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This paper presents a comparison of methods for aerostructural analysis and optimiza-
tion. The aerostructural analysis problem is solved in parallel using a panel method coupled
to a �nite-element solver. The coupled nonlinear aerostructural system is solved using
a nonlinear block Gauss-Seidel, nonlinear block Jacobi, Newton{Krylov or approximate
Newton-Krylov approach. The approximate Newton{Krylov method is shown to be an
e�cient and robust solution technique. An adjoint-based sensitivity method is developed
that achieves a high-level of accuracy when compared to complex-step calculations. Three
levels of parallelism are exploited within the present aerostructural optimization frame-
work: optimization-level, system-level and discipline-level parallelism. The e�cient and
robust solution method and accurate gradient evaluation technique provide a powerful tool
for aerostructural design optimization. Aerostructural induced drag minimization results
are presented for a typical subsonic turboprop aircraft wing.

I. Introduction

Aerostructural design optimization using high-�delity models is a computationally intensive multidisci-
plinary design optimization (MDO) problem.1{4 Many authors have focused on using high-�delity aerody-
namic analysis in the aerostructural problem while using considerably smaller �nite-element models.5,6 This
is often justi�ed since the primary area of interest in these studies is the aerodynamic performance of the
aerostructural system. Developing techniques that work well when there is a computational imbalance be-
tween disciplines is important, since often the aerodynamic analysis requires many more degrees of freedom
than the structural analysis | sometimes two or three orders of magnitude more. Several authors have
even devised optimization techniques speci�cally designed to take advantage of this imbalance.7{9 However,
it is also important to examine the consequences of larger and more sophisticated structural analyses and
the implications this has on both the solution algorithms and the overall optimization problem. This is a
signi�cant problem as unconventional aircraft design and the increasing use of composites and advanced
composite systems,10 may place additional demands on the structural analysis.

This paper presents aerostructural analysis and design sensitivity methods that are designed to be e�cient
when the aerodynamic and structural disciplines both require signi�cant computational resources and time.
This situation leads to di�erent solution algorithms. These techniques are applied to the analysis and
optimization of an aircraft wing. In the present work, the aerodynamic analysis uses a parallel panel code,
TriPan, coupled to a parallel �nite-element code called the Toolkit for the Analysis of Composite Structures
(TACS). This �nite-element code is speci�cally designed for the analysis of composite structures, including
geometric nonlinearity and has analytic design variable sensitivity analysis capability. The inter-disciplinary
coupling is handled by passing pressure and displacement values through a parametric surface representation
of the outer mould line (OML) of the aircraft.

This paper is organized as follows. Section (II) reviews previous work performed in the �eld of aerostruc-
tural analysis and optimization, as well as load and displacement transfer schemes. Section (III) describes
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the relevant details of the aerostructural analysis components and optimization framework. The components
include the aerodynamic and structural analysis, load and displacement transfer, and geometry parametriza-
tion. Sections (IV) and (V) outline the various algorithms used to solve the coupled, aerostructural system
and the coupled adjoint equations respectively. Section (VI) presents results for an aerostructural optimiza-
tion of a wing based on the Bombardier Q400.

II. Literature review

A. Aerostructural analysis and optimization

Several authors have previously developed methods for aerostructural analysis and design optimization.
Reuther et al.5 and Martins11 developed an aerostructural analysis and optimization framework that coupled
a linear �nite-element structural model to a �nite-volume Euler CFD solver. They obtained a coupled solution
using a pseudo-time marching scheme with periodic updates of the displaced shape. They used a structural
model composed of either solid, three-dimensional elements, to represent a wind tunnel wing model, or shell
and beam elements to represent a sti�ened aircraft wing. Following the work of Brown,12 they developed
a systematic scheme to pass loads and displacements across the aircraft OML. Martins et al.2 developed a
sensitivity analysis of the aerostructural equations for both the adjoint and direct formulations, with a block
Gauss{Seidel technique for solving the coupled adjoint system. Martins et al.1 applied this framework to
the optimization of a supersonic business jet.

Maute et al.3 performed an aerostructural analysis that coupled the Euler equations to a linear �nite-
element model. They employed a mesh movement strategy based on a spring analogy and a load and
displacement transfer technique following the earlier work of Maman and Farhat13 and Farhat et al.14

They used a nonlinear block Gauss{Seidel method with relaxation for the solution of the coupled nonlinear
equations. They present formulations of both the adjoint and direct methods for computing the sensitivities
of the coupled aerostructural system. These linear equations are solved using a block Gauss{Seidel method
that mirrors the method of solution for the coupled system. Two types of structural models are employed:
an equivalent 
at plate composed of either a single isotropic material or multiple composite layers and a full
shell and sti�ener model composed of shell and beam elements.

