure 2. 13. Note that the cross over points between
peaks in the sawtooth region of Figure 2. 24 correspond to the cross
over point in Figure 2. 13.

In Figure 2. 25 we show the effect of varying 0. The curves are
rather simple and show an increase over all regions except the sup-
pressed regions.

Figure 2. 26 shows the effect of varying the word size. Changes
in word size cause a change in the lifecycle function which is rather

uniform over all values of page size.

79

f(s,q',4,Q, 0, p, €, H)
4000 T

3200

2400

1600 |

800

i 4.

0 - + —
0 40, 000 80, 000 120, 000
Page Size (q in bits)

-

I
Ll L] T ¥

The Lifecycle Function Versus Page Size

With Variations in o

Figure 2. 25

80

L

160, 000

4
L}

f(s,qa',9,Q, 0, p, e, H)
4000 1

3200

2400

1600

\

800

S}

i
i } {
{ T T T '

0 40, 000 80,000 120, 000 160, 000
Page Size (q in bits)

The Lifecycle Function Versus Page Size

With Variations inq'

Figure 2. 26

81

l

Chapter 3

Macroscopic Model

The purpose of this chapter is to discuss a macroscopic model
which relates the program behavior discussed in the previous chapter
to storage delays, page size, data routings, CPU execution rate and
the number of programs being multiprogrammed. Taking all of these
factors into consideration we will develop a solution for the average
system throughput, that is, the average rate at which user induced

accesses are processed.

3.1 The N Level Hierarchy

We will now turn to considering the meaning of the lifecycle func-
tion in an N level hierarchy. To begin we will consider only variations
in the allocation s and thus we will write the lifecycle function as f(s) .
We will also ignore IQ interrupts for the time being thus we may
assume H = o0,

When treating an N level hierarchy we see that the case of N=1
is degenerate and the case of N = 2 is the type of system we have
assumed up to this point. Thus our focus here will be on N > 2,

For examples we will work with N = 4. The choice of N = 4 is
attractive in that it is large enough to demonstrate all the complexities

of hierarchies where N > 4 and yet it is small enough to be convenient

82

for discussion. Let us consider the 4-level hierarchy shown in

Figure 3. 1.
CPU
A Possible Implementation

thin film (i.e. cache IBM 360/67) L 1 84
core(s) 2 Sq

———
drum(s) me‘?_m___i Sq
disk(s) g_-_, 4 | s 4

i |

A Four Level Hierarchy

Figure 3.1

Here we have shown a CPU and 4-levels of storage and on the left
a feasible set of devices is given. It should be clear that program
information will migrate up and down in these 4 levels in much the

same manner as a 2-level system.

3.2 Storage Allocation

When considering a system with N > 2 certain new questions
arise concerning the allocation of storage space. First we must
allocate storage at several levels rather than just core and drum.

We must be more precise in stating exactly what is stored where.

83

We may resolve the first question as it relates to the model by
simply supplying the variable s with a subscript. Thus we will define
s; as the storage allocated to a process at level i. Figure 3.1 shows
this vector as si' s associated with the 4-level hierarchy.

The second question is a bit more complex. Exactly what is
stored where ? We will follow the following convention: If the
current copy of some process information is resident at level k then
a specific space must be reserved for this information at all lower
levels (i.e. levels i where i > k). This space may or may not contain
a current copy of the process information.

As a direct result of this convention we may state:

and

where Q = total size of a user program or process.

Notice that 8, represents not only the storage allocation at level i

but also the amount of unique current information stored at and above
level i. This, of course, is not the complete answer to what is

stored where but it will suffice for now.

Relative Access Rates

In a 2-level hierarchy a single page fault always generates a

one page transfer from the lower to the upper level. In a multi-level

84

system a single page fault may cause many transfers to occur. We
must then be more precise in defining the relationship between page
faults and data transfers. We will introduce the notion of user program
accesses. User program accesses are generated by storage accesses
in executing user programs. The user program access will always be
to the highest level of the hierarchy containing a current copy of the
required information. When a user program makes an access the
resultant transfer of information may be very complex involving many
levels and both upward and downward transfers. A user program access
as we will use it here does not imply a specific transfer but rather
simply indicates that the user program requires certain information.
We will discuss the transfers which result from a user program access
in detail later in this chapter.

Our immediate concern here will be the fraction of user program
accesses made to individual levels of the hierarchy and how this
is related to the lifecycle function of the user program. Let us begin by
determining what fraction of all accesses made by 7 grocess are made to
level 1. Recalling that 84 is the storage allocation at level 1 from the
definition of f(s) (recalling that we are representing the entire lifecycle
function as f(s)) it is clear that the average number of accesses required
to produce a primary access below level 1 will be f(sl) . Thus the
fraction of accesses which fall below level 1 will be ﬂ% and the frac-

tion of access to level 1 is simply 1 - f—<——5 This general approach

85

may be taken at all levels.

e S 1
¥ v f(so)
4 1
—— 1 .
of primary access below
') levert
8q 9
- - - - - 1
J; v f(sz)
Sg 3
e e 1
v v f(s3)
Sy 4
fmm = 1
v v f(s4)

Access Distribution

Figure 3.2

Since 8; is not only the storage allowed at level i but the total
unique storage allocated at level i and above, the fraction of accesses
falling below level i will be f—(ls—)— This relationship is depicted in

i

Figure 3.2. The fraction of primary accesses, to any given level i

may be expressed simply as

1 1 .
= - = 3.3
u (s, ~ T(sp for i=1,2,...,N (3.3)
where
1 _ 1
f(805 -

At this point we have expressed the fraction of primary
accesses to each level in the hierarchy as a function of the storage

allocation. More precisely the fraction of primary accesses to

86

any specific level is only a function of the allocation at that level and

the adjacent higher level.

Paging
It is our intention to extend the basic concept of paging to an

N-level hierarchy. Such an extension is not trivial and requires an

explanation. What follows is a description of how paging is carried

out in such an extended system and how this system is modeled.

Record Size Constraints

Up to this point we have ignored the effects of record (or page)
size. Here we will consider how record sizes affect data transfers
in the system.

We will begin by assigning a variable q; to each level of the

hierarchy and enforcing the following constraint:

q.

= n, q. where n, = positive non-zero integer.
i+1 i™i i

In our model we will treat the qi's as variables and they may in turn

control the paging behavior of the system.

Information Movement

We will begin to examine the paging process by considering an
example. Figure 3.3 shows a 4-level hierarchy along with a specific
set of qi's and ni's. Now suppose an executing process attempts to
read a word of information from memory and the most convenient

copy is at the bottom of the hierarchy, i.e. level 4. This is simply

87

g ¢ 2andrd

Buided 19A9THINN

—_—

paurjapun Yu

mmo¢n"¢o
w ﬁ®>m1H

u

Il

14

pzo1 = °b
€ 194971

g = Cu

Z
gg1= b

¢ 1°oA9T]

p=tu

2g="'b
T 19A97]

88

a user program access to level 4 of the hierarchy. It is then neces-
sary to ""page this information upward in the hierarchy. '"Paging"
may be carried out as follows.
1. A copy of the record containing the accessed word at
level 4 of size qy = 4096 bits will be read from level 4
into level 3. At level 3 this will form 4 records (n3)
of 1024 bits (q3) each.
2. A copy of the level 3 record (1024 bits) containing the
accessed word is read from level 3 to level 2. At
level 2 this will form 8 records (nz) of 128 bits (qz)
each.
3. A copy of the level 2 record (128 bits) will be read
from level 2 to level 1. At level one this will form
4 (ni) records (or words) of 32 bits (ql) each.
4. A copy of the 32 bits (ql) accessed is read from level
1 to the CPU. (Note: the CPU will be referred to where
convenient as level 0.)
User program accesses to levels above 4 may be paged in much the
same manner with the exception that lower levels are not disturbed.
There are several aspects to this description of paging one of

which will be taken as a fixed part of the model and others which

may vary. As to the fixed part of the model we will assume that the

final disposition of all the upward paged information will be the same

89

as the final disposition in the example. That is each level i above the
level of user program reference will acquire n, new records of size Q;-
These n, records will contain the information contained in the single

record of level i + 1 which includes the primary user program access.

Notice that we are not saying anything about how or what path
the information follows in order to reach its final goal. We are
only fixing the eventual distribution of the information involved in a
paging operation and even this remains a function of the qi's.

Let us consider a few examples which demonstrate different data
paths. We may for instance choose to transfer q; bits directly from
the level of user program access to the CPU (level 0) eliminating the
transfer from level 1 to CPU leaving other transfers the same. This
would be similar to the cache core relationship of the IBM 360/85
[18]. Another possibility would be to transfer a record from the level
of primary access to level 1 and then transferring the appropriate
parts of that record to the other levels. This in effect uses level 1 as
an interlevel buffer. This may or may not be a wise choice but it is
interesting to note that the architecture of the IBM 360/67[30] is limited
to this kind of transfer pattern. It is important to note that the
question of what data paths and combinations of transfers are best
can be explored since this will be a variable in the model.
variable portion of the model is discussed later.

We will now expand our representation of the lifecycle function

from f(si) to f(si’ qi+‘1) including the pages or record size as a

90

variable. Applying this new form of the lifecycle function the fraction of

primary accesses to any given level i (ui) previously given in Equation 3. 3

we have
1 1 .
u, = - for i=1,2,...,N (3.4)
f(s;_ppay) f(spay,4)
where
..._.._..l_ = 1
f(syqy)
and
1 -0
f(SN’ qN+1)

3.3 Multiprogramming

Here we will consider the formal representations required to
represent a program in a multiprogrammed environment. We will
begin by providing the lifecycle function with an index allowing each

process a distinct lifecycle function

£(85, 1 %p)

where h is an integer that satisfies 1 <h <M representing M distinct
processes and i is an integer that satisfies 1<i< N representing N

levels of storage and where

S. h = Total quantity of user program h information at and above
’ level i

Notice that in addition to giving each process a distinct lifecycle

function fh(-) we now represent the allocation of each process at

91

each level in the hierarchy Si nr This allocation can be conveniently
J

expressed as an NX M matrix S.

s s s h
1,1 1,2 1,M
Sa,1 52,27 "2, M
—_] !
5= | | | (3. 5)
] ! |
| | |
s s -~ — — 8
| SN, 1 N, 2 N, M

The elements in the kth row of the matrix represent allocations
at the k-level in the hierarchy. Elements in the kth column repre-

sent the allocation of the kthuser program. Thus we may write
M
8 = jgl 55,1 (3. 6)

where 8; is the total storage allocation at level i.

From Equation 3.1 we may write

Si,h S Sisl,h (3.7)

and

swn > % (3. 8)

where Qh is the total size of the process h.
We may also redefine u, S0 that individual processes may be
identified. Thus:
w =—10 1 (3.9)
S, w %) Th(8) w %q)

92

where

1 -
£, 8o, h? q,)
and
1 - o
f

h(SN, b IN1)

This comes directly from Equation 3.4 and represents the
fraction of primary accesses to any given level i by process h.

Later in this chapter we will treat the first L levels of storage
in a special manner. This will have an effect on the value of Uy and

u in the first L+1 levels of storage. We mention this here only

i,h
to point out that Equations 3.4 and 3.9 will be slightly modified

at a later time.

10 Interrupts

Thus far we have ignored I interrupts in N-level hierarchies.
When 10 interrupts are to be considered they will be treated as
accesses to the NI level in the hierarchy where the N level will
act as a pseudo storage level. Notice that if we constrain the alloca-

tion in the (N-1) th jevel of storage such that

SN-l, h > Qh (3..10)

the fraction of "accesses' to the Nth level (ui h of Equation 3.9 or
b

u, of Equation 3. 4) will be the fraction of all interrupts (page fault

93

and I@) which are I interrupts. We will consider the role of the

pseudo Nth level of storage as we proceed.

3.5 Interlevel Data Traffic

We will now consider a mathematical model which relates user
accesses and the flow of data between levels. We will begin by defining

t. . . . an element of the 4-dimensional array T.
ik, 1,10

tj, ki, = the number of records of size 9 read

or written at level j as a result of a user
read (£=0) or write (£=1) to level i. (3.11)
where j,k,i, and ¢ are integers satisfying
1<j<N
1

k<N

VAN
INA

[y
VAN
IN

N
and

g=0o0r1l

Let us consider an example. Earlier we considered a specific
set of transfers which would achieve the necessary disposition of
information in a 4 level hierarchy. This pattern of transfers was

shown in Figure 3.3 and described in detail in the associated text.

94

Notice that all transfers in this scheme are carried out between
adjacent levels. Let's begin by considering the traffic caused by a
user program access to level 4. Figure 3.4 shows the transfers
which occur. To the left, with solid lines, of the hierarchy the 'page
up'" transfers are shown as described earlier. On the right the page
down transfers are shown using dashed lines. The page down trans-
fers are dictated by the need to maintain a balance of transfers in or

out of any level.

CPU
Level O
R
9% Level 1 [
q2 ’3 qz
95 Level 2]k‘
7 ‘\
q ¥
3 1 Level 3 |
Y
dy 9y | Level 4 ¢

Figure 3.4 Traffic - Primary Read to Level 4

Here we are considering a user read to level 4. Thus we have

fixed the i and ¢ of t,.

. . to 4 and 0 respectively. The nonzero
ik, 1,10

95

values of t. are
]’k’4’ O

Level 1 traffic (j =1)

t 1

1,1,4,0 -

t,2,4,0 =2

indicating 1 record of size dy and 2 records of size dg

Level 2 traffic (j = 2)

t =2

2,2,4,0

t 2

2,3,4,0 "

Indicating 2 records of size q2 and 2 records of size q3.

Level 3 traffic (j = 3)

t 2

3,3,4,0
t34,4,0 = 2

Level 4 traffic (j = 4)

t4,4,4,0 =2

Noticing that fixing the values of i, the level of the user access
and ¢, indicating a reador write user access leaves us with an N

by N matrix ?1 o of terms
’

t, , =t,

i,k ik,i, ¢ (3.12)

There will be 2N such_t_i 0 matrices each of which describes the

b4
traffic in the system which results from each of the 2N possible user

access types.

96

READ (£ = 0) WRITE (£ = 1)

Records of Size (k)

9 9 9 9 Bcsce:ss 9% 9% 93 9
r— L] L] . . [.
1§ 1] toLevell 11]
Traffic 2 o i=1 2
at . . .
Level 3 3
(3)
4 4
| _ L -
ql q2 q3 q4 a qz q3 q,
- . ~ User - . . . T
1|1 2 Access 1l 1 2
. . . to Level 2 . .
2 2 i=2 2 2
3 3
4 4
- > - -
q q2 q3 9y qy a4, q3 Yy
’ . . - User _ . . ©
1 '_1 2 Access 111 2
. . . to Level 3 . . .
2 2 2 i=3 2 2 2
3 2’ 3 2
4 ° 4
9 9 q3 qQy a q2 q3 q4
_ . . . - User - . . . -
1 1 2 Access 1)1 2
. . . to Level 4 . . .
2 2 2 i=4 2 2 2
3 s 9 3 T2 2
4 i 2 4| T 2

Figure 3.5 T Array for Example 1

97

In the case of our example we have 4 levels (N=4) and therefore

2N or 8 't_l matrices each of which is 4 by 4 or contains 16 t, . ele-
b .

[} i,k
ments. These matrices for the example in question are shown in
Figure 3.5. The elements, tj,k’ of these matrices may be determined
by simply drawing the transfers which result from a specific user read
or write as done in Figure 3.4 and then summing the number of records

of a given size ¢, read or written at a given level j giving us the element
k

t,

ik matrices for this example are shown in Figure 3. 5.
b

The 8 Ti, .

It is noteable that in this example and several to follow there is
no difference between a user read or write., We will consider an
example later where this is not the case.

Let us consider a second example. Here we will consider a
case where all data transfers must be in or out of level 1. This
situation was mentioned earlier.

Let us begin by looking at the transfers which result from a
primary read to level 4. These transfers are shown in Figure 3.6
It is important to understand clearly what is meant by page up and page
down transfers when examining Figure 3.6 since some of the page up
transfers are actually moving down in the hierarchy and some page
down transfers are moving up. Page up transfers are those transfers
which occur directly as a response to a user access. Page down
transfers occur in response to the need to maintain a balance of
incoming and outgoing records at each level. In a user read to level 4
the following transfers take place:

98

CPU
Level 0

Page Up Transfers

Page Down Transfers -------------

Transfer Pattern 4- Level Hierarchy
for
User Induced Level 4 Read

Figure 3.6

99

Ay
Level 3 P
—
q3 <
e
Level 4 - -
9y

Page up transfers

1. A copy of the record at level-4 containing the desired
information is read from level 4 to level 1 a transfer
of q 4 bits.

2. A copy of the level 1 record containing the desired information
is read from level 1 to level 0 (the CPU) A transfer of d,
bits.

3. A copy of the level 3 record containing the desired information
is read from level 1 to level 2. A transfer of dg bits.

4. A copy of the level 4 record containing the referenced
information is read from level 1 to level 3. A transfer of
dy bits.

Note:

a. 2,3, and 4 above may occur in any order or in parallel.

b. Only space for a level 2 record is allocated at level 1.
That is after serving as a buffer for the above transfers
only the level 2 record containing the primary reference
is preserved.

Page down transfers

5. A level 4 records is read from level 3 to level 4 passing
through level 1.,
a. A d bit transfer from level 3 to level 1.

b. A dy bit transfer from level 1 to level 4.

100

6. A level 3 record is read from level 2 to level 3 passing
through level 1.
a. A dg bit transfer from level 3 to level 1.
b. a P bit transfer from level 1 to level 3.

7. A level 2 record is read from level 1 to level 2.

Figure 3.7 shows the transfers for user reads to levels 1 through 3.
Here as before page up transfers are indicated by solid lines and page
down transfers are shown as dotted lines.

The diagrams for user writes would be the same except for a
transfer from level 0 to level 1 of size q, rather than the 4 transfer
shown. The traffic matrices for this example are shown in Figure 3.

It is interesting to note that for a hierarchy limited to 2 levels
both of the examples that we have discussed are identical. However for
the N-level hierarchy where N is large the traffic in and out of level 1

is much greater in the second example.

3.6 Primary and Secondary Levels of Storage

There is a distinction which can be made between the levels of
storage which is only meaningful in a multiprogrammed environment.
This distinction is based on the question of how far down in the storage
hierarchy can a user program make accesses without loss of the CPU.
We will refer to the upper levels of the hierarchy as primary levels
and the lower levels as secondary.

We will define

K = Number of primary levels of storage

101

CPU CPU
Level 0 Level 0
Level 1 Level 1 p
\
/1
s
Level 2 ; Level 2
I' |
/
_/I
£
Level 3 Level 3
Level 4 Level 4
Primary Read Primary Read
To level 3 To level 2

Page Up
Page Down —-------

Traffic Diagrams

Figure 3.7

162

CPU
Level 0

_——

Level 1

Level 2

Level 3 ’

Level 4

Primary Read
To level 1

READ ({ = 0) WRITE (£ = 1)

Records of Size (k)

11 . 1 F'l
at Access
Level 3 * : * to Level 1 3
@) .
. . . i=1
4 T 4
- J L
— R ﬁ _
1|1 2 1 1 2
. . } User . .
2 2 Access 2 2
to Level 2
3 i=2 3
4 4
- - L
q 9 Q3 9y 1, 49, q3
RN i
1]1 1 4 1 {1 1 4
. . . User . .
2 1 2 . Access 2 1 2
. . . to Level 3 . .
3 2 i=3 3 2
4 4)
e - —
r <7 —
111 1 3 4 1 |1 1 3
. . . User . .
2 1 2 Access 2 1 2
. . . to Level 4))
3 12 i=4 3 1
4 2 4
L.]

Figure 3.8 T Array for Example 2

1¢3

where K is an integer satisfying 1 <K <N recalling that N is the total
number of levels in the system.

We will now be treating a more general case where access to
level K and above may cause delay in a user program's execution but
will not cause the program to lose the use of the CPU. User accesses
below the level K will cause program interruption and will release the
use of the CPU to other programs in the system.

Let us consider an example where N = 4 and K = 2 as shown in
Figures 3.9 through 3.13. Here we have designated the device type at
each level as shown in Figure 3.9. We will transfer data in the primary
levels only between adjacent levels as in an earlier example. User
accesses to secondary levels will cause transfers as in the previous
example but here the core at level 2 will be used as a buffer. Figures
3.9 and 3. 10 show the transfers which result from user reads to the
primary levels. User writes would result in a similar pattern differing
only between the CPU and level 1 where we would write at level 1
rather than read.

Figures 3. 11 and 3. 12 show the transfer patterns for user acces-
ses to secondary levels. Notice here that the upward movement of data
stops in this example at level 2. This is because we have assumed
in this example that level 1 is completely allocated to the program
using the CPU. Thus in this example user programs accessing a
secondary will lose all the allocations at level 1. This means that

when programs are restarted they begin by accessing level 2 and have

104

0T °¢ @an31g

2 19A9T 03 peay ¢ ordwexy

Axepuodog
4
¥ 19A9T

Axepuodag
b
g 19A97]

Arewtad

4
r 4 EWoA

\ 345.&
b

T 19407

0 194071
ndo

6 '€ 9In31d

1 19497 03 peay ¢ ardwexyq

ST9A9T Axepuodos $

Axepuodag

¥ 19A9T]

¢= 3
S1oA9T Arewitad

Axepuodag

¢ T9A9]

Arewtag

g 19A97]

Axrewtad
Tp
1 194971

0 19A97T
ndo

N

ASTP

wnap

9109

Wty uryj

105

21°¢ aandrq I1°¢ @an3tg

P 19A9T 0} ITIM J0 peay ¢ ordwexy ¢ T9A9T 0] 9TIM J0 peaY ¢ ordwexy

Axepuod9yg ?m@cooom
b b
¥ 19A9T ¥ 194971
Axepuodag ma«t@oomw
b b
€ 19A9T wd. ¢ 194971
b e e = ==
llllllll - € | £p
Arewtad Arewtxg
Nmu 1 N.U
G 19A97] g 1oA97]
[Axewiid | %.Hm_mwﬁm
b
T 19497 T 194971
0 E.».mq A 0 194971
ndo ndo

106

Traffic
at
Level

b) 3

T 4
Primary

Secondary

\’

READ (£=0)
Records of Size (K)
q .qz . a4 . q

_
)]
4 9% 93 94_
1 2

"2
Y4 9 93 94
)
)
L -t
4 9 93 Y
1 4
1 2
' 2
L J

Figure 3.13 T Array for Example 3

107

User
Access
to Level 1

i=1

User
Access
to Level 2

i=2

User
Access
to Level 3

i=3

User
Access
to Level 4

i=¢4

WRITE (£= 1)

g 93 9
9 93 94
2
-

2
2

9 q93 94
1 4
1 2

=

an initial transient period of paging in the primary levels.

