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Stability-constrained aerodynamic shape optimization is conducted using three dimen-
sional, time-spectral computational 
uid dynamics. To facilitate this, a method for com-
puting stability constraints with the time-spectral method is introduced. The unique char-
acteristics of this method allow an adjoint technique to be used to generate the gradients of
the stability constraints that are required for optimization. These gradients are generated
using the automatic di�erentiation adjoint technique, which provides accurate and e�cient
results. The resulting stability constraints and their gradients are used in the optimization
of a 
ying wing.

I. Introduction

Aerodynamic optimization is a rapidly maturing �eld. Using adjoint methods with Euler and Navier{
Stokes computational 
uid dynamics (CFD), a number of researchers have successfully solved drag mini-
mization problems.1{5 However, when considering unconventional designs | such as a 
ying wing with no
distinct horizontal tail | there is a strong coupling between the aerodynamic e�ciency of the aircraft and
its stability characteristics. This coupling leads to a di�erent optimal solution from a stability-constrained
optimization than that which is obtained from a simple aerodynamic optimization.

In this work we conduct aerodynamic optimization with basic, static longitudinal stability constraints
included. Two approaches are considered. In the �rst approach, we constrain Cm to be approximately zero
and CM� to be negative about the center of gravity (CG) of the aircraft. This combination of parameters
ensures that the aerodynamic moments caused by perturbations from the cruise condition are restoring
moments, giving a statically stable aircraft. In the second approach, we constrain the value Cm�

+ CL� �
Static Margin to be zero. This allows the optimization to return a design with a prede�ned static margin at
the optimal solution.

Unlike the force coe�cients (CL,CD and Cm), which can be computed directly with any 
ow solver,
stability derivatives, such as Cm� and Cmq , are themselves derivative quantities and require a special 
ow
solver for their computation. In addition, in order to be able to conduct gradient based optimization, these
modi�cations must be made in a way that allows the gradients of these quantities to be computed in an
e�cient manner. In this work, the stability derivative, Cm�

, is calculated using a new method based on
a time-spectral CFD solution. The algebraic method used in conjunction with the time{spectral solution
allows the use of an adjoint method for the derivative computation, which achieves the desired e�ciency.
The details of this method are provided in Section III.
�Ph.D Candidate, AIAA Student Member
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Due to the relatively high computational cost of the CFD analysis and the potentially large number of
design variables involved in shape optimization, a gradient-based method is selected for optimization. In
this case we use an SQP algorithm (SNOPT6) and an automatic di�erentiation adjoint method (ADjoint7)
to compute the gradients required by the optimizer. These tools are used to demonstrate the e�ect of
static longitudinal stability constraints on an aerodynamic optimization problem. Optimizations have been
conducted on cases with and without the stability constraints and the resulting designs are compared to
highlight the e�ects of the stability and trim constraints on the optimum design.

II. Time-Spectral Method

The underlying CFD algorithm used in this work is a time-spectral Euler solver. The basics of the method
are repoduced here. For a more detailed explanation the reader is referred to the original works by van der
Weide et al.8 and Gopinath and Jameson.9

We start by de�ning the governing equations for unsteady 
ow. These can be written as:

V
@w

@t
+
@fi

@xi
= 0; (1)

where xi are the coordinates in the ith direction. For the Euler equations, the state and the 
uxes for each
cell are:

w =

2666664
�

�u1

�u2

�u3

�E

3777775 ; fi =

2666664
�ui

�uiu1 + p�i1

�uiu2 + p�i2

�uiu3 + p�i3

�uiH

3777775 : (2)

To simplify notation, we will rewrite this equation as:

V
@w

@t
+R(w) = 0: (3)

To formulate the time-spectral equations, we assume that the 
ow is periodic in time and express the
solution of the states, w, as a Fourier series and its inverse transform:

ŵk =
1
N

N�1X
n=0

wneik 2�
T n�t; (4)

wn =

N
2 �1X

k=�N2

ŵke
ik 2�

T n�t; (5)

where N is the number of time intervals, T is the period of the solution and �t = T=N . We can then
evaluate the partial derivative of the states with respect to time as:

Dtw
n =

2�
T

N
2 �1X

k=�N2

ikŵke
ik 2�

T n�t; (6)

which can be combined with Equation (4) to form a matrix operator,

Dtw
n =

N�1X
j=0

jj
nw

j ; (7)

which connects all of the time instances in the solution. Thus, we end up solving the equivalent of N
simultaneous steady state systems based on the equation:

V Dtw
n +R(wn) = 0; (8)
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where R(wn) are the steady-state residuals for the nth time instance.
For the work in this paper we use the SUmb 
ow solver10 that has been developed at Stanford University

under the sponsorship of the Department of Energy. SUmb is a cell-centered multiblock solver for the
Reynolds-averaged Navier{Stokes equations (steady, unsteady, and time-spectral) and it has options for a
variety of turbulence models with one, two and four equations. In this work, we limit ourselves to the
time-spectral Euler equations.

