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The ability to perform full-order aerothermoelastic simulations of hypersonic vehicles is
hindered by the strong coupling exhibited between the aerodynamics, heat transfer, and
structural dynamic response in the hypersonic 
ight regime. As a result of these interac-
tions, alternative techniques are necessary to obtain computationally tractable systems of
governing equations and their solutions. This work addresses the use of proper orthogonal
decomposition for reduced-order solution of the heat transfer problem within a hyper-
sonic modeling framework. The speci�c challenge of handling time-dependent boundary
conditions due to transient aerodynamic heating is discussed. An overview of the proper
orthogonal decomposition is given and two methods for solution of the reduced system
of ordinary di�erential equations are outlined. The methodology is applied to a repre-
sentative hypersonic vehicle control surface model for two cases in which the time-history
of the thermal load vector is known a priori : one in which the boundary conditions are
time-independent and another in which they are time-varying. Results demonstrate the
ability of the reduced-order solution to approximate the full-order solution with reasonable
accuracy. Finally, a time-marching hypersonic aerothermoelastic framework is described
in which proper orthogonal decomposition is used for the transient thermal solution.

Nomenclature

A = snapshot matrix
ai = i-th snapshot corresponding to i-th column of A
âi = i-th snapshot normalized to unit magnitude
a1 = freestream speed of sound
b = right hand side vector of recurrence relation for numerical time stepping algorithm
C = correlation matrix
Cp = coe�cient of pressure
c = modal coordinate of POD basis vector
c�f = reference skin friction coe�cient
cp = speci�c heat
c0 = vector of initial modal coordinates of POD basis vectors
~c = modal coordinate of POD basis after diagonalization of coe�cient matrices
E = modulus of elasticity
e = spatial error norm
F = thermal load vector of full system in physical space
Fs = structural load vector of full system in physical space
G = thermal load vector of full system in physical space after subtracting initial temperatures
g = generalized thermal load vector of reduced system in modal space
~g = generalized thermal load vector after diagonalization of coe�cient matrices
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H(t) = time-dependent scalar coe�cient of thermal load vector
h = convective heat transfer coe�cient
hi = thickness of i-th layer of thermal protection system
I = identity matrix
K = thermal conductivity matrix of full system in physical space
KG = geometric sti�ness matrix
Ks = structural sti�ness matrix
K�s = modi�ed structural sti�ness matrix
k = generalized thermal conductivity matrix of reduced system in modal space
kT = thermal conductivity of material
~k = generalized thermal conductivity matrix after diagonalization of coe�cient matrices
L = coe�cient matrix of recurrence relation for numerical time stepping algorithm
M = thermal capacitance matrix of full system in physical space
Me = Mach number at edge of boundary layer
Ms = structural mass matrix
M1 = freestream Mach number
m = generalized thermal capacitance matrix of reduced system in modal space
~m = generalized thermal capacitance matrix after diagonalization of coe�cient matrices
N = number of steps
n = number of snapshots used for creation of POD ROM
P�	;r = orthogonal projector projecting onto subspace spanned by �	
Pr = Prandtl number
p = pressure
pe = local pressure at edge of boundary layer
pt = total pressure
p1 = freestream pressure
Q = orthogonal matrix in full QR factorization
_qaero = aerodynamic heat 
ux
_qrad = heat 
ux due to radiation
R = projection residual
R = upper triangular matrix in full QR factorization
Re�x = Reynolds number at reference conditions
r = number of DOFs of reduced system in modal space after modal truncation
rf = recovery factor
St� = reference Stanton number
s = number of DOFs of full-order system in physical space
T = vector of discrete nodal temperatures
�T = temperature vector transformed by subtracting initial conditions
T fi = temperature at node i from full-order solution
T ri = temperature at node i from reduced-order solution
Te = temperature at edge of boundary layer
Tmax = maximum application temperature
Tr = recovery temperature
Tt = total temperature
Tw = wall temperature
T0 = vector of initial temperatures
T1 = freestream temperature
T � = reference temperature
t = time
U = matrix containing left singular vectors of A
�U = truncated matrix containing left singular vectors of A
U1 = freestream velocity
ui = i-th left singular vector of A
V = matrix containing right singular vectors of A
Ve = velocity at edge of boundary layer
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Vn = velocity of structural surface normal to freestream 
ow
v

(k)
i = i-th element of k-th eigenvector of correlation matrix
W = matrix of eigenvectors of generalized eigenvalue problem
wd = structural displacement normal to 
ow direction
wi = i-th eigenvector of generalized eigenvalue problem
x = structural degrees of freedom
xd = distance from leading edge to location of interest
Z = position of surface of structure in z direction
Zstr = function describing outer mold line of structure

� = angle-of-attack
�T = coe�cient of thermal expansion

 = ratio of speci�c heats

i = i-th eigenvalue of generalized eigenvalue problem

m = maximum eigenvalue of heat transfer system of equations
�tAE = aeroelastic time step size
�tAT = aerothermal time step size
�tcr = critical time step for stability of numerical time stepping algorithm
�ij = kronecker delta
� = emissivity
" = absolute error in approximation of snapshots by their projection onto basis
"rel = relative error in approximation of snapshots by their projection onto basis
"T = relative error tolerance
� = structural modal coordinates
� = square matrix of coe�cients of expansion of full set of POD basis vectors
�� = square matrix of coe�cients of expansion of reduced set of POD basis vectors
� = parameter determining numerical time stepping algorithm
� = eigenvalue of correlation matrix
�� = reference viscosity
� = Poisson’s ratio
� = density of material
�� = reference density
� = diagonal matrix containing singular values of A
�i = i-th singular value of A
� = variable of integration
� = modal matrix of full set POD basis vectors before truncation
�� = modal matrix of reduced set POD basis vectors after truncation
�ref = modal matrix of structural reference modes
’i = i-th POD basis vector
	 = arbitrary orthonormal basis
! = oscillation frequency

I. Introduction

I.A. Overview of the Aerothermoelastic Problem

Hypersonic vehicle (HSV) design and simulation require an interdisciplinary approach due to complex physics
and the coupling of a variety of disciplines. The highly integrated nature of hypersonic 
ight stems from
various factors speci�c to these types of vehicles. Airbreathing hypersonic vehicles typically consist of a
tightly integrated airframe along with a scramjet propulsion system. The forward fuselage of the vehicle
represents the compression ramp which produces the necessary 
ow conditions for the inlet of the propulsion
system. This results in a pressure distribution which causes a nose-up pitching moment. The aft section
of the vehicle consists of an external exhaust nozzle shaped to allow for expansion of the 
ow exiting the
engine. Additionally, the location of the engine below the vehicle center of gravity results a nose-up pitching
moment due to thrust which must be balanced.1 Further complicating the coupling between the propulsion
system and the airframe are the elastic deformations of the forebody and vehicle pitch response which a�ect
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the inlet conditions to the engine.2 Thus to assess the overall vehicle performance, the e�ect of 
exibility
must be considered.

A signi�cant aspect in the design and simulation of airbreathing hypersonic vehicles (HSVs) involves the
aerodynamic heating that develops at the surface of the vehicle due to stagnation of the 
ow and friction
within the boundary layer.3,4 Hypersonic vehicles with airbreathing propulsion systems must 
y at relatively
low altitudes to maintain the dynamic pressure required for optimal engine performance.4 One consequence
of this requirement is that the high dynamic pressure and high Reynolds number lead to surface heating
becoming a major design driver. The surface heating in turn leads to heat being conducted through the
internal vehicle structure. The spatial variation of temperature throughout the structure leads to a change in
sti�ness distribution through two e�ects: degradation of material properties due to temperature-dependence
and geometric sti�ening e�ects due to internal thermal stresses. Thus, to accurately capture the structural
dynamic response of the vehicle, the transient temperature distribution must be known so that the sti�ness
distribution can be determined.

This work will focus on the solution of the transient heat transfer problem within the context of fully
coupled aerothermoelastic vehicle simulations. While speci�c attention will be given to the thermal aspect
of the problem in this work, it cannot be considered in isolation due to the complex interactions among
disciplines as described above. A schematic of the aerothermoelastic coupling mechanisms exhibited in
hypersonic 
ight is given in Fig. 1.
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Figure 1. Coupling between aerodynamic heating, heat transfer, elastic airframe, and unsteady aerodynamics.

Stagnation e�ects and boundary layer friction lead to the existence of an aerodynamic heat 
ux at the
surface of the vehicle. Note the two-way coupling between the aerodynamic heat 
ux and the transient
temperature distribution. The upward pointing arrow illustrates the fact that the aerodynamic heat 
ux
represents the thermal boundary condition which drives heat through the structure. The downward pointing
arrow indicates the fact that the heat 
ux is dependent on the wall temperature of the structure. A similar
two-way coupling exists between the thermal radiation boundary condition and the wall temperature. Further
complicating the problem is the fact that the aerodynamic 
ow properties must be known in order to calculate
the aerodynamic heat 
ux. Once the aerodynamic problem is solved and the heat 
ux is known, the boundary
conditions for the heat transfer problem are generated. The existence of the heat 
ux will lead to heat being
conducted through the internal structure, thus producing a transient temperature distribution throughout
the vehicle structure.

The loads on the structure will have two components: thermal loads resulting from di�erential thermal
expansion of the structure and unsteady aerodynamic pressure loads. As a result of these loads, the structure
will displace relative to its undeformed con�guration. As the structure deforms and the aerodynamic pro�le
of the vehicle is modi�ed, the aerodynamic 
ow properties over the vehicle change. The aerodynamic
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ow properties must be updated as the structure deforms since they will a�ect the loads on the structure,
the aerodynamic heat 
ux, and the aerodynamic forces and moments on the vehicle. Once the updated
aerodynamic 
ow parameters are known, the pressures can be integrated over the vehicle to calculate the
resultant forces and moments on the vehicle. Based on the forces and moments, the vehicle equations of
motion are propagated and necessary control inputs (i.e., control surface de
ections) are determined based on
the commanded trajectory. The control surface de
ections in turn result in a change in the aerodynamic 
ow
parameters and the process is then repeated at the next time step. Because the control surfaces are expected
to provide a signi�cant contribution to the aerodynamic lift, drag, and moments acting on the vehicle,
thorough analysis of the couplings involved with such a structure is required in order to accurately predict
vehicle performance and controllability. While the main thrust of this paper involves developing solution
methods for the transient temperature distribution of a hypersonic vehicle, the unsteady aerodynamics,
aerodynamic heating, and structural dynamics of the vehicle will also be modeled to accurately capture the
boundary conditions to the thermal problem.