Maute and Allen15 develop an aerostructural optimization problem in which the internal structure of the
wing box is parametrized using a single isotropic material with penalization (SIMP) approach to determine
the topology of the optimal structure. The solution method is similar to those described previously.3

In order to improve the robustness and e�ciency of the methods developed by Maute et al.,3 Barcelos et
al.6 developed a class of Newton{Krylov{Schur methods for solving the coupled nonlinear 
uid-structure-
mesh movement problem. Their approach uses an approximate Newton’s method for the solution of the
nonlinear coupled equations. At each iteration, a Schur complement approach is used to solve the coupled
linear system that results from a linearization of the residual. They found that their technique is more
robust and e�cient than the original Gauss{Seidel method presented by Maute et al.3 More recently,
Barcelos and Maute16 presented an aerostructural solution technique coupling the Navier{Stokes equations
with a turbulence model to a linear structure and mesh movement strategy.

Aerostructural analysis techniques are a specialization of more general 
uid-structure interaction solution
methods. A complete review of this more general �eld of research is beyond the scope of this paper, however
we discuss a few results that have contributed to our ideas.

Felippa et al17 performed an extensive review of solution techniques for coupled nonlinear problems using
partitioned solvers. Kim et al18 developed a solution procedure for coupled multi-physics problems using a
multi-level Newton’s method. They applied their approach to a coupled 
uid-structure interaction problem,
noting the importance of using accurate linearizations of the coupling terms.

In two papers, Biros and Ghattas19,20 presented a Lagrange{Newton{Krylov{Schur approach to the
simultaneous solution of PDE-constrained optimization problems. They applied their approach to a design
problem using the incompressible Navier{Stokes equations.

Heil et al21 solved a time-dependent 
uid-structure interaction problem by applying Newton’s method
to a second-order backward di�erence discretization of the coupled system. The resulting equations were
solved using a monolithic approach with both direct and iterative solvers. Their results demonstrate that a
monolithic approach is competitive, even in cases of relatively weak coupling.
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B. Load and displacement transfer schemes

One of the primary tasks in aerostructural analysis is to develop a scheme to couple the aerodynamic and
structural disciplines into a single analysis. Many authors have devised load and displacement transfer
techniques and a brief overview of some important contributions is covered below.

Maman and Farhat13 developed a method for the direct transfer of loads and displacements between

uid and structural meshes where the boundaries of the two domains may not be coincident everywhere. In
their scheme, pressure from the 
uid mesh is transferred to a projected point on the structural mesh, where
a local normal is de�ned. For displacement transfer, structural displacements are projected back onto the

uid mesh. From the projected points, local interpolations are used to determine the values of the quantities
of interest. In a second paper, Farhat et al.14 devised two methods for load and displacement transfer for
transient problems. A method based upon consistent interpolation between coincident surfaces and a second,
more general method based upon displacement and load transfer between discrete surfaces.

Brown12 focused on the development of load and displacement transfer schemes where the structural
and 
uid model are non-conforming. Brown used displacement-interpolation functions that are either a
continuous extension of the �nite-element shape functions, or a rigid attachment to the nodal degrees of
freedom. The load transfer from the 
uid to structural model is constructed using the principle of virtual
work. This technique is consistent | the sum of the forces on the 
uid model is equal to the sum of the
nodal forces on the structure, and is also conservative | the work done on the 
uid model in moving through
the displacements de�ned by the structure, is equal to the work performed on the structure.

In two recent papers, Allen et al.22 and Rendall and Allen23 developed interpolation and mesh movement
schemes that employ radial basis functions (RBFs). In these methods, the structural and aerodynamic models
are embedded in an RBF volume. Structural displacements are transferred through the volume using RBF
displacement interpolation. Load transfer is performed using the principle of virtual work. Consistency is
achieved by ensuring that rigid body modes are preserved within the RBF interpolation.

C. The proposed framework

In this paper we depart from previous work by performing aerostructural optimization in a framework that
exploits three levels of parallelism while using a multi-disciplinary feasible (MDF) approach.24,25 These
levels of parallelism are summarized in Table (1). We use parallelism at the optimization-level, coordinating
system-level process groups to analyze di�erent 
ight conditions or load cases simultaneously. This level is
embarrassingly parallel, requiring very little communication overhead. The second level of parallelism we
exploit is system-level parallelism within the aerostructural analysis. We assume that due to memory or
performance requirements, the aerodynamic and structural processes are split into non-overlapping process
groups within the system-level process group. This second level involves coordination of the discipline-level
analyses to perform an aerostructural solution or sensitivity calculation. The last level of parallelism we use
is at the discipline-level. At this level, e�cient single-disciplinary codes may be run on independent process
groups. We use these three levels to perform e�cient, parallel multidisciplinary analysis and optimization.

Table 1. Levels of parallelism and process groups within the present aerostructural optimization framework.

Level Process group Parallelism

1 Optimization-level Multiple 
ight conditions and load cases run concurrently

2 System-level Interdisciplinary coupling and coordination

3 Discipline-level Parallel discipline-level analysis

III. Aerostructural analysis components

The following subsections outline the relevant details of the aerodynamic analysis, load and displacement
transfer, structural analysis and geometric parametrization. These constitute the unassembled components
of the aerostructural analysis.
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Figure 1. A timing study for TriPan using 1,2,4,8,12,16 and 24 processors for two cases. Case A has 8800
panels and Case B, a BWB, has 22638 panels.

