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Traditional approaches to MDO problem decomposition have shown poor performance
when solving problems with strong interactions between disciplines. We present a new
decomposition strategy for MDO that aims to overcome this di�culty. The method, called
Block Approximation with Krylov Re�nement, or BAKR, decomposes the solution of the
linear system present at each iteration of an interior point algorithm. By decomposing
the linear system inside the optimization algorithm, rather than the original design prob-
lem, we maintain the strong global and local convergence properties of the interior point
algorithm while reducing the overall computational cost of the solution. Preliminary test
results show reductions in both computational cost and the number of function evaluations,
demonstrating strong potential for future application in large MDO problems.

I. Introduction

A multidisciplinary design optimization (MDO) architecture is a particular strategy for organizing anal-
ysis software and optimization software in order to solve a design optimization problem. A large number
of architectures exist in the literature for solving MDO problems with di�erent characteristics.1{7 Selecting
an appropriate architecture for a particular MDO problem can signi�cantly reduce the computational time
needed for the solution of that problem.
While many architectures have been developed, the most intensively studied have been those we call dis-
tributed architectures. These are architectures that employ decomposition to partition the design opti-
mization problem and distribute the work to many processors in a computer network. This approach is
advantageous because it resembles existing industrial design practices, where the design of a complex system
is partitioned and each aspect is distributed to a di�erent group in the organization. The similarity of these
approaches simpli�es the implementation of distributed architectures in industry. At the same time, exploit-
ing problem structure through decomposition allows very large design problems to be solved with relatively
modest computing facilities in a reasonable amount of time. Unfortunately, the performance of distributed
architectures on practical problems is still largely unknown. Studies that are available indicate that opti-
mization with distributed architectures is frequently less e�cient than with monolithic architectures, those
that do not employ decomposition.8{10 In particular, distributed architectures typically require many more
disciplinary analysis calls than monolithic architectures on tested problems. Thus, the search for distributed
architectures with good performance in practice continues.
Existing distributed architectures implement decomposition in one of two ways: multilevel decomposition
and penalty decomposition. In multilevel decomposition, the MDO problem is decomposed into at least two
levels of subproblems, possibly using an established hierarchy. (If there is no established hierarchy, the MDO
problem is divided into system and discipline subproblems.) At each level in this decomposition scheme, local
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design variables and constraints are resolved at the discipline level, while shared (global) design variables,
shared design constraints, and interdisciplinary consistency constraints are resovled at the system level. In
order to obtain an optimal design, post-optimality sensitivity analysis is required at the upper levels so that
the optimality of the lower level problems is preserved during each system iteration. Examples of multilevel
decomposition architectures include collaborative optimization,11 and bi-level integrated system synthesis.12

In the penalty decomposition approach, no set hierarchy of problems is created. Instead, copies of the global
variables, objectives, and constraints exist in each disciplinary subproblem. Interdisciplinary consistency is
enforced at optimality through the use of penalty functions, and the penalty weights are updated after all
subproblems have been solved for the current weight values. Examples of penalty decomposition architec-
tures include enhanced collaborative optimization13 and analytical target cascading.14 Note that analytical
target cascading may be employed with either quadratic,15 Lagrangian,16 or augmented Lagrangian17,18

