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Two approaches to three-dimensional structural topology optimization using level set
parameterization with arbitrary finite-element meshes are presented. In both approaches
the structural elasticity problem is solved on a fixed finite-element mesh. The shape sensi-
tivities obtained from the solution of the structural problem are mapped to the orthogonal
mesh in order to generate the corresponding advection velocities. The first approach super-
imposes a background Cartesian grid onto the finite element mesh. The level set function is
defined on this Cartesian mesh with the advection velocities being taken as a weighted sum
of the sensitivities at all nearby structural nodes within a prescribed radius. The second
approach defines the level set function on a skewed structured mesh which is coincident
with the finite element mesh. The Hamilton–Jacobi equation is then solved in this trans-
formed mesh space and a Jacobian transformation is used create a one-to-one mapping
between the structural elements and the nodes of the level set mesh. The two methods
are evaluated and compared based upon the results of a benchmark problem involving
three-dimensional topology optimization of an aircraft wing structure. The results indicate
that the Jabobian mapping method offers a significant advantage over the superposition
method, both in terms of convergence time as well as the objective value of the converged
solution.

I. Introduction

Level set methods have proven to be a powerful tool for structural shape and topology optimization as
they allow designers to avoid some of the numerical difficulties associated with traditional homogenization
methods.7,16 However, although the method offers good robustness and mesh-independence, it is also less
flexible than SIMP-based methods, which means that the vast majority of level set schemes have been
restricted to uniform, orthogonal meshes.2,3 This can create a problem when optimizing structures that
occupy complex, non-rectangular geometries both in terms of implementation and computation time. The
current study introduces two new approaches to the level set method for structural optimization whose finite
element models are implemented on a fixed, non-uniform, structured mesh.

Several authors have put forth methods for performing level set optimization on non-uniform meshes,5.9

However, these methods tend to use adaptive meshing in order to fit the elements to the zero contour of the
level set function. These techniques are computationally expensive, making them difficult to use for three-
dimensional problems and design-dependent loading. The current study presents two methods for solving
structural optimization problems with a fixed, non-uniform finite element mesh.

The concept of a background orthogonal mesh has precedent within the structural optimization commu-
nity with the work of Ha and Cho,5 who used a background orthogonal mesh to optimize two-dimensional
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structures with unstructured finite element meshes. Also, many years prior to that study, researchers in
computation fluid dynamics began using a similar approach for solving complex fluid flows involving mov-
ing material interfaces on simple Cartesian grids, allowing them to bypass the expensive task of generating
body-fitted meshes.6

The first method presented here interpolates the advection velocities at each node in the orthogonal mesh
by computing a weighted sum of the sensitivities at all nearby nodes in the structural mesh. The weightings
are given by the inverse of the distance between the two nodes. The second method defines a transformed
coordinate system, which is aligned with the finite element mesh. The advection velocities are computed
in physical space and then converted into the their equivalent in the transformed coordinate system using
a Jacobian transformation. Each method is tested and compared using a three-dimensional aircraft wing
optimization problem, where the internal structure of the wing is optimized. The wing’s outer mold line
defines the working domain of the topology optimization problem and therefore the sweep, taper and airfoil
shape of the wing determine the orientation and mapping of the structural mesh.

II. The Level Set Method

II.A. Problem Formulation

The level set method was developed in the late 1980’s by Osher and Sethian12 as a method for tracking
front propagation. It has been especially popular among researchers in fluid dynamics and computer vision,
though an increasing number authors have begun to apply the technique to structural topology optimization.
The method is similar to the SIMP4 (solid isotropic material with penalization) method in some respects.
However the level set method differs in the way in which the structural shape and topology are parameterized.