The_t_i 0 matrices for all possible user accesses are shown in
b

Figure 3. 13.

3.7 Dedicated and Shared Levels of Storage

At this point we would like to formalize this concept of entire
levels of storage being dedicated to the program using the CPU by
defining

L = Number of levels of CPU dedicated storage (3.13)
where L is an integer satisfying 0 <L <K recalling that K is the
number of primary levels of storage.

The restriction that L <K is required to avoid a situation where
every user program being restarted would immediately make an access

to secondary storage and thus be interrupted.

The Model 85

Motivation for considering systems with K > 1 is in part based
on the apparent success of the IBM 360/85 which has two levels of
primary storage (K=2). The level 1 storage of the Model 85 is thin
film and is dedicated to the program using the CPU (L=1). Because of
the interest generated by this particular design as well as its relevance
to this work we will consider a Model 85 like situation where we have
added 2 additional levels of storage, a drum and a disk, and assumed
a virtual addressing feature as on the IBM 360/67.

Figure 3. 14 shows the transfer path for a read to level 1.

Constrasting this to the write to level 1 shown in Figure 3. 15 we can

108

T [9A97] 03 9TIM ¥ oldwrexy

GT ‘g 9andig

Axepuodag

43

¥ 1°A0T]

Axepuooag
€
€ 19a071

Arewiad
Ch
g ToA9T

Arewtadg

Ip
T [°A9]

0 19A9T]
ndo

p1°¢ 9andig

Axepuooag

43
v .HO>®1H

Axepuoooag
€b
¢ 10A9T

Arewtad
4
b
¢ 194971

Arewtadg
b
1 19A9T

A e — — — — — -

0 TeA9T
ndo

T 19A97T 03} peoy ¥ ordwexq

Ty

ASTP

wnp

9109

Wty uryy

109

LT ¢ 9an31q 91°'¢ 9anSig

C [9A97T 0} 91TaM ¥ oldwexy G 19A97T 0] pBoY § ordwexy
?m?ﬁ% o8 Axepuoooag
¥ 19A9T ¥ 19A9TT
>pd@m~”own Axepuooag
€ 19A97] € 19A97]
».H,mzmﬁm Arewitadg
z Hm%oq 2 19491
Axrewrtad Axrewtag
Tp
T 19497 [9497
—_— 0 19497 0 19A9T
ndo ndao

110

see that there is a considerable difference between reads and writes to
level 1. This difference is a result of the fact that a current copy of the
contents of level 1 is always maintained at level 2, This means that
there will never be an occasion necessitating the actual paging down
of records from level 1 to level 2 in order to make room for records
being paged up, When space at level 1 is required it is simply
released to the new record since a current copy is always maintained
at level 2. Figure 3. 16 and 3. 17 show the transfer patterns of a read
and a write to level 2. The read and write differ here also in that a
read to level 2 causes information to be moved up to level 1 (64 bytes
in the model 85) and a write does not.

The transfer patterns resulting from user accesses to the
secondary levels are shown in Figure 3. 18 and 3. 19. Here we see
patterns similar to these discussed before and more typical of a
IBM 360/67.

The traffic matrices Fi, 0 for all user accesses are shown in
Figure 3.20. Notice here that the user read (£=0) and use write (£=1)

matrices differ.

111

61 °¢ 9an31g

P [9A9TT 0} 9JIIM J0 peoy P odwexy

“, %.Hmwco BETS
b

b 1949

7/

7

£1epuooag |

. g
2 : b ¥
b 7 grene b

— o —— —— e o= v

Axrewtad
N Nd
> g 1eae P

Arewtad
Tp
1 19A9T

0 194971
ndo

81 '¢ 92an31g

€ 19497 03 91IM JO pedyd % ordwexqd

Axepuodag

p
¥ 19A0T

Axepuodag
€
7 ¢ 194971

- —— — — — —— —— — -

md, b

\ | Lrewrtag
¢p

g 19407

Arewtad
Tp
T 1949

0 19407
ndo

112

Traffic
at
Level

b))

v

3

B W N

READ (£=0)
Records of Size (K)
User
9, .qz . q3 . q4_1 Access
B 1 to Level 1 1
. i = 1
2
3
L] . 4
L * -
1 1
1 | i=2 2
) 3
' 4
__ql Q% 93 9 _
) 1
2 i=3 2
"2 3
. . . 4
L_ st
4 9 9 9y
1
1 4 i=4 2
1 2 3
L] . 2 4
L . . . -

Figure 3.20 T Array for Example 4

113

WRITE (£=1)

q, 4,
1

-

1"

4 9 9

q, 9,

Regions of Storage

Figure 3.21 shows a general storage hierarchy relating the
variables L, K, N and the terms dedicated, shared, primary, and

secondary. Recalling that

Dedicated levels are completely allocated to the user program
currently executing.

Primary levels are those to which an access may be made without
causing an interrupt terminating the current users use of
the CPU.

Secondary levels are those which if accessed cause a user

program to lose the use of the CPU.

There are three basic regions of interest. They are:

1. Dedicated (levels 0 through L)

2. Shared Primary (levels L +1 through K)

3. Secondary (levels K +1 through N)
These three regions are of special interest because the data traffic
in each is based on different factors. In the dedicated region all
traffic is directly the result of the currently executing program.
In the secondary leveis the traffic is the result of the entire col-
lection of programs being multiprogrammed. In the shared primary
region the traffic is affected by both factors and thus is a function of
the collection of programs being multiprogrammed as well as the

specific program in execution.

114

Dedicated

Shared

- CPU Level 0

-

Level 1

Level L

Level L +1

Level K

Level K +1

Level N

~N

> Primary

J

-

Secondary

Figure 3. 21 Regions of Storage

115

Allocation

In the dedicated levels of storage the entire capacity of each
level is allocated to the program executing. In the shared levels we
will allocate a fixed amount of storage at each level to each user.
This fixed amount at a given level being some fraction of the total
available at that level. The sum of the individual user allocations at
any level will equal the total at that level.

Having a fixed allocation the question arises as to what should
that allocation be. We will choose a scheme of storage allocation such
that the expected execution rate (number of user storage accesses per
real time sec) is equal for all of the M jobs being multiprogrammed.
Thus we will have the option of running or not running a job (value of
M) but if we do run it we will provide it with sufficient storage to
so that it may have the same expected rate of execution as the other
jobs running at the same time.

There are an infinite number of allocation strategies which
will provide the desired result of equal expected execution rate. We
have made a choice among these which is simple and provides certain

important mathematical simplifications. We will allocate the storage

at each shared level such that the probability of making an access

below that level is equal for all M programs being multiprogrammed.

It is clear that this allocation will make all program behave

identically in the system when L = 0. When L > 0 the dedicated

116

levels of storage which always provide each program with the same
allocation will cause each program to behave differently according to

its lifecycle function. To avoid the complications involved in considering
each program separately we will consider only cases where L= 0 or

all programs have the same lifecycle function.

3.8 Traffic Description at Individual Levels

In writing the equations which describe the performance of the
system we will view the system from two points of view. In Figure
3. 22 we show the periods of user program execution interspersed
with periods when the CPU is either idle or performing various
system housekeeping functions. Notice that in our modeling of the
system we have attributed the paging traffic in the system to the user
program's behavior. Thus we will assume that the traffic introduced
by the system which has not already been accounted for and associated
with individual user programs is negligible. We will consider a more
detailed model later but for the present we can simply think of the
CPU as either executing a user program or idle as shown in Figure
3.22.

We will define

r = the average rate at which
(the collection of M) user programs make
access to storage (3.14)

and

117

User Program Execution

N

I) ! |

!

| /

CPU Idle or System Housekeeping

/| /LN
5

| "Real tife

Figure 3.22 Pexods of User Program Execution

118

r' = the average rate at which an executing
user program makes access to storage when

a user program is in fact executing.

(3. 15)
The variables r and r'are simply related by
r=-ce'r'
where e'is the fraction of all time that any user program is

in execution.

We will now want to express the average time required to com-
plete a secondary access. The immediate goal is to write expressions
for the traffic or rate at which records are read and written at each
level. Clearly the traffic in the system is effected by executing user
programs. That is the traffic in the system when a user program is
executing is not the same as the traffic when the CPU is idle.

We will first consider the traffic as seen from the point of view
of secondary paging. The actual reads and writes which occur as a
result of a secondary access do not occur specifically during a period
of user program execution or during a CPU idle period. The trans-
fers which occur can be thought of as occurring over a period of
several to many periods of both user program execution and idle
CPU time. Thus we will treat the secondary paging transfers as
though they occur in a traffic environment described by the average

access rate taken over all time, r.

119

We will define
dj k> the average over all time of the number of records
b
of size 9 read or written at level j per unit real

time (3.17)

where j and k are integers satisfying
1<j< N
1< k< N

We may write an expression for d, K 38 follows
)

N

d. , = r(l1-w)u, t, . +rwvu.t. . 3.18
i, Kk ig’l[()ll,k,l,o 1J,k,1,1] (3.18)

In the way of explanation we will disect the terms of the sum-

mation beginning with

r(l-w)ui tj,k, i,0

r = rate of user program accesses per unit real time.
r(1-w) = rate of user program reads per unit real time.
r(1-w) u, = rate of user program reads to level i per
unit real time.

r(l-w)u, t,

i 4,%, 1,0 = rate of reads and write at level j
t Bt Bt |

involving records of size 9 as a result of user program

reads to level i per unit real time.

| The second term in the summation

v ui‘ tj’k’ i’ 1

120

is the same as the first except here the user program writes are
accounted for. Summing these two terms over all possible levels

of user program access gives us dj K
b

We will define

Cj = the average over all time of the number of records

of any size read and written at level j per unit

real time. (3.19)
This may be expressed simply as a sum of d]. i over k
)
N
C.= d. 3.20
] k2=1 j, k (3.20)

We will also define

Aj = the average over all time of the size of records
being read and written at level j. (3.21)

which may be expressed simply as

;XN
A= < 1;1 4G 4k (3.22)
Defining
N N
%y = kz=1 121 [(A-wyu; t, s ot Wty 4]l (3.29)
and
N N
Y= kzl 121 ql(l-wug b)y Wt] (3.24)
We may write
C.=r 2, (3. 25)

121

and

A = (3. 26)

where the terms Zj and Y]. are expressed completely as functions of:
1. Allocation matrix S
2. Record sizes qk's
3. Lifecycle function f(si, qi+1)
4. Fraction of read accesses w
5. Traffic matrices t.
i
6. Number of programs M

7. Number of levels N

8. Number of primary levels K

For our purposes the most important consideration is that Zj and
Yj are not functions of r or r'.

We would now like to consider the traffic environment in which
user program accesses to primary levels are made. Clearly user
program accesses to primary levels always occur when a user program
is executing. We may also limit our concern to the traffic in the
primary levels. This is simply because user program accesses to
primary levels never involve data transfers in the secondary levels.

We find two sources of traffic in the primary levels. The first
component comes directly from the executing user programs accesses

to primary levels which occur at a rate r'. The second component

122

is the result of secondary paging transfers which extend into the
primary levels. This component is based on the access rate taken
over all time r.

Consider a simple 2-level system with one primary level, a
core, and one secondary level, a drum. We would find two com-
ponents of traffic at the core when a user program is executing.
One generated by the executing program itself and a second generated
by the paging activity at the drum.

We will define

dJ!’ Kk = the average over user execution time of the
number of records of size qk read or written

at level j per unit execution time. (3. 27)

Where j and k are integers satisfying
1< j<K
1< k<N

We may write an expression for d; i 28 follows
)
K
d" = r'(l1-w)u. t, . . +r'wu,t . .
ik i§1[(1-w)yy i,k 1,0 1 J,k,l,l]
N

' 1§K+1[r(1-W) ui tj’ k’ i’ O+ o ui tj, k, i, 1] (3' 28)

The expression for d']. K is very similar to the expression for
’

dj K with the exception that the summation is broken into two parts.
b

The first from 1 to k, the primary levels, and the second k+1 to N,

123

the secondary levels. The first summation gives us the traffic
component generated directly by the executing user program. The
second summation gives us the traffic component introduced by
secondary paging activities.

We will define

C',

] the average over user program execution time

of the number of records of any size read and

written at level j per unit execution time. (3. 29)

N]
= kzl d (3. 30)
= 4 ’

We will also define
A'j = the average over user program execution time

of the size of records being read and written

at level j. (3.31)
which may be expressed
N TR R
zs‘j=—c—,j—k§1 qkd.,k (3.32)
Defining
N K
z'j = k§1 121 [(A-W)u ty g o+ WYy s, A (3. 33)
N N
Z) = k§1 i=}}]<+1 [(1-w)u, bt ot Y b ki o (3.34)

Also defining

124

N K
Y = 21 i§1 qk[(l—w) u, tj,k, i, ot W, t.] (3.35)

: i',k,1,1
and
N N
Y. = 1-w)u, t. . . +wu t . . 3.36
) k};l i=21:<+1 qk[(; i,k i,0 ig,k,1i, 1] ()
We may write
C.=r'Z' +r 2" (3. 37)
]]]
and
ryY.+rY"
A = 1l] (3. 38)
r'z'. +r Z"

Notice that here as in the case of Zj and Yj the terms Z'].,

Z"j, Y’j and Y"j are independent of r and r'. We may also write:

Z,=172" +7" (3.39)
] J]
and
Y.=Y.+Y" 3.40
]]] ()
We see that if a user program is always executing making r' = r then
Cc' =cC,. (3.41)

and

A=A (3.42)

3.9 Storage Hardware Performance

The purpose of the 8 function is to provide a representation for

the hardware at a single level which characterizes its performance in

125

the overall system environment. We will define the g function as
follows:
B]—(C, A, q) = the average total time required to read or write
a record at level j as a function of C, the average
number of records read and written per unit
time, A, the average record length, and q, the
size of the specific record being read.

In general the arguments of this function will take the form
Bj(Cj, Aj,qk) or Bj(C'j, A'j,qk) according to whether we are con-
sidering secondary or primary level paging.

The function Bj(C, A, q) will include such delays as waits for
disk seek arms to become free, disk arm seek time, wait for
channel to become free, latency and read or write time. Thus
B].(C, A, q) is itself the result of a rather detailed model of the hard-
ware at the level j. We will devote the entire next chapter to a
detailed development of these models.

It is interesting to point out that Belady [6] in modeling the
2-level hierarchy considered what we are modeling here with a
function to be a constant. It was simply assumed that no queueing
occurred.

Before continuing we will stop to consider some limitations
on B].(Cj, Aj’ qk) and Bj(C'j, A,'j,qk) as functions of r and r'. 1In the

case of Bj(C]., Aj’ qk) we may expand C:i and Aj to write

126

Y.
B(Cpr Ap) = By(r Zyy 57—, ay) (3.44)

| o
Here we will only be concerned with the variable r. Clearly asr
increases the average rate at which level j must process reads and
writes increases. One would expect that the average time required
to perform a single read or write at level j to increase with the
increased traffic. We will limit the choice of functions Bj(C, A, q)
to those which are monotone non-decreasing with increasing C.
Thus we can be sure that Bj(C]., Aj’qk) is monotone non-decreasing
with increasing r.
The case for B].(C']., A'j,qk) is a bit more complex. Expanding |
C']. and A':.| we may write:
'Y, +rY'

]
qa,.) (3.45)
r' Z'j +T Z'j' Tk

! ' _ ! 1
Bj(Cj,A].,qk) = Bj(r' Zj +T Zj’

Here we will be concerned with both r and r'. Clearly the average
rate at which level j must process reads and writes increases as
either r or r' increases. However here we find that the average
record length A'j is rather unpredictable as a function of r or r'.

In order to determine what we should expect of B].(C"j, A'j, qk)
we must recall the development of C'j and A'j. C'j and A'j are the
result of two components of traffic one component is proportional
tor and a second to r'. Thus increases in r will produce an increase

in one component of the traffic and no change in the other and the

127

same can be said for r'. Changes in A'j which occur as a result of
increases in either r or r' are clearly the result of an increase in
one of the two components of traffic at level j. Thus we would expect
that B].(C']., A':i ,q) Would increase with increases in either r or r'.
We will limit our choice of functions BJ.(C']., A'j, q,) to those which are

non-decreasing with increasing r or r'.

3.10 Primary and Secondary Access Time

Up to this point we have written expressions which describe the
traffic in the system and defined a function B].(C, A, q) which gives
us the expected read or write time for a single record at level j under
given traffic conditions. We will continue here by developing expres-
sions for the average time required to complete a paging operation.
This will of course in general involve several levels and several
reads and writes.

We will be discussing two distinct access completion times.
The first will be the time between a user program's access to some
secondary level, thereby losing the use of the CPU, and the com-
pletion of the transfers required to make that user program eligible
for execution again. Secondly we will investigate the time required
for the executing program to complete accesses in the primary levels

and it's effect on the execution rate of the program in question.

128

When describing the T array and its elements t., K1, we were
considering the traffic induced in the system as a result of a single
user access. It is fairly clear that all the reads or writes indicated
in the T array for a single user access need not be accomplished to
complete the action required to make a program again eligible for
execution or to continue execution if the user access is to a primary
level.

Let us examine a specific case. Turning to Figure 3. 6 of this
chapter we see a most complex series of transfers involved in the
paging operations of a user access to level 4 of a 4-level hierarchy.
In this particular case {= 0 andk = 1. The only data transfer
required to allow execution to continue is the transfer from level 4
to level 1 of a record of size q 4 The other indicated transfers may
be carried out later or in some cases prior to the actual access to
level 4.

Now in regard to the specific transfer from level 4 to level 1
the question arises as to the length of time required to complete the
transfer. We have both a read at level 4 of a record of size dy and
a write at level 1 of a record of size dy- We will assume for the
moment that the level 4 device is a disk, the level 1 device is a core,
and the channel connecting the levels contains a buffer of size qy-

In this case we find that the read at level 4 and the write at level 1

129

must be carried out simultaneously except for the last word (record
of size q) read into core.

In common equipment configurations the time required
to complete the transfer will depend entirely on the time required to
complete the level 4 read. Strictly speaking we could add the time
required to write that last word from the disk in core (a level 1 write
of size ql) . However this would be a rather wasted effort in this
case.

In this case and similar cases we will treat the time required
to complete the transfer simply as the time required to perform the
read (or write) at the slower device. Thus in this particular case
the time required for the read at level 4 is the time required to return
the user program to a condition in which it can be eligible for execution.
We will refer to the read at level 4 as a critical read.

In another case, shown in Figure 3.4 of this chapter, (which is
based on a different system philosophy) an access to level 4 will require
a total of three distinct record transfers to complete the necessary
paging action. They are:

1. From level 4 to level 3 a record of size d,

2. From level 3 to level 2 a record of size dg

3. From level 2 to level 1 a record of size d,

When these three transfers are complete the program will be eligible

for execution.

130

Here we may encounter a situation where the channel buffer
is large. For instance if we were to consider a direct transfer
between a disk and a drum the size of the channel buffer would
almost necessarily be as large as the record being transferred.
The time required to complete the transfer would then include both
the read (or write) at the disk and the write (or read) at the drum.

In general we find that there will be a series of sequential
reads and/or writes which must be completed in order to continue or
be eligible to continue execution. We will refer to these reads and
writes as critical path reads and writes borrowing from the ter-
minology of Critical Path Planning (CPM), PERT and other PERT
like planning methods.

It should be pointed out that we are making the assumption
that there will almost always be space available at each level into
which records may be written.

Formalizing these ideas we will define g]. k i ¢ Very similarly
b Baiat B |

L

to t, except here we will only include the critical reads and

i k1,10
writes. We define:
g. . . = the number of critical reads and writes at
ik, 1,0
level j involving records of size Ay in a
user program read (£ =0) or write (£=1)

to level i. (3.46)

131

READ (£ =0) WRITE (£ =1)

Records of Size (k)

q q q q User q q q
,_1.2.3.4 Access 1.2. 3
1 1 T to Level 1 11
Traffic 2 1=1 9
at . . .
Level 3 3
(1)
4 4
- - L
— * . - User —
1 Access 1
. . . to Level 2 .
2 1 i=2 2|1
3 3
4 4
| _ L -
9 9 93 94 9 9 93
. User __
1 [Access 1
to Level 3
2 i=3 2
3 1 3 1
4 4
L B L
User ~
"1 [N] Access 1
to Level 4
é i-4 2
3 3
4 1 4
— -G array L
Figure 3. 23

132

We will refer to the collection of these elements, g., k1,0’ as
the G array. We will also use Ei, . to indicate the matrix of gi’ K, i, 0
terms where i and ¢ are fixed.

Earlier in this chapter we considered an example much like the
IBM 360/85. The T array for this example is shown in Figure 3. 20
and several preceding figures show transfer diagrams. The G array
can be obtained from inspection of the transfer diagrams and is shown
in Figure 3.23. In this case each Ei, 0 matrix has only one entry;
note that this is not always the case.

We are now in a position to write an expression for the average
time required to complete a user program access. We will begin
with user program accesses to secondary levels. In the case of a

user program read we may write:

N N
Average Completion Time = Z Z g.

]: = ’

k,i,0

This is a simple summation of the critical path read and write
times involved in a user program read to level i. The write com-
pletion time can be expressed as

N N
Average Completion Time = j§1 kZ=1 g.,k, i1 Bj(cj’ A]., qk) (3.48)
the only difference being in the last subscript of gj,k, i, We
can now express the average time required to complete an unspeci-

fied access to level i. We will define

133

Ti = the average time required to complete a user
program access to level i

where i is an integer satisfying

1<i< N (3.49)
Expressing T; as
N N
T, = J;l Z [(-w)g; 1 5 o B5(Cy ALy
VK1, 1P Cp Ap 4]
N N
- JZJI 21 Bi(Cp Ay a [(1-Wg; 1 5 o W8 g 4 1]
(3. 50)
where (1-w) 1is the probability of a read access and w is the

probability of a write access.

and iis an integer satisfying
K<i< N

(i.e. i indicates a secondary level)
The time required to complete a user program access to a

primary level may be expressed as:

N N
T, = c' JA" i 1-w)g. . . w
i]Zl gl '8](qk) L€)g],k,l ot g],k i, 1]

(3. 51)

where i is an integer satisfying
1< i<K

134

The only difference being the traffic at level j. C'_j replaces Cj
and A'j replaces Aj'

We now have expressions for the average time required to
complete an access to any one of the N levels of storage. The next
step will be to express the average time required to complete a
secondary level access when the specific level is not specified.
This is in effect the average time required to complete a secondary
page fault.