I.B. Aerothermoelastic Modeling Framework

As the geometry of the hypersonic vehicle structure is expected to be complex, a numerical approach to
the thermal problem is taken in this work as opposed to seeking closed-form, analytical solutions. While
there exist many well-established numerical techniques for solving thermal problems5 such as �nite volume,
spectral element, boundary element, �nite element, and �nite di�erence methods, using these methods by
themselves would require solutions of large systems of equations for the large-scale structures of interest. The
corresponding computational time associated with such a solution is not feasible for design and simulation
within the hypersonic aerothermoelastic framework proposed here. Furthermore, the number of states that
would be involved in such a solution would be impractical for use in control system design and evaluation
models. As such, this work will investigate the use of a reduced-order modeling technique known as the
proper orthogonal decomposition (POD) for solution of the transient thermal problem. Though full-order
�nite element solutions of the problem will be used to derive the reduced-order model (ROM), these solutions
will be computed o�-line, prior to the actual simulation. Thus once the thermal ROM is created, there is no
need to return to the full-order model for high-�delity solutions. Another advantage of this approach is the
ability to tailor the level of �delity of the ROM to attain the appropriate balance between computational
complexity and accuracy. Due to the comprehensive nature of the problem, reduced-order models or �rst-
principles models will also be used for the structural dynamic, aerothermal, and unsteady aerodynamic
components. However these models are used solely for computational tractability and in-depth analysis
of model reduction techniques is limited to that employed for the thermal aspect of the problem. An
overview of the time-marching aerothermoelastic framework in which the reduced-order thermal solution
will be employed is given in Fig. 2.

The process begins with the calculation of the heat 
ux on the outer surface of the structure at initial time.
With the boundary conditions and initial conditions of the thermal problem known, the transient temperature
distribution is marched forward in time. Solution of the heat transfer problem is carried out in modal space
using modes from POD (described in a later section) to avoid the computational cost of running full-order
�nite element analysis. The bypassing of the full-order thermal solution via the reduced-order solution is
indicated by the gray blocks in Fig. 2. This work will consider three coupling mechanisms between the
thermal and structural solutions. The �rst involves the thermal stresses that will occur in the structure
due to di�erential thermal expansion resulting from the spatially varying temperature distribution. The
second is due to the temperature-dependence of the Young’s modulus resulting from the high temperatures
experienced in hypersonic 
ight. The third involves the thermal loads that are generated on the structure
due to thermal expansion. With the sti�ness and structural loads known, the structural dynamics system of
equations in physical space is transformed to a suitable reduced modal basis to be described in a subsequent
section. The reduced modal system is then solved for the modal coordinates to obtain the structural response.
The structural deformations will couple with the aerothermal problem due to the e�ect on aerodynamic 
ow
properties, which will change the heat 
ux. The deformations also result in a change in aerodynamic pressures
which modify the structural loads. With the deformed con�guration known at the current time step, the
aerodynamic 
ow parameters and heat 
ux are recalculated and the procedure is repeated at the next time
instant.
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Figure 2. Reduced-order aerothermoelastic modeling framework.

I.C. Prior Work on Reduced-Order Thermal Modeling

There have been a variety of methods employed in the literature to reduce the order of thermal problems. The
well known structural dynamics reduction methods of Guyan Reduction6 and component modes synthesis7

have been extended for use in both linear and nonlinear transient thermal problems.8{10 One paper11 utilized
Guyan Reduction and component modes synthesis for reduction of the thermal problem in conjunction with
nonlinear identi�cation techniques for solution of the structural and 
uid problems for coupled solid/
uid
analysis of a turbine disk model. Results of this study showed that both Guyan reduction and component
modes synthesis provided su�cient reduction of the problem for e�cient computation of temperature histories
at selected locations of the model. However, a disadvantage to both of these methods is that tuning of the
reduced-order model was necessary to obtain the desired accuracy as the error of a particular reduced-order
model cannot be determined a priori. In particular, Guyan reduction requires selection of the set of active
and omitted degrees of freedom while the component modes synthesis methodology used in these works
requires the selection of a subset of eigenmodes related to the set of omitted temperatures.

Another technique that has been used for reduction of both linear and nonlinear transient thermal
problems is the modal identi�cation method.12{15 The use of this technique is largely motivated by inverse
heat transfer problems in which one desires to determine boundary conditions to a thermal problem based
on measured temperature evolutions at selected locations. Given a state-space representation of the full-
order system, this technique seeks another state-space representation of the dynamics which is of much
lower order than the original system and gives a good approximation to the output of the original system.
As the reduced-order state-space representation is written in modal space, the identi�cation of a subset of
eigenmodes of the system is required. The primary advantage of the modal identi�cation method is that no
knowledge of the thermal capacitance and thermal conductivity matrices is required for calculation of the
eigenmodes of the system. Rather than solving an eigenvalue problem of the full system, the eigenmodes
are identi�ed through the minimization of a quadratic criterion related to the di�erence between the output
vector of the full-order model and that of the reduced-order model. Therefore, this method is useful for
situations in which the computational cost of a large-scale eigenvalue problem cannot be a�orded and for
problems in which the thermal matrices of a system are unknown.

The modal identi�cation method was developed and implemented for linear multivariable systems with
multiple inputs and outputs and was shown to reduce a model of order 1643 to one of order 26 while still
maintaining su�cient accuracy.12 Due to the ill-posedness of the inverse problem, computational di�culties
in its solution can arise due to the ill-conditioning involved matrices. As such, a regularization procedure
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was implemented in another work13 for the reduced-order solution of a linear heat conduction system that
made use of modal identi�cation. Application of the methodology to a three-dimensional example problem
showed good agreement between the full-order and reduced models for reduction from order 1331 to order
9. A subsequent two-part work extended the modal identi�cation method for use in nonlinear systems14,15

for single-input/multi-output systems. The methodology employed in this work was similar to the one
employed for linear systems in that it identi�es a state-space representation of reduced order to approximate
the high-�delity system. However, for the nonlinear case additional manipulation was needed to separate
the linear and nonlinear terms in the equation. This work introduced nonlinearity through a linear variation
of the thermal conductivity with temperature. The methodology as applied to a three-dimensional cube
demonstrated that the reduced-order model was able to obtain solutions for the inverse problem whereas the
detailed model was not for the same time integration scheme.

While the modal identi�cation method provides a signi�cant computational advantage for certain prob-
lems such as inverse heat transfer problems, its applicability within the aerothermoelastic framework of this
work is questionable. Though one of its major advantages lies in the fact that the matrices of the governing
equation need not be known, in this work the thermophysical properties of the system will be known, so
this factor does not come into play. The methodology in the described studies has been applied to systems
with a relatively low number of inputs (1 - 3) and outputs (2 - 27), while the model considered in this work
is on the order of thousands of inputs and outputs due to continuous variation of the heat 
ux boundary
conditions and temperature distribution in space. The complexity associated with the large number of inputs
is due to the fact that, in the linear case, an element reduced model (ERM) was required for each input
and superposition was used to reconstruct the solution. For the case considered here where each node at
the surface of the airfoil represents an input to the system, creation of an ERM for each node is impractial.
More fundamentally, while an eigenmode basis will likely provide some means for reduction of the problem,
it may not be the optimal basis for capturing the dynamics of the system with the fewest possible number
of modes. Consideration of alternative basis representations must therefore be considered.

Within the area of reduced-basis modal methods for heat transfer problems, attempts have been made to
augment the eigenmode basis of the thermal system or develop an alternative basis for representation of the
system.16{22 Shore16 utilized an eigenvector basis for nonlinear problems consisting of the eigenvectors based
on thermal properties evaluated at the initial temperature conditions and those based on thermal properties
evaluated for a temperature distribution corresponding to a nonlinear steady-state problem. To enhance
the accuracy and e�ciency of the solution, the eigenvector basis was augmented with additional adaptive
vectors and analytically generated vectors. Large reductions in size were achieved for conduction-dominated
problems with simple geometry and boundary conditions. For problems with complex spatial and temporal
variation in heating, additional e�ort was employed to generate alternative basis vectors. As opposed to an
eigenvector basis, Nour-Omid22 utilized a Lanczos vector basis for reduction of the transient heat transfer
problem. The advantage of such an approach is that the vectors can be generated relatively inexpensively,
can produce more accurate solutions than those obtained with an eigenvector basis, and can lead to a reduced
system in tridiagonal form for a more computationally e�cient solution. An adaptation of this methodology
was developed by Cardona and Idelsohn21 who obtained the �rst basis vector as the system response for
the �rst time step and then introduced this vector into the Lanczos algorithm. The authors also extended
the method and solved nonlinear thermal problems by introducing new basis vectors which are derivatives
of the pre-existing basis vectors with respect to their own amplitude parameters. Another work20 discussed
the selection of a starting vector to the Lanczos algorithm which is related to the time variation of the heat
supply vector.

Another method that has been applied to thermal and structural dynamics problems and gives a higher-
order modal solution to the problem is known as the force-derivative method.17{19,23 This approach is
advantageous in that these higher-order solutions converge to an accurate response using fewer modes than
lower-order methods such as the mode-displacement or mode-acceleration methods. Its derivation results
from successive integration by parts of the convolution integral form of the solution and results in terms which
are related to the forcing function and its time derivatives. The resulting additional terms o�er an improved
approximation of the higher modes which would otherwise be neglected in a standard mode-displacement
approach. The �rst-order force-displacement relation can be recognized as the mode-acceleration method
with one correction term that depends on the forcing function. This method was applied with success to
linear transient thermal systems18,19 and was later extended for application to nonlinear transient thermal
problems.17
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While the above reduced-basis methods provide e�cient techniques for reducing the order of transient
thermal problems while maintaining su�cient accuracy, they rely largely on the matrices constituting the
governing system of equations rather than the actual response of the system to excitations that it will
likely see in practice. Methods using an eigenvector basis require solution of a large eigenvalue problem,
while augmentation of the eigenvector basis often requires trial and error to capture the correct subspace.
Furthermore, the use of such a basis may not be optimal in the sense of capturing the most energy with the
fewest number of modes for a given problem. In this work, we will focus on basis representations other than
eigenvector space which are derived from the response of the system to typical excitations. If characteristic
transient responses of the transient thermal system can be adequately characterized a priori, a basis with
established optimality properties can be obtained using POD.