penalty functions.
In both distributed architecture classes, techniques used for traditional optimization of large systems are
employed. However, multilevel optimization and penalty-based optimization are not the most advanced
techniques available for nonlinear optimization. The algorithms that are accepted as being the most e�ec-
tive for general-purpose nonlinear optimization are sequential quadratic programming (SQP) and interior
point (IP) algorithms. To our knowledge, techniques from these optimization algorithms have yet to be
applied to a distributed architecture to decompose the optimization problem. However, applying SQP and
IP algorithms in monolithic architectures in such a way that coarse-grained parallel processing is more ef-
fectively utilized may point towards more e�ective distributed architectures.
In this work, we present the �rst steps in applying this last approach to MDO problems. Instead of de-
composing the original optimization problem for solution, we decompose the solution to the linear systems
generated by IP auxiliary problems. The decomposition is achieved by using block-separable approximations
of the Jacobian and Hessian matrices to compute a fast approximate solution to the linear system. If nec-
essary, this approximation is re�ned to su�cient accuracy using a Krylov subspace method. We name this
approach Block Approximation with Krylov Re�nement, or BAKR.
Note that because we maintain only a single optimization problem at each iteration, the resulting MDO ar-
chitecture is not a distributed architecture in the strict sense. However, compared to a standard monolithic
architecture implemenation, this approach is much more amenable to coarse-grained parallel processing and
more able to exploit optimization problem structure. A similar approach may also be used to decompose
the solution of linear systems generated by SQP auxiliary problems. Strategies that employ decomposition
within an optimization algorithm, rather than decomposition of the original problem, are called internal
decomposition methods.19 Related work on internal decomposition with interior point methods is given by
Laird and Biegler,19 Zavala et al.,20 and Gondzio and Grothey.21,22

The speci�c algorithm discussed in this work is super�cially similar to an algorithm �rst described by Conejo
et al.,23 later termed \Optimality Condition Decomposition."24 However, our algorithm is di�erent in three
important respects. First, we make use of approximate second-order information at each iteration, while
Conejo’s algorithm uses exact information. Second, our algorithm employs a merit-function-based line search
strategy to ensure global convergence on nonconvex problems while Conejo’s algorithm uses no global con-
vergence strategy. Finally, our algorithm is able to handle variable bounds and general inequality constraints
while Conejo’s algorithm handles only equality constraints.
The remainder of this paper is organized as follows: Section II provides further details on the motivation
behind the internal decomposition approach; Section III details the optimization algorithm and how if di�ers
from traditional interior point methods; Section IV discusses preliminary results on test problems; �nally,
Section V summarizes the work and discusses future research directions.

II. Motivation

In nonlinear optimization, it is often impossible to directly �nd a feasible local minimum of the objective
function. Instead, given an initial point, we solve a sequence of simpler optimization problems to generate an
appropriate sequence of new points that converges to a local minimum. Cohen25,26 termed these simpler op-
timization problems \auxiliary problems", and gave conditions under which the auxiliary problems converge
to a minimum point. In the case of an SQP algorithm, this auxiliary problem takes the form of a quadratic
objective function with linear equality and inequality constraints. The auxiliary problem in a general IP
algorithm is similar to that in an SQP algorithm, but slack variables are added to convert the inequality
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constraints to equalities and all variable bounds are satis�ed by adding logarithmic barrier functions to the
objective.
Cohen also showed that it is possible to decompose the auxiliary problem into a series of auxiliary subprob-
lems as long as the auxiliary problem has a separable structure. Separability, in this case, means that the
auxiliary problem must be the sum of independent auxiliary subproblems. The trade-o� for this separable
structure, however, is a potential loss of performance. Patriksson27 showed that all decomposition algorithms
developed under Cohen’s framework can have no better than a linear rate of convergence. The linear rate
of convergence is de�ned by the relation

jjx(k+1) � x�jj
jjx(k) � x�jj

� �;

where x(k) is the current iterate, x� is the optimal solution, k is a large iteration number, and � strictly
between zero and one.28 This is the same theoretical convergence rate as the steepest-descent algorithm and
block-coordinate descent methods. (Indeed, it is quite straightforward to develop these algorithms under
Cohen’s framework.) On strongly coupled nonlinear problems, such as those found in MDO, these algorithms
perform poorly.
In contrast, SQP and IP algorithms are built around Newton or quasi-Newton methods, both of which
exhibit a superlinear convergence rate near a local minimum. Mathematically, the superlinear convergence
rate is de�ned by

lim
k!1

jjx(k+1) � x�jj
jjx(k) � x�jj

= 0:

For large values of k, the superlinearly convergent sequence will always approach optimality faster than
the linearly convergent one.28 This property translates into fewer iterations on nonlinear optimization
problems and fewer disciplinary simulations on MDO problems, especially near the optimum. The higher
rate of convergence is due to the algorithm using complete curvature and constraint information. (In the
case of a quasi-Newton method, the curvature information is approximate but gets more accurate as the
algorithm approaches optimality.) Some, if not all, of this information is truncated through the decomposition
algorithms described by Cohen’s framework. The penalty for the higher convergence rate is a higher cost
per algorithm iteration and an inability to decompose the auxiliary problem easily for a general problem.
Fortunately, we may exploit two key observations in the solution of large optimization problems. The
�rst observation is that almost all large problems exhibit some type of special structure in the objective
and constraint de�nitions. In the case of MDO, the individual discipline feasible (IDF) and all-at-once
(AAO) problem de�nitions exhibit special structure.29 (The equivalent multidisciplinary feasible (MDF)
and simultaneous analysis and design (SAND) problem de�nitions may exhibit special structure in speci�c
problem instances but do not in the general case.) The IDF formulation for a problem with N disciplines is
given by

minimize f0
�
x0; y

t
�

+

NX
i=1

fi
�
x0; xi; yi

�
x0; xi; y

t
j 6=i
��

with respect to x0; xi; y
t
i i = 1; :::; N

subject to c0
�
x0; y

t
�
� 0

ci
�
x0; xi; yi

�
x0; xi; y

t
j 6=i
��
� 0 i = 1; :::; N

yti � yi
�
x0; xi; y

t
j 6=i
�

= 0 i = 1; :::; N

(1)

where the vectors xi are design variables local to discipline i, x0 are shared design variables, yi are the output
coupling variables from discipline i, yti are the input (target) coupling variables to disciplines other than i,
the functions f0 and fi are shared and local design objectives, and c0 and ci are shared and local design
constraints. Note that we have assumed that the MDO problem is quasiseparable, in the sense de�ned
by Haftka and Watson.30 In our experience, we have not encountered a design problem that cannot be
converted into this general statement. In the AAO formulation, the output coupling variables yi are under
direct optimizer control and the governing equations used to compute them are treated as optimization

3 of 16

American Institute of Aeronautics and Astronautics Paper 2010-9325



constraints. The AAO problem formulation equivalent to (1) is given by

minimize f0
�
x0; y

t
�

+

NX
i=1

fi (x0; xi; yi))

with respect to x0; xi; yi; y
t
i i = 1; :::; N

subject to c0
�
x0; y

t
�
� 0

ci (x0; xi; yi) � 0 i = 1; :::; N

yti � yi = 0 i = 1; :::; N

Ri
�
x0; xi; yi; y

t
j 6=i
�

= 0 i = 1; :::; N

(2)

where Ri represents residuals of the governing equations present in the ith discipline analysis. In speci�c
instances, these groups of equations may also exhibit their own structure, which can be further exploited
in the solution algorithm. Both IDF and AAO formulations are referred to as \complicating variables"
problems in the optimization literature.23 If the shared (complicating) variables x0 and yt were �xed, both
the IDF and AAO problems would be completely separable due to the disciplinary objective and constraint
functions depending on only local variables.
The second key observation is that we do not need to solve the auxiliary problems exactly to achieve
superlinear convergence of the algorithm near an optimum. Indeed, when we are far away from an optimal
solution, it may be advantageous to obtain a low-cost approximation to the Newton or quasi-Newton direction
rather than compute it exactly. As we approach an optimal solution, the Newton or quasi-Newton direction
is computed with increasing accuracy to recover superlinear convergence. This basic result was proven by
Dembo et al.31 for Newton methods and by Steihaug32 for quasi-Newton methods. We will exploit both
problem structure and inexact direction computations in our decomposition framework.

III. Algorithm

We now outline our algorithm for an interior point method on a complicating variables problem. For
clarity, we describe the algorithm in terms of a general complicating variables problem statement and note
the close connection with the IDF and AAO problems (1) and (2). A complicating variables problem with
three distinct local variable groups can be described by

minimize f(x0) + f(x0; x1) + f2(x0; x2) + f3(x0; x3)

with respect to x0; x1; x2; x3

subject to c0(x0) � 0

c1(x0; x1) � 0

c2(x0; x2) � 0

c3(x0; x3) � 0

xLi � xi � xUi for i = 0; 1; 2; 3:

(3)