In both methods, the design domain is descretized into a series of finite elements whose relative material
density, ρ, is allowed to vary continuously between 0 and 1 with the two extremes representing void and
solid elements, respectively. In the SIMP approach, one optimizes these material densities directly, whereas
in the level set method, one optimizes the location of the material boundary, and from this boundary, Ω,
one determines which elements are solid and which are void as shown below.

min
Ω

J

subject to: c = 0
c̃ ≤ 0
Ku− F = 0 (1)

ρ(xi) =

{
1, xi ∈ Ω
10−3, xi ∈ Ω̄

k(x) = ρ(x)k0

Here, J is an arbitrary objective function that is dependent on the design variable, Ω. The structure
may be subject to equality and inequality constraints, c and c̃, and must satisfy the governing equation
Ku − F = 0, where K is the global stiffness matrix, u is the vector of nodal displacements and F is the
vector of applied forces. Elements located inside the solid region Ω are assigned a material density of unity,
while those lying outside the boundary are given some small non-zero density, ρmin, so that they mimic
the behaviour of a void space but can still be included into the global stiffness matrix without causing
singularities. The densities of elements that are bisected by the structural boundary ∂Ω are interpolated
based on the fraction of that element’s volume that lies inside Ω. The elasticity modulus, E, of a given
element is the product of the element’s relative density and the elasticity of the element in the solid phase,
E0. The material properties are taken to be piecewise constant through each element.

Similarly to the SIMP method, the level set approach begins by defining a bounded domain D ⊂ <d, of
which all admissible structural shapes Ω are a subset. One then parameterizes the material boundary ∂Ω
implicitly using a level set function ψ, where ψ is defined such that
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Figure 1. Sample structural design problem using level set parametrization. Here ΓD denotes the fixed boundary and
ΓN denotes the boundary on which surface tractions are applied

ψ(x) = 0; x ∈ ∂Ω ∩D,
ψ(x) < 0; x ∈ Ω,
ψ(x) > 0; x ∈ (D ∩ Ω̄)

By implicitly representing the material boundary using a higher-order level set function, one allows for
changes in topology such as the removal of a hole or cavity in the structure. The level set function is defined
discretely at the nodes of a structured Cartesian mesh. This data is periodically interpolated in order to
extract the precise location of the zero level set.

II.B. Optimization of the Level Set Function

While the level set method is mesh-independent, the converged solution of the optimization problem is highly
dependent upon the initial topology.3 Therefore, one must carefully select the number of holes in the initial
design according to the desired length scale for the final solution. Once the initial topology and material
boundary are defined, the level set function is initialized as the signed distance of each point in the domain
from the boundary, with negative distances used for points inside the solid region Ω and positive distances
outside.

In each optimizing iteration, the level set function is updated using the following Hamilton-Jacobi equa-
tion (2).

∂ψ

∂t
+ V |∇ψ| = 0, (2)

Rearrangement of this equation leads to the following scalar formula for updating the level set function at
each point in the domain.

ψt+dt = ψt − V |∇ψt|dt (3)

Here the divergence |∇ψ| is computed numerically at each point using finite differencing of the values of
the level set function at adjacent nodes. The advection velocity V is given by the shape sensitivity of
the objective function at each point. The variable t is a fictitious time parameter introduced to track the
evolution of the level set function over the course of the optimization. As shown in Figure 2, this update
corresponds to moving the material boundary by a distance of vdt in the outward normal direction from the
interface. The optimization reaches convergence once the advection velocities are within a small tolerance
along the material interface.

Because the Hamilton-Jacobi update assumes that the spatial derivative is valid over the distance vdt,
it is necessary to periodically reinitialize the level set function to a form that validates this assumption.
Therefore after every few updates, one must recover the signed distance form of the level set function, while
maintaining the location of the current zero level set.3
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Figure 2. Cross-sectional view of a two-dimensional level set function sliced in the plane normal to the x − y plane
(see Figure 3(a)) and which contains the vector n̂ that is normal to the boundary ∂Ω at point x0. As the value of the

function goes up with velocity ψ̇, the boundary point x0 moves outward with a negative velocity of −ψ̇/|∇ψ|.