We have already expressed the fraction of accesses to each
level i as u,. We will define

u'i' = the probability of accessing level i given that the
access is to a secondary level (levels K+1 through
N).

This may be expressed simply as

uy = 0 for 0 < i <K
u,
= —— for K+l <i<N (3. 52)
), u,
i=K+11!
where
- 1
Y= P 1 for K+1 <i <N (3.53)
(Bip) 1spay,y)
and

135

1 -

oy Oy,

We will consider an expression for u, where 1 < i < K later.
We can see directly from the definition of the lifecycle function

or from the expression for Uy in Equation 3. 53 that

| 1
u, = (3. 54)
i=K+1 f(sK, qK+1)
Thus we may write
ut = 0 for0 <i<K
= f(8g, Ay, ¢) Y for K+l <i <N (3. 55)

We will define
T s = the average time required to complete a secondary

page fault. (3. 56)

Using u'' this may be expressed as
i

_ N
T, = 1=1>:()+1 u'i' T, (3.57)
or
N
= f(S;K’qK+1)i=IZ< T (3.58)

136

Having an expression for the average time required to make
an access to a secondary level we will now turn to the average time
required to make a primary access. We will define

u'i = the probability of accessing level i given that the

access is to a primary level (levels 1 through K).
(3. 59)

The expression for u'i is quite involved and involves considerable
digression.

When a user program begins execution it experiences an initial
period in which the levels of dedicated storage go from a state of
containing only the previous CPU user's (system or user programs)
information to containing only the current CPU users program. This
initial period should be short and in most systems of interest will
have negligible or near negligible effect. However we can expect to
encounter systems in which the periods of user program execution
are so short that the characteristics of this initial period dominate
the entire execution period of the user program. The ultimate
effect is to modify the probability of accessing a given level, u,.

We will now consider the accessing process in some detail
focusing on the initial period in particular. Consider a hierarchy
in which L=1, K= 2 and N = 3. This will be a 3-level hierarchy
with one level of dedicated storage, one level of shared primary

and one level of secondary.

137

Dedicated Level 1

Shared Primary Level 2

Secondary Level 3

3-Level Hierarchy

Figure 3. 24

Let us examine what happens when a user program begins
execution and has no information at the dedicated level, level 1.
The first access must go below 1evé1 1 because there is no infor-
mation associated with the executing program at level 1. Assuming
that the access is to» a primary level, i.e. the user program's
period of execution is not terminated, we will find dq bits of the
executing program's information at level 1 following the first
access. The user prbgram may then continue for an average of
f(qz, q2) accesses before making another access below level 1.

The second access below level 1 will bring the useful information
at level 1 to 2q2 bits and we may expect execution to proceed for an
average of f(2q2, qz)' accesses before making a third access below
level 1. The quantity of useful information at level 1 will grow with
each access below levél 1 by dq until level 1 contains only infor-
mation associated with the currently executing program at which

point the quantity of information at level 1 will remain at S1» the

138

allocation at level 1 which in the case of a dedicated level corresponds
to the capacity of that level. Corre épondingly the average number of
accesses which can be carried out with a given number of accesses

below level 1 may be written as a finite series of the form:

where the number of accesses below level 1 corresponds to the num-
ber of terms in the series.

If we define a function

It

s.(X)

i X for x < s, (3.61)

=8, for x > s.
i =~ "i

where S4 is the allocation at level i we may write the above series

as

gl

; f(s4(i ag) ,49) (3.62)
where R is the number of accesses below level 1.
In order to obtain an effective lifecycle function which includes
the initial period of execution we will define:
f'(sl, q2) = the average number of accesses required to
produce an access below level 1 where it is

assumed that initially no information associated

with the executing program is stored at level 1.
(3. 63)

139

This can be written as

__#of accesses
~ # of accesses below level 1

f'(sy,q5) (3. 64)

We will obtain an approximation for { '(sl, q2) by taking an
average over the first R terms of the series of Equation 3. 62 where
R is chosen so that the summation of the series (the average number
of accesses which can be carried out) corresponds to f(sK, qK+1)
(the average number of accesses made during a single user program
execution period) .

Thus we will write R
), f(s1(i ag),ay)

' ~ J=1
f (Sl’ qZ) ~ R (3.65)

where R is the smallest integer satisfying
R
H(spr G, 1) < j;l (s, (j a5, dy) (3. 66)

Notice that as f(sK, qK+1) becomes large f'(sl,qz) _— f(sl,qz) .
The approach we have taken here to level 1 is completely
extendable to all the dedicated levels of storage. In general we may

define

f'(si, qi+1) = the average number of accesses required to
produce an access below level i where it is
assumed that initially no information assoc-
iated with the executing program is stored

at level i. (3.67)

140

And we may write Ri

j;l (8,0 q;,)9,

£'(8;,q;,4) = (3. 68)
R.
i
where Ri is the smallest integer satisfying
R
H(Sgr Uy, p) <]Zjl £(s;(7 d;,1)59,9) (3. 69)

We may now express the overall fraction of accesses to each of the

first k levels as

woe—21 1 for1< i< L (3.70)
bof(s, 1,49) (s, o) -
i-1794 i’ 9441
where
f'(s,qq) = 1
and
_ 1 . 1 (3.71)
?
Plsppap) 108, dn,)
and
1 1 . |
u, = - for L+l < i <K (3.72)
f(s;_ 19y {5931

Returning now to the probability of an executing program accessing level

i, u,,

we may write

141

v .
ul = —g for 0< i< K
Lo
i=1
=0 for K+1< i< N (3.73)
Noting that
K
Z u, = 1- 1
i=1 f(SK’ qK+1)
(S Uy, 1) - 1
_ K’ "K+1 (3.74)
Hsgr dgey1)
Thus we may write
£(Spes e 1)
u'. = K’ "K+1 u, for 0< i< K
Yof(sp,ay.4) -1 1 -7
K’ “K+1
=0 for K+1 < i< N (3.75)

Defining

7p = the average time required to complete a primary

page fault. (3.76)
This may be expressed as
)
T = u, T,
L =
(Stes Qg 1)
- K’ K+l u, T. (3.77)
f(s,.,q,,) -1 i=1 1
K’ "K+1

142

Thus completing the development of an expression for the time required

to complete a primary access.

3.11 Interaction Between CPU and Primary Storage

At this point we would like to consider the average time required

to complete a CPU access cycle. We will define
70 = the average time between CPU accesses to storage
when a user program is executing or —i; . (3.178)

There are two factors which must be taken into consideration
when determining the rate at which a CPU will make accesses. The
first is the CPU itself and the second is the storage system to which
the CPU makes accesses.

The solid line graph of Figure 3. 25 shows the general relationship
between?c and—'rp. On the left where _Tp is near 0, _Tc is determined
by the speed of the CPU and varies little with?p. On the right where
?p is much greater than the time required to actually execute a single
instruction the value of 70 is determined almost solely by'?p.

In a CPU which does not have a look ahead or more precisely
can issue only one primary access (fetch) at a time, the slope of .f_rp.
as a function of?p will approach 1 for large 7p'

We will define y as

v = the slope Of—’;';, as a function of—ffp, as'?p becomes

large. (3.79)

143

1

__O—>

==

a
0
0 A
Bl (r’ ql b ql)
——
T
p

T Versus T
C v P

Figure 3. 25

144

If a CPU is capable of maintaining on the average several
simultaneous primary accesses (look ahead capability) y will have
some value less than 1 but always greater than 0. We will assume
that for those CPU's which have significant look ahead capability
y will be determinable either from hardware specifications or by
experiment. Where the look ahead capability is not considered
significant we will use y = 1. We are ignoring the possibility that
the look ahead capability itself will be directly affected by the
storage system.

We will approximate 7 c with a straight line of slope y which
passes through a known point in the 70 versus T p curve. The

approximation may be expressed as

'rc=oz+y'rp

(3.80)
where o is a constant and is shown in Figure 3. 25 with a center line.
In order to solve for @ we consider the special case in which
the rate at which the CPU makes accesses to the primary levels
(while a program is executing) is highest. This will occur when
there is only one activity in the entire system, that being the

execution of a program which is contained entirely in the highest

level of storage. We wiil define

145

A
r = the average rate at which the CPU makes primary

storage accesses when executing a program which
is entirely contained in the first level store and

there is no other activity in the system. (3.81)

N
The variable r will be treated as a hardware specification and is
generally equal to the maximum CPU access rate. Since in this
special case ?c = 71<—, we may write

a=-1 (3. 82)
== =Y 7p . O
r

Since the accesses are limited to the first level of storage

Tp = Tl (3. 83)
or
1
a=x - ')’T]_
r
) N N
==—-a),) B(C'.,A",q)[(1-W)a,,k,1,0+wq, k,1 1]
? ju1 k=1) 11K]]
(3.84)
where C'j and A']. may be written
AN
C'y =T >, [A-W)t;,k,1,0 + wt, K, 1,1] (3. 85)
k=1]
N
d .
an), G [(1-w)t k,1,0 + wt_k,1,1]
A = N (3. 86)
), [(1-w)t, k,1,0 + wt_ k,1,1]
k=1]]

from Fyuations 3.37 and 3.33. This general solution for o appears

more complex than it is in most cases, Fa instance, if an access

146

to level 1 involves only the reading or writing of a record of size 9

at level 1, as is almost always the case, @ becomes simply

1 A
a = VN ')/B]_(r,Q.l,q.l)'
T

We may now write the average time required to complete a

CPU access cycle as:

‘T‘C=a+'y’l‘p

f(SK’ qK+1)

)-1 il

gl

= aty T, (3. 88)

f(SK’ qK+1

We will now consider an expression for the average length of
time that a user program executes before making a secondary access
and thereby losing the use of the CPU we will define:

Tre = the average length of time that a user program executes

bef ore a secondary page fault. (3.89)

This may be expressed as:

_1:6 = f(S (3 . 90)

K’ qK+1) :r—c

where f(SK’qK+1) is the average number of accesses required
to produce a secondary page fault.

and It is assumed that the time required to complete a CPU
access cycle is independent of the number of accesses

made.

147

f(SK’ qK+1) Z

Te =g, lae +v g G,)1 12

(3.91)
Thus far we have developed an expression for the average time
required to complete a secondary paging operation, ?S, and the
average length of time a user program spends in execution, -T_e'
There is one other term that will enter into our final equations.
We will define
?h = the average amount of time spent performing the
system housekeeping associated with a single

user program passing through its cycle execution

and secondary paging one time.. (3.92)
This will be treated as an independent model variable.

3.12 System Performance

In analyzing the model for system performance we will assume
that the system is either primary storage bound or secondary storage
bound. When operating in a primary storage bound condition the
CPU is assumed to be always busy and the rate at which work i.s
done (rate of user program access) is based on the primary storage
levels and the maximum CPU rate. When operating in a secondary
storage bound condition it is assumed that the queue for CPU use is

almost always empty and that the rate at which work is done is

148

based primarily on the rate at which page faults to secondary levels
are completed. It is fully acknowledged that when the system is opera-
ting in a near balanced condition this assumption will produce an opti-
mistic performance figure.

Queueing models dealing with the execution queue in a more
sophisticated manner have been considered. The increased complexity
and additional solution time were weighed against the potential increase
in model accuracy and the simpler model was chosen.

We will want to consider two performance equations - one based
on primary bound operation and a second based on secondary bound
operation. In analysis we will simply take the smaller of these two

figures.

Primary Bound Performance

When the system is primary bound the CPU is almost always
busy. If we observe the CPU we will find it serving one user program
after another along with a certain amount of system activity associated
with each user program's execution., We will refer to the period of
time that a single user program and its associated system activity
occupies the CPU during a single turn at the CPU as a CPU cycle.
Figure 3. 26 depicts a series of such CPU cycles. In Figure 3. 26 the
Tri's, random variables, represent the time spent servicing each user

program.

149

System Housekeeping
M &) n,
/‘”A_ﬁ\(—“’_“(’ Y
fe— Ty —F— Tg—h-- e T

L Real Time .
Ll N

User Program Execution

Figure 3.26 Primary Bound Operation

The ni's, random variables, represent the number of user program
accesses made during a single CPU cycle.

We will define

r = the average rate at which user program accesses

p
are completed under primary bound conditions. (3.93)
We may express this as
% m
. i=1
r =lim D
p—~co 7
i=1
p
1
v LM
) i=1
= lim
p-o 1 z
— T,
P !
p
. 1
lim —5— LM
_ prow i=1
= D
lim —) . (3.94)
p i
p-0 i=1

Notice that the n.'s are independent identically distributed random
var1ab1es and the same can be said for the T 's.
We can recognize both the terms — % m; and——— Z T, a8
p i=1 P i1

sample means, random variables whose variance goes to 0 as p-w

and whose value becomes E[7] and E[r,] respectively. Thus we

may write
E[n,]
r = for any i. (3.95)
P E[T.]
1
The E[7,] will be simply (s, » g, 1) and the E[7,] will be ’Te + Th
thus
£(Sgs dye, 1)
r_ = _E{’ IE” (3.96)
P T, + 7T
h e

Secondary Bound Performances

Our approach to the development of an expression for secondary
bound performance will differ slightly from the approach taken with
primary bound performance. Here we will examine the behavior of
an individual program in the system in contrast to our focus on the
CPU in the previous case.

In Figure 3. 27 we show what we will call a program cycle.

The program cycle consists of a period of system housekeeping, a
period of user program execution and a period of secondary paging.
Notice that here we are observing sequential cycles in the same

user program. It should be understood that the system housekeeping

151

will not all necessarily occur just prior to user program execution

but may be spread throughout the program cycle.

System Housekeeping
User Program Execution

Secondary Paging

n'l
RS PO [
b Tl e T' V)
Real Time T 2 T
>

Figure 3. 27 Secondary Bound Operation

Here the 7 'i's, random variables, represent the number of accesses
completed in the ith pi'ogram cycle and the T'i's, randoin variables,
represent the time required to complete the ith program cycle.
Notice that there is no queueing delay for the CPU in secondary bound
operation.
We will define
oI = the average rate at which user program accesses

are completed under secondary bound conditions.
(3.97)

This may be written as

152

r =M lim 1;1 (3.98)
P00 '
.Z T
i=1

where M is the number of programs being multiprogrammed.
Following the same arguments used in the primary bound case

we may write

E[ﬂ'i]
r =M for any i (3.99)
S '
E['Ti]
The E[7,] is simply f(8> dge, 1) and E[T'i] =T+ To + T thus
M (s, d 1)
r - — & K+l (3. 100)
T +7T_ + T
h e S

We now have an expression for rp and Ty the average rate at
which user program accesses are completed under primary bound
and secondary bound conditions respectively. Both rp and r are
expressed in terms of r, the average rate at which user program
accesses are completed, and r', the average rate at which user
program accesses are completed during periods of user program
execution. The first step in the solution of this system is to

determine r' given r. To do this we must express r' as

Y
)L N
. i=1 !
r'= lim B (3.101)
p-c0 7
i=1 1!

153

where n'i', a random variable, is the number of user program

primary accesses made during the ith

period of user
program execution and 'r'i', a random variable, is the time
required to complete the ith period of user program

execution.

This becomes as before

E[n"]
r'= - (3.102)
E[T,]
and continuing
o= f(SK’ c;lK+1)
- T
e
1
B (s, Ay 1)
a+y K’ "K+1 Z u Ti
f(sK,qK+1)— 1 i=1
(3.103)
where Ti for 1< i< K is
N N C
. (C., A, 1- C o4 s wg. o, .
Tl 'E ZJ B](]], qk) [(W) g])k’ 1’ 0+ gJ’k, 1’ 1]
j=1 k=1
and
C.=r'2z" +r2"
] J]
and
r'yY, +rY"
Al =] J

] rZ +r 2"
]]

154

We will now develop two additional expressions for r', one
based on primary bound conditions, and a second on secondary bound

conditions. We will begin with the primary bound case.
We will solve for r' given r and assuming that the system is

primary bound, We will first solve for _'Fe directly from Equation 3. 96

f(s_ ,qa__,)-r.T
K'gl ph (3.104)

T =
e

r
p

Substituting this into Equation 3.103 and dropping the p sub-

script for rp we have

' rf(SK’ qK+1)
r = =
p f(SK’qK+1) - T Th

where rp' is r' assuming primary bound conditions,

(3.105)

Proceeding in the same fashion we may use Equations 3,100

and 3.103 to write:
rf(s

4, 1)
r'-—X K+l _ (3.106)
Mi(s ,qK+1) - r(7rh + TS)

where rs' is r' assuming secondary bound conditions,

3.13 Solution

We have at this point generated a sufficient number of relations
and we can now preceed in a reasonably orderly manner with the
actual determination of r and r'., The solution for the 2 unknowns

r and r' will involve either Equations 3,103 and 3.105 or Equations

155

3.103 and 3.106. The equations used depend on whether the system
is primary or secondary bound.

We will now examine Equations 3,105 and 3,106 to determine
their behavior as a function of r,

Since the term "FS in Equation 3,106 is a function of r we will
begin by considering the behavior of TrS as a function of r, Repeating

the expression for TrS:

N
T, =1(8y, e) _Z u, T, (3.107)
i=K+1

where Ti for K+1 < i <N is

N N
Ti = Z Z Bj(cj’Aj’qk) [(l—w)gj kK i O+ng Kk i 1]
]=1 k=1 27Ty P Rt
and
C-=r
]

yA
]

Y.
A =3
%

and

|

Since the B].(C].,A].,qk)'s are monotone non-decreasing with increasing
r,?s is also monotone non-decreasing with increasing r.

Returning to Equations 3.105 and 3.106 we see that in both cases
the numerator is 0 for r =0 and becomes larger with increasing r.
The denominator has a positive and a negative term. The positive term
is constant with respect to r and the negative term is 0 for r =0 and
increases with increasing r. Thus the denominator begins at some

positive value for r = Q and progressively becomes smaller for increas-

156

ing r passing through 0 and continuing negatively. Thus both the ex-
pressions for rp' and rs' increase with increasing r, growing without
bound for some value of r and then go negative.

Let us now see what this means in terms of the physical system
we are modeling., Under either a primary bound assumption or a
secondary bound assumption we see that as we increase the mean user
program access rate, r, the rate at which the CPU must carry out
these accesses during its busy periods increases. As r is increased
we reach some point at which there is simply no time remaining for
the CPU to perform user program accesses. As we near this point
we see rp‘ and rs' grow without bound and become undefined. Under
primary bound conditions this occurs when the CPU is totally consumed

with making user program interchanges (i.e. f(s '_rh =0).

K’q‘K+1) - T
Further increasing r we obtain negative results for rp' and rs'.

In Figure 3. 28 we show typical curves for rp' and rS'. We
display here only the positive behavior of rp' and rS' since these will
be the only values of interest. The 2 vertical lines shown are assym-
totic to rp' and rs' and indicate the point at which they are undefined.

In order to satisfy Equation 3.103 we will introduce a slight

modification of Equation 3.103. We will replace r' on the left with

r' and in the right hand member by max {rp', rs'}. This is written

157

Accesses Per Sec
Busy CPU

" (Eq. 3.108)

(Eq. 3.105)

i e v — a—— oi— " —— rrr—— — et Lretrattn Vs e e, it . e st et @t mamemeemcras

N+

0 >

Accesses per Sec.
Solution for r and r'

Figure 3. 28

158

1

P = (3.108)
f(S’K’qK+1)
a+vy uiTi
f(SK, qK+1) -1 i=l
where
Rifor 1_<_1§Kis
N N
]]
T L Lo BCLAG) [(W g ot Ve g]
]__:1 k:]_ [Rk Bt} [Raink Bal
and
C.'l=max{r ''r "V Z.'+1rZ."
] { p’ S}] * J
and
max{r ''r '} Y.' + rY."
Al g’y rg') ¥y + 7Y,
] max{r ',r '1Z.' =rZ."
p’ s°]]

This equation is plotted in Figure 3. 28 and labled r''. The
solution we are seeking will be at the intersection of r' and rp' or the

whichever produces a smaller r. In the

intersection of r'" and rS',

case shown, the desired solution is the intersection of (' with rS'
and it is marked with a small circle. The solution we are seeking is
in fact the intersection of r" and max{rp', rs'}. Notice first that this
solution satisfies either Equation 3.105 or Equation 3.106 and Equation
3.103.

Second, we can show that there is at most one solution. Since
r ' and rs' increase with increasing r, max{rp',rs'} must increase

1Y
with increasing r. To show there is at most one solution,we will show

159

that r" does not increase with increasing r. Note that the right hand

member of Equation 3.103 is of the form:

N (3.109)
a+)) b, B(C.",A.S,q)
i ke LRIk
where a and b, K are constants which are independent of r'
b
and B].(C].',A].',qk) is a monotone non-decreasing function of

r and r',
Equation 3.108 is identical in form except that r' has been replaced
by max{rp', rs'} a monotone increasing function of r. Thus the
denominator of Equation 3.108 is a monotone non-decreasing function
of r and r'" is a monotone non-increasing function of r .

Last we can see that the solution is based on the proper bounding
condition. Recalling that we want to employ the most restrictive
bounding condition, and with the described behavior of r'', rp’, and
r ', we see that the solution of r"" and max{rp', r '} results in a mini-
mum r,

The actual solution algorithm is based on a binary search
over the variable r. The process of determining if a given trial r is
too large or too small is carried out as follows:

1. Evaluate rp’ and rs';if either is undefined or negative the

trial r is too large.

2. Compare r'" of Equation 3.108 with max {rp',rs'}:

if r" > max{rp', rs'}, the trial r is too small

160

if r" < max{rp', rs'} the trial r is too large
if r'" =max{r ', r '} the trial r is the correct solution,
p’'s

" _ ' A
and r _max{rp,rs}_r

We have at this point shown that given the system variables:
1. Number of levels N
2. Number of dedicated levels L
3. Number of primary levels K
4. Traffic matrices Fi, ﬂ's
5. Critical path matrices Ei, ﬁ's
6. Record size at each level qk's
7. Maximum CPU rate ?
8. CPU look ahead factor y
9. Mean system overhead time —'Fh
10. Hardware behavior for each level Bj(C,A,q)'s
11. Storage capacity at each level Qi's
12. Program behavior description f(s, a)
13. Fraction of write accesses w
14, Number of programs being multiprogrammed M

we may obtain a solution for the average rate at which user program

accesses are processed.

