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Extending our earlier work on Mode-I crack propagation presented in earlier SDM
conferences, this manuscript details the research work currently underway in our group to
objectively simulate mixed-mode crack propagation in laminated fiber reinforced composite
materials. The analytical framework and numerical implementation using the variational
multi-scale cohesive method (VMCM) is discussed. Further, mixed-mode curved crack
propagation simulations and their qualitative comparison with experimental observations
is presented.

I. Introduction

The increased use of laminated fiber reinforced composites as load bearing structural elements necessitates
a fundamental understanding of the mechanical response, damage tolerance and damage growth in these
materials. While a considerable amount of literature is present on addressing damage growth in the form of
delamination crack growth, lying parallel to the interfaces of the different layers of a composite, much less is
known or understood about damage propagation when a crack or damage in the form of a crack is present
through the thickness of a composite structure. The influence of such wide area damage on the load bearing
ability of a homogeneous and isotropic material has received considerable attention in the past; however, a
similar effort at resolving issues in a non-homogeneous and macroscopically orthotropic structure is still a
problem that requires resolution. Because of the different length scales associated with the microstructure
of a composite material and the resulting composite structure, a multitude of failure mechanisms can be
operative simultaneously, leading to a very complex picture associated with the manner in which damage
progresses in a composite structure. Even though, an initial, sharp, through the thickness crack can be
present in a composite structure, as soon as damage (this can be in the form of matrix micro-cracking)
accumulates at the initial crack tip , crack blunting and spreading of such damage in the highly stressed
areas around this initial crack occurs. When this initial crack starts to grow, a zone of material that is
considerably larger than that would be found in a monolithic material, in the form of a band is seen to grow
along with this crack like feature. That is, there is no clean “crack” that can be identified as in a monolithic
material like metal. Instead, a diffused zone of damage is seen to advance. A large toughness is associated
with this damage growth, largely influenced by the fibers that bridge the damage zone, providing additional
resistance for primary crack growth. This additional resistance is very desirable and is a major contributor
to the increased toughness of these laminated composites. However, inspite of all these inherent advantages
of increased strength and stiffness, the applicability of these materials is often limited due to the lack of
a fundamental understanding of the failure mechanics involved in these materials. Further, the numerical
simulation of failure and damage propagation in these materials has proven to be a formidable excercise and
the required numerical frameworks are still in their early stages.

To understand and address this complex mechanics and to circumvent the numerical limitations on ob-
jective simulation of crack propagation in materials, a micro-mechanics based, mesh independent numerical
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technique for simulating crack propagation is essential. Standard finite elements fail to accomplish this task
as they lack the ability to capture the discontinuous displacement modes involved in crack propagation prob-
lems. However, in recent years finite elements with discontinuities (enhanced finite elements) have gained
increasing interest in modeling material failure, due to their ability to capture the specific kinematics of a
displacement discontinuity(like cracks) through additional discontinuous deformation modes. In discontinu-
ous displacement enhanced finite elements the crack path is present inside the elements, unlike cohesive zone
methods which are restricted to crack propagation along element interfaces. The ability of the enhanced
finite element to encompass a crack path, leads to objective simulation of crack propagation without any
mesh bias. Depending on the support of the enriching discontinuous displacement modes, the enhanced
finite elements are popularly known as enhanced strain finite elements (EFEM- elemental enrichment)% 914
and extended finite elements (XFEM - nodal enrichment).”8 1516 Interested readers are referred to Oliver
et al.,'® for detailed discussion and comparison of these methods. Though these enhanced methods provide
a general numerical framework for simulation of crack evolution, the actual micromechanics implementation
which incorporates the physics of crack formation is wide open. In this context, we present the Variation
Multiscale Cohesive Method (VMCM), which is an enhanced finite element method containing elemental
displacement field enrichment. Here the VMCM method advanced by the authors is briefly presented, and
it is used to study through the thickness crack propagation in fiber reinforced laminated panels. A more
detailed presentation of VMCM is available in other related studies by the authors.!™ Using the VMCM
methodology, the numerical simulation of single edge notched three point bend specimens (SETB) of in-
terest are presented in this work. The analysis is used to gain further understanding of mixed mode crack
propagation.