(a) Optimized level set function (b) Optimized topology

Figure 3. Two-dimensional example of an optimized topology (b) and corresponding level set function

|∇ψ| − 1 = 0 (4)

The results presented rely on an implementation of the fast sweeping method,11,15 which successively
solves the Eikonal equation (4) at each point in the domain beginning with points immediately adjacent to
the zero level set and progressing outward from there.17

II.C. Sensitivity Analysis

The advection velocities described above are given by the shape sensitivities of the objective function in
accordance with the method introduced by Allaire et al .3 The shape sensitivities depend explicitly on the
structural state vector, which is solved for at the nodes of the structural finite element mesh. From here,
the shape sensitivities are calculated analyticaly using the adjoint method.8

II.D. Sensitivity Mapping

II.E. Superpostion

In both the superposition approach and the Jacobian transformation approach, the structural shape sensitiv-
ities are calculated using a non-uniform finite element mesh. In the case of the superposition method, these
sensitivities must be interpolated in order to obtain the the value of the velocity field at the nodes of the
level set mesh. A similar problem arose in Ha and Cho,5 where the authors sought to optimize a hyperelastic
non-linear structure. The hyperelasticity rendered void elements (i.e., elements with low material density)
impractical as they would cause intractable mesh deformations. Consequently, at each iteration a new finite
element mesh was created inside the confines of the current material domain. In order to achieve this, they
used an unstructured triangular finite element and then mapped the sensitivity information from this mesh
to a Cartesian level set mesh using interpolation.
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The method presented here is a variation of the one used by Ha and Cho, but tailored to the fit the
characteristics of the wing optimization problem as defined herein. The volume inside the wetted surface of
the wing is discretized into a structured mesh of hexahedral elements, which are non-rectangular due to the
the wing’s sweep, taper, and airfoil shape. At each node in the level set mesh, the advection velocity V is
calculated as a weighted sum of the sensitivities of each element located within a nominal radius — roughly
equal to the length of one block in the level set mesh — of the that node. The weight coefficient for each
element is inversely proportional to the distance from that element’s centroid to the node in question, (i.e.,

V =

∑
i

1
di
si∑

i
1
di

, (5)

where V is the advection velocity associated with a given node in the level set mesh and is used to perform
the Hamilton–Jacobi update, si is the shape sensitivity associated with a given node in the finite element
mesh, and di is the distance between the two nodes.) Because this method involves taking a small sampling
of the shape sensitivities within a given region, it is hereafter refered to as the sampling method.

Figure 4. Superposition of the skewed structural mesh of the wing onto the orthogonal level set mesh. The advection
velocity at any node in the level set mesh (solid square) is a weighted sum of the shape sensitivities at all neighbouring
structural mesh nodes that lie within the prescribed circle.

In this formulations, the domain of the level set function is comprised of three phases, as shown in
Figure 5. Phase 1 refers to the region inside the material domain, also known as the solid phase. Phase 2
corresponds to the void regions inside the wing. A third phase is used to denote the region which is inside the
level set domain but outside the permissible design domain where no material can be placed. Consequently,
a second level set function, ψ̃ is used to distinguish between phase 3 and the combined region containing
phases 1 and 2. Unlike the original level set function, this one remains fixed throughout the optimization
as the outer shape of the wing is not subject to change. Whereas Ha and Cho used a velocity extension
scheme1 to compute the advection velocities in the regions where no material was present, the formulation
presented here sets all phase 3 advection velocities to zero since the objective function has no dependence
on the behaviour of the level set function, ψ in this region.

Generally, the total volume of the solid region is included as either a constraint or an added term in
some composite objective function. Because each block in the level set mesh represents an actual unit in
physical space, the sensitivities (and advection velocities) of the volume function are independent of the
finite element mesh and therefore no mapping or interpolation is necessary. This is true everywhere except
at those nodes whose adjacent cells straddle the boundary of the permissible design domain. Here, again,
the volume sensitivity is interpolated according to the fraction of the volume of the cell that lies within the
design domain.
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Figure 5. Two-dimensional illustration of the three-phase formulation

II.F. Jacobian Transformation

The first step in this approach is to define a coordinate system that is co-incident with the finite element
mesh. Within the context of this transformed space, edges of the grid are assumed to be orthogonal so that
the Hamilton-Jacobi equation can be solved normally in the transformed coordinate system. A set of local,
orthogonal coordinates (ξ, η and ζ) is defined within each cell of the transformed mesh (Figure 6). These
coordinates can be mapped to global physical space via the Jacobian matrix (6).

