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The Falkner–Skan solution for laminar boundary-layer flow over a wedge is modified to allow for a slip boundary

condition. A modified boundary-layer Knudsen number K is introduced, and the coordinate system is transformed

fromone-dimensional to two-dimensional to allow for the loss of self-similarity in theflow.Amarching scheme is used

to solve the boundary-layer equations in the rarefied flow regime. The results of this solution show decreased skin

friction, boundary-layer thickness, velocity thickness, and momentum thickness because of the presence of the slip

boundary condition. When the energy equation is solved using a temperature-jump boundary condition, the heat

transfer increases for slightly rarefied flows, and then decreases as the Knudsen number increases.

Nomenclature

b = velocity coefficient
cp = specific heat
f = nondimensional stream function
K = nonequilibrium parameter
Kn = Knudsen number
k = thermal conductivity
l = slip length
M = Mach number
m = flow exponent
n = distance in the normal direction
P = pressure
Pr = Prandtl number
Re = Reynolds number
T = temperature
U = external x velocity
u = x velocity
v = y velocity
x = position in the flow direction
y = position in the flow normal direction
� = thermal diffusivity
� = included angle
� = specific heat ratio
� = boundary-layer thickness
�� = displacement thickness
� = nondimensional position
� = momentum thickness
� = mean-free path
� = viscosity
	 = density

 = accommodation coefficient
� = shear stress
� = kinematic viscosity

Subscripts

g = gas
M = momentum
o = freestream
slip = slip
T = thermal
w = wall

Superscript

* = nondimensional

I. Introduction

T HE solution of the incompressible laminar boundary-layer
equations under rarefied flow conditions at low Mach numbers

has applications to several areas of engineering interest, including
aerosol science [1], subsonic flight in extraterrestrial atmospheres
[2], andmicro and nano air vehicles [3,4]. Early attempts to solve the
boundary-layer equationswith a slip boundary condition analytically
or using perturbation methods yielded a variety of results. Results
assuming that the slip solution was a perturbation of the no-slip
solution predicted that the slip condition would not affect shear
stress, boundary-layer thickness, or heat transfer [5,6]. Additional
semi-analytic results suggested that the heat transfer would change in
the presence of slip flow [7–9]. Additional computations showed that
the shear stress would change as well [10,11].

Several explanations were offered for the contradictory results.
The solutions to other viscous flows considered similar to boundary-
layer flows, such as Couette, Poiseuille, and Rayleigh flows, showed
a change in heat transfer and shear stress [12]. This led to the
suggestion that the mathematical and experimental techniques
available at the time lacked the accuracy necessary to capture the
result.

The suggestion was also made that the boundary-layer equations
were not valid for slip flows. Two separate arguments were made.
Thefirst was that the second-order slip boundary conditionwas of the
same order as the terms that were discarded from the Navier–Stokes
equations to create the boundary-layer equations [13,14]. A second
problem was the Reynolds number scaling of the boundary-layer
equations. Using the definitions of viscosity and the speed of sound,
the Knudsen number can be found as a function of the Mach number
and Reynolds number [15]:

Knx / M=Rex (1)

This scaling indicates that an incompressible boundary layer, with
a Reynolds number of 500 or greater and aMach number of less than
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0.3, is unlikely to have a Knudsen number large enough for slip to
appear.

Several decades after these initial results, the development of
microelectromechanical systems led to a renewed interest in slip
flows [16,17]. The correct scaling of boundary-layer slip was shown
to be based on the boundary-layer thickness and was computed as

Kn� / M=
��������
Rex

p
(2)

This scaling does allow an incompressible boundary layer with a
Reynolds number of 500 or greater and a Mach number of less than
0.3 to have a large enough Knudsen number for slip to appear.

Complete numerical solutions of the Blasius boundary-layer
equations with slip flow over a flat plate [18] contradicted the
conclusion that slip did not change shear stress within a laminar
boundary layer. This analysis showed that the slip condition changes
the boundary layer structure from a self-similar profile to a two-
dimensional structure, which can be nondimensionalized using a
boundary-layer Knudsen number. This solution showed decreased
shear stress, boundary-layer thickness, and heat transfer. The dis-
crepancy between full numerical results, and those obtained by
using perturbation methods, suggests that the perturbation method
assumed a smaller change than what appeared in the physical
problem. A second possible explanation for the discrepancy between
the two sets of results is that the formulation of the boundary-layer
equations used in the perturbationmethod did not account for the loss
of self-similarity in the flow.