A. Aerodynamic analysis

The aerodynamic analysis is performed using TriPan, an unstructured panel code for calculating the aero-
dynamic characteristics of inviscid, incompressible, external lifting 
ows. The code uses constant source
and doublet singularity elements distributed over the surface of a body discretized with quadrilateral and
triangular panels.26,27 Aerodynamic forces and moments are calculated using surface pressure integration.
This approach has well known accuracy problems, especially when computing drag.28 The discretized set of
boundary conditions governing the doublet strengths are represented by the vector of aerodynamic residuals,

A(w) = 0; (1)

where w represents a vector of the doublet strengths. The linear system represented by Equation (1) is solved
using the parallel, linear algebra routines in PETSc.29,30 A dense matrix storage format is used to store
the aerodynamic in
uence coe�cients for each panel. The matrix is split between processors such that the
rows of the matrix are stored in contiguous segments. The ownership range of each segment is determined
by performing a domain decomposition of the surface mesh. The dual graph of the mesh is constructed
and then partitioned by the program METIS31 to determine processor assignment. For e�ciency reasons,
each processor has a local copy of the entire mesh. The surface mesh is relatively small, so copying the
entire mesh is not too memory intensive, especially when compared with the dense aerodynamic in
uence
coe�cient matrix.

The solution time required for TriPan is plotted against the number of processors for two test cases in
Figure (1(a)). In this �gure, Case A is a symmetric, rectangular wing with an aspect ratio of 8.0 and a
NACA0012 pro�le, that is discretized with 8800 panels on the half-body. Case B is a blended wing body
(BWB) discretized with 22628 panels. The surface pressure coe�cient for the BWB, is shown in Figure (1(b)).
The matrix and residual assembly time scales ideally to within precision. After an initial communication of
the state variables, each processor can independently determine all matrix and residual components that are
locally owned without having to communicate any information.

The system of linear equations is solved using GMRES(30)32 with a block Jacobi ILU(0) preconditioner.
We found this to be an e�ective method, requiring the least overall computational time, amongst a range of
preconditioning options. The preconditioner is assembled by considering only those panels that are within a
predetermined radius from the current panel centroid. The rationale for this construction is that the closest
panels have the strongest e�ect on a given panel. The e�ect of a higher ILU preconditioner �ll-level can be
achieved by selecting a larger radius.
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Figure (1(a)) shows the solution time required for Case A and Case B for between 1 and 24 processors.
Note, that the solution time is often shorter than the time required for the matrix and residual assembly. The
solution time for Case A scales well when fewer than 8 processors are used, but reaches some performance
limit for larger number of processors. For Case B, the solution time decreases as more processors are added,
but not at the ideal rate.
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Figure 2. Initial and optimal lift distributions for a lift-constrained drag minimization test case run in TriPan.
The �gure on the right shows the optimal shape and Cp distribution.

An adjoint sensitivity method is implemented within TriPan. Figure (2) shows the results from a lift-
constrained drag-minimization problem. The wing has a span of 8:0 and a constant chord of 1:0 and is
composed of a lofted stack of NACA2412 airfoils, initially without twist. The surface mesh consists of 4200
surface panels with 3600 wake panels. Four twist variables and angle of attack are allowed to vary. The lift
constraint CL = 0:5 is enforced. Figure (2(a)) shows the lift distribution of the optimal wing and the initial
wing at an angle of attack that satis�es the lift constraint.

B. Load and displacement transfer

The present load and displacement transfer scheme follows the work of Brown.12 In this approach, the
displacements are extrapolated to the aerodynamic surface mesh through the use of rigid links. These links
connect the nodes on the aerodynamic surface to the closest point on the structure. The nodal displacement
on the aerodynamic surface may be written in terms of the displacements and, when appropriate, rotations
de�ned by an element as follows,

uA = uS + �S � r; (2)

where uA and uS are the displacements of the aerodynamic and structural points respectively, �S are
the rotations at the structural surface and r is the vector of minimum distance connecting the points in
the structure to the points on the aerodynamic surface. Equation (2) de�nes the displacements at the
aerodynamic surface in terms of displacements in the structure. The method of virtual work can be used
to determine the nodal forces and moments acting on the structure. The virtual work of the aerodynamic
pressure forces is,

�W =

Z
SA

pn̂ � �uA dS =

Z
SA

pn̂ � �uS � pn̂ � (r� ��S) dS; (3)

where p is the surface pressure and n̂ is the normal de�ned on the aerodynamic surface mesh. Note that the
integration is performed on the aerodynamic surface. This expression may be used to determine a consistent
and conservative load vector.

This technique is quite 
exible in that any arbitrary aerodynamic and structural meshes can be combined.
Even problems where the structure may lie outside the aerodynamic mesh, can be connected in this manner.
However, there are two important issues that may arise with this scheme:

1. Adjacent points on the aerodynamic surface may cross, when the structure experiences large, rapidly
varying rotations. No strain energy is associated with the deformation of the aerodynamic surface.
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When the surface deforms, there is no sti�ness counteracting the movement of adjacent surface points
towards one another, other than the sti�ness of the structure.

2. Large point moments can be produced when the structure lies far away from points on the aerodynamic
surface. These large moments are required to maintain consistency and conservativeness. Usually, this
indicates that the model is inadequate and the structure should move closer to the aerodynamic surface.

For many aerostructural problems where the meshes are close together over most of the domain, neither of
these issues arise.