The proper orthogonal decomposition (POD), also known as the Karhunen-Lo�eve decomposition, princi-
pal components analysis, singular systems analysis, and singular value decomposition, is a modal technique
in which empirical data is processed using statistical methods to obtain models which capture the domi-
nant physics of a system using a �nite number of modes.24 The fundamental basis for use of POD as a
reduced-order modeling method is its ability to represent high-dimensional systems in a low-dimensional,
approximate manner while still maintaining a high degree of accuracy. The choice of the POD basis as
opposed to any other basis such as an eigenvector basis is due to its optimality condition of providing the
most e�cient way of capturing the dominant modes of a system with a �nite number of modes.25 In addition
to heat transfer problems, the POD has been used in numerous applications such as turbulence,26 structural
dynamics,27,28 aerodynamics,29 and control theory30 among others.

The use of POD for thermal problems is prevalent in the literature. In two relevant works, the method was
applied to a linear transient thermal system in which the governing equations were decoupled in order to solve
them analytically over time.31,32 Application of the method to cases with time-independent and time-varying
loading showed relative errors of less than 1% and less than 3%, respectively.31 In a related work33 POD
was applied to a nonlinear transient thermal system and a technique was developed for updating the system
matrices in cases where the thermal conductivity must be recomputed at every time step. This strategy
involved separating the solution-dependent part of the element matrix from the geometry-dependent part to
reduce computation times. Application of the methodology to systems with nonlinearity due to temperature-
dependent material properties showed average relative error of less than 1% with respect to the full-order
model. Furthermore, it was shown that for a certain range of degrees of freedom, signi�cant improvement
in computation time can be achieved using the methodology outlined in Ref. 33. In another study,34 an
approach was developed to incorporate an understanding of the input operator to the system. A low-order
model was developed using POD in which an external control input is included by separating the external
stimuli from the ordinary di�erential equations resulting from projection onto the reduced subspace.

In addition to its use in solving forward heat transfer problems, POD has also been applied in solution of
nonlinear inverse heat transfer problems. One example is its use in estimating the time-varying strength of
a heat source in a two-dimensional system.35 The system consisted of a square domain with a time-varying
heat source at a known location. Thermal conductivity was taken to be a strong function of temperature
thus resulting in nonlinear governing equations. Drastic reduction in the number of degrees of freedom
was achieved using the proposed method while maintaining solution accuracy of the same level as that
of a traditional method. A subsequent work utilized POD in the solution of nonlinear inverse natural
convection problems.36 The goal was to estimate the time-varying strength of a heat source while reducing
the order of the computations involved. The reduced-order solution was compared with that obtained using
the traditional method of employing the Boussinesq equation. The reduced-order method was shown to
accurately reproduce the results obtained using the traditional method for various shapes of the heat source
function at reduced computational cost. A later work37 applied POD to the inverse problem of estimating the
unknown thermal conductivity and convective heat transfer coe�cient of a system. The modal coordinates
of the basis vectors were allowed to be a nonlinear function of the retrieved parameters. Results showed that
the method was robust and numerically stabilizing while also exhibiting favorable regularization due to the
ability of POD to �lter out high frequency error.

While the above works represent signi�cant progress in the area of reduced-order thermal modeling, this
work more speci�cally seeks to examine the robustness of the POD for thermal solution within a hypersonic
vehicle aerothermoelastic framework. The goal is to be able to generate the POD basis a priori, and then
use this basis throughout the aerothermoelastic simulation. However, the problem is complicated due to
the fact that the thermal boundary conditions are dependent on aerodynamic 
ow parameters, which are
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e�ected by the structural dynamic response. Thus, the ability to characterize the space which the basis
vectors must span a priori must be investigated. Additionally, it is desirable that the same basis can be
used in simulations with varying 
ight conditions such as Mach number, altitude, and angle-of-attack. Thus,
the robustness of the basis to changes in these parameters must be considered. Further complicating the
problem are the fact that the boundary conditions are time-dependent and nonlinear due to radiation and
temperature-dependent convection.

A previous work by the authors38 provided progress toward reduction of the transient heat transfer
problem, however there are limitations associated with that formulation. Note that all of the results shown
in that work were for cases with heat 
ux boundary conditions that were constant in time. This work will
extend the reduced-order thermal formulation of Ref. 38 to examine the ability to handle the time-dependence
of the heat 
ux boundary condition. An overview of POD will be given and the optimality conditions of the
basis will be described. The method for basis generation will be outlined along with the two methods used
to solve the governing system of ordinary di�erential equations for the modal coordinates. A representative
control surface structure to be used in the examples will then be described. Numerical examples will be
carried out for varying boundary conditions and results will be presented to demonstrate the validity of the
approach.

II. Thermal POD Formulation

II.A. Creation of POD Basis

The transient heat transfer problem is solved in modal space with modes from POD analysis due to the
optimality properties of the basis.31 The method of snapshots39 is used for determination of the POD basis
vectors. In this case, the snapshots are de�ned as vectors of nodal temperatures at various time instants and
are computed from high-�delity �nite element analysis. The goal of the POD formulation is to express the
vector of nodal temperatures, T , at any time instant as a linear combination of the basis, ’(x; y; z), with
coe�cients c(t), i.e.,

8
>><
>>:

T1

...
Ts

9
>>=
>>;
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8
>><
>>:

’
(1)
1
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(r)
s

9
>>=
>>;
; (1)

where s is the total number of degrees of freedom in the �nite element model and r is the total number of
POD basis vectors retained after truncation. The basis is computed by �rst generating the snapshot matrix,
A, given by,

A =

2
66664

T
(1)
1 T

(2)
1 : : : T

(n)
1

T
(1)
2 T

(2)
2 : : : T

(n)
2

...
...

. . .
...

T
(1)
s T

(2)
s : : : T

(n)
s

3
77775

= [a1; a2; : : : ; an] ; (2)

where T (j)
i indicates the i-th entry of the j-th snapshot, n is the number of snapshots taken and aj refers to

column vector corresponding to the j-th snapshot. The correlation matrix, C, is then found, whose entries
are the inner products of the corresponding snapshots, given by

Cij =
1
n
aTi aj or C =

1
n
ATA: (3)

Solution of the eigenvalue problem,
Cvi = �ivi; (4)

yields the eigenvectors and eigenvalues of the correlation matrix where vi with kvik = 1 indicates the i-th
eigenvector of C corresponding to the i-th largest eigenvalue of C. Note that the eigenvectors are sorted
such that they correspond with eigenvalues that are sorted in decreasing magnitude so that the POD basis
vectors will be sorted in order of decreasing energy. The eigenvalues, �, and eigenvectors, v, of the correlation
matrix are then used to generate the POD basis vectors, ’, which are expressed as a linear combination of
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the snapshots, i.e.,

’k =
1p
n�k

nX

i=1

v
(k)
i ai =

1p
n�k

Avk; (5)

where v(k)
i is the i-th entry of the k-th eigenvector. The POD modal matrix, �, can then be assembled with

the POD basis vectors, ’i, stored as columns of the matrix. The POD basis is then truncated to a reduced
set of POD vectors, ��, thus leading to a reduction in the number of degrees of freedom in the problem. Note
that both the full and truncated POD sets are orthogonal, i.e.

�T� = In (6a)
��T �� = Ir; (6b)

where In represents the identity matrix of dimension n and Ir refers the the identity matrix of dimension r.
The columns of the snapshot matrix can be expressed as linear combinations of the basis vectors with

coe�cients using the expression31

A = ��; (7)

where � is a square matrix of coe�cients of the full set of POD basis vectors and can be calculated by making
use of the orthogonality of the POD basis as

� = �TA: (8)

As the basis will be truncated to reduce the problem, the snapshot matrix can at best be approximated via
a linear combination of the truncated POD modal matrix, ��, given by

A � ���� (9)

where �� is a square matrix of coe�cients of the truncated set of POD basis vectors and can be calculated in
a manner similar to that of Eq. (8) using

�� = ��TA; (10)

where the orthogonality of �� is utilized. As the truncated basis can only approximate the snapshots, the goal
is to �nd the optimal basis such that the approximated snapshot matrix, ����, represents as closely as possible
the actual snapshot matrix, ��. Let 	 represent an arbitrary orthonormal s� n basis and �	 represent the
corresponding s�r truncated basis. Let the error incurred as a result of basis truncation, ", be given by31,40

" = kA� �	��k2: (11)

Using Eq. (10) in Eq. (11) and substituting the truncated arbitrary basis, �	, for the truncated POD basis,
��, the error expression becomes31

" = kA� �	�	TAk2: (12)

At this point, the quantity �	 �	T is recognized as the orthogonal projector that projects onto the r-dimensional
subspace spanned by the basis, �	.40,41 Thus, Eq. (12) can be written as

" = kA� P�	;rAk2; (13)

where P�	;r is the orthogonal projector onto the r-dimensional subspace. The error due to basis truncation
can then be interpreted as the amount by which the projection of the snapshots onto the truncated basis
di�ers from the snapshots themselves. The objective is therefore to �nd an orthonormal basis such that
for a speci�ed error, ", a minimum number of columns of the set of basis vectors must be retained. A
supplementary condition following from Eq. (7) is that the basis is a linear combination of the snapshots as
seen in Eq. (5). It has been shown25 that along with this supplementary condition, the minimum error in
Eq. (13) occurs when the basis, �	, is chosen to be the POD basis, ��, as given in Eq. (5). Thus the POD
basis is optimal with respect to any other linear modal representation in that the �rst k POD modes contain
more energy than the �rst k modes of any other basis.24

An alternative method for calculating the POD basis involves the singular value decomposition (SVD).
The full SVD of the s� n snapshot matrix, A, is given by42