The paper is organized as follows: Section II briefly discusses the experimental results which were the
primary motivation for this work. Section III presents the details of VMCM numerical implementation.
Thereafter, numerical simulations are provided in Section IV and they are compared against experimental
observations. The concluding remarks are presented in Section V.

II. Motivation and experimental observations

Our interest in numerically simulating the experimentally observed through-the-thickness crack evolution
in laminated fiber composite panels was the primary motivation for this research. The material used in all
the experiments herein is a carbon fiber /epoxy [—45/0/ +45/90]es laminated fiber reinforced composite with
a volume fraction of 0.55, and whose lamina and laminate properties are given in Table 1.

The SETB configurations used in this study are shown in Figure 1. Depending on the loading point
location the specimens are classified as symmetric or eccentric loaded specimens. The symmetric loading
configuration leads to a ‘globally Mode-I’ type crack evolution and the eccentrically loaded configuration is
a good platform for understanding mixed-mode (Mode-I, Mode-II) crack evolution. SETB specimens were
cut from the composite panels using water jet facility. The notch was introduced and a knife edge was
used to introduce a sharp starter crack *. The specimens were supported on rubber rollers both at the
loading and support points to minimize any local inelastic deformation. The specimens were loaded on a
specially designed loading frame with anti buckling guide rods that prevents out of plane movement of the
specimens. The specimens were loaded at a rate of 0.01mm/sec using hydraulically operated MTS testing
machine and were loaded until failure. Load was measured by a load cell and the load point displacement
was measured in between the top and bottom loading rollers using an LVDT. For the symmetric loading
condition, five specimen sizes with geometrically scaled planar geometry and fixed thickness were considered.
For the symmetric loading configuration, multiple specimens of each size were tested to significantly capture
the failure response envelope. The load - load point displacement(PA) responses of these specimens are
shown in Figure 6 P. Some of these experimental observations, including the details of how the bridging zone
evolves and the related numerical simulations are explained in more detial in a recent publication by the
authors.? Similar experiments are currently underway for eccentrically loaded specimens, and the observed
curved crack evolution for some of these specimens is shown in Figure 9.

aIn the work shown in this manuscript, the mixed-mode numerical simulations of eccentrically loaded specimens have a finite
width starter crack to circumvent stress resolution issues. We are currently working on this aspect of mesh sensitivity of the
numerical crack evolution.

b All experimental results presented herein have been normalized.
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Based on these experimental observations, we identified three clear goals for our work related to numerical
simulation of failure in fiber reinforced composites. The numerical platform should be capable of:

e Objective simulation of crack propagation by effectively evolving displacment discontinuities (cracks)
within the finite element material domain.

e Reproducing the macroscopic load-load point displacement response of any given structure (i.e to
numerically reproduce results like Figure 6).

e Simulating the crack tip, bridging zone and crack wake evolution mechanics as closely as possible to
the experimentally observed failure process, and thereby being able to correctly simulate the full mixed
mode crack propagation.

As matters stand, the development of the numerical method is largely complete for mixed mode crack
propagation. It has succesfully simulated globally Mode-I crack experimental observations, and the results
from mixed-mode (like in curved crack propagation) simulations are very encouraging. The current focus is
on gaining more insights into the mechanics of mixed mode propagation (like relevant traction-separation
inputs, mode-mixity conditions, etc) which are essential inputs for the numerical framework.

III. Mathematical Formulation

The standard weak form of the balance of linear momentum over the domain Q (Figure 2) is given by,

/sz:adV:/w-de—i—/ w- T dS. (1)
Q Q a0,

where o is the stress, w is an admissible displacement variation, V°w is the symmetric gradient of the
variation, T is the external traction and b is the body force.

In the standard finite element formulation of continuum mechanics, the displacements are at least C°
continuous. But in a wide class of problems (shear banding, fiber kink banding, transverse crack formation,
delamination initiation are some examples), the displacement field can be discontinuous. In such cases, the
displacement field can be decomposed into continuous coarse scale and discontinuous fine scale components
(Figure 3). Such a decomposition is also imposed upon the displacement variation, w. The decomposition
is made precise by requiring that the fine scales, v’ and w’, vanish outside of some region Q’, which will be
referred to as the microstructural or fine scale subdomain. This decomposition is written as,

~ 7
u = U + u 2
coarse scale fine scale

The corresponding scale separation in the displacement variation is given by,

— ol ’
w = w + w (3)

coarse scale fine scale
u w'eS ={v'|v' =0 on Q\int()}

Substituting the above decomposition into (1), and using standard arguments, the weak form can be split
into two separate weak forms. One, involving the coarse scale variation, w, and the other, involving only
the fine scale variation, w’.