C. Structural analysis

The structural analysis is performed using the Toolkit for the Analysis of Composite Structures (TACS), a
parallel, �nite-element code developed by the �rst author, designed speci�cally for the analysis of sti�ened,
thin-walled, composite structures using either linear or geometrically nonlinear strain relationships. We
typically use higher-order �nite-elements as we have found that these provided better stress prediction
capability. The residuals of the structural governing equations are written as,

S(u) = Sc(u)�F(u); (4)

where u is a vector of displacements and rotations, Sc are the residuals due to conservative forces and internal
strain energy and F are the follower forces due to aerodynamic loads.

The Jacobian of the structural residuals involves two terms: the tangent sti�ness matrix K = @Sc=@u
that is stored in memory and the derivative of the consistent force vector with respect to the structural
displacements, that is computed using a matrix-free approach,

@S
@u

= K � @F
@u

: (5)

This second term has important implications for the parallel implementation. The sti�ness matrix, is dis-
tributed over the group of structural processes. The derivative of the consistent force vector with respect
to the displacements however, must be computed using operations that involve all aerostructural processes.
This is due to the nature of the load-transfer scheme. As a result, calculations involving the Jacobian of the
structural system require the synchronization of all processes and cannot be performed concurrently with
aerodynamic calculations. It is often advantageous to discard the contribution of the follower forces during
analysis. However, for sensitivity calculations this term cannot be ignored due to its contribution to the
objective or constraint gradient.

While the matrices involved in structural problems are typically symmetric, the term @F=@u is non-
symmetric due to the non-conservative nature of the aerodynamic forces. These non-symmetric matrices
require di�erent solution algorithms than those typically employed in a structural �nite-element code. We
use GMRES32 and the Krylov method GCROT33,34 to solve the non-symmetric, linear systems involving
Equation (5).

Stress constraints are handled by applying a local failure constraint at each Gauss point in the �nite-
element model. These local failure constraints compute a load factor �k, required for that point to fail.
The load factor implies that the current point will fail at �k times the current stress level. For a safe-
life design, minftkg > FS where FS is a factor of safety. Instead of using the minimum value directly in
the optimization, a Kreisselmier-Stienhauser (KS) constraint aggregation technique is applied to groups of
these local constraints.1,35,36 We usually use multiple KS functions, aggregating amongst similar structural
components rather than using a single KS function over all stress constraints in the entire structure. The
KS function is computed as follows,

�KS = minf�kg �
1

�
ln

"
NX
i=1

exp f��(�i �minf�kg)g

#
; (6)

where � is a weighting parameter that controls the degree of approximation and �KS is the aggregated
KS value. The advantage of this approach is that it reduces the number of constraints required in the
optimization and it is a conservative approximation, in that �KS is a lower bound. Typically, values of �
between 30 and 50 yield good results.37
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D. Geometry parametrization

Parametrization of the geometry is of fundamental importance to the aerostructural optimization problem.
We employ a CAD-free approach to geometric parametrization to achieve a continuous and di�erentiable
geometry and analysis problem. We use the implementation of Kenway and Martins38 that is tightly in-
tegrated into the aerodynamic and structural solvers. This approach results in an e�cient and accurate
sensitivity analysis, something that is di�cult to achieve with CAD. While we have worked with other geo-
metric parametrization techniques, we use free-form deformation (FFD)39 exclusively in this paper. In this
approach, the points that de�ne the geometry of a discipline are embedded in a B-spline volume. The B-spline
volume control points many then be manipulated to modify the underlying embedded points. Depending on
the order of the B-spline, these changes are continuous and may be di�erentiable.

IV. Aerostructural solution

The aerostructural system of equations is the concatenation of the aerodynamic and structural equations,
represented by,

R =

"
A(w; u; x)

S(w; u; x)

#
= 0; (7)

where A and S are the aerodynamic and structural residuals, w and u are the aerodynamic and structural
state variables and x is a vector of design variables. Often, x will be omitted for brevity. Occasionally it will
be convenient to combine the unknown state variables into a single vector, qT = [wT ; uT ].

During the solution procedure, a point is considered converged when the relative tolerance of both
residuals is reduced below a speci�ed tolerance, typically �r = 10�8, such that,

jjA(w(n); u(n))jj2 < �rjjA(w(0); u(0))jj2;
jjS(w(n); u(n))jj2 < �rjjS(w(0); u(0))jj2:

(8)

The stopping criterion is applied to each discipline separately rather than the system of aerostructural
residuals as a whole to avoid situations where the initial residual of one discipline is signi�cantly greater
than the initial residual of the other. The relative scaling of the two disciplines is very important but has
not been addressed in this study. In addition, this condition is easier to apply when the disciplines are split
across groups of processes.

Other authors have concentrated on aerostructural analysis techniques that are suitable for solving the
coupled system when the aerodynamic and structural residuals are distributed across the same set of proces-
sors, or the structural residuals are on every process.1,16 In this paper, we focus on the situation where either
memory or performance requirements dictate that the aerodynamic and structural solvers be split between
groups of processors. This requires an additional level of parallelism re
ected in the solution algorithm and
its implementation.