Note that this problem and the subsequent algorithm can be easily extended to the case of N distinct local
variable groups. To �nd the solution to Problem (3), we �rst de�ne the Lagrangian function

L(x; �; s) =f0(x0) +

3X
i=1

fi(x0; xi) + �T0 (c0(x0) + s0) +

3X
i=1

�Ti (ci(x0; xi) + si)

�
3X
k=0

�
�TkL(xk � xkL) + �TkU (xkU � xk)

�
where �i are the constraint Lagrange multiplier vectors, si are the slack variable vectors, and �kL and
�kU are the variable bound Lagrange multiplier vectors. For a local minimum of (3) to exist at a point
(x�; ��; ��L; �

�
U ; s
�)T , we require rxL = 0, r�L = 0, r�LL = 0, r�UL = 0, every elementwise product

��js
�
j = 0, ��Lj(x

�
j � xLj) = 0, ��Uj(x

�
j � xUj) = 0, all decision variables are within their upper and lower

bounds, and all multipliers and slack variables are nonnegative. These are the Karush{Kuhn{Tucker (KKT)
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necessary optimality conditions. The KKT conditions involving the elementwise products and variable
bounds are referred to as the complementarity conditions.
In an interior point algorithm, the KKT conditions are treated as a nonlinear system and solved using a
Newton method.33 A perturbation term is attached to the KKT residuals to ensure that, given initial data
within bounds, the bounds are always strictly satis�ed. In this case, the auxiliary problem is the solution of
the linear system2666664

H JT 0 �I I

JT 0 I 0 0

0 S � 0 0

NL 0 0 (X �XL) 0

�NU 0 0 0 (XU �X)

3777775

2666664
�x

��

�s

��L

��U

3777775 =

2666664
�rxL

�(c(x) + s)

��Se+ ��e

�(X �XL)NLe+ ��e

�(XU �X)NUe+ ��e

3777775 ; (4)

where I is the identity matrix, H is the Hessian of the Lagrangian, J is the constraint Jacobian, other capital
letters denote a diagonal matrix whose diagonal elements are the elements of the corresponding lower-case
vector, and e is a vector of ones. The perturbation term consistst of the scalars � and �, where � is the
average complementarity residual, and � is a number between zero and one, referred to as the centering
parameter.33 If all �, � and s values are initially chosen to be strictly positive and all x are chosen strictly
between their bounds, they will all remain feasible for the whole algorithm as the complementarity conditions
approach zero.
Note that we did not include equality constraints in our model problem (3). However, equalities are present
in both the IDF problem (1) and the AAO problem (2). This was done simply to highlight the treatment
of inequalities and bounds within the interior point algorithm. Equalities can be included explicitly in
system (4) as Jacobian rows that do not have an associated slack variable.
While the system (4) is very large, it is also specially structured, with many diagonal submatrices. This
structure can be exploited to transform (4) into a block 2 � 2 system with modest e�ort.33,34 The resulting
system is"

H + �L + �U JT

J �D

#"
�x

��

#
=

"
�rf � JT�� ��

�
(XU �X)�1 � (X �XL)�1

�
e

�c(x)� ����1e

#
; (5)

where �L = (X �XL)�1NL, �U = (XU �X)�1NU , and D = ��1S. Note that if equality constraints are
present in the problem, the diagonal matrix D includes some zero values in the rows corresponding to the
equalities. The remaining variable and multiplier changes are computed by

�s = �s+ ����1e� ��1S��

��L = ��L + ��(X �XL)�1e� (X �XL)�1NL�x

��U = ��U + ��(XU �X)�1e� (XU �X)�1NU�x

(6)

using the �x and �� results of (5).
It is at this point that we exploit the structure of the Jacobian and Hessian matrices that result from
problem (3). Because the local constraint groups depend only on global variables x0 and their own respective
local variables xi, the Jacobian has the familiar dual angular block structure.35

J =

26664
J00

J10 J11

J20 J22

J30 J33

37775 (7)

Similarly, due to the objective function structure, the Hessian has a bordered block diagonal structure,22