III. Stability Derivatives

A key development in this work is the addition of stability constraints to aerodynamic optimization. The
computation of stability derivatives using CFD is not a new idea: several techniques have been demonstrated
previously, including �nite di�erences,11 automatic di�erentiation12,13 and analytic sensitivity methods.14

While these methods have proven to be e�ective in predicting stability derivatives, they each use well estab-
lished �rst derivative methods to compute the stability derivatives. Including these quantities as constraints
in an optimization problem requires the computation of their gradients. Since the quantities in question are
themselves derivatives, the computation of their gradients would require second derivative information from
the CFD solver. This is a computationally expensive proposition and for large numbers of design variables
would be prohibitively expensive.

The time-spectral approach presented here does not have that limitation. To evaluate stability derivatives
from a time-spectral solution, a series of linear regressions are performed on the periodic solution produced
by the CFD solver. Because this approach is simple and algebraic, an adjoint technique can be used over
the entire process to calculate the gradients for optimization. A similar method for computing the stability
derivatives with a periodic steady solution has been demonstrated by Murman,15 who uses a frequency
domain method to produce periodic data for relatively large amplitude oscillations (�2:5 deg.). This data
can then be analyzed with the same techniques used to produce stability derivatives from forced oscillation
wind tunnel data, which allows the method to take advantage of the large body of knowledge that has been
developed in that �eld. In our case, we work with much smaller amplitude oscillations designed to isolate
speci�c motion variables individually. This allows individual derivatives to be computed directly. The
virtual nature of the CFD solutions allows the simulation of these motions, which would be very di�cult to
reproduce physically.

To develop this method, we refer to the section on linear air reactions in Etkin.16 From this theory we
know that for a general motion, the force and moment coe�cients of an aircraft | for example, the lift
coe�cient | can be approximated as:

CL = CL0 + CL��+ CL _� _�+ CL�� ��+ :::+ CL�� + :::; (9)

where all motion states �, �, V , p, q, r, ZE and their associated time derivatives are included. However, if
we simplify the motion to consist of a single dynamic state | for example � | the value of the remaining
motion states are zero and they, and their associated derivatives, drop out of the equation. In the case of a
pure � motion this leads to:

CL = CL0 + CL��+ CL _� _�+ CL�� ��+ :::: (10)

If we assume that the higher order derivatives are small and neglect them, we get:

CL = CL0 + CL��+ CL _� _�: (11)

Diagrams illustrating pure � and q motions are shown in Figures 1 and 2, respectively. In these diagrams,
the grid is moving with respect to a stationary air mass and the arrows in the diagrams indicate the relative
motion of the incoming 
ow with respect to the grid. The � motion, shown in Figure 1, is an oscillating
vertical motion with the forward grid velocity modi�ed in sync with the oscillations such that the incoming
velocity maintains a constant magnitude, but changes direction. Time instances 2 and 3 are at the top
and bottom of the oscillations, respectively, illustrating the points in the cycle where the grid experiences
pure forward motion. Time instance 1 illustrates a point midway through the oscillation where the grid is
experiencing both forward and vertical motion. The diagram in Figure 2 illustrates a pure q motion. In
this case, the grid rotates with an oscillating value of q and the magnitude and direction of the velocity are
modi�ed such that the incoming � is constant.
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Figure 1. Pure angle of attack motion

Figure 2. Pure pitching motion

When one of these pure motions is simulated with the time-spectral method, the result is a solution that
consists of force coe�cient (CL,CD) and moment coe�cient (Cmx

,Cmy
,Cmz

) values at N time instances in
a periodic solution. A set of solutions corresponding to a pure q motion are shown in Figure 3. To compute
stability derivatives from this solution, we compute a linear least squares �t of the output coe�cient (e.g.,
CL) with respect to the primary motion variable from the solution (e.g., q). The slope of the line resulting
from this �t is the stability derivative (CLq ) while the y-intercept of the line is the value of CL at q = 0.