We now present four methods we use to solve the aerostructural system: nonlinear block Gauss{Seidel,
nonlinear block Jacobi, Newton{Krylov and approximate Newton{Krylov.

A. Nonlinear block Gauss{Seidel

Several authors have presented aerostructural solution algorithms that employ a nonlinear block Gauss{
Seidel method.1,16 The nonlinear block Gauss{Seidel approach is to solve, in sequence, a linearization of
each of the two disciplines to arrive at an update. This update is applied before the update for the next
discipline is computed. We can write this procedure as follows,

@A
@w

�w(n) = �A(w(n); u(n)); (9)

K(n)�u(n) = �S(w(n+1); u(n)); (10)

where the updates w(n+1) = w(n) + �
(n)
A �w(n) and u(n+1) = u(n) + �

(n)
A �u(n) are applied immediately

after each solution. The parameters �
(n)
A and �

(n)
S are adjustable damping factors for the aerodynamic and

structural solutions. Note that the structural processes must be inactive while the aerodynamic update is
computed and likewise, the aerodynamic processes must be inactive while the structural update is computed.
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Solving Equations (9) and (10) to a tight tolerance typically does not lead to an e�cient algorithm. As
a result, we employ the following stopping criterion,

jjA(w(n); u(n)) +
@A
@w

�w(n)jj2 < �gsjjA(w(n); u(n))jj2; (11)

with �gs = 10�3, with a similar approach for the structural solution.
The selection of the damping parameters is very important for robustness and e�ciency of the algorithm.

Since the solution strategy is employed within an optimization framework, analyses of slender, 
exible
structures subject to divergence should be expected in early design cycles. Adjustment of solution parameters

must therefore take into account a wide range of possible analysis conditions. Here we choose �
(n)
A = 1 and

pick �
(n)
S dynamically based upon an Aitken acceleration scheme,6

~�S = �
(n�1)
S

�
1� (�u(n) ��u(n�1))T�u(n)

jj�u(n) ��u(n�1)jj22

�
;

�S = max(�low;min(1; ~�S));

(12)

where we choose �low = 0:25 and �
(0)
S = 0:5. The e�ect of the second formula is to clip the update to the

interval (�low; 1).

B. Nonlinear block Jacobi

An alternative to the nonlinear block Gauss{Seidel approach is to solve for both updates simultaneously
using current information. This leads to the nonlinear block Jacobi method, written as,

@A
@w

�w(n) = �A(w(n); u(n)); (13)

K(n)�u(n) = �S(w(n); u(n)); (14)

where the updates w(n+1) = w(n) + �
(n)
A �w(n) and u(n+1) = u(n) + �

(n)
A �u(n) are applied after both

computations have completed. In this method the structural and aerodynamic groups perform computations
concurrently, increasing the degree of parallelism within the algorithm. As in the nonlinear block Gauss{
Seidel algorithm, Equations (13) and (14) are solve inexactly to a tolerance of �j = 10�3, according to

Equations (11). The damping parameter �
(n)
A = 1 is set for all iterations, while �

(n)
S is chosen according to

Equation (12).

C. Newton{Krylov method

Newton’s method applied to Equation (7) results in the following linear system of equations for the update
�q(n),

@R
@q

�q(n) = �R(q(n)): (15)

Newton’s method converges quadratically provided the starting point is su�ciently close to the solution
and the Jacobian remains non-singular. In order to achieve convergence from points far from the solution,
Newton’s method is often globalized with some strategy to ensure progress is made towards the solution until
a suitable starting point is found. Typically these globalization strategies include pseudo-transient continu-
ation or other forms of continuation.40,41 We have found that for this aerostructural problem, globalization
is not necessary. For more di�cult problems it may be required.

Solving Equation (15) inexactly for each update is typically more e�cient than �nding an accurate
solution. We solve for the Newton update to a tolerance of �nk = 10�3,

jjR(q(n)) +
@R
@q

�q(n)jj2 < �nkjjR(q(n)jj2; (16)

with the update q(n+1) = q(n) + �q(n). In order to ensure that Equation (8) is satis�ed, the following
stopping criterion is used for the Newton{Krylov approach,

jjR(q(n))jj2 < �rmin(jjA(q(0))jj2; jjS(q(0))jj2): (17)
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Many authors have used Jacobian{free, Newton{Krylov methods where the matrix-vector products are
calculated using a �nite-di�erence calculation. These techniques have many well-known bene�ts.42 In this
analysis however, the formation of the aerodynamic residuals is almost as costly as calculating the exact
aerodynamic Jacobian, we therefore have employed exact computation of the block-diagonal components of
the aerostructural Jacobian.

The treatment of the o�-diagonal blocks requires a more detailed discussion. The Jacobian, @A=@u is
computed as the product of two terms,

@A
@u

=
@A
@Xs

@Xs

@u
; (18)

where Xs are the aerodynamic nodal locations. The second term is calculated e�ciently using a matrix-
free approach. In this calculation information is transferred from the structural group of processes to the
aerodynamic group of processes. The �rst term is a dense matrix that is fully populated due to the nature of
the panel method. This matrix is also required for the adjoint equations. The formation of @A=@Xs is a time
consuming operation, typically requiring 20 to 50 times the cost of forming the aerodynamic residuals. As a
result, this term is not recalculated at every iteration. Instead, we recompute @A=@Xs when mod(n;m) = 0
for m = 8. This high value of m is chosen since we have found that the original matrix is often very e�ective,
even in subsequent iterations, and that the matrix should be updated only if the aerostructural problem is
di�cult to solve. This modi�cation renders this algorithm an approximate Newton method since the exact
Jacobian is formed only every mth iteration. However, we retain this terminology to distinguish it from the
variant described below where more approximations are used.