These results also show that the assumption that the slip effects
were inherently smaller than the discarded boundary-layer termswas
not justified by the numeric results: If they were truly negligible, the
results would be identical if they were included or not. The loss of
self-similarity was consistent with trends observed in other rarefied
flows, such as slip flow in microchannels [19,20]. Similar results
were seen for the solution of related flows, such as stagnation-point
flow [21–23] and the boundary layer in free convection [24].

The Blasius boundary-layer solution [25] is only one member of a
larger family of boundary-layer solutions known as Falkner–Skan
flow [26,27]. The boundary-layer equations for Falkner–Skan flow
apply to two-dimensional flow over a wedge with an included angle
of �
 and an external pressure gradient based on the inviscid flow
solution. A value of � of zero corresponds to the flat-plate Blasius
solution, and a value of 1 corresponds to a stagnation region.

The present work adds a slip-flow boundary condition to the
Falkner–Skan equations, allowing the fluid flow and heat transfer
to be determined for a wedge in moderately rarefied flow. The
boundary-layer momentum and energy equations for slip flow over a
wedge are derived. A marching scheme to solve these equations is
outlined. Numeric solutions are provided for flow and heat transfer
over several wedge half-angles with discussion of these results.

II. Formulation of the Governing Equations

Because of the loss of self-similarity, the nondimensional x-
momentum and thermal transport equations must be reformulated
to incorporate variation in the x direction. This requires extending
nondimensionalizations previously used for the flat plate in slip flow
[18] to incorporate wedge flow.

A. Momentum Equation

As shown in Fig. 1, flow over the top of awedge can bemodeled as
an external flow U�x� with a pressure gradient given by the inviscid
flow solution. The angle of the wedge is given as �
.

The external flow velocity and pressure gradients are given by

U�x� � bxm (3)

@P

@x
��	U�x� dU�x�

dx
��m	b2x2m�1 (4)

whereU is the external velocity,P is the pressure,	 is the density, and
x is the position along thewedge. The coefficientb is a function of the

flow geometry. As long as the boundary layer is relatively thin, the
external flow, and the pressure gradient will be independent of the
thickness of the boundary layer.

The exponent m is a function of the angle �:

m� �

2 � � (5)

The flow near the wedge will be governed by the boundary-layer
equations. The equation for continuity is identical to the flat-plate
case:

@u

@x
� @v
@y
� 0 (6)

For steady flow in a boundary layer, the x-momentum equation is
given by

u
@u

@x
� v @u

@y
�� 1

	

dP�x�
dx
� � @

2u

@y2
(7)

where u is the x velocity, v is the y velocity, and � is the kinematic
viscosity.

These equations can then be transformed, using the non-
dimensionalizations and nondimensional stream functions devel-
oped by Falkner and Skan. These nondimensionalizations are similar
to, but not identical to, those used byBlasius. A nondimensional flow
coordinate � is formed by combining x and y with the other flow
variables:

�� y
�����������������
m� 1

2

b

�

r
x
m�1
2 (8)

A nondimensional stream function f��� is found from the
dimensional stream function  :

 �x; y� �
�������������
2b�

m� 1

r
x
m�1
2 f��� (9)

The nondimensional velocities are given as

u� � u

U�x� � f
0��� (10)

v� � v������������������������
2

m�1�bx
m�1

q �
�
f��� � m � 1

m� 1
�f0���

�
(11)

A governing equation for f can be found by substituting these
nondimensional terms into the x-momentum equation (7):

f000��� � f���f00��� � ��1 � �f0����2� � 0 (12)

For the no-slip case, the boundary conditions are

u��y� 0� � 0) f0��� 0� � 0 (13)

v��y� 0� � 0) f��� 0� � 0 (14)

u��y!1�� 1) f0��!1�� 1 (15)

Fig. 1 Boundary-layer flow over a wedge.
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For slightly rarefied flows, the no-slip boundary condition (13) is
replaced by a slip condition [28];

uslip � ug � uw � �
2 � 
M

M

@u

@n

����
wall

� 3

4

�

Tg

@T

@s

����
wall

(16)

where uslip is the wall-slip velocity, ug is the gas velocity at the
wall, uw is thewall velocity, @u=@n is the velocity gradient normal to
the wall, � is the mean-free path of the gas, 
M is the tangential
momentum accommodation coefficient,	 is the density of the gas,Tg
is the temperature of the gas, and @T=@s is the temperature gradient
along the wall.