To validate this approach, derivatives for the NACA 0012 airfoil are computed using the time-spectral
method and compared to the numeric results published by Limache et al.14 These reference results are
based on computations from an inviscid two-dimensional CFD solver. The solver was modi�ed to include a
non-inertial reference frame formulation, allowing the dynamic stability derivatives to be computed from a
steady solution. In the reference work, those derivatives were computed using an analytic, direct sensitivity
method. The results of these comparisons are shown in Table 1. Figure 3 corresponds to the Mach = 0.5
case in Table 1.

Table 1. Time-spectral stability derivatives for a NACA 0012 airfoil at � = 0:0 degrees

Derivative Time-Spectral (3 Point) Reference14 % Di�erence
Mach = 0.1

CLq 9.626 10.377 7.24%
CMq

-3.349 -3.489 4.02%
Mach = 0.5

CLq 11.860 11.847 0.11%
CMq

-4.002 -3.968 0.86%
Mach = 0.8

CLq 21.064 21.889 3.81%
CMq

-7.928 -8.884 10.7%

As is demonstrated in the table above, the derivatives computed with the time spectral results agree well
with the reference results: for the Mach = 0.5 case the results match with a relative di�erence that is less
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Figure 3. Time spectral q derivative: Mach = 0.5

than one percent. The maximum di�erence occurs for Mach = 0:8, where Cmq di�ers by almost 11%. A
possible reason for the larger discrepancy in the Mach = 0:8 case is the existence of a shock in the solution.
A slight variation in the predicted location of the shock between the two solutions would cause a signi�cant
variation in the prediction of Cm and any other values derived from it.

IV. Time-Spectral ADjoint Method

The time-spectral derivatives are computed directly from the coe�cient values calculated in the 
ow
solution. Therefore, an adjoint approach applied to the solver is su�cient to compute the gradients of the
coe�cients that are required for the optimization. We start by writing the vector-valued function, I, that
we want to di�erentiate as:

I = I(x;wn(x)); (12)

where x represents the vector of design variables and wn is the state variable vector for the nth time instance,
where n = 1; :::; N . For a given vector x, the solution of the governing equations of the system yields a vector
wn, thus establishing the dependence of the state of the system on the design variables. In general, we denote
these governing equations by:

R (x;wn (x)) = 0: (13)

However, since the 
ow solution is time-spectral in nature, from van der Weide et al.,8 we de�ne:

RTS = V Dtw
n +R(wn) = 0; (14)

where R(wn) is a normal steady-state residual for the nth time instance,where n = 1; :::; N , and Dt is a
spectral operator that spans all N time instances. Now we have a modi�ed residual:

RT S (x;wn (x)) = 0; (15)
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which can be treated in the same fashion as the steady state residual would be in a normal adjoint formulation.
We use the chain rule to write the total sensitivity of the vector-valued function I as:

dI
dx

=
@I

@x
+

@I

@wn

dwn

dx
: (16)

Further, because the governing equations must always be satis�ed at a converged solution, the total derivative
of the residuals (15) with respect to any design variable must also be zero. Expanding the total derivative
of the governing equations with respect to the design variables we can write:

dRT S
dx

=
@RT S
@x

+
@RT S
@wn

dwn

dx
= 0: (17)

This expression provides the means of eliminating the total derivative dwn=dx from the total sensitivity
computation for I. Moving the �rst term of this equation to the right hand side, we get:

@RT S
@wn

dwn

dx
= �@RT S

@x
: (18)

Substituting the solution of this system into Equation (16) yields:

dI
dx

=
@I

@x
� @I

@wn

�
@RT S
@wn

��1
@RT S
@x

: (19)

The adjoint approach consists in factorizing the @RT S=@wn matrix with the term to its left, yielding the
adjoint system: �

@RTS

@w

�T

 =
@I

@w
: (20)

Then, this solution is used in Equation (19) to obtain the total sensitivity:

dI

dxDV
=

@I

@xDV
�  T RTS

@xDV
: (21)

This yields a sensitivity method with a computational cost that is essentially independent of the number of
design variables. More details on the ADjoint method can be found in Mader et al.7 Note that because the
time-spectral system is N times the size of the steady-state solutions, the adjoint system is also N times
larger than the equivalent steady-state system.