The other o�-diagonal block @S=@w, is formed through a series of matrix-free operations,

@S
@w

=
@S
@fA

@fA
@w

; (19)

where fA are the integrated forces over the aerodynamic surface. These integrated forces are transferred to
the structural process group during the calculation.

At each iteration, the Newton update is determined using a preconditioned Krylov method. We use a
preconditioner based upon a single application of block Jacobi. In this approach, each discipline applies
its own block-preconditioner to its own set of equations. In general, the preconditioner could consist of a
sub-Krylov method for each discipline. However, we have found that an e�ective approach is to limit the
number of aerodynamic GMRES iterations to 5, without restart, and apply the structural preconditioner
without any Krylov method. At the aerostructural level, Equation (15) is solved using right-preconditioned

exible GMRES (FGMRES)43 with a maximum Krylov subspace size of 60. This set of preconditioning
options may be changed and is set to approximately balance the time required for the aerodynamic and
structural preconditioning operations for typical problem sizes.

D. Approximate Newton{Krylov method

We found that the Newton{Krylov method was very e�ective, but that the high-cost of forming the @A=@Xs

term within the coupling derivative, made it signi�cantly slower than the nonlinear block Gauss{Seidel ap-
proach. In order to achieve better performance, an approximate formulation of the term, @A=@Xs was
implemented within the aerodynamic code. This approximation is constructed by computing the contribu-
tions from panels only within a given radius of one another, in a manner analogous to the technique used
to form the approximate aerodynamic preconditioner. This reduces the computational cost of this term
signi�cantly. All remaining parameters associated with the Newton{Krylov method are also used for the
approximate Newton{Krylov method.

E. Aerostructural analysis results

In order to test the e�ciency of the aerostructural solution algorithms described in the previous section, we
compare the solution time and residual histories for the aerostructural analysis of the N2A blended wing-
body aircraft. The geometry is developed from the results produced by the Silent Aircraft Initiate.44 The
structural and aerodynamic meshes used for this result are shown in Figure (3). We use a structural model
with 21360 degrees of freedom and an aerodynamic model with 4200 surface panels and 3600 wake panels.

The analyses were performed using di�erent numbers of processors in the group of aerodynamic processes
while using only one processor in the structural group. Figure (4) shows the parallel speed up for analyses
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Figure 3. The structural and aerodynamic meshes used for the aerostructural analysis performance comparison.
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Figure 4. Aerostructural solution times required for the nonlinear block Jacobi (J), Newton{Krylov (NK),
nonlinear block Gauss{Seidel (GS) and approximate Newton{Krylov methods. The slope of the linear speed
up is shown for comparison.
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Figure 5. A plot of the residual history for the four di�erent aerostructural analysis methods with 8 processors.

on 2, 4 and 8 processors compared with the ideal speed up. The approximate Newton{Krylov method is
clearly the fastest, followed by the nonlinear block Gauss{Seidel, exact Newton{Krylov and block Jacobi
approaches.

Figure (5) shows the residual histories for the cases run with 8 processes for all approaches. The long
start up time required for the Newton{Krylov method is apparent. The approximate Newton{Krylov method
requires more iterations but converges much faster than the Newton{Krylov method. The nonlinear block
Gauss{Seidel method converges steadily, while the block Jacobi method converges through a series of os-
cillations. Figure (6) shows the residual histories for the Newton{Krylov and approximate Newton{Krylov
method for 2, 4 and 8 processors.

V. Sensitivity analysis method

A. Theory

E�cient gradient-based optimization requires the accurate and e�cient computation of the objective and
constraint gradients. In the aerostructural optimization problem, there are typically fewer objective and
constraint functions than there are design variables. Thus, an adjoint implementation of the sensitivity
equations is appropriate. We have developed an aerostructural adjoint that is based entirely on analytic
derivatives. This results in highly accurate results at low computational cost when compared with �nite-
di�erence of complex-step calculations.

The aerostructural adjoint equations can be written in the following form,

@R
@q

T

 =
@f

@q
; (20)

where  is referred to as the adjoint vector and f is either an aerodynamic or structural function of interest.
The total derivative is then determined using the additional computation,

df

dx
=
@f

@x
�  T @R

@x
: (21)

We have implemented this approach for aerodynamic lift, drag and moments as well as the KS function (6),
and the minimum load-factor, f = minf�kg.
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Figure 6. Residual histories for the approximate Newton{Krylov (ANK) and Newton{Krylov (NK) methods,
for aerostructural analysis with 2,4 and 8 processors.