Figure 6. Two-dimensional illustration of the mapping from local to global coordinates for an arbitrary quadrilateral
element

J(ξ, η, ζ) =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 , (6)

where the global coordinates {x, y, z} of a given point are computed as a weighted sum of the node locations
(Equation 7).

x =
8∑
i=1

Ni(ξ, η, ζ)xi (7)

Here, the weights, Ni, are given by the linear interpolation functions shown in Equation 7.

Ni(ξ, η, ζ) =
(1 + ξξi)(1 + ηηi)(1 + ζζi)

8
, (8)
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where ξi, ηi, ζi = ±1.
To understand the Jacobian transformation approach it is necessary to revisit the Hamilton-Jacobi equa-

tion. The equation is derived below in the transformed coordinate system. Quantities expressed in trans-
formed coordinates are denoted with the suffix T . We begin with the observation that for any point xT on
the material boundary which is moving in time t, the level set function is equal to zero.

ψ(t, xT (t)) = 0,∀xT ∈ ∂Ω(t) (9)

Taking to total derivative with respect to t we get

∂Tψ

∂t
+ xT (t) · ∇Tψ =

∂Tψ

∂t
+ VTnT · ∇Tψ, (10)

where VT is the magnitude of the normal velocity of the point xT evaluated in the transformed coordinate
system. This equation reduces to the form shown in Equation 2, when noting that the normal vector nT
is given by nT = ∇Tψ/ |∇Tψ|. The advection velocities are given by the structural shape sensitivities.
These are derived using the structural displacement field, which is computed discretely in real physical
space using the governing finite element equation as defined in (1). For compliance (C) sensitivities, the
shape derivative s is equal to twice the strain energy density, which is approximated as the local element
compliance, normalized with respect to the element volume.

∂C

∂Ω

∣∣∣∣
e

= −uTeKeue/vole, (11)

where ue and Ke are the element nodal displacement vector and the element stiffness matrix respectively.
Note that the element volume vole is given by the integral of the determinant of the Jacobian over the entire
element (in local coordinates).

vole =
∫
e

det(J(ξ, η, ζ))dξdηdζ (12)

In the case of a constraint on the volume fraction (vfrac), the shape sensitivity is given by,

∂volfrac
∂Ω

∣∣∣∣
e

=
1

volD
, (13)

where volD is the total volume of the working domain. Since both sensitivities represent densities (i.e. some
quantity per unit volume), their analog in the body-fitted coordinate system can be obtained simply by
mupltiplying by an extra factor p, which is given by the amount of volume in physical space per unit volume
in transformed coordinate system within a given cell. We can assume each cell in the level set mesh has a
unit volume when measured in local coordinates. Therefore, the conversion factor is equal to the volume of
the element itself (p = vole). Hence, for a compliance minimzation problem subject to a volume constraint,
the advection velocity in the transformed coordinate system at a given node within the level set mesh is
given by,

VT = sevole = −uTeKeue + λ

∫
det(J)
volD

, (14)

where λ is a Lagrange multiplier.

III. Results and Analysis

III.A. Cantilever Beam Loading

The techniques described above have been used to optimize a modified version of the cantilever beam problem
shown in Figure 7. To evaluate the performance of both methods, the working domain of the standard three-
dimensional cantilever beam problem was mapped into the geometry of the aircraft wingbox shown in Figure
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8. The geometry of the wing was obtained by extruding a NACA 0012 airfoil and eliminating the leading
and trailing edges from the resulting structure. The wing has a sweep angle of 9.4◦, and a taper ratio of
0.89. The thickness of the airfoil has been tripled in order to obtain a reasonable structure with a smaller
number of elements.

(a) Initial guess (b) Optimized toplogy

Figure 7. The three-dimensional cantilever beam problem

Figure 8. Design domain and FEM mesh for the contoured wing problem

A Dirichlet boundary condition is applied to the root face of the wing and a downward load is applied to
the centre of the face located at the tip of the wing. The solid material has a Young’s Modulus of 1×104 and
a Poisson’s ratio, ν = 0.3. The wing structure contains 32 × 16 × 64 elements measured in the chordwise,
thickness and spanwise directions respectively. In the case of the superposition method, the Cartesian level
set mesh is scaled such that the number of mesh nodes lying within the interior of the wing, is roughly equal
to the number of structural elements. The problem formulation for all results presented is given below.