To improve the accuracy and reduce the implementation time of the adjoint solver, we use automatic
di�erentiation to compute the values of the partial derivatives. More speci�cally, we use a reverse mode,
source transformation tool (Tapenade17,18) to generate derivative code for each of the partial derivative
terms. This reverse mode approach is very e�cient for the objective function partial derivatives, as the
number of objectives is far less than the number of 
ow states and design variables. The e�ciency of the
reverse mode approach is less apparent for the residual partial derivatives. However, as described in Mader
et al.7 a modi�ed, single cell version of the residual calculation is used, which makes the reverse mode
computation extremely e�cient for this calculation. To facilitate the solution of the large, sparse linear
systems represented by these equations, we use the Portable, Extensible Toolkit for Scienti�c Computation
(PETSc).19,20 This is a sparse linear and non-linear solution package that provides a variety of parallel
solution and preconditioning algorithms.

V. Center of Gravity Calculation

Both the moment coe�cient, Cm, and all of its derivatives | in this case Cm�
| are strongly dependent

on the center of gravity (CG) location. In order to facilitate the optimizations described in Section C, a
simple, wing center of gravity calculation was implemented. The method used is derived from the work of
Chai et al.21 They state that the wing center of gravity for a normal transport wing is located between the
fore and aft spar along the wing mean aerodynamic chord (MAC). That idea is used as the basis for the
method described below. We start by calculating the MAC and the location of its quarter chord. These
calculations are based on the methods presented in ESDU item 76003.22 This provides a basis on which to
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locate the fore and aft spars for the wing. As part of the problem de�nition, the locations of the spars are
de�ned. In this work we have assume that the forward spar is at 25% of the MAC and the aft spar is at
75% of the MAC. We can then specify the location of the CG as a percentage of the distance between the
spars (CG%MAC). This gives a reference location about which the moment coe�cient, Cm, and all of its
derivatives can be calculated.

VI. Results

The results are presented in four sections. Section A describes the test case used and presents some basic
solutions for the case. Section B presents the results relating to the performance and accuracy of the time-
spectral adjoint method used in this work, and Section C presents the results relating to the optimizations
conducted on 
ying wings. Comparisons between the various optimization results are discussed in Section D

A. Test Case

The test case used in this work is the ONERA M6 wing, commonly used in CFD. The test case is run at
Mach = 0.8 with a symmetry condition at the root and inviscid wall boundary conditions. The solver used
is SUmb,10 a three dimensional, structured, multi-block solver with a cell-centered, �nite-volume scheme.
The grid contains 155,648 cells and is shown in Figure 4(a). A steady state solution is shown in Figure 4(b)
and a time-spectral solution is shown in Figure 5.

X

Y

Z

(a) ONERA M6: mesh

X

Y

Z

CoefPressure: -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(b) ONERA M6: surface Cp distribution: Mach = 0.8
�=3.0 deg.

Figure 4. ONERA M6 test case
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CoefPressure: -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(a) Time instance 1

X

Y

Z

CoefPressure: -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(b) Time instance 2

X

Y

Z

CoefPressure: -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(c) Time instance 3

Figure 5. ONERA M6: time-spectral surface Cp distribution, Mach=0.8, �=3.0 deg.
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B. Performance

To demonstrate the performance of the methods developed, accuracy and timing results are shown below.

Table 2. Sensitivity veri�cation: Onera M6 test case 155,648 cells: 10�10 convergence

Cost Function Design Variable Adjoint Complex Step
CL � 4.7375673877687 4.737567386045973
CD � 1.22477869862E-2 1.224778698891853E-2
Cm � -7.47987636404091E-1 -7.479876364269280E-1
Cm� � -1.8465959882458 -1.846596078281581
CL Sweep -2.7252398443603E-5 -2.725239835642640E-5
CD Sweep -1.3086996 71E-4 -1.308699669258835E-4
Cm Sweep 1.2288071756500E-4 1.228807175870053E-4
Cm�

Sweep 1.280213841445E-1 1.280213841476047E-1
CL Twist 2.8603177646382E-2 2.860317764808717E-2
CD Twist 3.141227092E-4 3.141227051424936E-4
Cm Twist -3.4019066938546E-3 -3.401906695603677E-3
Cm�

Twist -6.52457602472E-2 -6.524575982519138E-2
CL Taper -3.3182460374741E-3 -3.318246037774965E-3
CD Taper -6.474634336E-4 -6.474634317703330E-4
Cm Taper 1.9513202619885E-5 1.951320291763559E-5
Cm�

Taper 3.49418901607E-2 3.494189001133485E-2

The derivatives shown in Table 2 clearly demonstrate the accuracy of the derivative method used. In
most cases the derivatives are accurate to at least 8 digits, with the worst case being a 6 digit disagreement
and the best case 10 digit agreement. This is extremely good agreement, especially when considering that
the solution is converged to a relative level of 10�10, which means that 10 digit agreement is the best that
can be expected from an numerically exact derivative method.