H =

26664
H00 H01 H02 H03

H10 H11

H20 H22

H30 H33

37775 : (8)
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Note that in MDO we generally do not have access to second derivative information due to the high com-
putational cost incurred to obtain this information. When using a quasi-Newton method to estimate the
Hessian, the approximate Hessian will generally be full. Nonetheless, near a local minimum, the terms shown
in (8) can be expected to dominate in the approximate Hessian so our decomposition method will still be
valid.
Because both the Hessian and Jacobian exhibit a sparse block structure, the linear system (5) is almost
block separable. Ignoring the o�-diagonal blocks in (8) and (7) would make (5) completely block-separable.
Therefore, our �rst estimate to the solution of (5) uses block-diagonal estimates of J and H, denoted ~J and
~H. Thus, the resulting linear system is"

~H + �L + �U
~JT

~J �D

#"
�~x

�~�

#
=

"
�rf � JT�� ��

�
(XU �X)�1 � (X �XL)�1

�
e

�c(x)� ����1e

#
: (9)

Depending on the number and magnitude of the coupling terms present in the o�-diagonal (truncated)
blocks, the solution estimate may or may not be su�ciently accurate for the overall algorithm to proceed.
In this case, the accuracy of the solution is measured by taking the norm of the residual of (5) using �~x and
�~� computed from (9) and comparing it to the norm of the right-hand side of (5). If the estimated solution
has not reduced the residual su�ciently, i.e., the residual (Euclidian) norm jjrjj � �jjbjj for right-hand side
norm jjbjj and 0 � � < 1, where � is chosen by the optimization algorithm, the solution can be re�ned using
an appropriate Krylov method. This re�nement step accelerates the convergence of the algorithm beyond
that of a traditional decomposition algorithm because it allows the coupling terms to in
uence the search
direction.
As with all Krylov methods, preconditioning may be used to reduce the number of re�nement iterations. A
straightforward choice of preconditioner, as pointed out by Conejo et al.,23 is to use the inverse of the block
diagonal system used to generate the initial estimate of the solution. In other words, use the inverse of the
matrix in (9) as a preconditioner for (5). Unfortunately, this matrix is inde�nite and not all Krylov methods
accept inde�nite preconditioners. A positive de�nite alternative can be derived from the Schur-complement
of the inde�nite system. Thus, the inverse of"

~H + �L + �U 0

0 D + ~J( ~H + �L + �U )�1 ~JT

#
(10)

may be used to precondition (5). In a problem containing equality constraints, the diagonal matrix D is not
invertible. As a result, the other Schur-complement form containing D�1 cannot generally be formed. Note
that both the inde�nite and postive de�nite preconditioners are themselves block-separable matrices so they
are particularly amenable to coarse-grained parallel computing. In addition, because Krylov methods do not
require explicit storage of the matrix, the matrix structure in (5) can also be exploited in a coarse-grained
parallel computing environment.
We call this approach to solving the linear system Block Approximation with Krylov Re�nement, or BAKR.
Within this general scheme, a number of Krylov methods and preconditioners may be chosen based on the
observed matrix structure. The method used to select the � parameter at each iteration is also 
exible,
provided � ! 0 as optimality is approached.31 Note also that we do not necessarily need the optimization
problem to have a complicating variables structure for BAKR to be used. All we require are block-separable
approximations of the Hessian and Jacobian matrices to obtain an initial solution estimate and a precon-
ditioner. However, we expect the computational cost of the method to depend strongly on the choice of
approximations.
Algorithm 1 describes our implementation of BAKR within an interior point algorithm. Note that, because

interior point methods use a linearization of the KKT conditions, we may use the right hand side of (5) to
measure optimality of the current point directly. A large family of interior point algorithms exists based on
the multitude of parameter update schemes, global convergence strategies, convergence criteria, and other
tools presented in the optimization literature. However, our principal contribution of the decomposed, in-
exact linear system solution should be compatible with any interior point method or even any sequential
quadratic programming method.
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Algorithm 1 A generic interior point algorithm with a BAKR procedure.

1: Select initial feasible point x(0); �(0); s(0); �
(0)
L ; �

(0)
U .

