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A size-dependent strain gradient Mori-Tanaka model (SGMT) is developed by applying 
strain gradient elasticity to the classical Mori-Tanka (M-T) method. The SGMT model is 
shown to be able to accurately predict the experimentally observed increase in stiffness of a 
layer- by-layer (LBL)-assembled polyurethane-montmorillonite (PU-MTM) nanocomposite 
with various volume fractions. 3D Finite Element (FE) models of a representative volume 
element (RVE) are used to study the stiffness enhancement mechanism of the LBL PU-MTM 
nanocomposite. An effective constant thickness interphase is introduced in the FE 
simulations, which is analogous to using a formulation that incorporates strain gradient 
effects. An inverse method to determine the effective thickness and stiffness of the interphase 
layer using FE simulations is also presented. 

Nomenclature 

ij , ij  = applied constant stress and overall strain at the boundary  

ij~ , ij
~  = perturbation stress and strain in the matrix 

pt
ij ,  = second perturbation stress and strain in the inclusion pt

ij
0
ijklC
0

, = stiffnesses of the matrix and the inclusion 1
ijklC


kl ,  = initial uniform strain in the matrix and the eigen strain mn

klmnS  = Eshelby tensor 

  = spatial average of a field quantity 

E0, E1  = Young’s moduli of the PU matrix and the clay particle  
Exy ,Eyx  = in-plane Young’s moduli of the nanocomposite 
Exz ,Eyz  = out-of-plane Young’s moduli of the nanocomposite 
v0, v1 = Poison ratios of the PU matrix and the clay particle  
vxy, vyx = in-plane Poisson ratios of the nanocomposite 
vxz, vyz = out-of-plane Poisson ratios of the nanocomposite 
f = volume fraction of clay  
l = intrinsic material length scale 
β = dimensional parameter of strain gradient term 
a = non-dimensional parameter of strain gradient term  

I. Introduction 
lassical two-phase micro-mechanics models, such as the Mori-Tanaka (M-T) model1,2 and the Halpin-Tsai (H-
T) model3,4 fail to predict the mechanical stiffness of LBL PU-MTM nanocomposites, as reported by other 

researc 5-8hers when applying these models directly to nanocomposite structures.  One possible reason is that the 
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ed by the strain at that point. 
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II. Strain Gradient Mori-Tanaka Model 
In this section, a strain ucing the theory of strain gradient 

classical two-phase M-T model does not include the contribution of the interphase, a finite zone of material that 
surrounds the inclusions and is a main structural feature of nanocomposites, significantly contributing to the 
property enhancement mechanisms of nanocomposites. However, the precise manner by which the interphase forms 
is still unknown. Depending on the components and the manufacturing processes of various types of 
nanocomposites, the existence of the interphase can be attributed to the gyration of the polymer chain,9,10 the effect 
of covalent cross-link density,11 or the thermodynamic effect.12-14 In the view of continuum mechanics, the 
interphase is a region that can be characterized as consisting of  constrained polymer chains around nanoparticles.15 

The presence of large strain gradients around the particles were shown by analytical and numerical models with 
perfect bonding.16,17 In a real nanocomposite, both the presence of an interphase and the existence of strain gradients 
can contribute to the stiffness enhancement mechanism and particle size effect simultaneously.  

Currently, no reliable experimental method for determining the interphase properties exists, alth
orts have been made to find one.13,18,19 More information about the current status of the study of the role of the 

interphase in nanocomposite mechanics can be found in a review paper.20 In the present investigation, an inverse 
method using FE simulations of the nanostructure of the RVE is applied to calibrate the mechanical and physical 
properties of the interphase using tensile experimental data. By studying the strain gradient fields predicted by FE 
models without an interphase, the same order of interphase thickness can be obtained. 
      Classical elasticity assumes that the stress at a material point is uniquely determin
Strain gradient elasticity which is a higher order continuum theory of elasticity (Micropolar or Cosserat theories21-26) 
argues that the stress at any particular point in a solid is not only determined by the strain at that point but also by 
the strains of neighboring points. If strain gradients are high, classical elasticity is not sufficiently accurate to 
describe the constitutive behavior of a material and we need to resort to strain gradient theory. In this investigation, 
the strain gradient M-T model (SGMT) is developed and is applied to predict the stiffness of the LBL PU-MTM 
specimens. An alternative strain gradient elasticity theory27,28 is introduced to modify the two-phase Mori-Tanaka 
model derived in the framework of classical elasticity.2 Excellent correlation with experimental data is obtained. 
Strain gradient plasticity has previously been applied to study the plastic behavior of PU-MTM nanocomposites.29 
 In addition, a serious drawback of the classical composite models is size-independency. The size effect o
na ocomposites is such that for the same volume fraction of inclusions, if the inclusion size decreases, material 
properties such as strength and modulus dramatically increase. However, this size effect cannot be explained by 
conventional methods such as the M-T model and H-T model mentioned above, because these models have no 
material length scale included. Li et al.17 showed that by introducing an interphase to the M-T model, a close-form 
hierarchical multi-interphase model (HMM) can predict observed size effects. By introducing the strain gradient 
elasticity, the present SGMT model is also size dependent. The size-dependency of the SGMT model is explained 
conceptually in this study. 

 gradient Mori-Tanaka Model (SGMT) is derived by introd
elasticity27,28 to the classical Mori-Tanaka composite model.2 
First, the constant stresses 

ij  are applied at the boundaries of pure matrix. The stiffness tensor of the matrix is

 

0
ijklC . 