/VS@;adV:/mbdv+/ @- T dS. (4)
Q Q 09,

Viw':0dV=[ w'b dV+/ w’- T dS. (5)
o o 09

This procedure results in the fine scale weak form (5), defined only over €' (Figure 2). This result is
crucial since it lends itself naturally to the application of desired micromechanical descriptions restricted
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to the microstructural region, €', and not the entire domain 2. The scale separation in u is contained in
o=C: (Viu+ V°u’), where C is the elastic stiffness tensor.

We wish to use an appropriate micromechanical law by which the fine scale solution, u’, can be expressed
in terms of @ and other fields in the problem. Below, we will show how such a micromechanical law can
be embedded into the formulation using the weak form (5). The final step involves elimination of the fine
scale displacement, u’, from the problem by substituting its relation to @ in the coarse scale weak form (4).
Thus, the fine scale solution does not appear explicitly; however, its effect is fully embedded in the resultant
modified weak form.

We choose €’ to contain the crack surface I" on which u’ is discontinuous. Invoking standard variational
arguments, the weak form of the fine scale problem can be reduced to the following statement of traction
continuity:®

[on]. =0 (6)
where [.] is the discontinuity in the quantity and n is the normal to the crack surface, I. Writing the traction

on I' in terms of components T;, and T), along n and m respectively (Figure 2), the traction continuity
condition can be expressed as,

T.n+T,m=on|r- (7)

The traction on|p-, is determined by the macromechanical continuum formulation. The evolution of
T, and T,, is governed by the micromechanical surface law (Eqn 8). This law, which emerges at a finite
value of traction, is related to the displacement discontinuity which is the separation between the surfaces.
There are two traction laws across a planar (2D, line) surface and the displacement discontinuity [u] can be
expressed in terms of the normal opening, [u].n, and tangential slip, [u].m, across T.

We now consider a specific functional form for the micromechanical model, emerging at a non-vanishing
traction,

T, = Thy — Hplu].n, T = Ty — Him[u].m (8)

where T,, and T, are the maximum values of T;, and T}, admissible on I" (Figure 2), [u].n > 0 is the
normal jump (Mode-I type crack opening) and [u].m is the tangential slip (Mode-II type crack face slip)
along the elemental crack face, H, and H,, are the softening moduli for the Mode-I and Mode-II crack
opening evolution, respectively. Consistency between the micromechanical law and the macromechanical
continuum description is enforced by (7) via (8).

Substituting (8) in (7) and dispensing with the explicit indication of on|p-,

(Tng = Hn([u]-n))n + (Tny — Hm([u] - m))m —on =0 9)

Expanding (9) up to first order terms, in order to solve for u':

(Thy = Hn([u]-n))n + (T, — Hm([u].m))m —on

—Hn(0[u]-n)n — H,, (0]u].m)m
—(C: (Védu+Véu'))n = 0 (10)
where the first line in (10) represents a zeroth-order approximation to (9), and the remaining terms are the
first order corrections. Using u’ = [u] Cr, where Cr is the fine scale interpolation (Figure 4), converts (10)

into a linear equation in §Ju] which can be solved, and then the incremental fine scale field is obtained from
du’ = §[u] Cr. Formally, it is represented as,

(S’U/ = F[ﬂ,G,Tn,Tm,fn,fm] (11)
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Extending the incremental formulation to o, which in a general nonlinear problem can be expanded
up to first order as o = o(®) 4 C: (Vdu + Véu’), where o(©) is the converged value of o in the previous
solution increment, and substituting «’ in (4), we obtain the coarse field weak form which is independent of
the fine scale displacement u’. On solving for @, the incremental fine scale field du’ can be recovered via
(11). Tterations are to be performed: a1 = @ 4 §a, Y — g du’, until a converged solution
is obtained. From (4),(10) and (11), it should be clear that the VMCM method results in an embedding of
the micromechanical surface law into the coarse scale weak formulation. Interested readers are referred to®
for a more detailed discussion of the numerical framework.