The �rst step is to compute the adjoint by solving the adjoint equations (20). We use either Gauss{Seidel
or a Krylov method to solve these equations. The Gauss{Seidel iteration takes the following form,

@A
@w

T

� 
(n)
A =

@f

@w
� @A
@w

T

 
(n)
A � @S

@w

T

 
(n)
S ;

@S
@u

T

� 
(n)
S =

@f

@u
� @S
@u

T

 
(n+1)
S � @A

@u

T

 
(n)
A ;

(22)

with the updates  
(n+1)
A =  

(n)
A + � 

(n)
A and  

(n+1)
S =  

(n)
S + � 

(n)
S . The stopping criterion requires that

the residual norm of both disciplines be reduced below a relative tolerance of �rA = 10�8 to ensure accurate
gradient information.

The Krylov method solves the adjoint equation (20) using a fully-coupled approach. Matrix-vector
products use the exact Jacobian-transpose of the coupled aerostructural system. One iteration of a transpose
block Jacobi iteration is used as the preconditioner, with similar settings to those used in the Newton{Krylov
solution method. The adjoint equation is again solved to a relative tolerance of �rA = 10�8.

Once the adjoint vector  has been determined, the total sensitivities must be computed using Equa-
tion (21). These require the partial derivative of the residuals with respect to the design variables. We have
implemented the adjoint with geometric, structural and angle of attack as design variables. The geometric
design variables tend to be the most di�cult to compute requiring the following calculations,

 TA
@A
@x

=  TA
@A
@Xs

@Xs

@x
; (23)

 TS
@S
@x

=  TS
@Sc
@x
�  TS

@F
@fA

@fA
@Xs

@Xs

@x
: (24)

Computations must again take into consideration the distribution of the disciplines across multiple process
groups. Equation (23) involves terms only on the aerodynamic processes, while Equation (24) involves
terms on both structural and aerodynamic processes. As a result, this operation requires signi�cantly more
communication.
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Figure 7. Aerostructural sensitivity study comparison with the complex step method

B. Sensitivity accuracy study

We verify the accuracy of the derivatives for aerodynamic and structural functions of interest using the
complex-step method.45 In this approach, complex arithmetic is used throughout the entire code and the
total derivative is calculated as follows,

df

dxi
=

Im(f(x+ hei))

h
+O(h2); (25)

where h is a step size and ei is the ith Cartesian basis vector. The advantage of this formula (25) is that
it does not su�er from subtractive cancellation. As a result, very small step sizes may be used, yielding
gradients accurate to machine precision. Typically we choose h = 10�30.
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Figure 8. Aerostructural sensitivity study comparison with the complex step method

We compare the complex-step calculations to the adjoint implementation for a small aerostructural
problem with 566 surface panels and 1956 structural degrees of freedom. A small case is chosen to allow
rapid testing of all aerodynamic and structural functions. The �rst �ve design variables are aerodynamic twist
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variables, the next eight are structural thicknesses and �nal design variable is the angle of attack. Figure (7)
shows results for the lift calculation, normalized with the dynamic pressure while Figure (8) shows the results
for the KS function. The results demonstrate the high-degree of accuracy of all components. They also show
the large di�erence in magnitudes of the gradient components both within the gradient of a single function as
well as between aerodynamic and structural functions. These large di�erences are a common characteristic
of aerostructural optimization.

VI. Results

We apply our aerostructural optimization framework to lift-constrained, drag-minimization of a wing
based loosely on planform and weight data from the Bombardier Q400. This data is partially obtained
from the manufacturer’s speci�cations.46 The basic geometric parameters and weight build-up are listed in
Table (2). We choose a design altitude of 6705m (22,000ft), with a cruise Mach number of M = 0:58. The
initial wing is composed of a lofted stack of NACA2412 airfoils, in two wing segments. The �rst segment is
without taper from the root to 40% of the semi-span. The second segment follows from 40% of the semi-
span to the tip with a taper ratio of 0.54. The initial wing has no twist. The aerodynamic mesh consists
of 80 spanwise panels and 70 panels around the section. The wake consists of 60 downstream panels and
is projected aft in the free-stream direction. This results in a total of 5600 surface panels and 4800 wake
panels. Figure (11(b)) shows the aerodynamic solution at the initial analysis point of the aerostructural
optimization problem.

Table 2. Geometry and weight data for the wing optimization

Parameter Value Parameter Value

Span [m] 28.40 MTOW [kg] 29275

Area [m2] 68.44 OEW [kg] 17185

Aspect ratio 11.78 Fuel [kg] 5482

We use a structural model of the wing that includes the spars, ribs and skin. The internal wing-structure
consists of two spars, the �rst at 15% of the local chord and the second at 50% of the local chord, and 20
chordwise ribs that extend from 15% to 75% of the chord. These structural components are modeled with
912 fourth-order shell elements with 46290 structural degrees of freedom. Figure (11) shows an exploded of
the structural model. We use a material model based on 7075 Aluminum with a Poisson’s ratio � = 0:33
and Young’s modulus E = 70GPa. We use a design yield stress of �Y S = 320MPa.