For an isothermal wall, Eq. (16) can be nondimensionalized to
obtain

@f

@�

����
��0
��2 � 
M�


M

�������������
m� 1

2

r
�

x

�������������
xU�x�
�

r
@2f

@�2

����
��0
�K @

2f

@�2

����
��0

(17)

The nonequilibrium parameter K, which is proportional to the
boundary-layer Knudsen number, is defined as

K � �2 � 
M�

M

�������������
m� 1

2

r
�

x

�������������
xU�x�
�

r

� �2 � 
M�

M

�������������
m� 1

2

r
�

���
b

�

r
x
m�1
2

� �2 � 
M�

M

�������������
m� 1

2

r
KnxRe

1=2
x (18)

where Knx and Rex are the Knudsen and Reynolds numbers based
on x.

Just as in the flat-plate case, the revised boundary condition leads
to a loss of self-similarity, and the velocitywill be a function of both �
and K. The definition of u� is unchanged. The definition of v� must
be modified to incorporate the derivative of the stream function with
respect to K. The revised definition of v� is

v� � v

��U�x�=x�1=2

��
�
m � 1

m� 1

�
�
@f��; K�
@�

� K @f��; K�
@K

�
� f��; K�

�
(19)

When all other derivatives in x are rewritten to include a K term,
the ordinary differential equation given in (12) is replaced by a partial
differential equation:

@3f

@�3
� f @

2f

@�2
� �

�
1 �

�
@f

@�

�
2
�
� K�1 � �� @

@�

�
@f

@�

@f

@K

�
� 0

(20)

Equation (20) requires boundary conditions in K. As K
approaches zero, the no-slip result will be recovered. At large values
of K, corresponding to the leading edge of the boundary layer, the
Navier–Stokes equations, and the continuum hypothesis will have
broken down and free-molecular flowwill result. This will result in a
uniform velocity u and full slip at the wall. The boundary conditions
then become

@f

@�

����
K!1
�1 (21)

f�K!1�� � (22)

These boundary conditions suggest that this formulation may
not be accurate at the extreme leading edge of the boundary layer.
However, this corresponds to the region where viscous flow theory
suggests that the boundary-layer equations are not valid [27]. As in
continuum boundary-layer theory, these leading edge errors are
assumed to be small and ignored.

B. Energy Equation

The equation for conservation of energy in a boundary layer with
steady flow is given as

u
@T

@x
� v @T

@y
� � @

2T

@y2
(23)

whereT is the local temperature and� is the thermal diffusivity of the
gas [29].

The temperature can be nondimensionalized as

T� � T � Tw
To � Tw

(24)

where To is the freestream temperature and Tw is the surface
temperature.

Using the nondimensionalizations used for the fluid flow
equations and the nondimensional temperature, the heat equation
becomes

@2T�

@�2
� Prf @T

�

@�
� KPr�1 � ��

�
@f

@�

@T�

@K
� @f

@K

@T�

@�

�
� 0 (25)

where Pr is the Prandtl number of the fluid.
For rarefied flows, a thermal jump condition will occur at the wall:

Tgas � Tw �
�

Pr

2 � 
T

T

2�

� � 1

@T

@n

����
wall

(26)

where Tgas is the temperature of the gas at the wall, 
T is the thermal
accommodation coefficient, and � is the specific heat ratio [30].
This expression can be nondimensionalized to obtain

T���� 0� � 1

Pr

2 � 
T

T

2�

� � 1

�������������
m� 1

2

r
�

���
b

�

r
x
m�1
2
@T�

@�

����
wall

(27)

If the thermal and momentum accommodation coefficients are
assumed to be approximately equal, this expression simplifies to

T���� 0� � 1

Pr

2�

� � 1
K
@T�

@�

����
wall

(28)

At large values of y, the temperature will approach the freestream
value, giving the boundary condition:

T����1� � 1 (29)

At large values of K, the temperature jump will become large,
and a uniform temperature profile will result, giving the boundary
condition:

T��K!1�� 1 (30)

As K approaches zero, the no-slip solution should be recovered.