A = U�V T ; (14)
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where U is a s � s orthogonal matrix, V is an n � n orthogonal matrix, and � is a s � n diagonal matrix
with

�ij =

8
<
:

0 for i 6= j

�i � 0 for i = j
: (15)

The diagonal entries of � are known as the singular values of A and are ordered in decreasing order such
that �1 � �2 � : : : � 0. The columns of U and V are the left and right singular vectors of A, respectively.
The correspondence between the POD basis as derived using the eigenvalues of the correlation matrix, �i,
and that derived using the SVD can be shown by relating �i to �i. Performing the SVD of C in terms of
the SVD of A, we have

C =
1
n
ATA =

1
n

�
U�V T

�T
U�V T =

1
n
V �TUTU�V T : (16)

Taking advantage of the orthogonality of U , Eq. (16) becomes

C =
1
n
V
�
�T�

�
V T : (17)

From Eq. (17) we can see that V is the matrix of eigenvectors of C and the singular values of A are related
to the eigenvalues of C according to40

�2
i = n�i: (18)

The POD basis vectors can be shown to correspond to the left singular vectors of the snapshot matrix,40 if
we re-write Eq. (5) in terms of the SVD of A, i.e.,

’k =
1p
n�k

U�V T vk: (19)

Due to orthogonality of V , Eq. (19) simpli�es to

’k =
1p
n�k

uk�k; (20)

where uk is the k-th left singular vector of A. Utilizing Eq. (18), we have ’k = uk. The connection between
POD and SVD allows for justi�cation of the claim of basis optimality due to the ability of the SVD to provide
an optimal low-rank approximation to a matrix. Consider an approximation to A written as a partial sum
of rank-one matrices formed from the outer product of the left and right singular vectors with the singular
value as the scalar coe�cient, given by

A =
rX

j=1

�jujv
T
j ; (21)

where r corresponds to the number of POD basis vectors retained after truncation. It can be shown that the
r-th partial sum captures the maximum possible amount of energy of A, where energy is de�ned in either
the 2-norm or Frobenius norm sense.41{43 Alternatively stated, no other rank r matrix can be closer to A in
the 2-norm or in the Frobenius norm. To examine the connection between this optimality property of the
SVD and the optimality of the POD basis, consider Eq. (11) written in terms of the truncated set of left
singular vectors, �U , corresponding to the truncated set of POD basis vectors, ��, given by

" = kA� �U �UTAk2: (22)

Now, expressing A in terms of its full SVD leads to,

" = kU�V T � �U �UTU�V T k2: (23)

At this point, the quantity �U �UTU is recognized as the projection of U onto the space spanned by �U and
performs the action of zeroing the columns of U that correspond to the excluded POD basis vectors. Thus,
Eq. (23) becomes

" = k
nX

j=1

�jujv
T
j �

rX

j=1

�jujv
T
j k2; (24)
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and the optimality of the POD basis is demonstrated due to the optimality property of the SVD described
above. The absolute error associated with the r-dimensional POD subspace is associated with the eigenvalues
of the correlation matrix, C, and the singular values of the snapshot matrix, A, and is given by40

" =
nX

j=r+1

�2
j = n

nX

j=r+1

�j ; (25)

where " is de�ned in the Frobenius norm sense. A relative error tolerance, "rel, can be de�ned such that if
the relative error is to be less than an error tolerance, "T , i.e.,

"

kAk2 = "rel � "T ; (26)

the number of basis vectors retained, r, should be the smallest integer that
Pr
j=1 �

2
jPn

j=1 �
2
j

=

Pr
j=1 �jPn
j=1 �j

� 1� "T : (27)

Note that the left-hand side of Eq. (27) can be interpreted as the energy of the included basis vectors
relative to the energy of the full set of basis vectors. Furthermore, "rel can be interpreted as the energy of
the excluded basis vectors relative to the energy of the full set of basis vectors, given by

"rel =
"

kAk2 =

Pn
j=r+1 �

2
jPn

j=1 �
2
j

=

Pn
j=r+1 �jPn
j=1 �j

: (28)

Thus, the magnitude of each of the eigenvalues of the correlation matrix can be used in determining the
number of POD basis vectors that can be removed from the set.

II.B. Solution of System for Modal Coordinates

II.B.1. Decoupled System: Analytical Solution

One method employed in this work to solve the system of ordinary di�erential equations for the modal
coordinates of the POD basis vectors involves decoupling the equations and solving each analytically. The
advantage of the analytical solution is that it avoids the need to time-march the solution and allows for direct
generation of the temperature distribution at any time instant of interest. Additionally, it eliminates any
error incurred due to numerical integration. The analytical solution is also useful in assessing the accuracy of
approximate numerical solutions for linear cases in which the load vector is a known function of time due to
its ability to provide an exact solution. The procedure begins with the original system of transient thermal
�nite element equations given by

M _T +KT = F (t); (29)

where M is the thermal capacitance matrix, K is the thermal conductivity matrix, and F is the thermal
load vector. Note that at this stage we assume that both K and M are not diagonal. As the set of equations
given in Eq. (29) is �rst order in time, we must also specify a vector of initial temperatures,

T (t = 0) = T0: (30)

Because the initial condition must be speci�ed for each equation in the analytical solution, it is convenient to
work with a homogeneous initial condition. Thus we de�ne a new temperature variable given by �T = T�T0.31

This transformation results in transforming Eq. (29) such that it becomes

M _�T +K �T = G(t); (31)

where G(t) = F (t) + KT0. The next step is to transform the system from physical space to modal space,
thus reducing from an s by s system to an r by r system. This is accomplished by �rst expressing the
temperature vector as a linear combination of the truncated set of POD basis vectors, �T = ��c, and then
premultiplying the equation by ��T where (�)T indicates the transpose of a matrix. The system of equations
is then of the form

��TM ��_c+ ��TK ��c = ��TG: (32)
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The generalized thermal capacitance matrix, m, generalized thermal conductivity matrix, k, and generalized
load vector, g are then identi�ed such that

m = ��TM �� (33a)

k = ��TK �� (33b)

g = ��TG: (33c)

Note that because the POD basis vectors are not eigenvectors of the generalized eigenvalue problem, m and
k will still not be diagonal at this stage. Thus, we now solve the generalized eigenvalue problem given by

(k � 
im)wi = 0; (34)

where 
i is the i-th eigenvalue and wi is the corresponding i-th eigenvector. Note that this step is intentionally
performed after transformation to modal space so that the size of the eigenvalue problem to be solved is
minimized. After assembling the eigenvectors wi as columns of the modal matrix W , we now express c as a
linear combination of the eigenvectors of the generalized eigenvalue problem so that c = W ~c. The system of
equations is then premultiplied by WT such that the system becomes

WTmW _~c+WT kW ~c = WT g: (35)

The transformed generalized thermal capacitance matrix, ~m, transformed generalized thermal conductivity
matrix, ~k, and transformed generalized load vector, ~g are then identi�ed such that

~m = WTmW (36a)
~k = WT kW (36b)

~g = WT g: (36c)

Due to orthogonality of the eigenvectors with respect to m and k, ~m and ~k will be diagonal matrices, thus
decoupling the system of ordinary di�erential equations. Furthermore, by enforcing the eigenvectors, W , to
be normalized with respect to m, ~m is reduced to the identity matrix and the i-th equation of the system
can be expressed as

_~ci + ~ki~ci = ~gi; (37)

where ~ki is the i-th diagonal entry of ~k. Using the fact that the initial condition was made to be homogeneous,
the solution of the i-th equation for an arbitrary time-dependent generalized load, ~g(t), is given by

~ci(t) = e�~kit

Z t

0

~gi(�)e~ki� d�; i = 1; : : : ; r; (38)

where � is a dummy variable of integration and t is the time instant of interest. For a generalized load that
is independent of time, the solution is given by

~ci(t) = ~gi
1� e�~kit

~ki
; i = 1; : : : ; r: (39)

Once all of the transformed modal coordinates have been calculated, the sequence of transformations can
be reversed to obtain the physical temperatures using

T (t) = ��W ~c(t) + T0: (40)

Note that for the linear case, the matrix product ��W must only be evaluated once, and solution of the
transient thermal problem is reduced to a matrix-vector product and a vector sum. An overview of the
sequence of equation transformations is given in Fig. 3.
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Figure 3. Sequence of transformations of heat transfer equations from full system to decoupled reduced-order system.

II.B.2. Coupled System: Numerical Integration

In addition to decoupling the system and solving the equations analytically, results were also obtained from
numerical solutions of the coupled system. Numerical solutions of the coupled thermal problem may prove
to be more useful than decoupled analytical solutions within hypersonic vehicle aerothermoelastic simulation
frameworks. This is due to the fact that the heat 
ux depends on various factors such as deformation and
aerodynamic 
ow properties that are not known ahead of time. The thermal load vector must therefore be
sampled at speci�c time instants and integrated over time numerically, thus the analytical solution loses its
utility in these cases. Note that one could perform the integral in Eq. (38) numerically and still use the
decoupled solution method. However at that point it may be more computationally e�cient to integrate
the equations numerically and avoid diagonalizing the system matrices. Solving the coupled system directly
avoids the need to solve an eigenvalue problem to decouple the equations. This is especially important for
nonlinear problems in which the thermal capacitance matrix and thermal conductivity matrix change with
temperature and an eigenvalue problem would need to be solved at every time step if the equations were to
be decoupled.