The initial uniform strain in the matrix is 0 . The stress and strain in the matrix satisfy kl

00
klijklij C   .                                                                        (1) 

If the inclusion is ellipsoidal, the stress and strain fields are always uniform and there is no strain gradient. Thus, the 

ation stress and strain in the matrix are described using the strain gradient elasticity 

strain gradient elasticity degenerates into classical elasticity, and the classical composite theory holds. But, if the 
inclusion is non-ellipsoidal, the perturbation strain in the matrix is non-uniform. After adding the inclusions, the 
stress and strain fields in the matrix are not uniform and the uniformity depends on the value of the filler to matrix 
stiffness ratios (SRs) 16.  
The non-uniform perturb
theory,27,28 as shown in Eq. (2). Thus, the average perturbation stress and strain relation becomes: 

 klklijklij lC  ~~~ 220   .                                                             (2) 



where, the notation   is used to represent the spatial average of a field quantity, l is the intrinsic length scale of 

the material. For the LBL nanocomposites,  is related with the thickness of the PU matrix layer. After perturbation, 
the averaged stress field in the matrix is 

l

 klklklijklijij lC  ~~~ 2200  .                                                 (3) 

The strain filed in the inclusion is also perturbed. The perturbation strain in the inclusion is . For composites 

with very high SRs, such as the present PU-MTM nanocomposites, the overall strain in the inclusion are infinitely 

small. Therefore, the gradient of  can be neglected. Thus  is assumed uniform. After the perturbation, the 

averaged stress in the inclusion satisfies  

pt
kl

pt
kl pt

kl

    kl
pt
klklklklijkl

pt
klklklijkl

pt
ijijij lCC  ~~~~ 220001 ,   (4) 

where,  is the stiffness of the inclusion and  is the second perturbation stress, and 1
ijklC pt

ij

                                                                               (5)  mnklmn
pt

kl S 

where,  is the Eshelby tensor and is the eigen strain2. klmnS 
mn

The total perturbation stress in both the matrix and the inclusion should be zero: 

 0~  pt
ijij f ,  (6)                      

where, f  is the volume fraction of the inclusion. The total spatial average strain of the composite is obtained by the 
rule of mixtures: 

pt
klklklkl f  ~0

.                                                               (7) 

The strain gradient term is unknown. To initiate the study, a simplified assumption is made to the perturbation strain 
and strain gradient in the matrix:  

 klkl  ~~2  ,                                                                       (8) 

where, is a parameter relating the strain gradient to strain. Equation (2) and (8) yield 

 klijklij aC  ~~ 0 .                                                                   (9a) 

where,  
21 la  .                                                                       (9b) 

 
Thus, the influence of the strain gradient term can be modeled by the non-dimensional strain gradient parameter a, 
and Eq. (4) becomes 

    kl
pt

klklklijkl
pt

klklklijkl
pt

ijijij aCC  ~~~ 0001  .               (10) 
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The spatial average of the strain in the composite kl  is linearly related to the constant applied stress ij through 

the stiffness of the composite as:  

 klijklij C   ,                                                                    (11) 

in which, the total spatial average strain is 

  )~()~(1 00 pt
klklklklklkl ff   .                                    (12) 

Therefore, the components of the stiffness matrix can be solved from the system of equations above. Compared with 
the classical M-T model, an additional parameter a describing the strain gradient effect is introduced. 

III. Application of the SGMT Model to LBL PU-MTM Nanocomposites 
Polymer/clay nanocomposites, as members of the organic-inorganic nanocomposite family, are promising 

materials exhibiting attractive hybrid physical and mechanical properties arising from synergistic effects among 
their components.17 The nanocomposites show improved mechanical properties over microcomposites with similar 
structures.  No existing micro-mechanics models can predict the elastic properties of nanocomposites. In this 
Section, the SGMT model derived in Section II is applied to a LBL PU-MTM clay nanocomposite.30 