161

Chapter 4

Hardware Model for Individual Levels of Storage

Here we will consider the modeling of the performance of the
hardware at an individual level. Our primary concern is the average
total time required for a read or write request to be processed at a
given level.

There are many possible models which span a rather wide range
between simplicity and reality. At one end of the spectrum we find
the simple assumption that the average read/write time is some con-
stant T. This is in fact the assumption made by Belady when applying
his lifetime function [3]. In contrast to this simple assumption we
find much more complex models at the opposite end of the spectrum.
These models may involve a detailed treatment of the read/write
request arrival distribution, channel queueing, service storage
device queueing and service, and the relationship. which exists
between these operations. The most realistic of these require
simulation or numerical solutions.

Here we are developing a storage hardware model to repre-
sent a single level of storage in an overall system model. In
choosing a position in the spectrum between simplicity and reality

three basic guidelines were specified at the outset:

162

1. We would like to take into consideration the effects
of congestion at individual devices (such as core
boxes and disk drives) as well as the congestion at
the channels serving these devices.

2. The model should have an analytical solution.

3. We would like to be able to model all levels using
the same basic model, the model being sufficiently
general to adapt to different device types such as
core, drum and disk by relatively simple parameter

variation.

As development proceeded, it was necessary to use some
numerical techniques. It was also necessary to compromise

3. above to some degree.

4.1 Basic Model

Here we will consider the form of a basic model which will
be used to model each level in the system. We will first describe
the model and then discuss the effects of various assumptions in
the model.

The basic model will consist of a simple queue and server
as shown in Figure 4. 1 along with its state transition diagram
in Figure 4.2. The arrivals will be assumed Poisson and the

service exponential. The number of requests in the queue will

163

queue server

SV S
NS

A-C

1(0

Figure 4.1 State Diagram for Basic Model

be limited to B-1 after which additional arrivals are lost. This will
limit the total number in the system, queue and server, to B. The
service rate My will be treated as a function of the number of requests
in the system at the storage level in question.

We will define

By = service rate when there are r requests

in the system (queue and server).

The value of the ,ur'swill be determined by the hardware configuration
at a given level. The determination of the value of the ur's will include
such factors as the number of channels, number of devices, seek time,
latency time and actual read/write times.

The value of B, the maximum number in the system, will be

generated from the T array discussed in Chapter 3. This will be

164

done simply by solving for the system conditions which produce the

maximum number of read/write requests at the level in question.

I-NAt - At 1-Ou At 1-O+pp AL Lo At

. A At .
B0

My At plAt ,ulAt

Figure 4.2 State Diagram for Basic Model

When solving for the mean total waiting time (queueing and
service) we will know the value of C, the mean service rate. Hence
it will be necessary to solve for A given C, B and the ur's. The
solution for A will be numeric. Having A the mean total waiting
time may be obtained directly. Before considering a solution in
detail and developing parameters for specific hardware configurations
we will consider the assumptions of the basic model more closely.

We will begin by considering the effect of assuming that the
server of Figure 4.1 is exponential. It is clear that the actual storage
hardware which we may find at any given level may produce anything
from exponential to deterministic service times. We will concern

ourselves here with the effects of using an exponential service

165

distribution to model a deterministic server such as a single core box.
We must remember that the result which we seek from this model is
the mean total waiting time. Thus we must consider how the actual
mean total waiting time compares with the mean total waiting time
given by the model. First we see that for low utilization or small A,
the model is accurate. Second, for high utilization, large A, the
results of the model are again accurate and agree with the real
system. In this case we will almost always find the queue full

(i.e. B requests in the system). Thus the mean total waiting time
will be B/IU«B regardless of the service distribution (”B = service

rate with B requests in the system). It is comforting to note that

the agreement at both low and high utilizations is essentially inde-
pendent of the distribution of service times produced by the hardware,
and the distribution of interarrival times of service requests.

There will be some discrepancy between the model and the
actual system in the region of moderate utilization. The model, if
in error, will tend to produce a pessimistic result, i.e. a larger
mean total waiting time.

A second source of possible error occurs in the assumption
that requests for service have Poisson arrivals. In the case of
arrivals we find that the distribution of interarrival times is depen-
dent on essentially everything in the system except the level in

question. The arrivals are in general the result of a combination

166

of random events, the basic of driving event being the user program
access. Data taken during operation of the Michigan Terminal System
(MTS) a multiprogrammed page on demand system with virtual
addressing, supports the assumption of Poisson arrivals. Specifi-
cally the data (pp. 113-120 of [45]) demonstrates that in this system
(MTS) the intervals of CPU execution between interruptions (page
faults and I@ interrruptions) have a characteristically exponential
distribution. This indicates that access to levels below level 1 will
tend to be Poisson but says nothing about about level 1 in the hierachy.
The distribution of interarrival time at the first level of storage will most
likely be dominated by times directly related to the CPU's cycle.

It is in the first level of storage that we will most likely incur
the largest error. This is simply because here we are most likely
to see deterministic or near deterministic service and the least
random of arrivals. In terms of the macroscopic model of the
previous chapter this may have the effect of introducing an error
in the rate at which instructions are executed when a program is in

execution. Consider however the development of the equation for

__T—c (the average time between CPU accesses to storage when a user

program is executing) in Section 3.11. Here we see that for small

167

values of ?c any errors introduced by the first level are completely
canceled by the choice of the constant a. This will cause these errors
if any to reappear for large values of _T-c where their effect is greatly
reduced.

There is one additional restriction which we will want to add
to the model of Figure 4.1. That is we will limit the values of My

to those which satisfy:
(4.1)

This simply means that an additional request in the system
(single level of storage) does not reduce the rate at which the system
is servicing requests. In general this will always be the case when
modeling realistic hardware configurations. It is difficult to imagine
a system in which having an additional request in queue causes a
reduction in the rate at which requests are serviced.

Consider a level composed of several disk drives. The more
requests in the system at any given time the less likely it will be to
find idle disk drives. The same is true for any level in which we
can carry out service in parallel. In addition to the effects of
parallel seryice, large queues can improve the utilization of a single
device in the system. For instance the motion required of a disk
arm can be reduced when the queue of requests is large and proper

scheduling is used. In the worst case we would expect that By = Bpoge

168

An example of this would be a level of storage composed of a single
core box. The scheduling of requests here is irrelevant.

We will continue at this point with the solution to the basic
model and specific determination of the u r's for various device
configurations.

Our first step in the solution will be to solve for B using the
T array discussed in Chapter 3. Recalling that the elements of the

T array t. are defined

i, k1,1

tj,k, i 0 = the number of records of size Qe read or
written at level j as a result of a user read
(£=0) or write (£=1) to level i.

The number of records read and written at level j as a result of a

user read ({=0) or write (£=1) to level i will be simply kiqu t].’ i,

The maximum number of read and writes which a single program

can generate at level j will be

max {), A (4. 2)
ie[1, N]
[0, 1]

where i and ¢ are integers and N, an integer, is the
number of levels in the hierarchy.
When M programs are being multiprogrammed the maximum

number of read and write requests at level j, Bj’ may be taken as

169

N
B, =max {), t. ., .,}
I ge[1,N] k1 bELE
0e[0,1]
for M=1

2¢[0, 1]
{ > }
+(M-1) max t. . .
ie[K+1,N] k=1 DX 1L
2e[0,1]
for M > 1 (4.3)

where i and ¢ are integers and N, an integer, is the

number of levels in the hierarchy.

In the case for M > 0 we see two terms, the first with a range
of i from 1 to N and a second with a range of i from K+1 to N. This is
necessary because we can have only one user program making a
primary access, i.e. an access to the first K levels.

As we proceed we will be focusing on the performance of a
single level. Thus for convenience of notation we will not use a

subscript on the variable B.

170

We will now turn our attention to the determination of the
steady state probabilities of the Markov model shown in Figure 4. 2.
We will consider a slightly more general model so that the results

will be useful for other purposes later in this chapter.

General Solution

The state diagram for the general model is shown in Figure 4. 3.
The only difference between this state diagram and the one of Figure
4.2 is that the arrival rate X is taken to be a function of state and thus
is expressed as)‘o’ Al, ceey AN. We have also used the variable N to

indicate the maximum number of requests in the system.

Figure 4.3 State Diagram for General Model

The stationary probabilities are (p. 44 of [17]):

171

P = 1

o X XA X Aq. oA
14 o . o1 o .o 1 N-1
Hp Hi kg Ky Bo- - - by
and
Ao Mooy g
By Moo oo s
P, =) xxlz 717\ pY (4.4)

+...+
S T L) Hy Ho-- Uy
for 1 <i<N

4.2 Solution of Basic Model

Returning to the specific we may rewrite Equation 4.3 and

4.4 substituting B for N and setting A; = A for 0 <i <B-1.

1
P = (4. 5)
o Ly N A2 >\B
1) Hi Ko - Hp
and .
Al
[TRTRNTH
P, - . 21 2 1 (4.86)
A A A
1+ +

By By By Ty g
For the moment at least we will assume that we have the ui's
and concentrate on solving for the mean waiting time as a function of
the traffic at the level.
In terms of the system external to the specific level being

discussed we do not know the arrival rate A but rather the average

172

rate at which request are serviced. We will define C as the average
rate at which requests are serviced (meantraffic), ignoring in this
context the complexities of specifying the level involved. If we add
appropriate subscripts to designate levels, Cj will appear as defined
in earlier chapters.

In order to relate C and A we may write

B
C=) u P, (4.17)
. 1 1
1=1
2 B-1
AL+ A + A R A)
_ Hi By Hg Hy Boe - bp_q
(1+ + + +
Hi HiHg HyHg---Hp.1™ Mg Hg--Hp
(4. 8)
defining
2 B-1
PO) =1+ + A f—2 (4.9)
Hy HpH HyHg---bp g
we may write
c = —2PQY 5 (4. 10)
P + —2
Hy Hg---Hpg

Before we consider a solution for A we will examine the behavior
of C as a function of A. The general relationship between C and) is
shown in Figure 4.4 and can be verified either from Equation 4. 10

or from the basic queueing diagram of Figure 4. 1.

173

Figure 4.4 Service Rate Versus Arrival Rate

Since the mean loss rate is A PB we can see that the C()) curve falls
below the X curve by that amount. As)\ becomes large PB —>1 and
C becomes asymptotic to g

We will now turn to the problem of finding X given C. We may

rewrite Equation 4.7 in the form of a polynomial in A:

1 C

0=C+(—C-1)A+—(—-1)A2+...+ 1 (C -1)A1+
1 Hy Hg o R B
p—— - 1B @y

We may show that there is only one solution to this equation
using the constraint of Equation 4.1 and Descartes' rule of

signs (p. 28 [10]) which may be stated

174

(p. 28 of [11]) no polynominal can have more real positive zero's
tnan its coefficients have changes of sign from + to -, and
from - to +.
Examining Equation 4. 11 with the constraint of 4.1 in mind
we see that we have at most a single change in sign and thus at most
a single real positive root. The solution for A although numerical is
straightforward.
Having obtained A we may compute the Pi's followed immediately
by the mean number in the system '51 iPi. Knowing the mean number
i=

in the system and the mean rate at which requests arrive and the mean

service rate C we may write [33] B

B'= c (4.12)

where B' is the mean time which an individual request spends in

the system.
Expanded
2 B
—-3- +2 m Au +...+B m “A m
B,z%_ 1 122 1B2 B (4. 13)
1 A + A + A
S B W) Hy Ko --Hp

175

4,3 Solution Algorithm

Successive approximations will be obtained using Newton's method.

We write)
N (V]
=X 5y (4. 14)
where
£()) = C - A P(%) (4. 15)
P(2) +
Hy Kg---Hp
Taking the derivative
- B B B
PO + POV A FAP(N) —A - PO)B—2
, Ky Hg---tp Ky Hg---bpg Ky Ko --Hg
f (A) = = B 2
P() +—2 (4. 16)
Hy Hg---bp
Solving for A' using the above equations
2B 2B
(P(A) +) [C(P(X) +) = AP}]
Hy Hg---Hp Hq Hg---Hp
A=+ B 5 (4. 17)
P\ [P() - —2 (B-1)] + AP'(AL—"——
Hy Hg---Hp 1 Mo -Hp
recalling that
2 B-1
P() = 1+ 42 A (4. 18)
1 Hp kg Hy Mo --Hpq
we may write
2 B- 2
P'(A) = 1 + 2 _A +3—L—+...+B-1 A (4.19)
H1 Hytg HyHglg My Hg---Hp_q

and

176

2 3 B-1

A A A : A
AP'(N) = + 2 +3 +...+(B-))
H1 Hy Hg Hy Mg K3 My Ho---Pp_q
(4. 20)
In computing P(A) and X P'()) we will make use of the common factors
_x
by bhge oo by

A FORTRAN program follows which performs the search for
X and computes 8. The following program variables correspond to

the terms of Equation 4. 15 and other associated variables.

P P())
DP A P'())
i
- A
HyHore ey
B
R Y
}J.l Hz. .o ;.LB
B
S (P(A) +)
“1 “2! . e LLB
FL A
FLP '
IB B
C C
MU gy
BETA P

177

FUNCTION BETAp (C, IB, MU)

REAL MU (10)

FL=C

K=1B-1

F=1.

DP = 0.

P=1.

DO 2 I=1, K

F = F x (FL/MU(I))

P=P+F

DP=DP + F x1

R = F* (FL/MU(IB))

S=R+P

FLP=FL- (S*x(C*S-FL*P))/(P+x(P-Rx(IB-1)) +DP % R)
IF (ABS (FLP - FL)/FLP. GT. 0.01) GOTO 1
BETA = (DP +IB xR)/ (C * S)

RETURN

END

This rather short FORTRAN function tends to summarize the
results of this section rather well. The function BETA provides the
mean total service time for a request given the mean service rate C,
the maximum number in the system B and the service rates b, asa
function of the number in the system r. The remaining task is to
find the p,r's for different device types.

1178

4.4 Disk Model

We will begin by considering the disk because the results can
be simplified to obtain other results and disks are reasonably common
and well understood devices.

First we must consider how a disk access is carried out.
Consider the following steps:

1. Wait for the required arm to become free. As each

read or write task enters the system for service
it must acquire the service of a particular disk arm
for its entire period of service.

2. Wait for free channel. When an arm becomes free we

must acquire a channel so that the seek operation can
be initiated.

3. Initiate seek operation. As soon as the use of a

channel is obtained the seek operation is started. It

is important to understand that the use of a channel

is required only to initiate the seek operation and that
the time involved is negligible. The channel is not held
during the actual seek operation.

4, Wait for seek to complete. This involves the mechanical

positioning of the disk arm over the desired track.
Typical disks (IBM 2314) require a little less than .1
sec. for this operation. Note again that the channel is

not tied up during this operation.

179

5. Wait for channel. At this point the arm is positioned

and the task enters into contention for the use of a
channel.

6. Latency. As soon as a channel is acquired we begin to
wait for the rotation of the disk to bring the first of the
desired data under the read/write heads. This is generally

about 1/2 a rotation or 8 milliseconds for an IBM 2314.

7. Actual read or write with data transfer. The actual
time required for the read or write operation may be
only a few milliseconds depending on the length of the

record.

We will assume at the outset that the time spent performing Steps
2 and 3 is negligible. Step 3 is obviously negligible since it requires
only a few micro-seconds to complete in an environment where 10's of
milliseconds are common. Step 2 is a bit more complex.

This wait for a channel is in order to initiate a seek operation.
It is only reasonable to place these requests for use of the channel
at the head of the channel use queue and complete this operation as
soon as possible since it requires a negligible amount of channel
time.

Assuming that requests for channel service are handled in
this way we can consider the effect of this delay. First, when the

system is lightly loaded a channel will almost always be free and

180

G § 9andig

wexserq SurwLl, 9214198 JS1Q

—samt

/pedd ;

|

N
i
i i
! [

' perdndoo [ouuRyd V¥

| ————- . — . |
2SN JouUBYD J0J UOTII}odWOd Ul WJIY

. .
1 '

'

k- -
! £snq way :
: ;
! ;
sle N7
e

)
1
)
1
['
Ea

o

71

|

&

e q o<
9am/pesd Aouajer [ouueyd J0J JTBM\ ©391dw0I 0} J39S JOJ JTEM

wJe I0] JTeM

181

ro delay is incurred. Second,under heavy load we may find the disk
arms almost always busy. Notice that at the end of a complete read
vy write operation both an arm and a channel become free at the
same time. If a task is waiting in queue for that arm it may use
the channel freed with the arm to initiate a new seek. Therefore
in a heavily loaded system,i.e. busy arms, there will almost never
be a wait for a channel to initiate a seek operation. This delay
only occurs when a request arrives for an idle arm and all the
channels are busy.

Lastly there is the case where the delay does occur but is
of little consequence. This is again in the heavily loaded system
but here we are concerned with heavy channel loading rather than
heavy arm loading. When the channels are almost always busy
the delay in getting the seek started has only a small effect if
any on the total waiting time.

Figure4.5 illustrates the delays which occur along with the
periods during which the arm and channel facilities are tied up.

The basic goal of this section is to express the mean service
completion rate of a system of disk drives when there is some
fized number of requests in the system. We will define

r = number of request in the system

Thus in the specific case of r requests we are seeking e

One of the basic factors in solving for Ky is the manner in which the
requests for disk arm use distribute themselves among the available arms,

182

If we are in state r of the basic model then we know that there
are r requests in the system. In the case of disks these requests
queue for the use of individual disk arms. We may find that all r
requests are in the queue for a single disk arm. In this case we
would expect that the bottleneck would be the disk arms and that
there would be no congestion at the channel or channels. At the
other extreme we may find the r requests spread uniformly over
all the arms in the system. Here we would expect to find the bottle-
neck at the channel(s). This is all dependent on the number of
channels, the number of disk arms, r and other hardware speci-
fications.

Our basic goal here is to find the mean completion rate .
when there are r requests in the system. To do this we will
consider the steady state behavior of the system when m arms
are busy. Where m can be any integer value from 0 to N A where
N A is the number of disk arms. More specifically we will solve
for the mean service completion rate when m arms are busy.
Defining

u(m) = mean completion rate when m arm busy

we may write

No

e = L Pyy(r; Ny)). (4.21)

183

where

pm(r, N A) the probability that m arms are busy when N A

arms are servicing r requests.

(NA) (r-l)
N,- -1
- A i (4. 22)
(NA + r-l)
r

The development of pm(r, N A) is considered in detail in Appendix

B. We will continue here with the development of and expression for
u(m) .

Mean Service Rate when M Arms Busy

At this point we are not concerned with queueing for disk arms.
We are concerned with the very specific case where m arms are busy.
The steps through which a busy arm proceeds in accompiishing a trans-
fer are as follows:

1. Seek

2. Wait for channel

3. Latency + read/write

The seek operation is independent of other operations and does
not occupy a channel. When the seek operation is complete the request
entersa queue for channel service. Upon acquiring a channel the

latency and read or write operations proceed. Figure 4.6 shows a

184

queueing model which models these operations. We will use Poisson
servers in this model to represent both the seek operation and the
latency-read/write operation.

We will define

ig = mean seek service rate (4. 23)
and

W, = mean (latency + read/write) service rate
(4. 24)

As a request enters the system (from the left) it enters one

of the m servers of service rate Mg Since the system will have

SEEK LATENCY - READ/WRITE
e e mm e m ey
[|
1 : 1 [
- Mg : | He ,‘
| |
] 2 |] | [2 |
Ks | Ke :

. : . m : Lo

I ! : [
I 1
- M]] Nc I
/J-s : ‘ U-c]

Ho= Mean Seek Time o= Mean Channel Holding Time

Figure 4.6 Channel Queueing Model

185

exactly m requests circulating, there will never be any queueing or
blocking at the servers representing the seek time. Remember
we are considering the case of m busy arms. When the requests
complete the seek operation it enters the queue for channel service.
Here the request waits for one of the Nc servers representing
channel service. Channel service is required for the duration of
the latency and read/write operations. After completing channel
service the request reenters the system on the left maintaining m
arms busy.

The use of Poisson servers in this model permits the use
a Markov model. We may define the states of a Markov model to
correspond to the number of requests in that part of the system of
Figure 4.6 that is contained in the dashed box. A state diagram with
state transition probabilities is shown in Figure 4.7. Notice that
this is analogous to the general model solved earlier in this chapter
if we define

A= (m-1) By (4. 25)

and

p.i=1ucfor1§Nc

= Nc Mo for i >Nc (4. 26)

186

L'y @Indrg

19pO A Suronand auuey) J0J WeISe1q 9181S

u
Ziz won

Zmi. @3? N-w) WV Em Ev- Zmie - ~

WOPN-T W TN AT W TEN-w)+ 0N 1-1 Wi w11 venu-T

The stationary state probabilities may be obtained directly from

Equation 4.4

P = 1
o~ Ay, AN S R W
1+ + oot
Hp HoHy L WP ML)
and
S SO
P - Ky Hoe - by
i° X, A A Ay Ag-ee Ao
1+ + +o..+
K4 Ko K4 Ky Hge oo by,

(4. 27)

(4. 28)

We may express the mean completion rate yu(m) when there are

m arms busy in terms of Mg

m
pm) =), Py(m-iug (4.29)
i=0
expanding
A AA A A
m+(m-1)i+(m-'2) o 1 oo — 1 m-2
“'1 “-1 “2 “'1 .“2- o “m_l
pu(m) = p
s Ay Ao A D PR N
MR M TRRTIT
where
)\i = (m-~i) By (4. 31)
wy=1p, foriSNc (4.32)
=N, Mo for i ch (4. 33)

188

To obtain B, we simply write
Na
= L Py(r, Ny ulm) (4.34)
m=

Turning our attention to He and Ly WE will express

1
ks = “mean seek time (4.35)
and
_ 1
He = Tatency + read/write
_ 1
-1 % 60 . 60 « A
2 RPM RPM BPT
PM
- i} : (4. 36)
60 (gpT +3)
where RPM = disk speed in revolutions per minute

BPT = bits per track

A = mean record size.