2: Select �(0) and convergence tolerance �tol.
3: Compute objective, constraints, and respective gradients.
4: while jjb(k)jj > �tol do
5: Solve (9) to obtain an initial solution estimate.
6: Compute the residual norm jjrjj using the solution estimate in system (5)
7: if jjrjj � �(k)jjb(k)jj then
8: Keep solution estimate.
9: else if jjrjj > �(k)jjb(k)jj and jjrjj � jjb(k)jj then

10: while jjrjj > �(k)jjb(k)jj do
11: Re�ne the solution estimate using one iteration of GMRES36 with preconditioner (10).
12: end while
13: else
14: Discard solution estimate; it is a bad approximation. Instead, use the zero vector as the starting

point.
15: while jjrjj > �(k)jjb(k)jj do
16: Re�ne the solution estimate using one iteration of GMRES with preconditioner (10).
17: end while
18: end if
19: Perform a backtracking line search using the computed search direction to improve the objective

function, reduce constraint infeasibility, or both.
20: Get new gradient information and update the estimated Hessian of the Lagrangian
21: Update �, �, and any other algorithmic parameters.
22: if The line search returns an improved point then
23: �(k+1)  minf�(k); 0:5jjb(k+1)jjg
24: else
25: �(k+1)  maxf0:1�(k); 0:1�tolg; The line search failure may be caused by a search direction that is

insu�ciently accurate.
26: end if
27: k  k + 1
28: end while

IV. Results

In all of the following tests, the Hessian of the Lagrangian was computed using the BFGS quasi-Newton
update formula. Global convergence was obtained using a backtracking line search with an l1 merit func-
tion.28 The complementarity parameter � was computed at each iteration according to

� =
�TL (x� xL) + �TU (xU � x) + �T s

2n+m
;

where n is the number of variables and m is the number of inequality constraints. The centering parameter
� was chosen adaptively using the same strategy as the LOQO code,37 where

� = 0:1 min

�
0:05

1� �
�

; 2

�3

; and � = ��1 minf�Li(xi � xLi); �Ui(xUi � xi); �jsjg:

The algorithm was deemed to be converged if the norm of the KKT residuals was less than 10�6 or if the
norm of the step length was less than 10�12 and � < 10�6. All problems were formed and solved using the
Python programming language with the NumPy library providing vectorized array calculations, including
linear system solution methods, and the SciPy library providing the GMRES implementation. Computations
were performed using an Intel 2.53 GHz Core 2 Duo processor running Ubuntu Linux with 4GB of RAM.
Note that since the computations were undertaken using sequential processing, further performance increases
should be available across all problems once parallel processing is fully exploited.
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Figure 1. Convergence of the Rosenbrock problem without re�ning the decomposed solution.

The �rst test problem solved using BAKR with an interior point method is the Rosenbrock problem:

minimize f(x1; x2) = 100(x2 � x21)2 + (1� x1)2

with respect to x1; x2
(11)

The optimal solution of this problem is at (1; 1)T . The starting point used was (�1:5; 1)T . This problem is
used as an illustrative example to compare BAKR with a block-Newton strategy that truncates the coupling
information.
Because of the strong coupling between x1 and x2 in the objective function, the block Newton approach
(a type of coordinate descent algorithm) performs very poorly on this problem. However, because of the
re�nement step in BAKR, the curvature information can be used to re�ne the initial guess of the search
direction, vastly improving convergence. Figures 1 and 2 compare the search paths without and with the
re�nement step from the same starting point. With re�nement, only 19 iterations are required to solve the
problem. Without re�nement, the algorithm fails to converge even after 5000 iterations.
In order to see how BAKR can reduce computational cost, we need to solve a larger optimization problem

where the e�ect becomes apparent. We also need to introduce nonlinear constraints to demonstrate the
general applicability of the method. A problem that has both large size and a nonlinear constraint is a
constrained multidimensional analogue to the Rosenbrock problem (11), i.e.,

minimize f(x) =

N�1X
i=1

(100(x2i � xi+1)2 + (1� xi)2)

with respect to x

subject to

N�1X
i=1

(0:1� (xi � 1)3 � (xi+1 � 1)) � 0

� 5:12 � x � 5:12

(12)