A. Nanostructure 
The LBL PU-MTM clay nanocomposite is a type of nanocomposite that results in a well-defined spacing 

between subsequent clay layers by virtue 
of the sequential layering of polymer and 
clay nanoparticles.31-32 The clay particles 
in the PU-MTM are exfoliated as layers 
composed of disk or flake-shaped 
particles dispersed in a PU matrix. Each 
clay layer is comprised of aligned clay 
flakes separated by the PU matrix in a 
manner similar to the brick and mortar 
structure of nacre.33,34 Specimens with 
various volume fractions of clay are 
obtained by changing the thickness of 
the polymer layers. Overall, these nanocomposites have a well-defined stratified nanostructure. The nanostructures 
of them are idealized by neglecting these irregularities and nonuniformities, as shown in Fig. 1. A RVE based on the 
nanostructure of the PU-MTM nanocomposite is chosen for Finite Element (FE) simulations and is also shown in 
Fig.1.     

 
Figure 1 Sketch of the idealized nanostructure of a LBL 

nanocomposite (Brown squares represent clay particles, green 
layers are polymer layers). 

B. Finite Element Simulations 
Both 2D plane strain and 3D FE models of the RVE shown in Fig. 1 are constructed in ABAQUS 6.6 for five 

specimens with various volume fractions: 5%, 7%, 9%, 12% and 20%. The dimensions of the clay particles and the 
RVEs are determined from the nanostructure. The length of the clay particle is about 110nm, the thickness of clay 
layer is 3.6nm, the z-length of the RVE is 142nm, the x-length of the RVE varies and can be calculated for different 
volume fractions.17 The Young’s modulus of the effective clay particle is E1=270 GPa, reported by Podsiadlo, et al., 
31 the Poisson’s ratio is v1 =0.375; the Young’s modulus of PU is E0 =25 MPa, and its Poisson’s ratio is v0=0.48. 
Each phase is assumed to be linear elastic and isotropic. As a result of orthotropy, the modulus and Poisson’s ratios 
of the 3D RVEs satisfy Exy=Eyx, vxy=vyx, and vyz=vxz. By simulating the in-plane simple tension of 3D RVEs of 
various volume fractions, the elastic parameters Exy, vxy and vxz for various volume fractions can be obtained. In 2D 
plane strain RVEs, the modulus can be calculated by  , where ‘ps’ represents plane strain, vxy is 

obtained from the results of 3D RVEs. Strain gradient effect is simulated by adding an interphase around the clay 
particles. The interphase is assumed to have the same Poisson’s ratio as the PU matrix. To simulate the mechanical 
behavior of a nanocomposite specimen by a RVE that is far from its edge, periodic boundary conditions (PBCs) are 

ps
xyxyxy EvE )1( 2
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(a)                                                                                                (b) 

Figure 2 Contours of tensile strain and stress components from 2D FE results of f=5% (the arrows represent 
the direction of tension). (a) Stain distribution.  (b) Stress distribution. 
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Figure 4 Ductile to brittle transition shown from 
FE results. 

used in the FE simulations. An approach of nodal constraint equations is used to impose PBCs in ABAQUS. Details 
of this approach can be found in the most recent literature.5,6,33 

As an example, the 2D FE results of the tensile strain and stress distributions for a 5% clay specimen are shown 
in Fig. 2. It can be seen that the maximum strains are located in the matrix near the ends of clay particles and the 
maximum stresses are located in the middle of the clay particles. 3D FE results of the tensile strain distributions for 
5% and 20% clay specimens are shown in Fig. 3. 

The thickness and stiffness of the interphase will be determined from FE simulations and experimental results by 
an inverse method. The strategy of this inverse approach is that first, using the fact that a ductile to brittle transition 
is observed from the tests when the volume fraction increases to 12% (see Section IIIC), which indicates a contact or 
overlap of two neighboring interphase layers at f=12%, then the material transfer from three-phase to quasi two-
phase, and the thickness of the interphase is determined. This thickness equals half of the PU layer thickness of the 
12% specimen. Then the stiffness of the interphase for the specimen with volume fraction 12% is obtained by 
comparing the stiffness predicted from the FE results and that 
which is measured from the tensile test.  

 
(a)                                                                                   (b) 

Figure 3  Contours of tensile strain from 3D FE results of f=5% and 20% (the arrows represent the 
direction of tension). (a)  5%.   (b) 20%. 

C. Ductile to Brittle Transition 
It is observed from tests that for small volume fractions 

of clay, the LBL PU-MTM nanocomposite shows a ductile 
stress-strain behavior, but when the volume fraction of clay 
increases to 12%, a brittle material response occurs and the 
specimen breaks in the elastic regime. The same brittle 
behavior is displayed when the volume fraction is 20%. 
Therefore, a ductile to brittle transition of this material 
occurs when the volume fraction of clay increases to about 
12%.  This transition is captured by the 3D FE simulations 
with an interphase. Recording the maximum stresses in the 
3D RVEs for various volume fractions at the same controlled 
tensile displacement, 1nm, when the corresponding overall 
strain is about 0.7%, a jump of the maximum stress is shown 



in Fig.4, close to the case corresponding to 12%, which is consistent with experimental observations. By comparing 
the FE simulations with and without an interphase, it can be concluded that this transition can mainly be attributed to 
the presence of an interphase. In addition, Fig. 4 shows that by introducing the interphase, the maximum stresses in 
the clay particles increase substantially for all volume fractions, indicating that the interphase plays an important 
role in transferring loads to clay particles and is therefore beneficial in strengthening the nanocomposite.  