4.5 Data Cell Model

The data cell is an IBM device in particular the IBM 2321.
The data cell records and retrieves information on magnetic strips.
The IBM 2321 uses a total of 2000 strips each containing 100 tracks
of data. The strips are stored vertically in a circular file which
rotates to position the desired strip at the reading station. The

desired strip is then separated from neighboring strips using a tab

189

indexing technique. The desired strip is removed from the circular
file and wrapped on a drum. The drum is read by a movable head
which has five positions and twenty read/write heads providing access
to the 100 tracks onthe strip. After the above operations are complete
a channel is acquired for the latency-read/write operation.
The data cell is analogous to the disk in that all the operations
prior to the latency-read/write operation are carried out without
the active use of a channel. Correspondingly the term seek is used
for those operations which precede the latency-read/write operation.
We can use the same model for the data cell that was developed

for disk by simply redefining the following terms:

N AT # of access mechanisms = # data cells

m = # of busy access mechanisms

by = data cell seek service rate

p, = data cell latency + read/write service rate.

Other variables are identical.
Since at this writing there is only one data cell (IBM 2321) to
be considered we will specify My and Mo for this device.

1
s = mean seek time (4.37)

for the IBM 2321

(4. 38)

190

and

RPM

e = A 1
60 (gpF *+3)

for the IBM 2321

. 1200
c A 1
60 (75000 + 3

(4.39)

These numbers assume random strip access and include strip
replacement time.
Additional information on the IBM 2321 data cell may be obtained

from IBM [50].

4.6 Core Model

The modeling of the congestion in core is much simpler than
either the disk or data cell. First channel congestion is either non-
existent or negligible. This removes the complexities involving
channel independent and channel dependent operations.

The congestion in a system of cores occurs at the core boxes.
In effect the queueing is for core drivers and sense windings. We
are seeking the mean service rate for a system of N A core boxes
with r requests in the system Hope Assuming that core boxes are

accessed randomly we may then express the mean service rate M

as

Na
e = L Pyl Ny ulm) (4.40)

191

where p(m) mean service rate when m core boxes are busy.

m
= Tcore cycle time (4.41)

fl_:. 7 Drum M(_)giel

Here as before we are seeking u, but here we are concerned
with a drum. The drum poses a rather different problem wuc.
compared to those that we have treated previously. The access
time and mean transfer rate for a drum can be improved considerably
by ordering the read/write requests in the order which the infor-
mation passes under the read/write heads. This improvement is
sufficient to motivate most users of drums to go to the trouble to
implement the ordering of requests in the drum management software.
Correspondingly it would be unrealistic to ignore this improved
operation when modeling a drum.

To begin let us consider what we mean by sectors and fields.
The drum may have on the order of 1000 read/write heads (IBM 2301
has 800). These heads are divided into groups (possibly groups
of one head) which work together in reading and writing infor-
mation on the drum. The individual tracks covered by a single
group of heads is called a field. The number of sectors is simply
the number of records in a single field. Figure 4.8 shows the fields

and sectors of a drum.

192

Drums exhibit certain characteristics which can complicate
their modeling. One of these is that the read/write heads cannot be
switched from writing to reading mode instantaneously. Generally

speaking if a record is currently being written in a given field the

Sectors

Figure 4.8 Drum Sectors and Fields

record in the same field of the next sector cannot be read. This
problem can be circumvented in several ways:
1. Intersector gaps sufficiently wide to provide for
head switching.
2. Request ordering to avoid unnecessary head
switching.
We will ignore the possible delays caused by head switching, assuming
either that some measure has been taken to completely avoid the

problem or that the delays incurred are negligible.

193

We will make the assumption that the distribution of requests
for sectors is the same as used previously for the disk data cell and
cores. The difference here is that the service is occurring in a

cyclic fashion rather than at random. Thus we may write

p m(r, N A) = probability that m sectors have a request
in queue when there are r requests and

N, sectors. (4.42)

We will assume that the mean distance between the active
N
sectors (sectors which have request in queue) is Tné sectors.

The mean distance to the starting point of the first of these m
N
active sectors is % rr‘? sectors. The mean distance between

the starting points of each of the succeeding (m-1) active sectors
N A N A

is TS sectors or a total distance of (m-1) o sectors. We must

then continue to traverse the last of these sector a distance

of one sector. Combining the total distance required to access m

active sectors may be written:

Total distance m active sectors = l——N—é + (m-1) —N—é 1
stance ctiv rs = 54 ot
SN, (1-2) +1 (4.43)
A 2m)
The time required to traverse a single sector is LY
NA>< RPM

seconds where RPM is the revolutions per minute of the drum.

194

Thus we may write the mean time required to access m active sectors

. 60 1 1
Time to access m sectors = RDM (1- 5o * NA) (4.44)
The mean rate of accesses will be
u(m) = m X RPMI (4. 45)
1
60 (1 - ‘z—a + WA—)
and
Np
X RPM
b=) p_(r,N,) mx R (4. 46)
m=1 60 (1 - 1 + __1_)
2m NA

4.8 Effect of Specific Record Sizes

Thus far we have developed a model giving us the mean total
service time for core, drum, disk and data cell. Each of these
models is a function of the specific characteristics of the devices
at the level in question as well as the service rate C and the mean
record size A. Focusing on the mean total service time as a function
of C and A we may write:

B.(C, A) = mean total service time for a read or write
request at level j when serving an average
of C requests per second which are of an

average record length A in bits. (4.47)

195

We would now like to consider the mean total service time
when a record of specific size q is read or written at level j. We
will define:

Bj(C, A,q) = mean total service time for a read or
write request involving a record of size
q at level j when serving an average of
C requests per second which are of an

average size A. (4. 48)

We will assume that the requests are generated independently.
This means that given the size, q, of a specific record being serviced
at a given level gives us no information about the size of the other

records being serviced at that level. We may write

B;(C, A, q) = B3(C, A) + x;(a-A) (4.49)
where
X; = 1 (4. 50)
j Max transfer rate at level j (bits/sec) ’

Notice that in all the models developed the size of a record has
no effect on its total service time until the actual read or write
operation takes place. The length of time required to complete this
read/write operation is simply x]. q where Xj is the transfer rate.
The term xj(q—A) gives us the variations about B'J.(C, A) caused by

differing record sizes.

196

Notice that if we take the expected value of Bj(C, A, q) for a

distribution of record sizes, q, we may write

E[8(C, 4,9)] = E[B(C, &)] + Elx,

a] - E{x; A]
= Bj'(C,A) X A - xj A
= B;(C, A) (4. 51)

At this point we have completed the development of Bj(C, A, q)
the mean total service time at levelj as a function of the mean service

rate C, mean record size A and the specific record size q.

197

Chapter 5
A Case Study in Analysis

Up to this point we have been concerned with the development
of a general mathematical model of a computing system. In this chap-
ter and the next we will be concerned with implementation and applica-
tion of this model.

In the first section we Will discuss briefly the computer pro-
gram which was designed to implement the mathematical model devel-
oped in the preceding chapters. In the sections following (5. 2 through
5.6) we will discuss a case study in analysis. Here we will describe a
single system in some detail, study its performance, and then proceed
to examine the changes in performance which occur when various model

parameters are changed.

5.1 Program Description

The design of the computer program implementing the system
model closely follows the development of the system model described
in Chapters 2,3,and 4. The lifecycle function of Chapter 2 is implemen-
ted in a single 8-variable FORTRAN function. Each of the storage
models described in Chapter 4 is implemented in a separate subroutine
or group of subroutines. These models are all interfaced through a
FORTRAN function BETA which corresponds to the g function discussed
in Chapters 3 and 4. This FORTRAN functioncalls on the appropriate

model based on the level of storage in question and returns the desired

198

mean total service time as a function of the traffic at that level. The
storage device model in effect for a given level is controlled by a sim-
ple index. The number of different storage device models is not limited
and additional models may be added rather simply.

The macroscopic model described in Chapter 3 is implemented
in several subroutines which compute the values of the ui's, C.'s,

C’ j's, A j's, A’ j's etc. The method of solution is as described in
Chapter 3.

In addition to the basic analysis program there are a number of
subroutines which perform the functions of input, output,and program
control. The program is designed to run in a highly interactive manner
allowing the user to modify and display system parameters by using simple
commands,

Thereis one important restriction which appears in the computer
program and is not necessarily part of the mathematical model itself.
The program assumes that all user programs are identical and corres-
pondingly shared levels are allocated equally among the programs being
multiprogrammed.

We will discuss several other aspects of the program as we con-
sider the examples that follow, The optimization capability of the pro-
gram will be discussed in the next chapter where we treat the optimi-

zation in detail.

199

(SpIom ¥00¢ =)

£froede) ng uoIIAl 01

Aousjer] sw g ‘9]

INdY 0081
Axepuooag-paJeys ¢ THAHAT

(SpIom 9T =)

(un xad) £yoeded nd 000 ‘00¢

8w, Ss900y s7 |
Arewtag-poaJeys gz TRAHT

(spIom 963)
Ayoede)D nd g618
dWI], SS900VY Su (8

Axrewtag-pojeopad 1 THAHAT

PIOM 1Y ¢¢€
918y SS900V WNWIXEN oW]

1°G @andi g

INVIOVIA WHLSAS

NNYa

R (010)

R (010)

R (0]0)

q3440d
/IHIVO

ndo

200

5.2 System Description

In this section we will describe a multiprogrammed, demand
paged computing system using a 3-level storage hierarchy. We will
consider the system itself and its performance in considerable detail.
The need for careful description here is motivated by the fact that this
system will remain at the center of attention throughout our study of
analysis and in the next chapter treating optimization.

The computing system in question is first shown in Figure 5.1.
Here we see a CPU and 3 levels of storage. The CPU is capable of a
maximum access rate of 10 mc. More preciselylx\' as defined in Equa-
tion (3.81) is 10 mc. The CPU word size is 32 bits as noted.

The level 1 store is contrived to resemble the cache on the IBM
360/85 or the so-called buffer on the IBM 370 series. This cache or
buffer store will be allocated entirely to the executing program and
thus will be a dedicated level of storage. This level is also clearly a
primary level since access to it will not cause loss of the CPU to another
program. The level 1 store here is a random access device with an
80 ns access time and a 8192 bit or 256 word capacity.

The level 2 store consists of 3 core boxes. The space at this
level will be allocated equally among the programs being multipro-
grammed, making this a shared level. This level too is a primary level
and access will not cause loss of the CPU. The access time at level 2
is 1 and each core unit has a capacity of 500,000 bits or approximately

16k words.,

201

The level 3 store isshared-secondary and is implemented in the

form of a drum. Shared indicates that each multiprogrammed pro-

gram is allocated equally at this level and secondary indicates that
user program access to the drum will cause loss of the CPU to an-
other program. The drum at level 3 rotates at 1800 RPM and has a
corresponding latency of 16.6 ms. The drum's capacity is 10 million
bits or approximately 300 k words.

Figure 5. 2 is the first of a number of figures which show the
actual computer output generated by the modeling program. This and
future figures containing this style of type were generated by issuing
one or more display commands to the program.

The first 3 entries of Figure 5. 2 give us the number of levels,
the number of dedicated levels and the number of primary levels.
These of course correspond to the system of Figure 5.1. Notice
that where possible the variable names used earlier in model develop-
ment are used here,

Continuing, we see the number of programs to be multipro-
grammed has been set to 13. The next 2 entries establish limits of the
values which M (the number of programs) may take on. The primary
function of a minimum and maximum number of programs is in optimi-
zation where we are searching over a range of values for an optimum,
We will discuss this in more detail in the next chapter, which treats

optimization.

202

EL-3L6666FV1°C =HNVL

S8B66666F°L=WVD

8€ 3ckepeclg =1lVHY

Sc =W XVIn

c =WNIW

el =W

«Q
il
X

¢ G 9an31q

SHTAVIdAVA INHLSAS

78€91 €

ool é

ct [
3ZIS Q¥033¥ 13INET

S3IZIS QYOI3¥ 40 IEVL

IWIL QYIHYIAC WILSAS

dOlOVd dVI¥IAC MidD

(*03S ¥3d SSEOIV)I HIVY [idS RNWIXVRK
GIWVHD OMJAILINW F6 Ol SWV¥DCYd 40 # XV
C3WVHD0UdILTINK 38 Ol SWYNDOMd 40 # NIW
GEWVIDCHdILTINN SKYHOO¥d 40 ¥IBWNN
STIEAIT AYVKI¥d 40 ¥IGWNN

STENIT GILYOIGIEG AC HIAGKNN

STINIT A0 ¥IHERWNN

203

Next we see the maximum CPU access rate (? here represented
as RHAT). This is followed by the CPU overlap factor. The value of
the CPU overlap factor indicates that the CPU is roughly capable of
keeping 2 access requests pending at once. This variable (represented
here as GAM) corresponds to y defined in Equation (3.79).

The next of these independent variables is the system overhead
time ?h (represented here as TAUH). This is the CPU time required
for program interchange. —’Fh is defined in Equation (3. 92).

Finally at the bottom of Figure 5. 2 we find a table of record
sizes. This is the logical record size and corresponds to the qi's
where the i corresponds to the level.

We will now turn our attention to the individual levels of storage
themselves beginning with level 1. In Figure 5.3 we see a description
of the hardware at level 1, Here we see that we are using model type
2 at level 1. This model corresponds to the core model developed in
Section 4.6. The average access time for a single unit is 80 ns as
indicated earlier. Note that all times are in seconds unless otherwise
noted.

The basic device record size is 32 bits., The basic device re-
cord size here happens to be the same as the logical record size but
this need not be the case. The device record size is the number of
bits which are read or written in a single access time. The logical

record size specifies the quantity of data "paged up'. The unit capacity

204

*kk LEVEL 1 %%k

MODEL TYRE 2

MODEL 2 (RANDOYM ACCESS OR CORE !NITS)

AVERAGE ACCESS TIME FOR A SINGLE UNIT PeT799996TE-T7

3ASIC DEVICE RECORD SIZE 32.
UNIT CAPACITY FeB192333E 24
NUMBER OF UNITS 1
MIN # OF UNITS 1
MAX # OF UNITS 4
COST PER INIT (3) 5333373

Level 1 Hardware Description

Figure 5.3

205

MEAN WAITING TIME

B.236E-06¢
I
I
I
I
2.221E-06+
I
I
I
I

2.205E-96+

I
I
I
I
2.189E-06+
I
I
I
I
De1T74E-06+
1
I
I
1
0.158E-06+
1
I
I
I
B«143E-36+
I
I
I
I
2.127E-06+
I
I
I
I
B.111E-06+
I
I
I
: I
B.956E-07+
I
I
I

* kK

* kK
[Rxk

*k
* %
* ok k
xRk
*k

*
* %k

x
*x

+

*x

+

* %k
* K
* %k

* %
* %

+%
*k
*k

3.800E-0T#*----- ceetmmea- P U — PR
8.10E-82 B8.25E 07 @.50E 87 0.75E 37 0.10E 28

TRAFFIC IN RECORDS/SEC
Level 1 Performance
Figure 5.4

206

-w e
B.12E 28

MEAN QUEUE LENGTH
B.295E @1+ + + + + "

D.266E O1+ + + + + +

P.236E 01+ + + + + * 4

B23TE O1+ + + + + * +

2.177E B1+ + + + +% +

B.148E 21+ * + S x o+ +

2.118E 21+ + + + % + +

P.886E 20+ + + xK + + +

I *%
1 * %
1 -k
8.591E 20+ + * + + +
1 * ok
1 *ok
I * %
I * K
B.295E Q3+ +xk + + + +
1 ek
1 & Ak
I ok
1 %%k
Pe954E-B 6%k ===~ oo LRI IR LR R cecefpeccnncacn +
B 10E-22 B.25E @7 3.53E 27 9A.75E 67 0G.10E 928 0 12E

TRAFFIC IN RECORDS/SEC
Level 1 Queuing
Figure 5.5

207

28

is given as 8192 bits. Note that all capacities and record sizes are in
bits. We see the number of units, the minimum number of units and
the maximum number of units, Clearly the number of units is set to

1 which corresponds to our example. The minimum and maximum

are bounds used in optimization when the number of units is a decision
variable, Last we find the cost per unit at $50,000. This value is used
in optimization and, as you will see,for simplicity we have chosen a
cost of $50,000 per unit at each level of storage. This is a bit unreal-
istic put simplifies our discussion of optimization,

Turning to Figure 5.4 we have a plot generated at the terminal
which displays the performance characteristics of the level 1 configu-
ration. The plot gives us the mean waiting time for a single service
request as a function of the rate at which requests arrive. The request
arrival rate or traffic records per second is given on the horizontal
axis and runs from near 0 to just less than 12,5 million records/sec.
In generating this plot it was assumed that a maximum of 3 requests
for service could be in queue and service (i.e. B = 3,see Section 4.1),
It is also assumed that all the records being read or written are 32
bit records. In terms of the 3 function defined in Equation (4. 48) we
are seeing a plot of BI(C’32’32) versus C,the traffic in records per
second,

In the lower left-hand corner of the plot we see that under low

traffic conditions the access time for level 1 corresponds to access

208

time of the device 80 ns. This is of course a consequence of virtually
no queueing., As we move to the right increasing traffic is seen as an
increase in the mean waiting time due to congestion. At the far right
near 12.5 million record/sec. the mean waiting time increases to

236 ns, It is important to note that 12.5 million records/sec. is the
maximum possible service rate for an 80 ns server under these condi-
tions. Also note that if we always have 3 requests for service in the
system the mean waiting time will be 3% 80 ns or 240 ns. The maxi-
mum mean waiting time shown here is 236 ns, which is appropriate for
a traffic figure slightly under the maximum possible. It is useful to
note that in generating these plots the program modeling the g function
is called with increasing values of C or traffic, until it responds with
a special return which indicates that the device being modeled cannot
operate at such a high traffic.

Figure 5.5 gives us the mean queue length as a function of the
traffic at level 1 under the same circumstances. Here we see the
mean queue length (which includes the request in service) go from near
0 to 2,95 or just under 3, as would be anticipated. The values of ser-

vice rate or traffic using the relation [33];
Mean number in queue and service=mean service rate X mean waiting time.

We will now turn to the next level of storage, level 2. The des-
cription of the level 2 configuration is in Figure 5.6, At level 2 we are

using the same model that was used at level 1. Here, however, the

209

*kk LEVEL 2 *k%

MODEL TYPE 2

MODEL 2 (RANDOM ACCESS OR CORE UNITS)

AVERAGE ACCESS TIME FOR A SINGLE UNIT 749999967E-256

3AS5IC DEVICE RECORD SIZE 128
UNIT CAPACITY De5993933E 36
NUMBER OF IINITS 3
MIN # OF UNITS 2
MAX 4 OF UNITS 3
COST PER UNIT (¢5) 5373733

Level 2 Hardware Description

Figure 5.6

210

MEAN WAITING TIME
P.882E-935+ + + + + *
I
1
1
1
B3833E~-35+ + + + + x4
I
1
I *
I
De T25E~-35+ + + + + +
I *
1
I *
1
BebATE-BS+ + + + + *x +
1
1 *
1 *
1
BAeSEIE-FS+ + + + + * +
1 *
1
1 *
1 *
804918‘55‘.‘ + + + + * +
I *
I
I *

1 *
Aed413E-35+ + + + + % +
1 *

1 *

I * %k
I *
De334E-A5+ + + + * + +
1 x*
I * %k
I * %
I & %k
Ae258E-35+ + + + * + +
1 * %
1 *k
I * %k
I o&* %
AelT1BE-35+ + 4+ kkkk + + +
1 * Kok K
1 ok ok ok ok
I k% ok %
1 o o ok e e ok ok
Be1PDE-DSkkkk k= == = = $occcnnana teccanencefjeccncncancdnaccanaead
Be1PE-22 DeSSE D6 Bel11E 37 Qe1TE BT @B22E 37 2.28E 27

TRAFFIC IN RECORDS/SEC
Level 2 Performance
Figure 5.7

211

MEAN QUEUE LENGTH
3.244E 02+ + + . + *

2+195E 922+ + + + + +

2.171E 22+ + + + + *x o+

B.14TE 32+ + + + + * +

2.122E 22+ + + + + +

De9T75 21+ + + + + X% +

B.733E A1+ + + + xk+ +

1 **%
De.489E 21+ + + + kX + +
1 * %k
1 ok
1 * ok ok
1 * k&
Be244% A1+ + + kkkok + + +
1 * k%
1 sk ok ok ok
1 s o 3 ok ok
1 3 3 e ok ek ok

B.1DE-22 DSSE A6 B11E 07 A17E 37 9.22E 37 B.28E 27

TRAFFIC IN RECORDS/SEC
Level 2 Queuing
Figure 5.8

212

parameters are different. There is very little new here except possi-
bly the range of allowable number of core units and the basic device
record size. Thus we have 3 core units, each with a capacity of 1/2
million bits and each capable of accessing a 128 bit word in 1 us.

The performance of level 2 under load is shown in Figure 5. 7.
Here as for level 1 we have plotted the mean waiting time as a function
of traffic in records per second. The record size used here was the
basic device record size of 128 bits and the maximum number in queue
and service was set to 26. (The motivation for the choice of the values
for the maximum number in queue and service will become obvious
later.) The maximum service rate would be 3 million records/sec. if
all 3 core units were always busy. Of course we cannot expect all 3
core units to remain busy at every instant. But, with a maximum of
26 requests for service in the system we can expect the maximum fea-
sible traffic to be near 3 million records per second as indicated in
Figure 5.7. To get a rough estimate of the maximum mean waiting
time we can assume that the requests for service divide evenly among
the 3 core units, thus giving us a maximum of 1/3 x 26=8.666 in each
queue. If there were in fact 8.666 in each queue the mean waiting time
would be 8.666 ws. Notice that the maximum given in Figure 5.7 is a
little larger than 8.666 ws. This should be expected since an occasion-
ally idle core unit and the resulting long queues at the other units would

be expected to increase the mean waiting time.

213

Figure 5.8 shows us the mean queue length as a function of
traffic, and this varies as expected from near 0 to just under the maxi-
mum of 26.

Turning now to level 3 described in Figure 5.9 we see that the
situation has changed somewhat. At level 3 we use model type 3 which
is the drum model described in Section 4.7. The device parameters
indicate a 1900 RPM_: drum with 100 K bits per track and a capacity of
10 million bits. Theré is currently one drum and we may attach from
1 to 4. Again the cost per unit is $50,000.

The performance is shown in Figure 5,10, Here we have
assumed a maximum of 26 requests in the system and a record size of
16384. Notice that at the low traffic end we have a mean waiting time
of 22.1 ms. Using a record size of 16384 bits we have 6 sectors on
the 100 K bit per track drum. Rotating at 1800 RPM we have 16.6 ms
of latency (1/2 a rotation) and 1/3 X 16.6 =5.5 ms for data transfer.
Thus latency and transfer time is 22.1 and agrees with the low traffic
waiting time shown in Figure 5.10.