C. Similarity to Liquid Slip

The slip condition in slightly rarefied flows is kinematically
similar to the slip condition encountered in liquid flows at the micro-
scale. For the flow of a polar fluid, such as water, over a hydrophobic
surface, such as silicon or grapheme, there is evidence from both
experiment [31,32] and molecular dynamics simulations [33,34] of
velocity slip at the surface. However, the existence of this condition,
and its relevance to engineering flows, are subjects of considerable
controversy [35].

The liquid-slip velocity is written in terms of a slip length l and the
velocity gradient at the wall:

uslip � l �
@u

@n

����
wall

(31)

The parameter K used in the fluid flow can be written in terms of
the Reynolds number, the angle, and the ratio of the slip length to the
position along the surface:
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K � l
x

�������������������������
m� 1

2
Re1=2x

r
(32)

The appropriate thermal boundary condition for a liquid surface
with slip is not clear. Whereas previous researchers have assumed
that there is no thermal jump [18,22], there is no clear measurement
of this effect, and thermal analysis for liquids with slip is not
incorporated in the present work.

III. Numeric Formulation

The loss of self-similarity means that the boundary layer must be
solved as a partial differential equation instead of an ordinary differ-
ential equation. Equations (20) and (25) can be solved using a
modified boundary-layer solver. Because large values of K corres-
pond to small values of x, the solver begins from large values of K
and marches toward a K of zero, going from nonequilibrium flows
to equilibrium conditions in the process. This corresponds to the
process used in standard boundary-layer codes only in nondimen-
sional coordinates [36].

Equation (20) can be simplified by replacing @f=@� with f0:

@2f0

@�2
� f @f

0

@�
� ��1 � �f0�2� � K�1 � �� @

@�

�
f0
@f

@K

�
� 0 (33)

where f0, and all its derivatives, are found using central-difference
schemes:

f0i;j �
fi;j�1 � fi;j�1

2��
�O�����2� (34)

@f0

@�

����
i;j

�
f0i;j�1 � f0i;j�1

2��
�O�����2� (35)

@2f0

@�2

����
i;j

�
f0i;j�1 � 2:0f0i;j � f0i;j�1

����2 �O�����2� (36)

The mixed derivative term is found using an upwind scheme:

@

@�

�
f0
@f

@K

�
i;j

� 1

��

1

�K
�f0i;j�fi;j � fi�1;j�

� f0i;j�1�fi;j�1 � fi�1;j�1�	 (37)

Combining Eqs. (34–37) into Eq. (33) gives the following
expression for f0:

fi�1;j � fi;j �
f0i;j�1
f0i;j
�fi�1;j�1 � fi;j�1�

� 2�K

�1 � ��Kf0i;j

�
f0i;j�1 � 2:0f0i;j � f0i;j�1

��

�
fi;j
4:0
�f0i;j�1 � f0i;j�1� �

���

2
�1 � �f0i;j�2�

�
(38)

The slip condition is implemented using the following:

f0i;1 �
Kif

0
i;2

�Ki ���wall�
�O

�
����2
���� Ki�

�
@2f0

@�2
(39)

Equations (14) and (15) provide the other required boundary
conditions:

fi;1 � 0 (40)

fi;m � fi;m�1 ��� (41)

Discretizing the energy equation is simpler. Using central-
difference approximations in � and an upwind scheme in K, the
energy equation becomes

T�i�1;j � T�i;j �
�T�i;j�1 � T�i;j�1��fi;j � fi�1;j�

2f0i:j��

� �K

f0i:jKPr�1 � ��

��T�i;j�1 � 2:0T�i;j�1 � T�i;j�1�
����2

� Prfi;j
�T�i;j�1 � T�i;j�1�

2��

�
(42)

The wall temperature-jump boundary condition becomes

T�i;1 �

�
1
Pr

2�
��1

�
�

1
Pr

2�
��1

�
���

T�i;2 (43)

The far-field boundary condition is given as

T�i;m � 1 (44)

For the stagnation-flow case, themomentum and energy equations
are solved using a shooting method, just as is done for the no-slip
formulation of Falkner–Skan flow.

IV. Fluid Flow Results

Figures 2 and 3 show the nondimensional wall-slip velocity and
wall shear stress as functions of K for half-angles of 15, 30, 45, 60,
and 75 deg. Previously reported values for aflat plate (0 deg) [18] and
a stagnation point (90 deg) [21] are included for reference. Because
this formulation may be valid for liquid flows with slip and values of
K greater than one, values of K greater than one are shown. These
results suggest that slip effects become important at values of K less
than 1.0, including regions where the continuum assumption is valid
for gases. They also suggest that the relative importance of slip
effects increases with increasing wedge angle.