D. Strain Gradient Effects from the FE results 
From the 2D FE results with no interphase, the 

distributions of tensile strain component along z axis 
(see Fig.1) in the PU matrix between two neighboring 
clay layers can be fitted by parabolas accurately. For 
strains along x axis (see Fig.1) is quasi-constant. Thus 
the strain Laplacian can be calculated from the 
parabola distribution of strains. The distribution of the 
strain gradient term along z is plotted in Fig. 5, which 
shows a rapid increase of the absolute value of the 
strain gradient term, when approaching the clay/PU 
interface for the case of 5%. A similar phenomenon is 
observed for all volume fractions. The area with large 
absolute value of strain gradients near the interface 
can be equivalent to an effective interphase. It is also 
shown in Fig. 5 that with the decrease of volume 
fraction, the peaks of strain gradient term tends to 
flatten, so the assumption of an effective interphase layer with constant thickness used in FE simulations is 
reasonable. The value of 7.2nm thickness for the interphase, calibrated in Section IB, is proved to be consistent with 
the strain gradient analysis, as shown in Figure 5, in which the thickness of the shaded effective interphase area is of 
the same order as that calibrated from FE simulations. 

 

Figure 5 Distribution of strain gradients between 
neighboring clay layers for 2D RVEs with no 

interphase.

E. Results and Discussion 
 In this section, the SGMT model, 3D FE model, 

H-T model, and the classical M-T model are all used 
to predict the Young’s modulus of the PU-MTM 
specimens at various volume fractions. These 
predictions are compared with the experimental data 
reported by Kaushik et al. 30, as shown in Fig. 6. 

 Figure 6 shows that with the assumption of no 
interphase, all analytical and numerical model 
predictions are well below the experimental data. With 
no interphase, the H-T over-predicts the FE results and 
the M-T model is consistent with the FE results for 
small volume fractions but under-predicts the FE 
results for larger volume fractions. 3D FE model with 
an interphase with constant thickness 7.2nm, and the 
stiffness 425 MPa accurately predicts the stiffness of 
all specimens, spanning the volume fraction range 5% 
to 20%. By assuming the parameter a in the strain 
gradient theory is linearly related to the volume 
fraction f: , and, by taking 

pHfaa  0 07.00 a , 

and , the SGMT model captures the stiffness 
of all specimens accurately, as shown in Fig. 6. 

17.0H

Li et al.16 showed that by introducing a constant 
interphase to the M-T model, a close-form hierarchical 
multi-interphase model (HMM) can be derived that is 
size-denpendent. The HMM takes into account the 
influence of an important size-dependent parameter: surface-to-volume ratio, and therefore can be used to predict 

 

 
Figure 6 Comparison of prediction results of the 
SGMT model and other models with experimental 

data for LBL PU-MTM 
nanocomposites 
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particle size effects of nanocomposites. The spatial average of strain around the particles is related to a generalized 
surface-to-volume ratio implicitly, which indicates the SGMT is also particle size-dependant.  

IV. Conclusion 
A strain gradient Mori-Tanaka (SGMT) model is developed by introducing the second strain gradient elasticity 

theory to the M-T model. A simplification is made to estimate the strain gradient effect by relating strain gradients 
to the strain through a non-dimensional parameter a. By assuming that a is linearly related to the volume fraction of 
clay, the SGMT model can capture all the experimental data accurately. The size-dependency of the SGMT model is 
addressed conceptually. An analogy between the strain gradient effect and a constant interphase to account for the 
synergistic effect and size effect of nanocomposites is presented. 

It is shown that strain gradient effect and/or the interphase effect is critical to understanding and evaluating the 
stiffness enhancement efficiency of nanocomposites, from a continuum mechanics modeling view point. Both 
approaches are applied to a LBL polyurethane-montmorillonite (PU-MTM) clay nanocomposite. The nanostructure 
of the LBL PU/MTM is analyzed. Both 2D and 3D FE models of RVEs are developed. An inverse method to 
determine the interphase thickness and its stiffness using 2D plane strain and 3D Finite Element simulations of the 
nanostructures and the experimental data is illustrated. The interphase thickness obtained from the strain gradient 
analysis of the 2D FE results is of the same order as that predicted by the inverse method. 
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