Having briefly presented the numerical formulation for mixed-mode cohesive crack evolution, we now
direct our attention to simulations of through-thickness crack propagation in laminated fiber composites
using this framework.

IV. VMCM Simulations

The variational multiscale implementation leads to an objective and numerically robust implementation.
Interest readers are referred to®® for details of the method. As discussed above, the VMCM implementation
is an enhancement on the traditional variational multiscale implementations in its micromechanics imple-
mentation and application. A continuum is assumed to behave according to an appropriate constitutive
law until a certain condition is satisfied which triggers fine scale computations associated with the onset
of cracking. When crack growth occurs, the resulting tractions on the crack faces that arise due to fiber
bridging and other mechanisms, are captured through a traction-separation law.

This implementation has two distinct advantages: (1) No a priori knowledge of crack path is required, and
the entire domain is capable of propagating cracks according to the input traction-separation relations when
the the crack initiation criterions are met. (2) The same element behaves as both a continuum and failure
element depending upon the the physical state of its material domain. Thus, no adhoc stiffness values are
required as in traditional coheize zone models (CZM). These drawbacks of traditional cohesive zone models
have been clearly addressed in a recently published work.!?:2% In particular, two issues were considered; (1)
when CZM is used, the placement of CZM elements along the intended crack path can lead to an alteration
of the stiffness of the original body that is to be studied, and, (2) The traction-separation laws used for
traditional CZM modeling, which start with a vanishing traction at vanishing separation, may be in conflict
with the presence of an intense stress field that was present in the original body that is being modelled. In
light of this, we would like to stress again that both these major drawbacks of CZM are circumvented in
VMCM.

In the VMCM simulations, the cohesive behaviour of the material is captured through the cohesive trac-
tion separation laws given by, T}, = T},, — Hnén, Tt = Ty, — Hi& ,with subscript n denoting normal direction
and t denoting tangential direction and H,,, H; are the normal and tangential softening moduli (which we
refer to as the fiber-bridging moduli), is associated with the fine scale computations. Ty, is the maximum
normal traction admissible on I', which is the value of T}, corresponding to cracking condition. This linear
evolution is graphically represented in Figure(5). The area under the curve is another key property, which
is associated with the work of bridging tractions °. The work of bridging tractions, ¢ ; is calculated by
conventional procedures, in our case the value was obtained by analyzing the load displacement response of
a standard compact tension specimen. The critical traction (7)) is obtained from standard double notch
tension specimen experiments.* The VMCM method is not restricted to any specific functional form of the
traction separation law. Here a linear evolution law is presented as it is found to yield good agreement
with experimental observations, and also because the actual shape of the traction separation law is still a
topic of active research. However, linear or any other monotonic traction separation relationship is only
an approximation of the actual fiber composite material response. In the real material, especially under
curved crack conditions, the traction-separation evolution is much more complex as the material crack tip
opening does not need to always monotonically increase. The details of such will be a part of the solution
and will be dictated by the form and type of the bridging law in the crack wake. The representation of the
traction evolution in cases which involve load (and separation) reversal, and possible subsequent increases

°The work associated with bridging traction in understood to also include the energy associated with matrix cracking
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in the crack opening displacement locally is yet to be thoroughly studied. However, it is felt that any as-
sumed traction-separation response should ensure that irrespective of the crack face opening displacement
variations, the traction on the crack faces should monotonically decrease.

Moving on to the actual simulations results, Figure (6) shows the load-load point displacement response
of SETB specimens of five different sizes under symmetric loading conditions. The corresponding simulations
results are shown in Figure (7). Here the simulations accurately reproduce the macroscopic response of the
SETB specimens when appropriate ¢ ; values are used as input. These results, along with the evolving
micromechanics of the bridging zone are discussed in detail in a recent publication by the authors.? Figure
(8) shows a typical SETB specimen subjected to eccentric loading which involves both Mode-I and Mode-II
evolution. The element deformation is the numerical manifestation of the crack tip opening displacement
(CTOD). As the crack propagates, the elements weaken according to the assumed traction separation re-
sponse, and beyond a certain critical deformation the CTOD reaches &,, and the corresponding element
completely looses its normal stiffness. Similar is the evolution of the tangential stiffness component. The
mesh may be post-processed to remove these dummy elements to visually show a clean crack propagation,
void of material in the crack path as seen in Figure (8). Figure (9) shows the same simulation results in the
undeformed mesh configuration allong with the highlighted crack path. Also shown in Figure (9) are the
corresponding experimentally observed crack evolutions. But in these figures, the highly branched cracks on
the surface layers of the laminate blur the real picture of the underlying crack evoltuion. Thus the polished
specimen where the top and bottom layers of the laminate are removed is shown in Figure (10). As one
can see, the simulations significantly reproduce the macrosopic evolution of the crack path. These results
demonstrate the applicability of VMCM for simulating the complex crack evolution seen in fracture of lam-
inated fiber reinforced composites.