Onera M6 Case

Steady-State Time-Spectral

Number of processors 38 38

Number of cells 155,648 155,648

Number of time instances 1 3

Flow solution 241.01 856.13

ADjoint 102.19 380.47

Breakdown:

Computation of residual matrices 24.21 109.24

Computation of reconditioning matrix 7.50 72.96

Computation of volume to surface partial derivative 2.00 5.63

Computation of RHS 0.29 0.70

Solution of the adjoint equations 67.13 191.34

Computation of total sensitivities 1.06 0.60

Table 3. ADjoint computational cost breakdown (times in seconds)

The timing results shown in Table 3 demonstrate the e�ciency of the approach and implementation of
the ADjoint method. Comparing the ADjoint solvers to the 
ow solvers, in both cases the ADjoint takes
less than half as long as the 
ow solver (0.4 and 0.44 times respectively). Given that this is a reverse
derivative that computes the derivative of each output with respect to all of the input values, this is even
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more attractive for problems with large numbers of design variables. To illustrate, consider a simple time-
spectral optimization problem with 50 design variables and two output variables, one objective and one
constraint. A �nite di�erence method would require 50 additional 
ow solutions | 11.8 hours | for a single
gradient evaluation, while the adjoint method would require 2 adjoint solutions | 13 minutes | for the
same computation. The cost advantage of using the adjoint approach is evident. Further, the cost of using
the time-spectral computation instead of a steady computation is also reasonable. The time-spectral 
ow
solver is 3.5 times as costly as the steady solver and the time-spectral adjoint is 3.8 times as costly as the
steady adjoint. While a factor of four increase in cost is signi�cant, it is a reasonable cost to pay to be able
to include stability characteristics in the optimization process.

C. Optimization

To assess the e�ects of stability constraints on aerodynamic shape optimization results, four optimization
problems are examined. To serve as a baseline case, the following lift-constrained drag minimization problem
is solved:

minimize CD(x;wn(x))
w.r.t. x = [�; sweep; twist; taper] (22)

subject to R(x;wn(x)) = 0
CLtarget � CL(x;wn(x)) � 0

As an intermediate case, a trim constraint is added to the problem by limiting the moment coe�cient,i.e.,
0 � Cm � 10�4. This gives:

minimize CD(x;wn(x))
w.r.t. x = [�; sweep; twist; taper; xCGtarget ; CG%MAC ] (23)

subject to R(x;wn(x)) = 0
CLtarget � CL(x;wn(x)) � 0

0 � Cm(x;wn(x)) � 10�4

�10�5 � xCG � xCGtarget � 10�5

(24)

For the �rst stability constrained problem, the Cm�
constraint is added, giving:

minimize CD(x;wn(x))
w.r.t. x = [�; sweep; twist; taper; xCGtarget ; CG%MAC ] (25)

subject to R(x;wn(x)) = 0
CLtarget � CL(x;wn(x)) � 0

0 � Cm(x;wn(x)) � 10�4

Cm�
(x;wn(x)) � 0

�10�5 � xCG � xCGtarget � 10�5

(26)

For the second stability constrained problem, the static margin constraint replaces the Cm� constraint,
giving:

minimize CD(x;wn(x))
w.r.t. x = [�; sweep; twist; taper; xCGtarget ; CG%MAC ] (27)

subject to R(x;wn(x)) = 0
CLtarget � CL(x;wn(x)) � 0

0 � Cm(x;wn(x)) � 10�4

Cm�
(x;wn(x)) + CL�(x;wn(x))� Static Margin(x) = 0

�10�5 � xCG � xCGtarget � 10�5

(28)
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The last three problems are formulated as multidisciplinary systems. The CG calculation forms one
discipline and the aerodynamics forms the second discipline. An interdisciplinary feasible (IDF) approach
is used to solve the system. As shown in the problem de�nitions, the discipline coupling variable is the
CG location. A single target variable, xCGtarget , is added as an input to the aerodynamic discipline and
an additional constraint | that xCG � xCGtarget = 0 | is added to the problem to enforce consistency at
the optimized solution. In addition, because the CG location and neutral point location are both primarily
driven by the sweep variable, the optimizer has been given additional freedom to specify the CG location
as a percentage of the distance between the spars (CG%MAC). This variable was allowed to vary anywhere
in between the spars as well as one MAC length in front of the forward spar. The extra forward freedom is
allowed to take into account the potential CG contributions from non-wing portions of the aircraft, such as
systems, payload, etc.. Each of these optimizations has been run at Mach= 0.8 with a target lift coe�cient of
0.3. The reference temperature, density and pressure are 288.15 K, 1.225 kg/m3 and 101325.0 Pa respectively.
For the static margin constrained optimization, the requested static margin is 5% of the MAC. Table 4
outlines the limits speci�ed on the various design variables used. The results of the three optimizations are