For the numerical solution, the transient equations are solved using a numerical time-marching algo-
rithm.44,45 For nonlinear cases in which the system matrices or load vector depend on the temperatures
at the current time step, Newton-Raphson iterations can be employed at each time step. To begin the
formulation, consider a general system of �rst order coupled ordinary di�erential equations of the form

M _T +KT = F (t) ; (41)

The �rst step will be to reduce the system and transform from physical space to modal space using Eq. (33).
For the numerical solution, we will not perform the additional step to solve the eigenvalue problem and
decouple the equations. Rather, the reduced-order coupled system will be integrated numerically at this
stage. We denote a time instant in the response of the system by tn such that the time instant at the next
time step is given by by tn+1 = tn + �t, where n = 0; 1; 2; : : : ; N . A parameter � is introduced to represent
the response of the system at an intermediate time, t�, such that t� = tn+��t, where 0 � � � 1. Expressing
Eq. (41) at time t� in modal space, we have,

m _c� + kc� = g (t�) ; (42)

where the subscript � indicates the vector of unknowns, at time instant t�. We now introduce approximations
to c, its time-derivative, and g at t� given by

_c� =
cn+1 � cn

�t
(43a)

c� = (1� �)cn + �cn+1 (43b)
g (t�) = (1� �) gn + �gn+1: (43c)
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Substituting Eqs. (43) into Eq. (42) leads to the recurrence relation given by44

�
�k +

1
�t

m

�
cn+1 =

�
�(1� �)k +

1
�t

m

�
cn + (1� �) gn + �gn+1; (44)

where cn+1 is the unknown to be found and cn is the solution from the previous time step. The recurrence
relation given in Eq. (44) is of the form

Lcn+1 = bn+1; (45)

where

L = �k +
1

�t
m (46a)

bn+1 =
�
� (1� �) k +

1
�t

m

�
cn + (1� �) gn + �gn+1: (46b)

Equation (44) represents a family of recurrence relations in which the particular numerical scheme depends
on the chosen value of �. For � = 0, 1

2 , 2
3 , and 1, the algorithm represents the forward Euler, Crank-Nicolson,

Galerkin, and backward Euler method, respectively. Additionally, if � = 0, the algorithm is explicit, while for
� > 0, the algorithm is implicit. The requirements for convergence of the selected numerical scheme are given
by the Lax Equivalence Theorem which states that for a well-posed initial value problem and a consistent
discretization scheme, stability is the necessary and su�cient condition for convergence.42,46 The family of
� algorithms described above is unconditionally stable in the linear case for � � 1

2 while an extension for
nonlinear systems47 was also shown to be unconditionally stable for � � 1

2 . For � < 1
2 , the algorithm is

conditionally stable and the eigenvalue stability region is such that the critical time step is given by

�tcr =
2

1� 2�
1

m

; (47)

where 
m is the largest system eigenvalue. For this work, the Crank-Nicolson scheme corresponding to � = 1
2

is used due to its second-order accuracy.
Since the equations are solved in modal space and the initial temperatures are known in physical space,

the initial values of the modal coordinates must �rst be calculated before time-marching can proceed. Using
the transformation between physical space and modal space, we begin by expressing the vector of initial
temperatures in physical space as can be expressed as

T0 = ��c0; (48)

where c0 is the vector of initial values of the modal coordinates. Expanding this expression in terms of the
individual POD vectors, Eq. (48) becomes

T0 = c
(1)
0 ’1 + c

(2)
0 ’2 + � � �+ c

(r)
0 ’r; (49)

where ’i indicates the i-th basis vector and c
(i)
0 refers to the corresponding i-th modal coordinate at time

t0. To �nd the initial value of the i-th modal coordinate, Eq. (49) is premultiplied by the transpose of the
i-th basis vector, ’Ti , to obtain

’Ti T0 = c
(1)
0 ’Ti ’1 + c

(2)
0 ’Ti ’2 + � � �+ c

(r)
0 ’Ti ’r: (50)

Recall that the basis vectors are an orthonormal set such that

’Ti ’j = �ij ; (51)

where �ij is the Kronecker delta. Thus, the right-hand side of Eq. (50) reduces to c(i)0 and the left-hand side
gives its value. By premultiplying Eq. (49) by each of the basis vectors, the complete vector of initial modal
coordinates can be found and time-marching of the system can proceed.
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Figure 2. Hypersonic Air-breathing Vehicle Geometry

providing a number of examples of the application of piston theory to specific problems. More recently,
Tarpley11 discussed the computation of stability derivatives for a caret-wing waverider using Piston Theory,
which requires the analysis of unsteady flow over the vehicle.? Piston theory allows the inclusion of unsteady
aerodynamic effects in the model and a closed form solution can be found for these unsteady effects.

Linear Piston Theory states that the pressure acting on the face of a piston moving in a perfect gas when
the Mach number is greater than unity is:10

P

Pi
=

(
1 +

1
5

Vn,i

ai

)7

(13)

where P is the pressure on the piston face, Pi is the local static pressure (i.e., behind the shock in the case
of supersonic flow),ai is the local speed of sound, and Vn,i is the velocity of the surface normal to the steady
flow. Taking the binomial expansion of Equation 13 to first order gives

P

Pi
= 1 +

7
5

Vn,i

ai
(14)

Multiplying through by Pi, using the perfect gas law, and the definition for speed of sound gives the basic
result from first-order linear piston theory:

P = Pi + ρiaiVn,i (15)

where ρi is the local density of the fluid. The normal velocity, Vn,i arises due to either the flexing of the
aircraft, the aircraft’s rotational motion, or changes in angle-of-attack.

The infinitesimal force acting on the face of the piston is

dF i = −(P dA)ni (16)

In Equation 16, n is the outward pointing normal unit vector to the surface, dA is the infinitesimal surface
area, and dF i is the incremental force. Substituting Equation 15 into Equation 16 gives

dF i = [−(Pi + ρiaiVn,i) dA]ni (17)

However, since Vn,i is by definition the velocity normal to the surface, we can write Vn,i = V · ni where V
is the velocity vector of the vehicle. Thus, the infinitesimal force becomes

dF = −{[Pi + ρiai(V · ni)] dA]}ni (18)

Equation 18 is then integrated over each surface that defines the vehicle outer mold line to give the total force
acting on the vehicle. From Equation 18 it should be noted that when

∫
Pi dA ni is evaluated over the vehicle,
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Figure 4. Overall HSV geometry illustrating position of control surface.

III. Control Surface Model

The methodology developed in this work is applied to a representative control surface structure as the
control surfaces are expected to have a strong contribution to the dynamics of the vehicle. The hypersonic
vehicle con�guration considered in this study, as developed in a previous work,48 is shown in Fig. 4. A �nite
element model of a representative hypersonic vehicle elevator has been created for use in this study. The
airfoil cross-section is that of a double wedge with a maximum thickness of 4% chord length.49{51 The chord
length at the root is 5.2 m (17 ft)48 and the leading edge is swept by 34� while the trailing edge is swept by
18�.52 Planform and cross-sectional views of the airfoil are given in Fig. 5 and Fig. 6, respectively.

5.2 m (17 ft)

3 
m

 (9
.8

 ft
) 34° 18°

Flow Direction

y

x

Figure 5. Planform geometry of control surface model.

c

0.04c

Figure 6. Cross-sectional geometry of control surface model.

Due to the severe aerodynamic heating experienced in hypersonic 
ight, layers of thermal protection
material are needed to keep the temperature of the structure below maximum temperature limits. A survey
of the literature revealed a wide range of design strategies for mitigating the high temperatures experienced in
hypersonic 
ight.53{60 This study considers a thermal protection system consisting of an outer heat shield and
middle insulation layer on top of the structure as shown in Fig. 7. The material for the heat shield was chosen
to be Ren�e 41 as it was found to be e�cient in terms of mechanical properties at elevated temperatures.59

For the insulation layer, three di�erent materials were considered in the preliminary materials evaluation:
Internal Multiscreen Insulation (IMI),54 High Temperature Flexible Min-K,59 and Q-Fiber Felt.54 Of these,
the Min-K insulation, which is a proprietary silica based material faced with Astroquartz cloth,59 was selected
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Heat Shield: René 41
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Figure 7. Schematic of material stacking scheme at outer mold line of structure.

due to its relatively low thermal di�usivity. For the structure, the Titanium alloy TIMETAL 834 (formerly
known as IMI 834) was chosen. The advantage of using this alloy is its maximum application temperature,
Tmax, of 600�C compared with that of Ti-6242S (520�C), Ti-6242 (450�C), Ti-811 (400�C), and Ti-6-4
(300�C).61 The thermal and mechanical properties of the three materials employed in the model are shown
in Table 1, where \T-dep." indicates that the property is temperature-dependent. In addition to those, the
emissivity, �, of the heat shield was taken to be 0.85.52,62

Table 1. Structural and thermal material properties used in the study.52,59,63{65

� E � �T kT cp Tmax h�
kg=m3

�
[Pa] [�m=m=K] [W=m=K] [J=kg=K] K [mm]

Ren�e 41 8240 T-dep. 0.31 T-dep. 18 541 1500 3.8
Min-K 256 Neglect Neglect Neglect 0.052 858 1250 3.8
TIMETAL834 4550 T-dep. 0.31 11 7 525 873 3.175

The �nite element mesh used in the study is shown in Fig. 8. The model contains 2,812 degrees of
freedom and 5,580 elements. The heat shield and insulation layer are each modeled using 6-node solid wedge
elements while the top and bottom skins and sti�eners are modeled using 3-node, 2-dimensional triangular
elements. Of the 5,580 elements in the model, 3,456 are solid elements and 2,124 are triangular elements.
The control surface is taken to all-moveable about a hinge line located at the mid-chord48 and will thus be
connected to the vehicle main body through a torque tube. This attachment is modeled by constraining the
region indicated by the black circle in Fig. 8 in all degrees of freedom.

Attachment region

Figure 8. Finite element model of control surface used in study.
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IV. Results

IV.A. Time-Independent Thermal Load Vector

The �rst case that will be considered consists of a uniform heat 
ux of 10 W=cm2 that is constant in time
and applied at the outer surfaces of the model. The time range considered in this example is 0 - 200 s.
A plot of the temperatures of a selected node at the outer surface of the heat shield, outer surface of the
insulation, and skin within the time range considered is given in Fig. 9.
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Figure 9. Temperature history of three selected nodes for constant heat 
ux case.