An important property of this problem is that the exact Hessian of the objective function is tridiagonal so the
problem is an attractive one for decomposition. For all trials, the initial point was (4; :::; 4)T . The optimal
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Figure 2. Convergence of the Rosenbrock problem with a BAKR procedure.

solution of the problem is near the unconstrained global minimum of (1; :::; 1)T , but the exact solution
depends on the problem dimension. The SQP optimizer SNOPT38 was used to compute a numerically exact
optimal solution for comparison with the results obtained from our own code.
Even though this problem does not �t the complicating variables model (3) in the form presented, it can
still be solved using the BAKR approach. As discussed in Section III, the key elements needed for BAKR
are block separable estimates of the Hessian and Jacobian matrices. In theory, the better these approximate
matrices match the original matrices, the smaller the number of re�nement steps needed by the Krylov
method. For problem (12), the variable set is divided into �ve equally sized groups consisting of x1 to xN=5,
xN=5+1 to x2N=5, etc., such that the number of signi�cant coupling terms is as small as possible. The single
coupling constraint is assumed to be in
uenced only by the last group of variables so that only the last N=5
columns of the approximate Jacobian are nonzero.

Figure 3 shows the total computational time with the number of design variables ranging between one
hundred and one thousand. We compare three methods of solving the linear system:

1. Formation and direct factorization of the linear system to obtain an exact step. This method is called
Direct Factorization in the �gures.

2. Iterative solution of the linear system using GMRES but with no preconditioning or initial solution
estimate. The solution tolerance � at each iteration is chosen in exactly the same way as in the BAKR
method. This method is called GMRES in the �gures.

3. The BAKR method outlined in Algorithm 1, referred to as BAKR in the �gures.

In all respects other than the linear system solve, the optimization algorithms are identical. The results
indicate that while solution times are very close for all methods when the number of variables is small,
BAKR is e�ective at reducing computational time when the number of variables is large. The performance
of both the direct and iterative matrix solves is similar across a wide range of problem sizes. For the thousand-
variable case, the solution time for BAKR is about one third of that required by either direct or iterative
matrix methods. The average slopes of the trendlines indicate that, for an order of magnitude increase in
problem size, the BAKR method reduces computational cost by half an order of magnitude compared with
the other methods.
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Figure 3. Computational times needed to solve problem (12).

As a check on the accuracy of our code, we computed the distance (Euclidian norm of the di�erence)
between the KKT point found by our code and the KKT point found by SNOPT. Figure 4 plots this data
as a function of problem size. While robustness of our code is an issue, as evidenced by the behavior of the
data in Figure 4, observe that our optimizer still �nds the minimum regularly when the BAKR method is
used. Thus, use of BAKR as a linear solver does not compromise the robustness of the overall optimization
algorithm.
While the results for the solution time appear promising, a more representative measure of performance on
MDO problems is the number of objective and constraint function evaluations required by the method. This
metric serves as a proxy for the number of expensive discipline analysis calls required in a realistic design
problem. Because the disciplinary evaluations tend to dominate the computational time in the solution of an
MDO problem, the number of function calls is, therefore, an indirect estimate of solution time in an MDO
problem.

Figure 5 compares the number of function calls for all three matrix methods. As with solution time,
the performace of direct and iterative solve methods is similar, while BAKR shows substantially improved
performance. On average, over the range of problem sizes tested, the optimizer using BAKR requires about
half the number of function evaluations compared to the optimizers that do not employ BAKR.
The �nal result to check for this problem is the e�ect of the preconditioner and initial solution estimate

on the number of Krylov iterations. Figure 6 compares the number of GMRES iterations required by the
two iterative solve approaches as the number of variables increases. In most cases, BAKR requires an
order of magnitude fewer GMRES iterations than the unpreconditioned iterative solve. This is a strong
demonstration of the e�ectiveness of the approximate Schur preconditioner (10).
Another scalable test problem is the scalable quadratic MDO problem devised by Tedford and Martins,9
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Figure 4. Distance from trial solutions to the exact solutions determined by SNOPT for problem (12).
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Figure 5. Function calls needed to solve problem (12).
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Figure 6. Number of GMRES iterations in iterative solve methods for problem (12).