Design Variable Bounds

Design Variable Lower Bound Upper Bound

�(deg.) -14.32 14.32

Sweep (deg.) -75 75

Tip Twist(deg.) -15 15

Taper Ratio 0.1 1.2

xCGtarget (m) -200 200

CG%MAC -1 1

Table 4. Design variable limits

shown in Table 5. Note that in the trim constrained and stability constrained optimizations, the target
center of gravity location, xCGtarget , was used as the reference center for the computation of the moments
and their derivatives.

Optimization Cases

Parameter ONERA M6 Lift Constrained Trimmed Cm� Constrained Static Margin Constrained

CL 0.30000 0.30000 0.30000 0.30000 0.30000

CD 0.01834 0.01438 0.01438 0.01448 0.01479

Cm -0.04897 -0.04610 0.00010 -0.00001 -0.00001

Cm� 0.86241 0.58871 0.15194 -0.00001 -0.12271

CG Location(m) 0.56765 1.05927 0.96265 0.97165 0.90127

�(deg.) 3.65 6.88 6.91 7.38 7.74

Sweep (deg.) 30.0 56.96 56.96 57.79 56.00

Tip Twist(deg.) 0.0 -6.21 -6.21 -7.71 -9.04

Taper Ratio 0.562 0.304 0.304 0.268 0.298

Table 5. Optimization results comparison

A convergence plot for the �ve cases shown in Table 5 is shown in Figure 6

D. Discussion

As shown in Table 5, all of the optimizations achieved the requested target lift coe�cient of 0.3 and have
reduced the drag with respect to the baseline case. The lowest drag was achieved in both the lift constrained
case and the trim constrained optimizations. The optimizer was able to match the performance of the lift
constrained case with the trim constrained case by moving the CG variable to trim the wing instead of altering
the aerodynamic shape. As expected, the predicted drag increases with both of the stability constrained
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Figure 6. Convergence histories for the various optimization problems

cases. The penalty of the static margin constraint is larger than the Cm�
constraint because it forces a more

negative value of Cm�
than the default Cm�

constraint. Looking at the �nal shape of the design, in all four
cases the bulk of the drag minimization comes from the increase in sweep. This change reduces the wave
drag caused by the shock on the wing in the baseline case. The trim and stability constraints are satis�ed
with a combination of changes to the other variables. The most prominent changes appear to be in twist
and CG location. Both of the stability constrained cases have more twist than the other two. The static
margin case has signi�cantly more twist than any of the others and the CG is signi�cantly farther forward.
The resulting 
ow solutions for each of the cases are plotted in Figures 7(a)-7(e) and a comparison of the
resulting lift distributions is shown in Figure 8.

The lift distributions also show what one would expect. In order to counter the typical nose down moment
of a symmetric airfoil, the optimizer has shifted lift from the tips inboard. This lift reduction at the tips
creates a nose up moment that trims and stabilizes the wing. Note that the baseline case and the trimmed
case have the same lift distribution. These two cases have the same aerodynamic shape, but the CG has
been moved forward in the trimmed optimization to counteract the aerodynamic moment. Also note that
the optimal lift constrained solution is not elliptical. This is primarily because the twist is forced to maintain
a linear distribution along the span.

VII. Conclusion

Stability-constrained optimization is conducted for a 
ying wing using a time-spectral 
ow solver and
adjoint method. A new time-spectral approach to the computation of stability derivatives is shown to be
valid and an ADjoint implementation of the time-spectral adjoint is shown to be computationally e�cient
and to have accuracy greater than any previous implementation of a time-spectral adjoint. The optimizations
conducted with this framework produced sensible and meaningful results. As expected, the optimum stability
constrained result has a higher drag coe�cient than the baseline lift-constrained case. The trimmed case
is similar to the baseline case. The di�erences evident in the stability constrained case reinforce the fact
that for some unconventional designs, such as 
ying wings, including stability considerations in the design
optimization is important.
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Figure 7. Optimal Onera M6 results
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