Note that the temperature decreases signi�cantly between node 2101 and node 1189 due to the e�ect of
the insulation. For the purposes of this study, the high-�delity �nite element solution will be treated as
the truth model and error calculations will be made with respect to it. To assess the e�ect of number of
snapshots taken throughout the range of time considered, a high-�delity transient thermal �nite element
analysis (FEA) from 0 - 200 s was carried out using Sol 159 within the �nite element code MSC.Nastran.
POD bases were then generated based on 5, 21, 81, and 401 snapshots of the high-�delity solution, which
correspond to snapshots taken in evenly spaced intervals every 50, 10, 2.5, and 0.5 seconds, respectively,
between 0 - 200 s. The reduced system was solved using the decoupled analytical approach for all of the
results in this section. To quantify the percentage error of the POD solution, a spatial error norm, e, is
de�ned such that

e =

vuut
sX

i=1

 
T ri � T fi
T fi

!2

� 100; (52)

where T fi is the temperature at node i from the full-order solution and T ri is the temperature at node i
from the reduced-order solution. De�ned in this manner, e can be interpreted as the 2-norm of the vector
of percentage errors of the nodes at a given time instant. Results were generated for cases with one, two,
and three POD basis vectors retained after truncation. The relative errors as de�ned in Eq. (28) for the
case of 401 snapshots with one, two, and three retained POD basis vectors are given in Table 2. Results

Table 2. Relative energy of excluded modes for cases of one, two, and three retained modes.

Number of retained modes "rel

1 3:90� 10�4

2 7:04� 10�6

3 1:22� 10�9
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of reduced-order simulations with varying number of retained modes and number of snapshots are given in
Fig. 10 with e calculated in 0.5 s intervals.
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(a) One basis vector retained.
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(b) Two basis vectors retained.
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(c) Three basis vectors retained.

Figure 10. POD percentage error for varying number of snapshots and retained number of basis vectors.

From the results shown, one cannot conclude that taking more snapshots will result in a smaller error for
any arbitrary time instant regardless of the number of basis vectors retained. Though in general it appears
that taking more snapshots is advantageous, for certain time intervals the error is lower for the cases of fewer
snapshots. To understand the underlying causes of this, the e�ect of number of snapshots on the POD error
was investigated at the speci�c time instant of 200 s. POD bases were generated for cases with varying
numbers of snapshots ranging from 5 to 401. For each case, the error of the POD solution using 3 POD
basis vectors at 200 s was calculated.

From Fig. 11, one can see that the increase in error with number of snapshots is in agreement with the
results shown in Fig. 10 at 200 s in that the error increases asymptotically with number of snapshots. To
further investigate the error of the POD basis as a function of number of snapshots, the relative energy of
the excluded basis vectors given by Eq. (28) was calculated for varying number of snapshots as shown in
Fig. 12. Again, three basis vectors were retained and the number of snapshots ranged from 5 - 401.

The trend in Fig. 12 is similar to that in Fig. 11 and indicates that the energy of the �rst three POD
vectors relative to that of the full set decreases asymptotically with increasing number of snapshots. It is
believed that the reason for the increase in error with number of snapshots is due to spreading of the energy
to higher modes with increasing number of snapshots. The number of POD basis vectors obtained is equal
to the number of snapshots taken. Because taking more snapshots results in more POD basis vectors being
created, it is possible that as more snapshots are taken, the proportion of energy contained in the �rst three
basis vectors relative to the total energy of the set may decrease. The energy of the �rst three POD modes
increases at a slower rate than the that of the higher modes with number of snapshots for this particular
case.
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Figure 11. POD error for varying number of snapshots at 200 s.
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Figure 12. Relative energy of excluded basis vectors for varying number of snapshots at 200 s.
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To understand the relevance of each of the �rst three POD modes to the solution, the modal coordinates
of these modes were plotted as a function of number of snapshots again at 200 s and the results are given
in Fig. 13. Again, in this case only the �rst three modes were used for the solution. Although the change is
small, the modal coordinate of the �rst POD vector decreases with increasing number of snapshots. Those
of the second and third POD vectors increase with increasing number of snapshots. These trends indicate
that some of the energy of the �rst POD mode is being spread to the higher POD modes as the number of
snapshots increases.
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(a) Modal coordinate of �rst POD basis vector.
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(b) Modal coordinate of second POD basis vector.
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(c) Modal coordinate of third POD basis vector.

Figure 13. Modal coordinates of �rst three POD basis vectors for varying number of snapshots at 200 s.

Finally, the utility of taking additional snapshots is measured by calculating the projections of the
snapshots onto the subspaces spanned by the �rst snapshot, the �rst two snapshots, the �rst three snapshots,
and the �rst four snapshots. Snapshots lying in the space already spanned by previous snapshots provide
no additional information while snapshots orthogonal to the space already spanned by previous snapshots
provide maximum information. The full QR factorization of the snapshot matrix is �rst computed such that
A = QR where Q is an orthogonal s� s matrix and R is an upper triangular s� n matrix. The columns of
Q have the property that they span the same subspace as the corresponding columns of A such that41

hq1i = ha1i
hq1; q2i = ha1; a2i

hq1; q2; q3i = ha1; a2; a3i (53)
...

hq1; q2; : : : ; qji = ha1; a2; : : : ; aji;

where h�i indicates the subspace spanned by the vectors enclosed in the brackets. One can therefore use the
columns of Q to form orthonormal subspaces that span the subspaces of the corresponding columns of the
snapshot matrix. Each snapshot is �rst normalized to unit magnitude, i.e.,

kâik2 = 1; i = 1; : : : ; n; (54)
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so that the magnitude of the projection of each snapshot onto the various subspaces will lie between zero
and one. If we take Q̂ to be the truncated version of Q containing the �rst j columns of Q, the projection
onto the space spanned by Q̂ is given by Q̂Q̂T . If a snapshot âi lies in the span of Q̂, then applying the
projection results in âi itself, i.e.,41

Q̂Q̂T âi = âi: (55)

De�ne the residual, R, as the normed di�erence between the projection of the i-th snapshot onto the subspace
and the actual snapshot given by

R = kQ̂Q̂T âi � âik2; (56)

where a zero value of R indicates that the snapshot already lies in the subspace while a value of one indicates
that the snapshot is orthogonal to the subspace. Results are given in Fig. 14 for projection of each of the
snapshots onto the subspaces spanned by the �rst, �rst two, �rst three, and �rst four snapshots.
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Figure 14. Residual of projection of snapshots onto various subspaces.

The results indicate that the space spanned by just the �rst three snapshots comes close to containing all
of the snapshots. Projection of the snapshots onto the subspace spanned by the �rst four snapshots shows
almost no noticeable di�erence from that onto the subspace spanned by the �rst three snapshots, indicating
there is very little new information introduced by including the fourth snapshot. These results indicate that
the �rst three snapshots capture most of the dynamics necessary for creation of the POD basis. This is not
unexpected as the constant, uniform heat 
ux should lead to system dynamics which are easily captured as
opposed to a case with more complex boundary conditions.

IV.B. Pre-Speci�ed Time-Dependent Thermal Load Vector

The next case considered is that of a time-dependent thermal load vector whose functional form is speci�ed
a priori. One of the fundamental approximations to be examined in this case study is the use of a �xed
POD basis for cases with time-varying natural boundary conditions. The advantage of using the same basis
throughout the transient is that the need to perform the time-consuming computation of regenerating the
basis during the course of a simulation is avoided. Additionally, the actual thermal loads on the HSV will
not be known ahead of time, and the basis must therefore be robust to changes in the boundary conditions.
The POD basis vectors are treated as Ritz vectors, similar to their use in structural dynamics. The basis
vectors must only satisfy the Dirichlet boundary conditions66 (�xed-temperature boundary conditions in this
case), and since the boundary conditions will only be of the Neumann type, the POD basis will satisfy the
necessary conditions of Ritz modes throughout the transient. This case will be also used to compare the
accuracy of the decoupled analytical POD solution with that of the numerically integrated POD solution
with the goal of assessing the e�ect of the size of the time step on the numerical solution. This is important
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as the size of the time step used for the numerical solution of the thermal problem will dictate how frequently
the thermal load vector must be updated. The form of the thermal load vector used for this case is given by

F (x; y; z; t) = H(t)~g(x; y; z); (57)

where H(t) is a scalar time-dependent coe�cient and ~g(x; y; z) is a spatially varying vector. For this study,
H(t) is taken to be sin (!t) with ! = 0.01 Hz and ~g(x; y; z) is obtained from the uniform 10 W=cm2 case
above. The i-th decoupled equation will then be of the form

_~ci(t) + ~ki~ci(t) = sin (!t) ~gi; (58)

and the solution subject to the initial condition ~c(t = 0) = 0 is given by

~ci(t) =
~gie�

~kit! � ~gi! cos (!t) + ~gi~ki sin (!t)
~k2
i + !2

: (59)

The POD basis was �rst created by taking 501 snapshots in evenly spaced intervals between 0 and 500
seconds with one snapshot per second. Note that the snapshots were taken by decoupling the full system
using the full eigendecomposition of the system and solving each equation analytically to eliminate any error
that would be incurred due to numerical time-stepping. The temperature response from 0 to 2,000 s for a
node at the outer surface of the heat shield, outer surface of the insulation layer, and on the bottom skin is
given in Fig. 15.
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Figure 15. Temperature response for three selected nodes for the case of time-varying heat 
ux.

Once the snapshots were taken, the correlation matrix and its eigendecomposition were found. The
magnitudes of the �rst nine eigenvalues of the correlation matrix are given in Fig. 16. Based on the eigenvalues
of the correlation matrix, only the �rst four POD modes were retained in the solution. Note that the relative
energy of the excluded POD modes as calculated using Eq. (28) is 1:58�10�9. The �rst step was to compare
the full-order solution with the solution obtained by introducing the POD modes, decoupling the equations,
and solving them analytically, hereafter referred to as the POD-analytical solution. Using e from Eq. (52),
the error of the POD-analytical solution is given in Fig. 17 for the time interval in which the snapshots were
taken (between 0 and 500 s).

Though the POD-analytical solution shows good agreement with the full-order solution within the time
range in which the snapshots were taken, it is likely that the reduced-order solution will need to extrapolate
temperature distributions for time instants that are outside of the time interval in which the snapshots
are taken for the actual HSV simulations. Thus, the POD-analytical solution was compared with the full-
order solution from 0 to 2,000 s to investigate the accuracy of the reduced-order solution outside of the time
interval in which the snapshots were taken. Results for cases with three, four, �ve, and six POD basis vectors
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Figure 16. First nine eigenvalues of correlation matrix for the case of time-varying heat 
ux.
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Figure 17. POD-analytical solution error.
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retained in the POD-analytical solution are given in Fig. 18. As seen in the �gure, the overall accuracy of the
reduced-order solution outside of the time range in which the snapshots were taken is lower than that within
the time range in which the snapshots were taken. Furthermore, though retaining more than four POD basis
vectors results in little improvement in solution accuracy between 0 and 500 s, the use of additional basis
vectors has a more prominent e�ect on the error for times beyond 500 s.
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Figure 18. Error of POD-analytical solution from 0 - 2,000 s for varying number of basis vectors.