The maximum traffic is 6 records per revolution. Since a com-
plete revolution requires 33.3 ms the maximum traffic will be 180
records/sec. Since we have a maximum of 26 requests for service in
the system at level 3 and 6 sectors on the drum we see that this is only
roughly 4.3 requests per sector. This means that it is quite likely that

a sector may pass under the read/write heads with no request in queue

214

*kkk LEVEL 3 *%k*

MODEL TYPE 3

MODEL 3 (DRUM OR FIXED HEAD DISK)

DEVICE RPM B3.18033003E 04
BITS PER TRACK 2.199%2200E 26
UNIT CAPACITY B«1323220E 38
NUMBER OF UNITS 1
MIN # OF UNITS 1
MAX # OF UNITS 4
COST PER UNIT (%) SA223 .27

Level 3 Hardware Description

Figure 5.9

215

MEAN WAITING TIME
B«177E 02+ + + + + *
1
1
I *
1
D161E 30+ + + + + *e
I
1 *
I
1 *
Q+.146E 20+ + + + + x <+
I
1 *
I
I *
D.132E 20+ + + + + * +
1 *
I *
I *
I *
P.115E 92+ + + + + % +
1 *
1 *
I *
1
2.995E-01+ + + + * +
I *
I *
1 * %
1 *
B.842E-01+ + + + *x <+ +
1 *
1 *
I *
I *
2.685E-01+ + + + % + +
I *
1 *
I *k
1 *
B«531E-31+ + + *k + + +
1 * %
i * %
1 * %k
1 ok
2.376E-01+ + ik 4 + + +
1 ook ko
1 gk
1 o e ok
I *kkxkx
Be221E=f | kR wocccabonccnnnnafecncncncnbocnnnnes T . +
D.10E-32 (.28E A2 D.56E @2 2.85E 22 O.11E 33 2.14E 33

TRAFFIC IN RECORDS/SEC
Level 3 Performance
Figure 5.10

216

MEAN QUEUE LENGTH
D.249E 02+ + + + + *

D« 199E 02+ + + + + +

Be.1T74E A2+ + + + + * +

F.149E 32+ + + e * * +

2.125E A2+ + + + +%x *

B.996E 21+ + + + x4 +*

B«T47E D1+ + + + *%x + +

De498E 31+ + + ok + +

1 x%
B.249E 01+ + *kk + + +
I ok
1 * koK
1 T TITT
1 TP TT Y
De3INSE-Dl4 %k kA ko wmnaa fbovccanana doccccanca becemman= epomrmcman-= +
B.19E-A2 0.28E A2 3.56E 32 0.85E #2 92.11E 33 B.14E 43

TRAFFIC IN RECORDS/SEC
Level 3 Queuing
Figure 5.11

217

to be serviced. Thus we see that the maximum indicated here of
approximately 140 records per second is expected. A very rough
estimate on the maximum mean waiting time can be calculated by
simply assuming 4.3 requests in service at each sector and a full
rotation or 33.3 ms required for each read. This gives us an average
mean waiting time of 143 ms. The maximum shown in Figure 5.10 is
177 ms, clearly larger than our estimate due to the random queueing
and idle periods.

Figure 5.11 shows the mean queue length, which as expected runs

from near 0 to just under 26, the maximum,

Traffic

We will now examine the traffic patterns in the system and the
critical reads and writes. We will begin with the diagrammed trans-
fers in Figure 5.12,.

In Figure 5.12 the data transfers which result from a user pro-
gram read to each of the 3 levels of storage are shown. The solid lines
indicate the transfers moving data up in the hierarchy. The dashed lines
indicate the transfers required to page out or those transfers required
to make room for the data being paged up.

The 9, indicates the size of the transfer in terms of the record
sizes at the three levels, in this case

9 = 32 bits,
4y = 1024 bits

218

g1°G @an3rg

speay weadoxd I9s) woaJ Sury[nsay suxajyed O1JFetl

¢ 19A9T 03 peay

4* ¢ THAHT
7
\ L

mE b

Vol g 1EATET

T THAHT

ndo

g 19A9T 0} peay

& THATT
_ g2 THATT
/
\
\J 1 1EATET
Iy
ndo

T 19A9T 0} peay

€ THAWT

¢ THAHT

T THAHAT

ndo

219

\.

g [9A9T 0} ATIM

€1 °G 2an31d

sojtap wexdoxd xas() wodd 3urjnsay suxdjped OIFedL

g THAHT

¢ TUHATT

T THAHT

ndo

G 19A9T 0} SIIM

€ THAHT

\N* ¢ THAJT |

T THAHT

ndo

T 19A9T 03 ATIM

g THAHT

¢ THAHT

T THAHT

ndo

220

and Qg = 16384 bits
as indicated in the table of record sizes given in Figure 5. 2.

On the left of Figure 5.12 w see that a user program read to
level 1 causes a record of size q, or 32 bits to be read from level 1 into
the CPU. In the center we see the effect of level 2 or core access.
In this case 1024 bits are brought from core (level 2) into the cache
(level 1) followed by a transfer of 32 bits from the cache to the CPU.
The downward transfer from the cache to the core of 1024 bits is
necessary to maintain space in the cache for the upward paged infor-
mation,

The effect of a user program read to level 3, a secondary
access,is shown on the right. Here we see an upward transfer of 1024
from drum (level 3) to core (level 2) and a corresponding downward
transfer of the same size.

Figure 5.13 shows the effect of user program writes. The
transfers performed here are almost identical to those for reads,
differing only in the direction of transfer between core and cache.

The transfers shown in Figure 5.12 and 5.13 are represented
in the model in the form of the ""T'" array shown in Figure 5.14 and
5.15. Let us examine carefully the center matrix in Figure 5. 14,
Here we have a description of the traffic which occurs as a result of a
user program read to level 2. The elements of this matrix are derived

from the traffic pattern shown in the center figure of Figure 5.12.

221

*xx THE "T" ARRAY k%%

USER PROGRAM READ TO LEVEL 1

TRAFFIC - RECORD SIZE
AT QC1)Y Q2 QI
LEVEL '

1 133 B9 2D

F3Y)

B2 B.0 Do

3 2.0 Ded DD

JSER PROGRAM READ TO LEVEL 2

TRAFFIC RECORD SIZE
AT RACLY Q2 Q3
LEVEL

1 1623 2070 D3
2 FeB 233 Do
3 DNe? Aed De?

JSER PROGRAM READ TO LEVEL 3

TRAFFIC RECORD SIZE
AT 2C1Y Q2 A3
LEVEL
1 29 De? Bed
2 Be? D7 229

3 De3 Fe? 2.9

The Traffic Array for User Program Reads

Figure 5.14
222

USER

TRAFFIC
AT
LEVEL

1

JSER

TRAFFIC
AT
LEVEL

1

o

USER
TRAFFIC
AT
LEVEL

1

3

PROGRAM WRITE TO LEVEL 1
RECORD SIZE

AC1Y Q2 QA3

1622 D0 DD

B3 B0 B

L?J.Z @03 90'3

PROGRAM WRITE TO LEVEL 2
RECORD SIZE

AC1) QC2)Y QA3

133 2.33 929

Ao 239 e

BeD Bed Ded

PROGRAM WRITE TO LEVEL 3
RECDORD SIZE

ACLY QAC2) 33

AeD Ao Beid

el Pe? 233

De Ao 2.9

The Traffic Array for User Program Writes

Figure 5.15

223

Notice that 1 record of size 9 is read, 1 record of size q, is read and
1 record of q is written at level 1. Summing up, we have 1 record of
size q and 2 records of size 49 read or written at level 1 as a result
of a user program read to level 2, In the center matrix of Figure 5.14
this traffic at level 1 is indicated in row 1 of the matrix, The rows
correspond to levels and the columns correspond to record sizes.

Following the same lines we see that 2 records of size q2 are
read or written at level 2, This results in an entry of 2 at row 2,
column 2 of the matrix. There is no traffic generated at level 3 and
correspondingly zero entries in row 3 of the matrix.

Each of the 6 matrices shown in Figure 5.14 and 5.15 can be
derived from its corresponding traffic pattern diagram in a similar
manner, This will be left up to the reader's interest and energy.

We will now turn to the critical reads and writes shown in the
"G'" array in Figure 5.16 and 5.17, Here we specify exactly which of
the reads and writes generated by a user program access must be com-
pleted in order to complete that access. We will again focus on the
user program read to level 2, which correspmds to the center matrix
of Figure 5.16, This matrix specifies that the time required to com-
plete a user program access to level 2 is the time required to read a
q1 or 32 bit record at level 2 plus the time required to read a q1 or
32 bit record at level 1. This means that we are assuming that in the

transfer from core to cache the write time at the cache is negligible or

224

%x THE "G ARRAY #k

USER PROGRAM READ TO LEVEL 1

TRAFFIC RECORD SIZE
AT QC1Y QC2) 9C3)
LEVEL

1 1423 DD Ae

[A]
[SS]
.
(N
S
.
=
(o]
.
Q

USER PROGRAM READ TO LEVEL 2

TRAFFIC RECIRD SIZE
AT AC1Y Q2 Q3
LEVEL

1 133 33 De?
2 139 Do DD
3 e Ded e

JSER PROGRAM READ T3 LEVEL 3

TRAFFIC RECORD SIZE
AT Q1Y Q2> Q3D
LEVEL

1 De? AeD Do
2 A De? Ded

3 De? Be? 1332

The Critical Read/Write Array for User Program Reads
Figure 5,16

225

USER PROGRAM WRITE TO LEVEL 1

TRAFFIC RECORD SIZE
AT QC1Y QC2) Q3
LEVEL
1 123 2.9 Be?
2 Be? Be DD
3 De? Ao DD

USER PROGRAM WRITE TJO LEVEL 2

TRAFFIC RECORD SIZE
‘AT AC1Y QC2Y QC3)
LEVEL
1 1433 23 DeD
2 1623 22 B2

3 e Ded Ded

JSER PROGRAM WRITE TO LEVEL 3

TRAFFIC RECORD SIZE
AT AC1) 2C2) A3
LEVEL
1 Bed Hed e}
2 De?d AeD Aed
3 AeB Ded 133

The Critical Read/Write Array for User Program Writes
Figure 5,17

226

concurrent and that we may access the required 32 bit word from the
cache as soon as the first 32 bits reaches the cache from core. We
have also assumed that the page down operation from the cache is
carried out with sufficient anticipation to avoid delays while down trans-
fers are made.

The critical reads and writes and their associated assumptions
for level 2 are far more complex than either of the remaining 2 levels.
In the case of level 1 read, it is simply the time required to read a
q, or 32 bit record from level 1. In the case of a level 3 read, it is
simply the time required to read a qq OT 16384 bit record from the
drum. It is again assumed here that neither writing in core notpaging

out at the core will cause delay.

The User Program

Five of the parameters which specify user program behavior
are given in Figure 5.18. These parameters are independent variables
in the program model developed in Chapter 2.

Notice that the values given here are identical to the values used
in the "'standard’ case discussed in Section 2.7. The CPU word size
here, 32 bits, also agrees with the "'standard' case in Chapter 2.
Continuing, the logical record or page size in the "'standard' case is
16384 which is the same as the record size at the drum or level 3 in
this example. Thus when we examine the relationship between primary

and secondary levels in this system as a function of core allocation, we

227

*%% USER PROGRAM SPECIFICATIONS *%%
PROGRAM SIZE IN BITS

CYCLE REPETITION NUMBER

MODE OF THE CYCLE LENGTH

DELTA DISTRIBUTION PARAMETER

ACCESSES BETWEEN NON-STORAGE INTERRUPTS

User Program Specifications

Figure 5.18

228

163849

2339239

B¢52997

22227237

4339

TOTAL # OF ACCESSES/
ACCESSES BELOW LEVEL 2

D«351E 24+ + + + + *k
1 ok ok
1 * kK
1 * ok ok
I *okok

B.316E Q4+ + + + *kk+ +

B«281E 04+ + + + % + +

Be246E DA+ + + * 4 + +

P.211E 24+ + + + + +

De1T76E B4+ + + + + +

Ae141E B4+ + + * + + +

B 10SE B4+ + + % + + +

Be«TI4E O3+ + xk+ + + .
1 * %k
1 * %k
1 * kok
1 ¢ e o ok ok
B«352E 93+ * + + + + +

Be100E BlAkkkkkooooboomaanan-e $omemmmccctocancanas bomeceaeae +
-2.0 B.31E 05 B.62E 05 B.93E 85 B.12E 36 2.16E 06

ALLOCATION AT LEVEL 2 IN BITS
User Program Behavior
Figure 5.19

229

will get the same results as given in Section 2,7 for the standard case.

The plot shown in Figure 5.19 shows the relation between the
total number of accesses and the accesses below level 2 as a function
of allocation at level 2. This is the same as the curve shown in Figure
2.11 with obvious differences in scaling and plotting method.

There is only 1 remaining independent variable to be discussed.
This is the mean time required to complete an interrupt external to the
storage system, such as a terminal user. The value used in this case
will be 60 ms. Thus on the average a user program will require some
kind of interaction with devices outside the CPU and storage system
after each 4000 accesses are completed, and that interaction will cause

loss of the CPU and an average wait on the external divide of 60 ms.

System Performance

We have at this point succeeded in wading through the indepen-
dent variables in the system and we are now in a position to examine
the performance of the system.

The next 3 figures, 5.20,5. 21,and 5. 22 contain the dependent
variables which are generated by analysis. These 3 figures are im-
portant because we will see them repeated a number of times in the
near future. Each repetition will of course contain different numbers
resulting from some system modification,but the format and meaning of

the numbers will remain fixed for ease of comparison., Because of the

repeated appearance of these dependent variables we will examine

230

them very carefully here to avoid the necessity for repeated explana-
tion,

Beginning at the top of Figure 5.20, Part 1 of the dependent
variables we see the mean CPU access rate, This is the rate at which
the collection of M user programs makes access or reference to indi-
vidual words of storage. This is the measure of work done or through-
put and corresponds to the variable r defined in Equation 3. 14,

Next in Figure 5. 20 we find the allocation data. The first line
here indicates the number and size of the programs being multipro -
grammed (independent variables). This is followed by a table giving
the total space and allocation at each level, The total space is the
total capacity in bits or simply the product of the number of units at
a given level and the unit capacity. The allocation is the space allocated
to an executing program. At level 1, a dedicated level, the allocated
space is equal to the total space. At levels 2 and 3, shared levels,
the allocated space is 1/13 x (Total Space) as the total space is allo-
cated uniformly to the 13 programs being multiprogrammed. The last
column on the right headed % OF PROGRAM contains the percentage of
the program (163840 bits) which will fit into the allocated space. Thus
5% of the program will fit into the cache, 70% of the program will fit
into the core units and the available space at the drum exceeds the

space requirements d the running programs by a factor of 4. 69.

231

MEAN CPIJ ACCESS RATE = 7.6496115%E 26

%% ALLOCATION DATA #%x

13 ”ROGRAMS WITH EACH YJSING 7.1633492E 236 B3ITS

LEVEL TOTAL SPACE ALLOCATIOIN Z OF PRIGIAMY
i AeB192A2AAE 34 B3¢81922332E 34 539227
2 D« 152323A3E 27 De11538456E 26 73.4251
3 e 12337323 38 2.76923275E 26 4695319

CRJ/PRIMARY EFFICIENCY= 28.845%

CPJ UTILIZATION

JsER 22.5217
SYSTEY 3.1367%
’JAIT 74037370

kkk MEAN TRAFFIC *%x

==JVER ALL TIvE-~

CP ACCEZSS RATE = 2.649611535 34

LEVEL Z USER ACCESS READ/Z/WRITE RATE
1 9649524339355 2683613 7T5E 24
2 34177125931 2¢39296164E 35
3 DeD268735138 3393672338 22

-=0VER PZRIODS JF USER PRIGRAM EXECUTION=--

CPJ ACCESS RATE = 7.288446495 27

LZvVEL % JSER ACCESS READ/WRITE RATE
1 26+9534389355 2e323763232E 37
2 37177125931 Del1 74173378 25

Dependent Variables, Part 1, "Standard' Case
Figure 5. 20

232

RECIORD SIZE

7+88483591E 792

21725893128 74

7163839928 35

RECORD SIZE

DeBR4BASTAE A2

7+12313399E 74

69cS* 86

LIS 1y

Z 103445
ANT1vTHY

rco 9L

GLEGEC

1% G @an3rd
9se) ,,piepuels,, ‘g 1aed ‘solqeliBA juspuada(q

GL-TErIEC L €96£9°E PE-3GSIGT L
SG-3SLELE G 9LE9E°1 9E-S6Y Ik L

kIl HTINYES
AvOI1lIYD NVEW

HIONET HWIL1 F0INYES
N3N0 NYER

TvlCl ANO3EK

- - INZWNCH
1e-3PSELy * "ven 1C-FC0UE9 @
1g-3GEhr e €1666°C 16-2621L9 ¢

gk Lor9e e

ShI1 H2In¥ZES
AvOILI¥D NVEK

ADINMIS ¥CH

SE-3E€&Lgb L

HIONIET 3k 11 22IN¥ES
qEN0 NYERW

AYIC0L Nvzh

~=ININWNCGEIN

% %k %k

C(SHYIESN
SISHMLUFY A0 ¥IEGRKIIN

9¢ SslvLlce <

Lk 39LGLEEL I

(z)
.

Jlvd ZOIAYIS 3n
NG SR

INND SSHOOV AMYhI¥ca--
€ JL¥c9l- e Ix3s
clk 3LI9EEES L €
Sk 39écet L <

AIVY¥ FOIN¥YES AENET
NLCEN

NF SSHOOV ANVAUNCOZES--

SEhIL SSHOIV *kxx

(2] 0 O O
[aUaY]
> - m

SISHENGIY Xvlk 3AZET
€1 ONINNMY NEBRM

AMEISSCE WMk IXUW **x%

233

22 G 9an3rg

ose) ,,pIepuels,, ‘g 1red ‘sorqerieA juspuade(

GL-a8r8G9rL L

ck-361G6LEEL "L

1¢-3€cEES19°C

9E-3k1vece99° L

=0Nvl

=3Nvl

=Sfivl

=dVl

SASSIIOV AMYWI¥d NIHIMITE HWIL NV3EW

1TNVd J9Vd AYVANCOIS 3J¥CAHEE
FWIL NCILNOIXI NVIR

SS300Vv AYYANGCO3IS V 313703 01 3IRIL Nv3Ek

SSEJIV AYvkI¥e v J13TdW03 CL 3WIL1 NV3IW

234

The cost of storage hardware is simply a summation
of the costs associated with each of the storage devices
used. In this case we have 1 cache, 3 cores and 1 drum or 5 devices,
each assigned a cost of $50,000 or a total of $250,000.

Continuing we find several efficiency and utilization figures.
First there is the CPU/PRIMARY EFFICIENCY given as 28. 845%
This figure is a measure of CPU efficiency when it is infact executing
a user program. This simply says that when a user program is exe-
cuting,it is executing at 28.8% of the rate that it would execute if the
user program were located entirely in the cache. In terms of the

model variables this figure is simply

(r'/f) x 100
where r' is the CPU access rate during
user program execution, (r'defined

Equation 3.15)

The CPU utilization is given in the form of 3 percentage figures -
user, system and wait. The user figure is the percentage of time that
the CPU spends executing a user program, 22.5% The system figure
is the percentage of time the CPU spends doing the bookkeeping tasks
associated with user program interchanges. Finally the percentage
of time the CPU spends in an idle or wait state is given.

The remaining data at the bottom of Figure 5. 20 gives us the

access behavior and traffic environment in the system. We begin with

235

the mean traffic based on an average over all time, We see first the
CPU access rate. This is simply a repeat of the mean CPU access
rate given at the top of the Figure.

Continuing we have a table giving data for levels 1 through 3.
On the left we have the % USER ACCESS. This column gives us the per-
centage of all user program accesses which are made to each of the 3
levels. The second column headed READ/WRITE RATE gives us the
rate at which records are being read and written at each level. The
final column displays the mean record size for each level. In terms
of the model the data shown here comes directly from the ui,C i? Ai
defined in Equations 3.70-3.72, 3.19 and 3.21 respectively.

The final and remaining table is the same as the one we have
just considered except here we are looking at the system only over
periods of user program execution. The CPU access rate given here
is r' the rate taken during periods when CPU is busy. The read/write
rate and the mean record size arelikewise taken over periods when the
- CPU is busy. The percent of user access given inthis table is the same
asin the previous table. The read/write rate is simply C'i, defined m
Equation 3. 29 and the record size is A'i, defined in Equation 3. 31,

Turning now to Figure 5. 21 we have a group of dependent
variables which are closely related to the performance at individual
levels. At the top of Figure 5. 21 we have a table expressing the

maximum number of requests for service which can occur at each o

236

the three levels. The values given here are the same as those used
earler when examining the performance characteristics of the indi-
vidual levels. The values in the table are the Bj's expressed in Equa-
tion 4.3 where j indicates the level.

In the lower part of Figure 5. 21 we see 2 tables, one labled
secondary access environment and another labled primary access
environment. In the first of these tables (i.e. describing the secondary
access environment) we display information about the traffic at the
shared levels of storage as seen by a user program making a secondary
access. That is, the averages are taken over all time, In addition to
the shared levels, levels 2 and 3, data describing the external interrupts
are given,

Under the heading MEAN SERVICE RATE we have the rate (over
all time) at which records are being read or written at each level. In
the case of external interrupts this is the rate at which these external
transactions are being carried out, Notice that this column is identical
to the column headed READ/WRITE RATE in Figure 5. 20 except the
dedicated levels are omitted and external behavior is added.

In the next column we give the mean TOTAL SERVICE TIME
(read/write) for a record of the mean record size under mean traffic
conditions, This is an after-the-fact calculation based on mean values
and thus may not relate directly to the system performance, but itprovides

a measure of the general congestion and delay at a given level. Based

237

on this mean total service time and the mean service rate we compute
a queue length which is found in the next column. It should always be
kept in mind that the mean total service time given here and the mean
queue length are based on the average record size and average service
rate. In some cases this presents a problem and in others not. Note
that for level 3 in this system all records read or written are of size
16384 bits and thus the values given have a precise meaning.

Turning now to the MEAN CRITICAL SERVICE TIME, in this
column we see the components of the sum which make up the mean
secondary access time ?S. The critical service time at level 2is 0
because delay at level 2 is not considered part of the time required to
complete a secondary access. This is of course a function of the ""G"
array. Notice also that the external interrupts are considered part of
the secondary access behavior. The final column simply gives the per-
centage of each of the components which make up ?S. In this particular
system on the average programs ineligible for CPU use spend 23.5%
of the time (before becoming eligible for execution) waiting on a drum
transfer and 76.4% of the time waiting on some external action to be
completed.