Figure 3 shows that for the flat plate and 15-deg wedge, the maxi-
mum shear stress is encountered not at the equilibrium condition
but in slightly rarefied flow. This local minimum disappears as the
wedge half-angle increases. This surprising result agrees with earlier
analysis [18] of a flat-plate slip flow.

The velocity profiles for u� and v� as a function of �, for values of
K of less than 1.0, and angles of 0, 30, and 60 deg, are shown as
Figs. 4 and 5. These results confirm the loss of self-similarity in the
flow. For flow in the x direction, these results showwall slip. For flow
in the y direction, these results show an increase in the tangential
velocity, pulling mass, momentum, and energy away from the wall.

In addition to the shear stress, the boundary-layer thickness,
velocity thickness, and momentum thickness are quantities of
interest in boundary-layer flows [27]. The boundary-layer thickness
�99 is defined as the point where the velocity is equal to 99% of the
freestream velocity, as described in Eq. (45):

Fig. 2 Nondimensional wall velocity as a function of K.
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@f

@n

����
���99
�0:99 (45)

The velocity thickness �� and momentum thickness � are
defined as

�� �
Z 1
y�0

U�x� � u�x; y�
U�x� dy�

Z 1
��0
�1 � f0���� d� (46)

��
Z 1
y�0

u�x; y��U�x� � u�x; y��
U2�x� dy�

Z 1
��0

f0����1 � f0���� d�

(47)

Figures 6–8 show the boundary-layer thickness, velocity thick-
ness, andmomentum thickness as functions ofK for half-angles of 0,

15, 30, 45, 60, 75, and 90 deg. These results show that the boundary-
layer thicknessmay decrease by 50%ormore. Thevelocity thickness
and momentum thickness may decrease by even larger amounts at
high values ofK. These results appear to be relatively independent of
wedge half-angle.

Researchers studying the flat-plate boundary layer use a Reynolds
number based on velocity thickness to predict the transition to
turbulence:

Re� � 	U��=� (48)

When Re� approaches 520, the boundary layer becomes unstable,
a first step in the transition to turbulence [27]. Because the effect of
slip is to decrease the velocity thickness, rarefaction may delay the
onset of turbulence.

These results also agree qualitatively with trends observed com-
putational fluid dynamics simulations [37] andmeasurements [38] of
hypersonic flow over a flat plate. The results showed that the skin
friction and boundary-layer thickness decreased as the momentum
accommodation coefficient decreased, which corresponds to an
increase in K.

A final quantity of interest is the total shear force in the x direction.
The shear force on one side of thewedge can be expressed in terms of
a nondimensional viscous drag coefficient:

CD;visc �
Fvisc

0:5 � L � 	 � U�L�2 �
1

0:5 � L � 	 � U�L�2
Z
L

0

��x� dx (49)

For the no-slip case of Falkner–Skan flow, the drag coefficient will
be

Fig. 3 Nondimensional wall friction as a function of K.

Fig. 4 Nondimensional x-velocity profiles for a flat plate; 30, and 60 deg.

Fig. 5 Nondimensional y-velocity profiles for a flat plate; 30, and 60 deg.
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CD;visc �
�

4

3m� 1

��
m� 1

2

�
0:5 f00�0�
Re0:5L

(50)

For the slip case, the drag coefficient will be

CD;visc �
1

Re1=2L

�
4

1 �m

��
m� 1

2

�
0:5

K
3m�1
1�m

Z 1
K�L�

K
2m�2
m�1 f00�0� dK

(51)

The viscous drag coefficient multiplied by the square root of the
Reynolds number as a function of K�L� is shown as Fig. 9. At the
limit of K equal to zero or a Knudsen number of zero, the no-slip
values are used. At zero angle of attack, the results show an increase
in drag for slightly rarefied flows and a decrease as the flow becomes
more rarefied consistent with previous analysis [18]. As the angle
of attack increases, the results shift and the drag decreases for all
rarefied flows. This is consistent with previous analysis of rarefied
stagnation-point flows, where the shear stress decreases with
rarefaction [21,22].