In actual aerothermoelastic simulations of HSVs, the time-dependence of the thermal boundary conditions
will not be known ahead of time as the heat 
ux will depend on 
ow parameters which are in
uenced by the
structural dynamic response. The simulations used to take the snapshots and create the POD basis may not
therefore represent the thermal boundary conditions that the structure will see in the actual simulations.
In order to most closely capture the space in which the solution is likely to lie, it is necessary to design the
simulations to excite all of the system dynamics which are expected throughout the mission. To examine
the e�ect of extracting POD modes from simulations with boundary conditions that are di�erent from those
present in the actual simulation, the POD basis from the previous constant heat 
ux case was used to obtain
solutions for the current case of a pre-speci�ed time-varying heat 
ux. The error between the full-order
solution and POD-analytical was calculated between 0 - 2,000 s using varying number of basis vectors and
results are given in Fig. 19. Note that the errors for the cases of four and �ve basis vectors retained are
virtually identical. Comparing Fig. 19 with Fig. 18, it is observed that there is not a dramatic loss of error
when the modes are taken from snapshots of simulations with boundary conditions that are di�erent from
those in the actual solution. Though more modes may need to be retained if the time-dependence of the
boundary conditions is not known ahead of time, this result strengthens the case that it may be possible to
use POD modes that are obtained a priori for the full aerothermoelastic HSVs simulations.

The accuracy of the coupled, numerically integrated POD solution, hereafter referred to as POD-
numerical, is now investigated. The numerical solution is carried out using the Crank-Nicolson scheme
as described previously using the �rst four POD basis vectors. Recall that the temperatures at the next
time step Tn+1 depend on the thermal load vector at that next time step, gn+1, as shown in Eq. (44). As we
have speci�ed the time-dependence of the thermal load vector ahead of time, for the �rst case we will use
this information by calculating the actual value of gn+1 and using it in the calculation of the temperatures,
Tn+1. The transient temperature history for this case for node 238 which is approximately at the mid-chord,
mid-span location on the bottom outer surface of the heat shield of the control surface is given in Fig. 20
for the full-order solution and POD-numerical solution with �t = 10 s and �t = 25 s. Again, note that
the full order solution is obtained analytically and thus does not contain numerical error. The error of
the POD-numerical solution with respect to the full order solution was then calculated over time using the
spatial error norm, e, for various time step sizes. The results are given in Fig. 21.
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Figure 19. Error of POD-analytical solution from 0 to 2,000 s using modes from constant heat 
ux case.
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Figure 20. Temperatures at Node 238 for full order and POD-numerical solution with varying time step sizes.

26 of 35

American Institute of Aeronautics and Astronautics



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

Time [s]

S
pa

tia
l E

rr
or

 N
or

m
, e

 [%
]

∆ t = 1 s
∆ t = 5 s
∆ t = 10 s

Figure 21. Error of POD-numerical solution using known time-dependence of thermal load vector.

While using the known time-dependence of the thermal load vector at the time instant at which the
solution is desired results in reasonable accuracy, this is not possible within actual HSV aerothermoelastic
simulations as the thermal load vector will not be known ahead of time. This is due to the fact that it
depends on the instantaneous 
ow parameters, which change as the structure deforms. A nonlinear solution
is undesirable as this would counteract the computational savings of using reduced-order models. As the cost
of time-marching the transient thermal solution has been made relatively cheap through the use of POD,
reducing the size of the time step and performing a linear solution at each time step is expected to achieve
the desired computational e�ciency while still maintaining reasonable accuracy. As such, the error of the
POD-numerical solution was again calculated, except the problem was treated as if the thermal load vector
is not known ahead of time. Instead, it was treated as piecewise constant such that gn+1 = gn between
each set of time steps. Once the temperature is calculated at the current time instant, the load vector is
updated and again assumed constant until the next update. The error of the POD-numerical solution with
this approximation is given in Fig. 22 for various size time steps.
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Figure 22. Error of POD-numerical solution with piecewise constant approximation to thermal load vector.
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Comparing Fig. 22 with Fig. 21, we see that the error introduced through the piecewise constant approx-
imation of the thermal load vector can signi�cantly increase the error of the POD-numerical solution. Thus,
careful attention must be paid to the time step selection or alternative approximations should be made in
the actual HSV simulations. One potential alternative to the piecewise-constant approximation would be to
create a functional representation of the thermal loads in between updates based on the values at previous
time instants.

IV.C. Use of POD Within Aerothermoelastic Simulation Framework

A time-marching procedure with updates to the thermal and structural boundary conditions at speci�ed
intervals is proposed for solution of the coupled aerothermoelastic problem. This approach is based on an
extension of the quasi-steady formulation utilized in a previous work67 to include unsteady aerodynamic
e�ects and inertial e�ects due to structural dynamics. An outline of the time-stepping schedule is given in
Fig. 23.
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Figure 23. Overview of aerothermoelastic time-stepping schedule.

A fundamental assumption to be investigated in the study is that the size of the aeroelastic time step,
�tAE , will be smaller than the size of the aerothermal time step, �tAT . The procedure begins by calculating
the aerodynamic 
ow properties over the undeformed structure at initial time. The heat 
ux is then calcu-
lated which gives the skin friction coe�cient to be used in the viscous drag calculation. The aerodynamic
pressures and viscous drag are then integrated to determine the aerodynamic forces and moments at initial
time. A pre-determined number of thermal time steps (four in this example), each of size �tAE , are then
taken and the thermal loads from the �rst thermal step are applied to the undeformed structure. Addition-
ally, the aerodynamic loads based on the already calculated 
ow properties are applied to the structure. The
structural deformations are then calculated. The displacements are fed back into the aerodynamic solver
and the 
ow properties are calculated at time t + �tAE over the updated deformed con�guration. At each
aeroelastic time step, the updated aerodynamic pressure loads and thermal loads are applied to the structure.
Additionally, each time the 
ow properties are re-calculated, the aerodynamic pressures are integrated to
allow for characterization of the transient aerodynamic forces and moments on the vehicle. The aeroelastic
iterations continue to be carried for a pre-determined number of time steps. Once the time instant t+4�tAE
has been reached, the aerodynamic 
ow properties at the current time instant are used to update the aero-
dynamic heat 
ux. With the updated thermal boundary conditions known, the transient thermal solution is
marched forward another four time steps and the process is repeated. The procedure of time-marching the
various solutions involved is a major aspect of this study. Speci�c parameters to be investigated involve the
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number of aeroelastic time steps before updating the thermal boundary conditions and the size of the aeroe-
lastic and aerothermal time steps. Though results are not ready for publication at this time, the following
sections describe the formulations for solution of the various aspects of the aerothermoelastic problem.

IV.C.1. Reduced Order Modal Basis Solution for Structural Dynamic Response

The problem of solving for the structural dynamic response of hypersonic vehicle structures within a control
design and evaluation framework is complicated by various factors. Due to the large number of degrees
of freedom involved in a traditional �nite element solution, steps must be taken to reduce the order of the
structural dynamics system of equations. A common approach is to employ a modal transformation in which
the structural displacements are written as a linear combination of small number of basis vectors which are
the free vibration mode shapes of the structure. However, this approach cannot be applied directly for
hypersonic vehicle problems as the mode shapes change over time due to geometric sti�ness and material
degradation e�ects. The approach taken in this work is to �rst perform an o�-line calculation and select a
reduced number of Ritz modes based on the free vibration modes of the structure at a reference temperature
distribution. These Ritz modes will then be used as the modal basis for solution of the structural response
throughout the simulation. This procedure is applicable as the Ritz modes need only to satisfy the geometric
boundary conditions,66 which will always be the case regardless of the sti�ness distribution. The reference
modes, �ref , will not be updated during the simulation, thus avoiding the solution of an eigenvalue problem
of the full system at each time step. Consider the system of structural dynamics equations of motion given
by

Ms�x+K�s (T )x = Fs (t) ; (60)

where Ms is the mass matrix, Fs is the load vector, x are the physical degrees of freedom. The modi�ed
sti�ness matrix, K�s , is given by

K�s (T ) � Ks(T ) +KG(T ); (61)

where Ks(T ) is the conventional sti�ness matrix that varies due to the temperature-dependence of the
material properties and KG (T ) is the geometric sti�ness matrix resulting from thermal stresses. Though
the reference modes will not be updated throughout the simulation, the modi�ed sti�ness matrix will be
updated at pre-determined time intervals to account for the dependence on temperature. Updating of the
conventional sti�ness matrix is performed using the functional dependence of the Young’s Moduli of the
various materials. The geometric sti�ness matrix is updated by solving a static �nite element problem based
on the thermal loads from temperatures at the current time step and the corresponding material coe�cients
of thermal expansion. The physical degrees of freedom are expressed as a linear combination of the reference
free vibration modes such that

x = �ref�; (62)

where � represents the modal coordinates of the reference modes. Once the modi�ed sti�ness matrix is known
at the current time instant, the system is reduced by substituting Eq. (62) into Eq. (60) and pre-multiplying
the system by �Tref , i.e.,

�TrefMs�ref �� + �TrefK
�
s (T ) �ref� = �TrefFs (t) : (63)

As the mass of the structure will be taken to be constant in this work, the reference modes will be orthogonal
with respect to the mass matrix and the product �TrefMs�ref will reduce to the identity matrix. Since the
modi�ed sti�ness matrix will be continuously changing, we have no guarantee of orthogonality of the reference
modes with respect to sti�ness, and the equations will be coupled. As such, a numerical integration routine
will be employed to calculate the vector of modal coordinates at each time instant. Note that since the
number of reference modes to be used in the modal expansion will be much less than the number of physical
degrees of freedom in the model, the computational cost of the numerical solution of the system will be
relatively low.