V. Current Work

As stated above, we beleive that the numerical method has sufficiently matured to simulate full mixed-
mode, complex crack path evolution. Certain issues related to crack path direction determination and
mode-mixity are currently being investigated. Towards this end, we are also numerically deriving mixed-
mode traction separation laws using micro-mechanical models. We expect to present these results in the
next ATAA SDM conference, and will also complement these results with the study of size effects in eccentric
loaded SETB tests with curved crack propagation.
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Table 1. Lamina and laminate properties of carbon fiber/epoxy [—45/0/ + 45/90]6s laminated fiber reinforced
composite.

Laminate Lamina
E..: 51.5 GPa | Eq1: 141 GPa
Eyy: 51.5 GPa EQQZ 6.7 GPa
Gzy: 19.4 GPa | Gi2: 3.2 GPa

Vgy: 0.32 v12: 0.33
+ P7 A + P, A
3.5 in
. ® : s
l Size 1: X (as shown) l
' Size 2: 1.5X '
3 in: A éfzeif §§ 6 in: N
s L5in e ; | s
¥ ¥ v v
(P 7 in q) (P 14 in @
S i T . R [ 5 R -
Symmetric loading Eccentric loading

Figure 1. Single Edge Notch Bending(SETB) specimen configurations used in the crack propagation exper-
iments. Based on the load point location, the configurations are classified as symmetric or eccentric. For
symmetric specimens, size 1 has the dimensions shown in figure and other sizes are scaled versions of this base

size. All specimens have a thickness of 6.35mm.
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Figure 2. Decomposition of continuum body into region where coarse scale and fine scale displacements are
defined.  is the domain of the problem, I is the displacement discontinuity (crack), ' is the support for the
displacement discontinuity and n, m are the normal and tangent to I" respectively.

.
dooo,
4
.

.
-

:\

Figure 3. Schematic of scale separation. u is the coarse scale displacement field and u’ is the local fine scale
enhancement.
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Hp N

Figure 4. Discontinuous shape function used to resolve the displacement jump shown in a one-dimensional
setting. It is constructed by superimposing a discontinuous function, Hr, on a regular polynomial, N. h is the

element dimension.

Resolved surface traction 3

Normal crack opening &n

Figure 5. Linear micro-mechanical surface law for normal

crack opening
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Figure 6. Experimental load-displacement curves obtained for various sizes of SETB specimens subjected to
Multiple specimens of each size were tested to capture the envelope of the

symmetric loading conditions.
failure response.
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Figure 7. Load-Displacement (P-A) response obtained from VMCM simulations for symmetrically loaded Size
1-5 SETB specimens compared to their respective experimental curves.
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Figure 8. Deformed mesh of mixed-mode crack propagation in eccentrically loaded single edge notch three
point bend (SETB) specimen and the corrresponding load-displacement response. The elements containing
the crack (either bridging zone or crack wake elements) are transparent, with only their edges plotted.
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Figure 9. Undeformed mesh of mixed-mode crack propagation in eccentrically loaded single edge notch three

point bend (SETB) specimen. The dark curve represents the crack path and the elements containing the crack

(either bridging zone or crack wake elements) are transparent

with only their edges plotted. Shown in the

9

inset are the corresponding experimentally observed crack paths.
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Figure 10. Comparison of numerical simulation and experimentally observed crack paths in eccentrically loaded

single edge notch three point bend (SETB)

specimen. Here the experimental specimen was polished after

failure to reveal the underlying macroscopic crack.
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