These results also agree qualitatively with trends observed
computational fluid dynamics simulations [37] and measurements
[38] of hypersonic flow over a flat plate. The results showed that the
skin friction and boundary-layer thickness decreased as the momen-
tum accommodation coefficient decreased, which corresponds to an
increase in K.

V. Heat Transfer Results

The heat transfer is computed for a specific heat ratio of 1.4,
representing a diatomic gas. Three representative Prandtl numbers,
0.7, 1.0, and 1.4, are used to determine the effect of changing the
Prandtl number of the gas. Figure 10 shows the gas temperature at the
wall as a function ofK forwedge half-angles of 0, 30, and 60 deg for a
diatomic gas. The increase in gas temperature at the wall because
of rarefaction effects is largest for the flat-plate case and decreases
with increasing wedge half-angle. As expected from Eq. (26), the
temperature jump decreases with increasing Prandtl number.

Figure 11 shows the nondimensionalized wall heat transfer as a
function ofK for wedge half-angles of 0, 30, and 60 deg for diatomic
gases. These results show a local maximum in the heat transfer at
values ofK of less than one for 0, 30, and 60 deg. This result may be
considered to be analogous to the local maximum in shear stress
encountered earlier. The maximum moves to lower values of K with
decreasing Prandtl numbers and with increasing wedge half-angles.
The local maximum disappears entirely in the stagnation-flow
condition.

The difference in heat transfer rates between slip-flow and nonslip
flow cases increases with increasing Prandtl number. The increase in
heat transfer appears to be slightly higher for the diatomic cases.
Overall, the heat transfer increases by as much as 50% or decreases
by as much as 80%, from nonequilibrium values, depending on the
flow conditions. These results agree qualitatively with experimental
measurements taken on cylinders at low speeds [39].

The average-heat transfer coefficient over a surface of the wedge
can be expressed using an average Nusselt number:

Nu L �
�h � L
k
� 1

k

Z
L

0

h�x� dx (52)

For the no-slip case of Falkner–Skan flow, the average Nusselt
number will be

Nu L �
�

2

m� 1

�
0:5

Re0:5x
dT

d�

����
��0

(53)

For the slip case, the average Nusselt number will be

Nu L �
�

2

1 �m

��
m� 1

2

�
0:5

Re0:5x K
m�1
1�m

Z 1
K�L�

K
2

m�1
dT

d�

����
��0

dK

(54)

Fig. 6 Boundary-layer thickness as a function of K.

Fig. 7 Velocity thickness as a function of K.

Fig. 8 Momentum thickness as a function of K.

Fig. 9 Drag coefficient as a function of K�L� for a flat plate; 30, 60, and
75 deg.
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The average Nusselt divided by the square root of the Reynolds
number as a function of K�L� is shown as Fig. 12. At the limit of K
equal to zero, or a Knudsen number of zero, the no-slip values
are used. Because of the maximum values of local heat transfer seen
at low Knudsen numbers, all of these plots show a maximum value
for the average heat transfer at a value ofK between 0.1 and 0.5. This
is consistent with previous results for flat-plate boundary layers [18].
As the angle of attack increases, the results shift, and the drag
decreases for all rarefied flows. This is consistent with previous

analysis of rarefied stagnation-point flows, where the shear stress
decreases with rarefaction [21,22].

VI. Conclusions

Slipflowover awedgewas analyzed incorporating a slip boundary
condition. The nondimensional governing equations used to com-
pute the flow in the no-slip condition were modified to allow for the
loss of self-similarity that accompanies the slip boundary condition.

Fig. 10 Nondimensional wall temperature as a function of K and �� 1:4 for a flat plate; 30, and 60 deg.

Fig. 11 Nondimensional heat transfer as a function of K and �� 1:4 for a flat plate; 30, and 60 deg.

Fig. 12 Average Nusselt number as a function of KL and �� 1:4 for a flat plate; 30, and 60 deg.
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Numeric solution of the modified boundary-layer equations
showed a local increase in skin friction under slightly rarefied
conditions, and then a decrease in skin friction as the flow became
more rarefied. This effect disappeared as the angle of the wedge
increased. The relative decrease in skin friction became larger as the
wedge angle increased.

Use of a modified temperature-jump equation allowed the heat
transfer to be calculated for the wedge. These results showed an
increase in wall temperature and a decrease in heat transfer because
of rarefaction effects. These effects were weakly dependent on the
specific heat ratio of the gas and strongly dependent on the Prandtl
number and angle of the wedge.
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