The table of data given for the primary access environment is
the same with a few exceptions, Here we show only the primary levels
and base our calculations on the mean traffic and mean record size

taken over user program execution time only. The mean critical

238

service time here consists of the components of the sum which makes
up the mean primary access time ;p'

Arriving now at the final of the 3 displays of dependent variables
Figure 5.22. This is by far the simplest figure and displays '_r'p, :':s’ 'Te
and ?c from chapter 4. These are given here in the form TAUP,
TAUS, TAUE and TAUC respectively.

Having spent a considerable period of time examining the indi-
vidual numbers presented we will now discuss for a moment what these
numbers are telling us about the system. First of all the CPU is
executing near 28.8% of its specified capability. This low CPU effi-
ciency was a surprise and the cause was not immediately apparant.
However, on more careful examination the deficiency becomes clear.

Notice that the allocated space at the cache is 5% of the program
size and that the most likely loop length is half the length of the program
(p=.5). Thus the cache is operating in a severely under-allocated man-
ner, That is, words brought to the cache are rarely used more than
once. This means that in accordance with our defined traffic patterns,
each word read or written by the CPU must be brought from core to
cache, then read or written while in the cache and then later transferred
to core. Most important in all this is that each word accessed by the
CPU requires 3 accesses at the cache;

1 to bring it into the cache
1 to remove it from the cache

1 CPU read or write to the cache.

239

Since as we discussed earlier the cache has ai maximum read/write
rate for 32 bit records of 12.5 million per second the CPU will be
limited to 1/3 of that or 4,17 million accesses per second or 41.7%
of the maximum CPU rate'/;‘ ‘. Thus we clearly have a bandwidth prob-
lem at the cache.‘ It is most interesting to note that in the IBM 360/85
which uses a similar cache. structure, the data flow is such as to
avoid traffic at the cache. If we were operating a 360/85 under roughly
the same conditions, a read would generate 2 cache operations (one
on the core to cache transfer and a second on the cache to CPU trans-
fer). We are ignoring here the first word of a block which need not be
read from the caché but is transferred directly from core to the CPU.
In the IBM 360/85 [16,37] no downward transfer is required when the
data is not modified. In the case of writes the cache is avoided entire-
ly and the words are written directly in core -with sufficient buffering to
avoid delay. When a write is made to a word already in the cache, that
word is modified in the cache but it is also modified directly in core at
the same time in order to avoid a later transfer from cache to core
adding only one write to the traffic at the cache.

Examining the effect of core delay.s on the CPU rate we see
that the core is having considerable effect. (See the relative effect
for primary access environment Figure 5. 21) A Solution here would
- be to use more core units and a 1argef record size: more core units

to increase the bandwidth at core and a larger record size to incur the

240

delay at core less frequently. Following along the same lines as we
did for the cache, one finds that current core bandwidth would limit
the CPU access rate to under 6 million per second.

It is interesting to note that the traffic patterns in the IBM 360/85
reduces the traffic at both the cache and the core. Experience with this
model indicates that the effort to eliminate unnecessary traffic is
important.

Thus far we have concentrated on the efficiency of the CPU when
it is executing a user program, This, although very interesting, is
not the limiting factor in the performance of the system. From the
CPU utilization figures we see that even at its reduced execution rate,
the CPU is idle 74.3% of the time. This means that the accesses to the
drum and/or the interaction with devices external to the storage system
are limiting the performance. In Figure 5. 21 the relative effects of
these two activities are shown and we can see that neither is negligible,
We will consider several changes in the system in the next few sections
which will give us some insight into the behavior of the system and

expecially the relationship between the primary and secondary levels.

As we progress we will want to compare and contrast the per-
formance of other system configurations with the one we have just ex-
amined. We will refer to the system studied here as tke '"standard"

system when making comparisons.

241

5.3 A Hardware Modification

We are at liberty to modify the system in many ways. We will
begin with the simple hardware modification of replacing the current
drum at level 3 with a drum indentical to its predecessor in every
respect except rotational rate, In the ''standard" case just considered,
the drum RPM was 1800. We will now double that to 3600 RPM and
observe its effect on the system. The results of an analysis for this
new system are shown in Figures 5. 23, 5. 24, and 5.25. The system
now being considered is identical in every respect to the ""standard"
case except for the drum RPM.

Comparing the results of this analysis with that of the "standard"
case we see an overall increase in mean CPU access rate from 649 .
thousand accesses per sécond to 772 thousand., The CPU utilization
has increased by several percentage points. Notice that the CPU/PRI-
MARY EFFICIENCY has dropped slightly. This is due to the increased
core cungestion resulting from the increased drum bandwidth,

In Figure 5.24 we see a mean queue length at the drum of 2.2, a
drop from 6 in the "'standard' case. Notice that the external interrupts
now constitute over 90% of the secondary delay. The system could be
described as I¢ bound,

Notice that access time at level 3 is now less than 1/2 of its
previous value. This} is a result of both the increase in service rate

and the decrease in queuing.

242

MEAN CPU ACCESS RATE = 2.77293799E g6
*%%x ALLOCATION DATA #%x

13 PROGRAMS WITH EACH USING 2.1638429E 26 BITS

LEVEL TOTAL SPACE ALLOCATION % OF PROGRAM
1 3.81929330E 34 DeB3192%232E 24 Se?337
2 A« 1522332AE 37 B«11538456E 26 19+ 4251
3 212393932293 28 B+ T692337T5E 26 469.5719

CPU/PRIMARY EFFICIENCY= 28.819%

CPU UTILIZATION

JSER 26¢32937%
SYSTEM 3.56947
WATIT 694347

k%% MEAN TRAFFIC k%%
-=-0OVER ALL TIME--

CPIJ ACCESS RATE = 2.77293733E 94

LEVEL % 'JSER ACCES3S READ/WRITE RATE RECORD SIZE
1 9649574389355 DeB1934936E 24 7488483591 22
2 32177125931 Ded46756344E 25 2+« 13589312E %4
3 233683785138 D¢17633311E 23 2163339928 35

-=0OVER PERIODS JF USER PRIGRAM EXECUTION==-

CPi} ACCESS RATE = 3.28%31923%& 37

LEVEL % 1JSER ACCESS READ/WRITE RATE RECORD SI1zZz
1 9649524389355 3e33549383%E a7 BeB883487591E 22
2 372177125931 e 1T4A425%E 34 7133333452 34

Dependent Variables, Part 1, for Drum RPM= 3600
Figure 5. 23
243

796558

6l1€6€ 1y

Z 103443
INTIVTIEY

LECE 16

E1L9 &

@

Z 103443
ICTAW WA - ICP.

SL-EHrclEE L
9€-3rcelc

3WIL JOIAYES
MvOTLI¥D NVEK

lg-3PSELY L
ck-3SL9V ¢
Gl

IWIL 3DIAYES
AvIILI¥D Nv3k

A0INVES ¥Od

$2 °G 2ansryg
009¢ =INdYd wnag Joj ‘g yred ‘sorqerreA juspuadad

LéEcS ¢

leL9ec1

HION3T
ANALT Nodk

¥%k LEIE-E9L T1TIVD HSWIId ***x SLYEEHCOY NOQUCDZ

.doz
E9lec*c
Lo

HI9NAT
ANENT NeER

PE-39£161°@ S Irerlicg ©
SL=3rLriv L L Ze6vSEel i
IWILl JOIN¥ES 31vd JDIA¥3S EAET

TYICL NvEW Nedk

~-=INZKNCHIANT SSIDOV AYVWI¥d--

16-3¢CUE9 & €L HEZE61°L Ix3
16-3CELEB 0 €6 ICE9EI°C €
SE-3SL6V6°C SU FISLIV @ g

AWIL 30INYES Flv¥ JDINNES
vICL N3k NV 3k

A3NET

==INIKWNCUINNT SSEO0OV AMYONCOEIS -~

*k*k%k SHWIL SS3IJOV F*x

SISINOIY XV 13

*(SHYUESH €1 HNINMNGY NIHM

SIS3NUEY 40 HIEWNN FTEISSOCE KMWIXVI ***

244

9L~TGLEE9FE L

SE-ABLYBELL L

1~ 11cS1G

9L-3ECCELI9 L

GZ °G 9andrd

009¢ =INdY wna(d J03 ‘g yed ‘seiqeraeA juspuaded

=CMivl SISSIATIV AvVhIdc NAZMIZE HhIL NVEk

=4dNvl LMvsd 39va AYVANCDIS O3S
EWT1 NCGIINO3X3 NV3ER

=ShHvl SSIJOV A¥VYCNCO3IS ¥V F13TWdWCD Gl IWIL NVER

=dnvl SSEOOY ANVKINC V F1F71ehCD Ol ZWIL Nv3W

245

It is interesting to note carefully the slight changes in the pri-
mary levels, At the bottom of Figure 5. 24 under primary access
environment we see that mean critical service time at the core has
increased slightly as a result of the increased traffic from the drum.
This in turn has slowed the CPU slightly and reduced the congestion
at the cache. This of course in turn reduces the critical service time
at the cache, All of this results in a very slight increase in ?p (TAUP)
given in Figure 5,22 and a very slight decrease in the mean CPU access

rate when a user program is executing.

5.4 A Change in User Program Characteristics

We will now observe the effects of making changes in the user
program characteristics. The specific variable to be changed here will
be p. This variable controls the mode of the distribution of loop lengths.
in the user program model. In the "'standard' case p =.5 making the
most likely loop length 1/2 the length of the program., We will observe
the effects of p=.3 and p=.7 here., The lifecycle function behavior
for these values of p is shown in Figure 2.12 and this applies directly
to the relationship between primary and secondary storage in this
system,

Note that the system now being examined is identical to the
"Standard'' case except for the variable p.

In the case of p = .3, shown in Figures 5.26, 5,27, and 5. 28,

we have a small performance increase. The CPU is running faster

246

MEZAN CP'J ACCESS RATE =

*%k ALLJOCATION

13 PRIGRAMS WITH EACH HSING

DATA

2+6333335%< 24

* %k x

A+ 16384203E

26 BITS

LEVEL TOTAL SPACE ALLOCATION OF PROGRAM
1 3+3192333%E 724 2.31923333E 24 52329
2 Ao 15II3B2IE 27 2« 11538456E 24 73« 4251
3 3¢1232333%E 933 D« 169232 75E 35 469.5913

CPU/PRIMARY EFFICIENCY= 37.667%
CPJ UTILIZATION

USER 22.1847

SYSTEM 3.174%

AALT 14.642%

*x% MEAN TRAFFIC *xx*

--0JVER ALL TIME--

CPJ ACCESS RATE =

D¢68333353E 356

LEVEL %Z JSER ACCESS READ/ ARITE RATE RECDRD SIZE
1 9717632539956 2. 71812312E A6 De84494583E 32
2 27928657532 Pe333346335E 35 e 135743135 74
3 23351313942 783315533 32 216334333 35

-=JVER PE

CP:J ACCESS RATZ =

LEVEL %

1

2

RIJIDS OF USER PRIGRAM EXECUTION=--

JSER ACCESS

97.17692539356

2.7923657532

2335673325 A7

232373322 37

A«17138269E 75

RECORD SIZE

MeB344945375 92

133144732 24

Dependent Variables, Part 1, for p =.3
Figure 5. 26
241

SeLL*96

9clic ty

Z2 103443
INTIVIAZY

91968

rstecel

z 103443
INTIVIAEY

Lg g 9an3rg
¢°=d Jo7 ‘g 1xed ‘sorqeraeA juspuada(g

Ge-dEP1GE L SL6eSSec 7e-3cterl Sk 38CILIC 4
9€-dcSl9c Lk S YR GL-HGLEEE * Lg HiLEcE L i
ShIl E0INEES HIONET Zkll FOIA¥ES 31wy FDIN¥ES TIENAZET
AvOILI¥D Nv3AK 3NENTC Nv3Ik av1Cl ANVZEh A ACH)

==LNIRNCYIANT SSIOTY A¥OhI¥a--

1¢-3EkEcEr e *veN | R AR A AT AR €L 38Eellick Ix3
lg-3lleel o S8CEL S le-35&ccl9 € ¢k 39leeectL £
(74 EsistE e Sg=~-HCéccb L Sk FSEEkeE° L (]
31l HTINEES HIONST EkIl 301A¥3S 3Ilv¥ FOIN¥AS 13N 3T
AvOILI¥D Nv3sk 3NENC ANVIR AVICL NV3ER (R7ACY'S

~=INEWANCY¥INNZ SS3HO0V A¥WONCD3S--

**% SIWIL CSSEIOIv F*x%

fz) ™ 0 O
[aUNq}

SISZNEIY Xx¥hk T12AZT

PLSIHIYESH €1 SNINNOY NIRM
HOTAYES ¥Cd SISHNUEY JC ¥ZERNN FTEISSCe hWAkIXTh %%

248

82 °G @an3rg
¢*=d J0] ‘g 1aeg ‘sorqeraeA juspuada(q

9-3E6LL9CE K =00NVvl SESSHAOOV A¥GhI¥a NHIMIFE FWIl ANVERL
cl-3HLsr8PEl L =3Nvl 17NvY Db AEGVCONCOES JECAEE

IRIL NOILIMO3XE NY3h
1L-3€8LbEE9*c =SHVl SSIAOOY AXVCNCOIES Y ILIBTEK0D €l BWIL Nb 3k

GL=-2ELEL619% =anVl SS300V A¥VhI¥e Vv

fz)

131ahCO CL SWIl ANV3ER

249

MEAN CP!J ACCESS RATE = 3.373155381E 36

k% ALLOCATION DATA *%x%

13 PROGRAMS WITH EACH USING 2.16384933E

LEVEL TOTAL SPACE ALLOCATION
i F.B1922323E 34 2.81922233E 24
2 2 15222AD23E 27 3+11538456E 26
3 D 123IABBBAE D3 2169233 7T5E 26

CPJ/PRIMARY EFFICIENCY= 28.4457

CPYU UTILIZATION

JSER 13.6717%
5YSTZ 2.393%
WAIT 37¢3367%

kkk MIAN TRAFFIC #**

-=DVER ALL TIYZ--

CR1J ACCESS RATE = 3.33155381E 36

LEVEL 4 USER ACCESS READ/WRITE RATE
1 9683378994582 B319885612E 36
2 376232734346 7186373333 35
3 232127159337 3.128289948E I3

-=JVER PIZIRINDDS OF JSER PRIGRAM EXECUTION=--

CR) ACCESS RATE = D«284446625 A7

LEVEL % JSER ACCESS READ/WRITE RATE
i 9543978996582 7331733938 37
2 3475628274345 Fe 174369375 76

0]

%

6 BITS

OF PROGRAM
537933
7734251

4695319

RECORD SIZE%
2.892333 758
7. 1129947%2E

P+ 163343733K

RECIRD 517K
AeB39283859E

De1733537313E

Dependent Variables, Part 1, forp =.7

Figure 5. 29
250

32

34

A5

32

34

SGLk*6S

LiLé6° LY

Z 103443
ANTIVI3Y

LLETI"SE

£€co98°v9

(T

z 103443
ANTIvTI3Y

9L-3FEESEE L
96-34ShLS ¢

k1l 3DIN¥YIES
AVOILI¥D NV3KW

16-3L1veE 0
16-31r865°E
Y’

IKIL FIINY3IS
AvIILI¥D NY3K

0€°G oan3rg
L° =d 303 ‘g 1xed ‘sorqerarA juspuada(q

c9199°¢c

Evegce1

H19 N3
ANdN0 NIk

‘¢.7

16669°91

ELELTC

HIONET
IGIANGE NYIK

VE-3792S1 L b %

9L-31ILLIV L LE

3KIL 30IN¥3S 32lvy JDINYES

AVICL NV3K

= INIWNCUINNT

1E-3CELE9 L ck

L JLieel ¢ 14

GE~H88ELE L SE

IhILl HOIAYES
AYICL Nv3Ek

AlvY JOINYES

HLEVLIL 4

pLigE L i

ciic
NV EW

SS3D3v A¥YhIdd=--

TESECL ¢ 1X3
XA IARS? €
ICE9SIE g

ENET
INACT S

~=INIWNCHIANE SSIODV AUVONCDOHS=--

¥%% SERIL

SISINOIY Xvk T3

*(SHUESH €1

SSHOIV *kxx%

™M 00
ar Q)

SNINNMY NEHM

JDIAYZES ¥Cd SISHNGIY H4C YHEWMN INEISSCOd WNHkIXVK Kkx*k

251

1€°G aan31 g

L®=d x03 ‘g xed ‘serqeriep juspusda(

9e-386SS1GE L

€E-3C9LLESL L

lg-ZcéLScce L

G- 166699 °L

=0Nvl

=3nvl

=SMivl

=dhnvl

SESSUOIV A¥VWIM¥G NEFIMIEE 3WIL NVER

{r

1nvd

SSHJIIV AYVYONCOEHS Y

SS3AD0V A¥vhiId¥d W

F9vd AYVANCOES Z¥CAsE
IKIL NCILMO3XE NVEW

JL3Td4KCD CL

213%dkCO

clL

k1l NVER

ShIL NV3ER

252

when executing a user program raising the CPU/PRIMARY EFFICIENCY
to 30.6% This increase is influenced by at least 2 factors. First,
executing program will require fewer accesses to core. (See % User
Access in art 1,) Second, the congestion at core is reduced by the
reduced drum-to-core activity. This all results in an increase in CPU
execution rate, which causes an increase in general performance while
increasing the CPU idle time slightly.

In this case, both p =.3 and p =.5 (the "standard’’) represent
cases where the core allocation is adequate and thus the difference in
performance shown is small., In the case of p =.7 (shown in Figures
5.29, 5.30, and 5, 31) we no longer have adequate allocation in core
and the performance changes are more dramatic.

The % of user accesses to level 3 jumps by a factor of 3 and the
mean queue length at the drum rises to over 16. Here we see the de-
lays causes by the drum begin to predominate over the IJ or external
interrupts. The overall performance of the system is reduced to a
little less than 1/2 of that in the standard case as a fairly direct result

of the increased secondary paging activity and associated congestion.

5.5 Changing the Number of User Programs

Here we will observe the changes in performance which occur
as a result of varying the number of user programs being multipro-

grammed, Our approach will be different in that rather than providing

253

MEAN USER PROGRAM
ACCESSES PER SECOND

1,000, 000 —

800, 000 (—

600, 000

400, 000 —

200, 000 [—

Y N N Y N T N N [N T B
1011 12 13 1415 16 17 18 19 20 21 22 23 24

NUMBER OF PROGRAMS

Performance Versus Number of Programs

Figure 5.32
100
— 80
B
= Wait
o -
= 60
<C
™~
= -
5 40
> User
o.
o 20
System -
0

101112 13 141516 17 18 19 20 21 22 23 24
NUMBER OF PROGRAMS

CPU Utilization Versus Number of Programs
Figure 5.33
2564

RELATIVE EFFECT SECONDARY ACCESS

% PROGRAM ALLOCATION AT LEVEL 2

8

o0
o

(=2
o

S
o

N
()

0

100

80

60

40 1

20

Level 3 Access

External Interrupt

N IR N Y (N (N O A B B

1011 12 13 14 1516 17 18 19 20 21 22 23 24
NUMBER OF PROGRAMS

Relative Effect Versus Number of Programs
Figure 5.34

(. 1 1 1 1+ 1 ¢+ 1 1 1 1 |}
10 11 12°13 14 15 16 17 18 19 20 21 22 23 24

NUMBER OF PROGRAMS

Allocation Versus Number of Programs
Figure 5.35

255

all the details of 1 or 2 cases, we will plot some of the more interest-
ing dependent variables as a function of the number of programs
running,

The system performance or mean number of user program
accesses per second is shown in Figure 5. 32 plotted as a function of
the number of programs. We see very quickly that the maximum per-
formance is achieved with 13 user programs, the number chosen for
the "standard' example.

Figure 5,33 displays the CPU utilization figures. Notice that
the peak in system activity occurs to the right of 13 user programs.
This is a result of a higher rate of user program interchanges occuring
for the larger number of programs. The basis for this will become
clearer as we proceed.

Figure 5.34 shows the relative effect of the drum at level 3 and
the external or IQ) interrupts. When we run fewer programs the exter-
nal interrupts dominate the secondary delays. As we increase the
number of programs the drum at level 3 becomes the dominant factor.

We will begin at Figure 5.35 to show the cause of this shift in
dominance., Here we havé plotted the core allocation as a function of
the number of programs. On the left with 10 user programs over 90%
of the user programs can be found in core. As we move to the right to
24 user programs the allocation in core is reduced to less than 40% of

the user programs. Thus in the range from 10 to 24 programs we move

256

0. 10

0. 08

0. 06

% USER PROGRAM ACCESSES
TO LEVEL 3
o
=

N N (R NN (N AN SN N AR N
10 11 12 13 14 1516 17 18 19 20 21 22 23 24

NUMBER OF PROGRAMS

% of Level 3 Accesses Versus Number of Programs
Figure 5.36

QUEUE LENGTH LEVEL 3

0 SN N [N [N N N N A [NN N

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NUMBER OF PROGRAMS

Queue Length Versus Number of Programs
Figure 5. 37

257

MEAN ACCESS TIME LEVEL 3 (sec)

MEAN SECONDARY ACCESS TIME (sec)

0.4}

OllllllllllllIJ

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NUMBER OF PROGRAMS

Access Time Versus Number of Programs
Figure 5.38

0.5

0.4 +

0.3

0.2 -

0.1

0 A [N N N N [[(NN SO SO S N
1011 12 13 1415 16 17 18 19 20 21 22 23 24

NUMBER OF PROGRAMS

Secondary Access Time Versus Number of Programs
Figure 5.39

258

from a situation of more than sufficient space in core to a condition of
severe under-allocation, Figure 5.36 shows the % of user program
accesses to the drum as a function of the number of user programs.
When gompared to the previous figure we can see that the sharp
increase in accesses to the drum begins as the allocations drop below
60% of the user program. This should be expected since this is the
region of transition or greatest slope in the lifecycle function,

The queueing at the drum is shown in Figure 5.37. First we see
that the maximum number in queue at level 3 increases linearly as we
would expect. Again as we increase the number of programs running,
to the point of causing poor allocation at core, the drum queue increases
and approaches the maximum, Figure 5,38 shows the mean access
time at the drum. This access time follows the queue length and the
effect of the maximum queue length can be seen on the right.