min
Ω

C + λvolfrac

subject to: Ku− F = 0 (15)

ρ(xi) =

{
1, xi ∈ Ω
10−3, xi ∈ Ω̄

k(x) = ρ(x)k0

As indicated in (15), the objective function is a weighted sum of the structural compliance (C) and the
total volume fraction (volfrac), which is defined as the volume of the solid material region divided by the total
volume of the permissible material domain. This objective is minimized using unconstrained optimization.
Therefore, the value of the Lagrange multiplier (λ) is fixed and the sensitivities are given by 14.
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Figure 9. Initial design for the wing optimization problem

Figure 10 contains the results for the optimization using the Jacobian transformation method as seen
from different angles. Figure 11 shows a side by side comparison of the results for both methods.

(a) Top view (planform) (b) Front view (leading edge)

(c) Side view (root) (d) Isometric view

Figure 10. Optimized topology for the wing structure subject to cantilever beam loading using the Jacobian transfor-
mation method
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(a) Jacobian transformation (b) Superposition

Figure 11. Optimized topologies for the wing structure obtained by the Jacobian transformation and superposition
methods

The optimized topologies for both methods contain elements of the classical cantilever result beam shown
in Figure 7. Both solutions contain two rows of members extending from the bottom to the top surface of the
wing. The differences between the wing and beam structures are most pronounced and the top and bottom
surface near the root. This is likely due to the fact that the sweep of the wing causes a torsional moment.
The presence of more material at the top and bottom surfaces of the wing, increases the structure’s polar
moment of inertia.

Figure 12. Convergence histories for the optimization of a wing subject to cantilever beam loading

The convergence plots reveal that the Jacobian transformation method produces a slightly superior design.
Table 1 contains a breakdown of the initial and final values of the compliance and volume fraction for each
method.

Superposition Jacobian Transformation

Initial Final Initial Final

Compliance 7.2712 11.2554 7.6396 12.2892

Volume Fraction 0.8640 0.3891 0.8380 0.2786

Objective Value 21.8113 17.8046 22.9187 17.3684

Table 1. Comparison of final results for each method
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III.B. Distributed Pressure Loading

The wing optimization problem was also solved for a distributed pressure load on the top and bottom surfaces
of the structure using the Jacobian transformation method. As illustrated in Figure 13, a small uniform load
is applied to the top surface and a second load is applied to the bottom. The loading on the bottom varies
elliptically, tapering off to zero at the tip.

Figure 13. Spanwise loading configuration on upper and lower surfaces of the structure as seen from the leading edge

The results featured in Figure 14 show two spar-like columns of material that join the top and bottom
surfaces and extend from the root to the tip of the wing. Near the tip, the spars are comprised of structural
members offset at 45◦ from the horizontal, allowing the structure to resist shearing.

(a) Isometric view (b) Side view

Figure 14. Optimized internal structure of the wing subject to distribured pressure loading

IV. Conclusions

We have presented two methods for performing three-dimensional structural topology optimization using
a level set method with a fixed, non-uniform, structured finite element mesh. Both methods have been used
to optimize a modified cantilever beam, whose shape is based on that of an aircraft wing. For the Jacobian
transformation method, the Hamilton-Jacobi equation is derived and solved in a transformed coordinate
system that is aligned with the finite element mesh, thus achieving a one-to-one mapping between the
structural sensitivities and the advection velocities. This method was also used to optimize a wing structure
subject to distributed pressure loading along its top and botton surface. The results demonstrate that both
techniques can be applied to structural problems involving non-uniform, arbitrary, structured meshes with
minimal added computational effort. This is especially true in the case of the Jacobian transformation
method, which was shown to be the more effective of the two approaches. This result is significant in that it
demonstrates that the method is a viable and efficient option for solving complex three-dimensional problems
where the computational cost of evaluating the objective function may preclude adaptive-mesh approaches.

11 of 12

American Institute of Aeronautics and Astronautics Paper 2010-2842



V. Future Work

Future work will seek to extend these methods to problems involving design-dependent aerodynamic
loading. Additional studies will be performed using homogenization methods in order to evaluate and
compare the merits of those methods versus the level set method for problems involving non-uniform, three-
dimensional structural meshes.
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