We calculate the weight of the aircraft based on the weight of the �nite-element model plus a �xed-
weight. We choose this �xed weight to be MTOW discounted by the approximate wing weight, that we
estimate to be 8% of MTOW or 14% of OEW. The �xed-weight coe�cient is C�fixed

= 0:3833, where
C�fixed

= m�xedg=q1Sref , and g is the acceleration due to gravity. We use two analysis points: an on-design

ight condition where we enforce CL = C� and a maneuver condition where we enforce CL = 2:5C�. These
two analyses are run concurrently and in parallel. We use three KS constraint functions (6) at the maneuver
point: one each for the front and rear spar and one combined for the top and bottom skins with a factor of
safety of FS = 2:0.

Table 3. Optimization results initial and �nal values of CL, CD, and C�. Note that the lift-constraint is not
satis�ed at the initial point.

Aerostructural Aero only

Initial value Optimal value Optimal value

CL 0.6945 0.4331 0.4331

CD 0.01115 0.004796 0.004752

� 5:0o 2:75o 2:72o

C� 0.4722 0.4331 N/A

We use a total of 86 design variables: an angle of attack variable for each 
ight condition, seven spanwise
twist variables and 76 structural thicknesses: 19 each for the thicknesses of each segment of the front and
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trailing edge spar and an additional 38 skin thicknesses. We link the skin thickness design variables on the
top and bottom at the same spanwise segment. We constrain the thickness of the spars t � 5mm and the
thickness of the skins t � 2:5mm. We do not include the leading or trailing edge in the structural design
problem as these portions of the structure are not accurately represented in the existing �nite-element model.
We also exclude the chordwise ribs from design problem.

The results of the optimization are summarized in Table (3), along with the results from an aerodynamic-
only optimization problem of minimizing drag with a lift-constraint imposed to match the optimal aerostruc-
tural lift. The aerodynamic-only optimization and the aerostructural optimization results match closely.

The optimal structural thickness distribution is shown in Figure (9), with the structural mesh shown. The
optimizer has made the thickness of the skins and spars increase towards the root with the skin consistently
thicker than the spars. This re
ects the greater bending-resistance produced by increasing the skin thickness
rather than the spar thickness.

t: 5 10 15 20 25 30 35 40

Figure 9. The optimal thickness distribution for the wing case. Thicknesses are measured in millimeters.

A summary of the optimal operating condition and maneuver condition results are shown in Figures (11)
and (12) respectively. These show the von Mises stress distributions, Figures (11(a)) and (12(a)), the surface
Cp distributions, Figures (11(b)) and (12(b)), and the lift and twist distributions with reference elliptic
distributions, Figures (11(c)) and (12(c)).

At the operating point the optimal and equivalent elliptic lift distributions are very close, Figure (11(c)).
The distributions deviate slightly at the root, where the aerostructural optimum is slightly more loaded,
and near the tip where the optimum is slightly less loaded. The optimal lift distribution re
ects the relative
importance of reducing the drag directly by modifying the de
ected twist distribution or by reducing drag
by shifting the lift-distribution inboard to reduce stresses and as a result structural weight. The relative
importance of weight or drag reduction depends on many factors including the structural model used, the
relative weights of the di�erent aircraft components and the geometric variables given to the optimizer. This
re
ects the many multidisciplinary decisions involved in aircraft design.
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Figure 10. The KS function for the upper and lower skin and the relative di�erence between the KS value
and the minimum failure load factor, plotted against the iteration count for the optimization. Note that these
include line search iterations.

One important aspect of the optimization is ensuring that the structural stress constraints are satis�ed.
Figure (10) shows a comparison of the KS constraint function for the skins and the relative di�erence between
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the KS constraint and the minimum value of the load factor. The relative error is de�ned as,

Relative error =
�KS �minf�kg

minf�kg
: (26)

The relative error is always positive and therefore the KS function provides a conservative estimate of the
minimum failure load factor. Furthermore, the relative error is about 2.5% at the �nal point. This error
could be altered by modifying the parameter � to achieve a tighter bound.

VII. Conclusion

In this paper we have presented an aerostructural analysis and optimization framework that uses three-
levels of parallelism to achieve e�cient design optimization. Four aerostructural solution methods were
compared and the approximate Newton{Krylov approach was demonstrated to be an e�cient and robust
solution technique. We also presented an adjoint sensitivity evaluation method that demonstrated a high
level of accuracy. These tools can be used for e�cient gradient-based aerostructural design optimization.
We demonstrated our approach on the aerostructural design optimization of a typical subsonic, turboprop
aircraft wing.
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(c) Lift and twist distribution at the operating condition

Figure 11. The operating condition for the optimal wing with CL = 0:4331. The top �gure shows the distribution
of the von Mises stresses. The structure is shown in an exploded view so that the rib and spar structure are
visible. The middle �gure shows the surface CP distribution. The bottom �gure shows the lift-distribution, a
reference elliptic distribution and the jig and 
ying twist.
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(a) von Mises stresses at the maneuver condition
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(c) Lift and twist distribution at the maneuver condition

Figure 12. The maneuver condition for the optimal wing with CL = 1:083. The top �gure shows the distribution
of the von Mises stresses. The structure is shown in an exploded view so that the rib and spar structure are
visible. The middle �gure shows the surface CP distribution. The bottom �gure shows the lift-distribution, a
reference elliptic distribution and the jig and 
ying twist.
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