Lastly, Figure 5,39 shows the mean secondary access time.
For a smaller number of programs the secondary access time is
dominated by the external interrupt behavior and thus is roughly 60 ms.
For a larger number of user programs, the secondary access time
behaves more like the level 3 access time, which becomes dominant

as more user programs are introduced.

5.6 Summary

We have only been able to scratch the surface of analysis pos-

sibilities here and it is a short scratch atthat. We have not varied the

259

number of levels, types of devices, data paths, logical record sizes,
or the CPU behavior,and this certainly is not a complete list.

One of the most interesting cases of analysis was undertaken
when attempting to choose a ''standard' case to make variations
around. Most all of the initial systems worked with had a severe
bottleneck. This severe bottleneck dominated the performance of the
system to the point of obscuring most of the interesting interrelation-
ships shown in the previous examples. One of the most stifling bottle-
necks turns out to be the CPU. The choice of such poor CPU utiliza-

tion in the ''standard'’ case was most deliberate.

260

Chapter 6

System Optimization

In this chapter we will be concerned with optimization. After

a statement of the problem we will consider several examples.

6.1 Objective Function and Method

The objective of the optimization will be to maximize r, the
mean user program access rate, with a dollar constraint placed on the
total value of the storage hardware. The choice of r as an objective
function means that we are maximizing the system throughpnt., We

are ignoring other system characteristics such as response time.

Decision Variables

Simply stated the decision variables are:
1. The number of user programs being multiprogrammed.
2. The number of storage units at each level,

3. The logical record size at each level except level 1,

More carefully:
The number of user programs, M, must be an integer satisfying
Ain <M< N
where

min -
M = Minimum allowable number of user programs

and

M™# _ Maximum allowable number of user programs.

261

We define:
Ni = Number of storage units at level i
(Note that N without subscript is the number of levels)

The decision variables Ni must be an integer satisfying

min max
N SN SN
where
Nimln = Minimum allowable number of storage units at level i
and
N, _ Maximum allowable number of storage units at level i

1

The logical record or page size, q;, is considered a decision

variable at all levels except level 1, or i =1, The variable q; must

satisfy
min max
G <9 <gq
where
min - . .
q = Minimum allowable record size at level i.
and
max . . .
q. = Maximum allowable record size at level i.

i
In addition q must satisfy:

q; = 2" for some positive integer n
Thus far we have considered rather direct constraints imposed
on the decision variables. We will now consider several less direct
constraints which are applied to eliminate infeasible systems.
First we require that the logical record size at level i + 1

be greater than or equal to the logical record size at level i or:

4, 2 Y

262

If this constraint is not satisfied the paging activity simply
does not make sense,

Next we will require that the allocated space at each level in-
crease as we move down in the hierarchy. This can be expressed in the

form of 2 relations:

unit unit
Ni+1 i+l 2 Nisi
and
Ni+1 i+1unlt
by > NLSL forL.>0
unit . . .
where Si = the storage unit capacity at level i

The first of these relations simply says that the total capacity at each

leveli+1, N, | §; unit st be greater than the total capacity at

i+l !
level i, This is sufficient to guarantee increasing allocation at each
lower level except at the interface between dedicated and shared storage.
The second relation applies to this dedicated-shared interface if it
exists (L > 0).

Next we are concerned with a relationship between storage allo-
cation and logical record size. The space allocated to a user program
at level i must be equal to or greater than the record size at the next
lower level i + 1. If this is not the case there is simply insufficient
space at level i to store a record brought up from level i+ 1. This

again requires 2 relations - one for the dedicated levels and one for the

shared levels:

263

unit

Nisi > 4.1 fori<L
and .
N, s, 20t
ii
> q, fori>1L
M ~ 4l

Next we will require that there is sufficient capacity at level N
to accommodate all of the M user programs:

NNSNunit 2 MQ
where Q is the size of the user programs.
We will also require that an N level system be operated as such. That
is we will not allow a level above level N to be sufficiently large to
contain all of the M user programs running thus effectively making the

lower levels useless. This is simply expressed:

N.S.unlt

S <MQ for i <N,

Last and very important is the dollar cost constraint. Defining
Ciunlt = dollar cost per unit of storage at level i
and
max . .
C = maximum allowable dollar expenditure

We will limit the number of devices at each level such that:

N :
CmaxZ z NiCiun1t

i=1
and
N .
max unit . unit unit unit
C - 12;1 N,C, < min {C;7,C,7 ,...,C 0}

264

The first relation limits the cost of the system to c™® or less and the
second relation requires that difference between the cost of the system
and the maximum allowable cost not equal or exceed the cost of any
single unit of storage.

This last constraint requires some discussion. It is reasonable
if we can assume that the addition of a storage unit always improves the
system. This may be a reasonable assumption for some systems and
not for others. For those systems where we are not willing to make
this assumption we must vary C max by increments of
min {Clunit,czunit, cos ’Cnunit} to get a series of optimums for ranges
of system cost and select the global optimum from that series.

The constraints just discussed leave us with a set of feasible
configurations. We will now turn our attention to the process of
selecting the optimal configuration from the feasible set.

The approach is simply an intelligently ordered exhaustive search
of the set of feasible configurations. Generally speaking there are 2
areas where significant economics are introduced in the search.

The first of these economics involves the system model itself.

As you will recall, the process of analysis involves a search over values
of r. At each step in this search we assume an r (mean user program
access rate) and the model's response simply tells us if r is too large

ortoo small. In the search for an optimal configuration we will need

only to determine if a given configuration will perform better or worse

265

than the highest performance thus far encountered in the search. If
a configuration's performance falls below the highest previously encoun-
tered performance no further analysis is required and the configuration
can be eliminated. If a configuratidn does in fact have a performance
higher than any previously encountered, a complete analysis is per-
formed to determine its precise performance. Since only a small
minority of the configurations will require a complete analysis a
savings of roughly 20 to 1 is experienced.

The second area of economy of effort is found in the ordering of
the search. The reduction is achieved by making use of the fact that
certain intermediate results can be saved and used repeatedly as the

search proceeds.

6.2 A Simple Example

We will now congider an optimization of the "standard’ case
discussed in the previous chapter,

Before becoming involved in the optimization itself we should
say a few words about the computer program performing the optimiza-
tion. First, optimization and analysis are performed by the same pro-
gram. From the point of view of analysis any of the models' independent
variables may be modified. When an optimization is requested, the
decision variables in the model are adjusted within bounds to maximize

‘the mean user program access rate,

Figure 6.1 shows the decision variables. (Note that the record

size at level 1 is not considered a decision variable and is included
266

here only for symmetry.) The center column labled CURRENT shows
the values of the decision variables. The columns on the left and right
show the imposed bounds on these variables.

The current values shown in Figure 6.1 are simply those of the
""'standard' case discussed in the previous chapters. Following optimi-
zation these values will be adjusted tc maximize the meanuser
program access rate.

Under the given bounds on decision variables we will examine
configurations running from 2 to 25 user programs, using from 1 to 4
caches, 2 to 4 cores, and 1 to 4 drums. The logical record size at
level 2 may range from 128 bits to 4096 bits and at level 3 from 4096
bits to 65536 bits, The record size at level 1 is not considered a deci-

sion variable and thus will be fixed at 32 bits.

ax

, at

For a first optimization we set the maximum cost, c™
$250,000. This will allow 5 units at $50,000 a piece in the system. Note
that this does not change the number in the system but may allow for
some rearrangement,

The optimization reported a total of 2C,124 possible configura-
tions of which 972 were feasible and required a CPU time (IBM 360/67)
of 42 sec. The resultsof this optimization are shown in Figures 6. 2
through 6.5. Figure 6.2 shows the decision variables. We can see
that the optimum system differs from the ''standard' case in 3 decision

variables. The number of user programs has dropped to 12 from 13.

267

DECISION VARIABLES

MINIVIM CURRENT MAX T MUM
OF PROGRAMS 2 13 25
* LEVEL 1 =*
DF UNITS 1 1 4
RECORD SIZE 32 32 32
* LEVEL 2 %
OF UNITS 2 3 5]
RECIORD SIZE 123 1324 4396
* LEVEL 3 %
OF UNITS 1 1 4
RECIRD SIZF 4396 16334 655356

Decision Variables for ''Standard' Case

Figure 6.1

268

NDECISION VARIABLES

MINT 4iJ4 CURRENT AAX IV
JF PROGRAMS 2 12 25
* LEVEL 1 *
JF INITS . 1 1 4
RECIORD SIZE 32 32 32
k¥ LEVEL 2 *
DF IINITS 2 3 3
RECIORD SIZE 1238 2556 47396
* LEZVEL 3 #
JF INITS 1 1 4
RECIRD SIZE 4739 4 327673 65536

Decision Variables for Optimal $250,000 System

Figure 6. 2

269

MEAN CPU ACCESS RATE = 2.65334799%&E 26

*xkx ALLIOCATION DATA *x%xx

12 PRIGRAMS WITH EACH USING 2.163%84923E 26 BITS.

LEVEL TOTAL SPACE ALLOCATION %2 0F PROGRAM"
1 2+8192937233E 34 BeB1922223E 24 53339
2 2153392333 27 7+ 12522239E 256 7642939
3 AN+ 13%33233E 38 2+83333331E 26 SABe 6262

CPU/PRIMARY EFFICIENCY= 29.3137%

CRPU UTILIZATION.

'JSER 22.3987%
SYSTE™ 2¢837%
WAIT 748357

kkk MEAN. TRAFFIC *%*
--DVER ALL TIME=--

CP1J) ACCESS RATE = 2.65384799% 36

LEVEL % UUSER ACCESS READ/WRITE RATE REZCIRD . SIZE
1 33.17129633178 Ae3ATITI4E A6 B+ T47833945E 22
2 113222767563 7.15435869E 16 2426596411E 33
3 22236176762 3+ 47338393E 32 A 32767992E 25

-=-JVER PERIIDS 9IF USER PRIGRAYM EXECUTION=-

CPlJ ACCESS. RATE- = 2429379633 37

LEvVEL Z JSER ACCESS READ/WRITE RATE- RECORD . SIZE
1 B8+17199687318 1.36218523E 27 D T478991 4K 22
2 1133227675563 2¢691T7T156E 26 2.25822339€ 33

Dependent Variables, Part 1, for Optimal $250,000 System
Figure 6.3

270

PEIV*C9

C8LSLE

¢ 103443
NT1vAY

ELLV ER
©ccS° 91
£ e

z 103443
ANTIVAZY

¥ "9 2an3rg

waysAS 000 ‘052$ TewndQ 1oy ‘Z 3aed ‘salqeraeA juspusded

9k-3leSev L I76£95°2 S-3lclLE ¢ 9k HLLIE9L ¢
9€-3LéEVC L (A RYRAR! gE-3E6LSEE LE d6lcoEe l
dh1l 3JIN¥3S HIONET 31l 3IDIAYES IFIv¥ IJIAYIS 13INFET
AVOILIYED NY3ERh IN3ME ANv3IW AvI0ol Nv3ER NY 3

-=INIFhNCYINANT SSHOJV A¥bhI¥d--

lg-3S1ves g “weN 10-3CEEEI L €0 I9PESI @ 1x3
1¢-3VLEGLI*C bEBSS-C 16-3S9€88°C cf IBLELV ¢ €
G*¢ E£lése e SL-3992€2 ¢ 96 IIERSIC @
kIl IDIA¥IS HISN3T 3wIl 30IAYES 3I1vd IJIANES T3N3
TYOILI¥D NYIR ZIM3NO NYIW Y10l Nv3IR NV Zhk

--INIWANCYINNE SS3IDOV AYVONCDES -

**% SHWIL SS300V *kxx

*CSHUESH €1 ONINNMY NBHM
JOIN¥ES ¥CA SISINOIY 4C ¥IFEWNN FTEISSCLE Wik IXUIK *%x*

271

G°9 aandrg

waysAg 000 ‘062$ TBWdO 0] ‘g Jred ‘SOIqEIIEA UOISIONQ

9k-3erelive L

ck-39lccell e

1£-39c685Lc9° L

Sg-3ckhcer9 L

=0Nvl

=3MNvl

=SMhvl

=Vl

SESSHIIV AvuhiI¥ce NIEMITE TSI

1Mvd 39ve AYVONCDES 3
AWIl NCIINGEXE

SSIOOV A¥VONCORS Y H13TdWCO 01 231l

SSH00V A¥EhI¥d ¥ F1FTehCO CL 3hll

NY Sy

¥Cd43E
(N TS

NUZEi

N AC] 7

272

The record size at level 2 has dropped from 1024 bits to 256 bits and
the record size at level 3 has risen from 16384 to 32768.

It is interesting to note that the change in record sizes has
caused a shift in the optimal number of user programs. (Section 5,
Chapter 5 shows that the optimal number of user programs is 13 when
all else is fixed.)

Comparing the dependent variables of this optimal system,
shown in Figures 6.3, 6.4, and 6.5, with the "standard' case we see
that the performance has improved only slightly. In fact the mean
user program access rate has increased less than 1% Thus the "stan-
dard' case is very near optimal.

We will now see what happens when we increase the maximum
expenditure, c™¥ Here we will increase ¢ by $50,000 to
$300, 000 allowing a single additional storage unit in the system. The
optimization reported 20,124 possible configurations of which 1362
were feasible. The optimization time was 62 sec. of CPU time.

The new optimal system is shown in Figures 6. 6 through 6. 9.
We see that an additional core unit was added to the system and the per-
formance has increased considerably. The new performance, r, is
25% greater than that of the previous optimal system. We see also that

the number of user programs has increased and the record size at level

2 has decreased again.

273

DECISION VARIABLES

MINI VM

OF PROGRAMS 2
* LEVEL 1 =*

OF UNITS 1
RECORD SIZE 32
* LEVEL 2 x

OF UNITS 2
RECORD SIZE 128
¥ LEVEL 3 *

DF UNITS 1
RECIRD SIZE 4796

Decision Variables for Optimal $300,000 System

Figure 6.6

274

CURRENT

15

1
32763

MAXTIMIM

25

MEAN CPU ACCESS RATE

¥kx ALLOCATION DA

15 PROGRAMS WITH E

LEVEL TOTAL SPACE
1 D+81923293E
2 3.229333A%E
3 A« 1333239 9E

CPiJ/PRIMARY EFFICIE

CPY UTILIZAT
USER 26.344%
SYSTEM 3.4487%
WALT 79.5387
k%% MEAN TRAFFIC

-=JVER ALL TIME--

CP:d ACCESS RATE =

LEVEL % 'JSER ACCE
1 7643193429
2 23+ 4528745
3 72331385

=-=JVER RPERIODS OF

CRJ ACCESS RATE =

LEVEL 7 USER ACCE!
1 7645193429
2 2345287345

-

F.831637329E 26

Ta x*k*

ACH USING 2163847938 7

ALLICATION %

24 B3e819272299% 24

27 2.13333331E 256

28 Ne666H6662E 16

NCY= 3135647

IJN

* %k &k

316872325 26

38 READ/WRITE RATE
6383 3 11997973E 37
54 7383238948 26
195 35127579558 22

SER PRIOGRAM EXZCUTION--

A« 313644393 37

55 READ/WRITE RATE

533 De 46767253 A7

654 2147121338 37

6 BITS

OF PRIGRAMY

53399

81.3892

4763339

RECIRD SIZE

Fe 626577915 32

L

2.13236734% 33

Fe32767992E

RECIRD SIZ

i)

DeH2657TT76E 32

2129137595 23

Decision Variables, Part 1, for Optimal $300,000 System

Figure 6.7
275

ce91°g9
SEEE*LE

Z 103443
ANTIVIZY

152E°€8
GPLG91
Y7

z 103443
ANTIVTI3Y

8°9 sandig

wd)s4s 000 ‘008$ Tewndg 0f ‘g jaed ‘serqerieA juspusde(

GE-3EeSLE L

Sk-3cLl Bce* L

IhI1 3TINEES
Av3ILI¥ND NI

1E~-38ELEESE
1£-3899¢€1 ¢
kg

IhI1l HOIN¥ES
AvOILI¥D NY3W

d0INYES

ELL9E°2

cl9kb 1

HISNIT
AMEND N33R

VN

Liveey

gE6EF ¢

HIONET
ANTINHC NYIW

&G

(e

SISZEC3AY

SL-31PESi*e Le 3ellvice 2
SL-IYECLEC LG BLOLIY L 1
ANIL BOIAMIS 3IVY IOIANES 33T
WWICL N3 NYTW
--INIWNCHYIANE SSITOV ANV INd--
1@-36ELLY 6 €¢ Feehee e IXE
1L-3EP9S6°G 26 3GLEIS € £
CL-3ELPIT*E 96 B1SCSC g &

HwIl 3VINYES
AvICL NV3EW

LYY FJINYES
NG 3K

-=INIWNCGY¥INNE SSIOOY A¥VONCOES--

* %k Xk

GNP RACI R
JdC HIERNON

<
c
i

i
1

SEhIl SS3O0V *xx

¢e €
¢e G
£ 1
S LSANCEY Xk 1EAET

L

ONINNGY NIHN

HISSCe il IXOh sk*3

13N 3T

276

69 9aIn31 g

waisLs 000 ‘00¢$ TewndO I03 ‘g 1aed ‘sorqeIdBA Juspusda(

GEL-dGcEEEIE " =0Mvl SESSHI0V AYVWI¥d NIEMIZE ZFhIl NVl

cL=-3EELEELIT*L =3HNvl 1NV 39vda AYVYCNCOES F¥CH43E
SWIl NGILMOEXE ANVERK

le-316GL6E9 L =SMvl SS300% A¥VCNCOIS b FHidMchCD €L ZWIL NI

GL-399EShE9°L =dNvl SSE00v AYYKkI¥d V

{2

L3MdCo €1 dk Il NYEHRK

[

271

6.3 Changing the User Program Size

In this section we will study how the behavior and characteristics
of an optimal system change when the size of the user programs being
run changes. As a simplification we will only optimize the number of
user programs being run. To do this we simply set:

N,

max mi
= N.
i i

n .
= Ni for all i,
and

q. =q, =q. for all i,

The performance as a function of user program size is shown
in Figure 6.10. Here we see a variation in program size from 81920
bits to 491520 bits. The upper curve gives the performance d the
system when an optimal number of user programs are run as a func-
tion of user program size. The lower curve shows how the system
performance varies with program size when a fixed number of user
programs are running (13). This lower curve simply shows what
happens to the ""standard’ case when the user program size is changed.
In general both the optimal and the fixed configuration decrease in
performance with increased program size. The optimal system per-
formance always exceeds the fixed system except for a program size
of 163840 bits where the fixed and optimal coincide.

The optimal number of user programs is plotted against user
program size in Figure 6.11. The core allocation at level 2 in terms

of the % of user program size is shown in Figure 6.12.

278

MEAN USER PROGRAM
ACCESSES PER SECOND

1, 000, 000

800, 000

600, 000

400, 000

200, 000

20

15

10

OPTIMAL NUMBER OF PROGRAMS

] l |

81920 163840 245760 327680 409600 491520
USER PROGRAM SIZE IN BITS
Performance Versus User Program Size
Figure 6.10

I I l | |

I
81920 163840 245760 327680 409600 491520
USER PROGRAM SIZE IN BITS

Optimal Number of Programs Versus Program Size
Figure 6.11

279

% PROGRAM ALLOCATION AT LEVEL 2

RELATIVE EFFECT SECONDARY ACCESS (%)

100

80

60

40

20

100

80

60

40

20

|] | | | |

81920 163840 245760 327680 409600 491520
USER PROGRAM SIZE IN BITS

Allocation Versus User Program Size
Figure 6.12

Level 3 Access

81920 163840 245760 327680 409600 491520
USER PROGRAM SIZE IN BITS

Relative Effect Versus User Program Size
Figure 6.13

280

As one would expect, the optimal number of user programs
decreases as the user program size increases. Notice that the
resulting allocation also decreases as user program size increases.
This means that the total size of collection of M user programs tends
to increase with increased user program size., This suggests that as
programs get bigger we are willing to run them with lower allocation
in order to reduce the effects of external or IQ interrupts.

An interesting result of this experiment in optimization is shown
in Figure 6.13. Here we see the relative effect of the external interrupt
and the drum at level 3 on the secondary delay. Notice that for an
optimal number of user programs these values remain relatively con-
stant. This suggests that measures of the relative delay in a system

might be useful parameters for use in a scheduling algorithm.

6.4 Changing the Number of Core Units

In this section we consider an optimization experiment similar
to the optimization carried out in the previous section. Here we will
study the characteristics of the optimal system as we increase the num-
ber of core units. We will again use the '"standard' case with the excep-
tion of the variation in number of units at level 2 and the number of user
programs being run., We will vary the number of core units in the sys-
tem in each case optimizing the number of user programs running.

The optimal system performance versus the number of core

units is shown in Figure 6.14. The performance increases with an

281

2, 000, 000

1, 50C, 000

1, 000, 000

MEAN USER PROGRAM
ACCESSES PER SECOND

£00, 000

100

80

60

40

CPU UTILIZATION (%)

20

] | I I]

N —
00 Lm

3 4 > 6 7
NUMBER OF CORE UNITS

Optimal Performance Versus Number of Core Units
Figure 6.14

Wait

User

System

:

—o—— ¢
2 3 4 5 6 7 8
NUMBER OF CORE UNITS
CPU Utilization Versus Number of Core Units
| Figure 6,15
282

OPTIMAL NUMBER OF PROGRAMS

% PROGRAM ALLOCATION AT LEVEL 2

ZBF— ®

20 - i

0 l l | | |]
2 3 4 5 6 7
NUMBER OF CORE UNITS

Optimal Number of Programs Versus Number of Core Units
Figure 6.16

©0

100 —

80 - .

60 —

40 -

0 | | | I I I |
2 3 4 5 6 { 8

NUMBER OF CORE UNITS

Allocation Versus Number of Core Units
Figure 6.17

283

RELATIVE EFFECT SECONDARY ACCESS (%)

100

0
o

S & =2

o

External Interrupt

'/‘W\‘Afs‘\‘_"

L | | I [| |

2 3 4 5 6 / 8
NUMBER OF CORE UNITS

Relative Effect Versus Number of Core Units

Figure 6.18

284

increasing number of core units and in a surprisingly linear manner.
Figure 6.15 shows the CPU utilization figures and we see that we
never approach CPU saturation,

Figures 6.16 and 6.17 show the optimal number of programs
and the corresponding allocation at level 2.

Figure 6,18 shows the relative effect of the external or I
interrupts and the drum delay. Here we can again observe relati