IV.C.2. Heat Flux Calculation

In order to obtain the temperature distribution associated with the thermal load applied to the structure, the
transient heat transfer problem must �rst be solved. Solution of the heat transfer problem requires boundary
conditions at the outer surfaces of the model and initial temperature conditions. For the initial condition,
the structure is assumed to be at a uniform temperature of 311 K (100 �F). For the boundary conditions,
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this study considers a convective heat 
ux due to aerodynamic heating, and radiation to the atmosphere
at the outer surface. As this analysis considers a cruise trajectory at 26 km (85,000 ft), the atmospheric
temperature is taken to be constant at 222.5 K.

In order to calculate the spatially varying heat 
ux resulting from aerodynamic heating, the local
freestream pressure, temperature, and Mach number must �rst be found. To calculate the initial values
of these properties, an aerodynamics solution (to be described in the subsequent section) is generated based
on the undeformed con�guration of the model. Once the values of these aerodynamic parameters are known
at each node of the model, the values from corresponding nodes of each element are averaged and treated
as constant over the element so that an element-uniform heat 
ux can be calculated. From Holman,68 the
convective heat 
ux at the surface is given by

_qaero = h(Tw � Tr); (64)

where h is the heat transfer coe�cient, Tw is the wall temperature, and Tr is the recovery temperature
or adiabatic wall temperature. Because the process that brings the 
uid to rest in the boundary layer is
irreversible, and because not all of the free-stream kinetic energy is converted to thermal energy in this
process,68 a recovery factor is used, which is given by

rf =
Tr � Te
Tt � Te

; (65)

where Te is the temperature at the outer edge of the boundary layer and Tt is the total temperature or
stagnation temperature. The total temperature is given by

Tt = Te

�
1 + (
 � 1)

M2
e

2

�
; (66)

where Me is the Mach number at the edge of the boundary layer, Te is the temperature at the edge of the
boundary layer, and 
 is the ratio of speci�c heats which is taken to have the constant value of 1.4 in this
study. Note that the local pressure at the edge of the boundary layer will be calculated from piston theory.
However, the local temperature and Mach number at the edge of the boundary layer are both required to
�nd the total temperature. To �nd these properties, isentropic 
ow is assumed between the leading edge
and the location of interest on the surface of the structure. For an isentropic process, the total pressure and
total temperature remain constant and one can write

pt = p1

�
1 +


 � 1
2

M2
1

� 


�1

= pe

�
1 +


 � 1
2

M2
e
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�1

(67a)

Tt = T1
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1 +
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2
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1

�
= Te

�
1 +


 � 1
2

M2
e

�
; (67b)

where pt is the total pressure, p1, T1, and M1 are the freestream 
ow properties, and pe and Me are the
local 
ow properties at the edge of the boundary layer. Using these relations, we can then express ratios
between the freestream pressure and temperature and the local pressure and temperature as

pe
p1

=

 
1 + 
�1

2 M2
1

1 + 
�1
2 M2

e
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�1

(68a)

Te
T1

=
1 + 
�1

2 M2
1

1 + 
�1
2 M2

e

: (68b)

This study assumes turbulent 
ow, thus the recovery factor is given by

rf = Pr1=3; (69)

where the Prandtl number, Pr, is approximated by assuming a constant value of 0.7.68 Due to the large
property variations across the boundary layer in the hypersonic 
ow, the constant-property heat transfer
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relations are used with the properties evaluated at a reference temperature, T �, as proposed by Eckert.69

The reference temperature is given by

T � = Te + 0:50 (Tw � Te) + 0:22 (Tr � Te) : (70)

Once the reference temperature is known, the reference density, ��, and reference viscosity, ��, are calculated
using the ideal gas law and Sutherland’s law, respectively. With these reference quantities known, the
Reynolds number is found using

Re�x =
��Vexd
��

; (71)

where xd is the distance from the leading edge and Ve is the velocity of the 
ow at the outer edge of the
boundary layer. With the local Reynolds number known, the skin friction coe�cient, c�f , is calculated using
the Schultz-Grunow relation which accurately represents measurements with Reynolds numbers up to 109

and is given by69

c�f =
0:370

(log10Re
�
x)2:584 : (72)

Once the skin friction is known, the reference Stanton number can be found using the Colburn-Reynolds
analogy,

St� =
c�f
2
Pr�2=3; (73)

and the heat transfer coe�cient is found using the de�nition of Stanton number,

h = St�cp�
�Ve: (74)

Note that the 
ow is assumed to be calorically perfect for the purposes of this study and thus a constant
value of speci�c heat, cp, is used. Using the heat 
ux and radiation boundary conditions along with the
initial temperatures, the temperature distribution is propagated forward in time using a transient thermal
solution.

IV.C.3. Unsteady Aerodynamic Modeling

To capture the unsteady aerodynamic e�ects due to oscillation of the airfoil, piston theory will be used
for calculation of the aerodynamic pressures acting on the outer surface of the structure. This theory
provides a closed form expression which relates the local pressure resulting from a body’s motion to the
normal component of the 
uid velocity at the location of interest. Early development of piston theory was
performed by Lighthill70 who discussed its application to oscillating airfoils. Ashley and Zartarian71 further
discussed the theory and applied it to a variety of aeroelastic problems. The fundamental underpinning of
this aerodynamic theory is that in a two-dimensional inviscid 
ow, a perpendicular column of 
uid stays
intact as it passes over the surface of a structure.72 Thus, the unsteady pressure is a calculated at a speci�c
location as if it were the face of a piston moving into a one-dimensional channel. The pressure on the face
of a piston moving in a channel of perfect gas with velocity Vn is given by71

p

p1
=
�

1 +

 � 1

2
Vn
a1

� 2


�1

; (75)

where p is the surface pressure, p1 is the freestream pressure, Vn is the velocity of the surface normal to
the 
ow, and a1 is the freestream speed of sound. Due to the hypersonic 
ow regime considered in this
work, third order piston theory will be utilized.73 The pressure coe�cient based on third order expansion
of Eq. (75) is given by74

Cp =
2

M2
1

"
Vn
a1

+
(
 + 1)

4

�
Vn
a1

�2

+
(
 + 1)

12

�
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#
: (76)

The pressure coe�cient for compressible 
ow is given by75

Cp =
2


M2
1

�
p

p1
� 1
�
: (77)
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Using Eq. (77) in Eq. (76), we obtain76

p� p1 = 
p1

"
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+
(
 + 1)

4

�
Vn
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+
(
 + 1)

12

�
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�3
#
: (78)

Note that Vn is given in terms of the freestream velocity, U1, and the position of the outer surface of the
structure, Z (x; y; t), by

Vn =
@Z(x; y; t)

@t
+ U1

�
@Z(x; y; t)

@x
+ �

�
(79)

where x is the freestream direction, Z(x; y; t) is the position of the surface of the structure, and � is the
angle-of-attack. Note that Z(x; y; t) is a function of the elastic deformation of the structure and the geometry
of the outer mold line and is given by

Z(x; y; t) = wd(x; y; z; t) + Zstr(x; y); (80)

where wd is the displacement in the z direction normal to the 
ow direction and Zstr(x; y) is a function
describing the geometry of the outer mold line of the structure. Calculation of the spatial and temporal
partial derivatives in Eq. (79) are performed using �nite di�erence approximations at the nodal locations of
the �nite element grid.

V. Concluding Remarks

A reduced-order formulation for solution of the transient heat transfer problem based on POD has been
given. This method has been chosen due to the optimality of the POD basis in representing the dominant
modes of a system with the smallest possible number of basis vectors. The basis has been obtained in this
work by taking snapshots of the solution over time from representative full-order simulations and detecting
the correlation between snapshots. The solution of the reduced-order system of transient thermal equations
resulting from projection onto the truncated basis was carried out using two di�erent methods: one in which
the equations were decoupled and solved analytically and another in which the equations were numerically
integrated directly. The methodology was applied to a representative hypersonic vehicle elevator model as
such a control surface is expected to have a signi�cant contribution to the dynamics of the vehicle.

The �rst case analyzed was that of a time-independent, uniform thermal load vector. Results indicated
good agreement between the full-order and reduced-order solutions. Investigation into the e�ect of number
of snapshots on the solution indicated that the error incurred in the reduced-order solution does not always
decrease with number of snapshots. This can be at least partly attributed to the increase in relative energy
of the excluded basis vectors with increasing number of snapshots. Additionally, it was shown that for this
case, the contribution of additional snapshots degrades rapidly after approximately three snapshots due to
the fact that subsequent snapshots come close to lying in the subspace already captured by the �rst three
snapshots.

Application of the methodology to a case with a pre-speci�ed time-varying thermal load vector allowed
for investigation of the error incurred by not updating the basis as the natural boundary conditions change.
Results from the POD-analytical solution showed good accuracy in the time range considered by the snap-
shots, however the error was found to increase outside of the time range considered by the snapshots. Use of
the basis from the constant heat 
ux case for solution in the time-varying case showed that although there
is an increase an error, acceptable accuracy may be obtained even if the time-dependence of the boundary
conditions is not known a priori. This provides support of the use of the same basis throughout hypersonic
aerothermoelastic simulations. Solution of the reduced-order system using a numerical integration scheme
showed that the accuracy is strongly dependent on the size of the time step chosen. Furthermore, results
indicate that investigation into methods for approximating the time-dependence of the thermal loads in
between updates may be warranted.

A reduced-order hypersonic aerothermoelastic simulation framework was described in which the POD
formulation is used for the thermal aspect of the solution. The framework is a time-marching scheme in
which the thermal and structural boundary conditions are updated at di�erent rates. A reduced-order
modal method is used for solution of the structural dynamics equations of motion. The aerodynamic heat

ux boundary conditions are calculated using a �rst-principles Eckert reference temperature formulation.
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The unsteady aerodynamic loads are computed using a third-order piston theory expansion. The goal for the
thermal component of this framework is to create a POD basis that is robust enough to be used throughout
the simulation. This eliminates the need for solution of large-scale heat transfer solutions during the course
of the simulation. The use of proper orthogonal decomposition for transient thermal solution will contribute
to reducing the computational burden and number of states in hypersonic aerothermoelastic simulations.
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