which in the IDF formulation is

minimize

n0X
k=1

x20k +

NX
i=1

nyX
l=1

(ytil)
2

with respect to x; yt

subject to 1� yti
Ci
� 0

yti � yi(x0; xi; ytj 6=i) = 0

where Cyiyi = �

0@Cx0i
x0i + Cxi

xi �
NX

j=1;j 6=i

Cyjy
t
j

1A ;

(13)

where each constraint and discipline group applies for i = 1; :::; N . The Ci; Cxi
; Cyi , and Czi terms are

matrices of appropriate size composed of random coe�cients between zero and ten. In addition, every other
Cyi matrix is changed from positive to negative. In the current implementation, we use only three disciplines,
ten shared design variables, and 50 coupling variables from each discipline with a varying number of local
design variables. The initial point for the optimization was obtained by choosing all design variables to be
equal to one and performing a multidisciplinary analysis to obtain initial coupling targets. Using all three
matrix solve methods, the minimum point of this problem was found in all cases. As with problem (12),
veri�cation was accomplished by running SNOPT on these problems and comparing the solutions.
Unfortunately, results for this problem are disappointing. Figures 7 and 8 show the solution time and number

of function calls required for problem (13) with an increasing number of local design variables. Clearly,
compared to the direct and iterative matrix methods, BAKR shows no signi�cant advantage in solution time
or the number of function calls. The reasons for this apparent failure are still under investigation. One area
of concern is the problem structure itself. Because problem (13) contains a quadratic objective function with
linear constraints, only a few interior point optimizer iterations are required to obtain convergence regardless
of the linear system solver employed. Thus, the large linear systems are not solved enough times to obtain
a reliable estimate of the relative performance of each method.
The positive result from problem (13) lies in the performance of the preconditioner within BAKR. Figure 9
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Figure 7. Computational times needed to solve problem (13).
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Figure 8. Function calls needed to solve problem (13).
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Figure 9. Number of GMRES iterations in iterative solve methods for problem (13).

compares the number of GMRES iterations required by BAKR and the generic iterative solver with an
increasing number of local design variables. As with Figure 6, compared to the generic iterative solver,
BAKR reduces number of GMRES iterations by an order of magnitude or better. This result gives further
con�rmation of the e�ectiveness of preconditioner (10).

V. Conclusion

In this work, we presented a new approach to the decomposition of MDO problems we call Block Approx-
imation with Krylov Re�nement, or BAKR. This new method is a type of internal decomposition in that it
is implemented within an optimization algorithm rather than outside of one. The basic idea is to estimate
the solution of the large linear systems generated by an SQP or interior point algorithm using approximate
systems with block-separable estimates of the Hessian and Jacobian matrices. The solution estimate is then
re�ned to the desired level of accuracy using a preconditioned Krylov method applied to the original linear
system. Convergence of the optimization algorithm using these inexact steps is guaranteed by the theory of
inexact Newton and quasi-Newton methods.
Preliminary results from solving scalable test problems via an interior point method are encouraging. They
show that if the structure of large optimization problems is exploited, signi�cant reductions in computational
time and function evaluations are possible. However, more testing is needed to con�rm this trend. The ob-
served performance gains are evident even when parallel processing is not employed to the fullest extent. We
emphasize that this improvement is due to the specialized algorithm used to solve the linear system, and no
other property of overall optimization method.
Future work in this area includes additional testing on larger, more realistic engineering problems to con�rm
these preliminary results. We also wish to incorporate coarse-grained parallel computing on these prob-
lems to test parallel e�ciency. Areas of improvement to the existing optimization algorithm include further
exploiting MDO problem structure by using specialized quasi-Newton methods to account for the block
structure of the Hessian and improving the line search procedure to further reduce the number of function
calls. In addition, the symmetry of the linear systems under consideration has not been exploited and using a
Krylov method specialized for a symmetric linear system should yield an additional improvement in method
robustness and e�ciency.
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