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In this paper, a node sampling methodology for nonlinear vibration problems of elastic structures involving

intermittent contact is proposed. Of particular interest is a vibration problem of platelike elastic structures with a

crack, with a large number of degrees of freedom involved on the crack surfaces. Because of the localized nature of

such nonlinearity, the number of degrees of freedom on the surfaces greatly affects the computational time of the

analysis. Therefore, reducing thenumber of degrees of freedomon the crack surfaceswithout significantly sacrificing

the accuracy of the results is a critical issue for conducting vibration analysis of such structures in a reasonable

amount of time. The focus is placed on the development of an efficient algorithm to select a set of nodes on the crack

surfaces, where nonlinear boundary conditions are imposed. The method is developed, based on a procedure for

selectingmaster degrees of freedom for Guyan reduction. The accuracy, efficiency, and optimality of themethod are

discussed in detail and compared with those aspects of previous methods. The advantages of the new method are

demonstrated in terms of the accuracy of the frequency response and the resonant frequencies.

Nomenclature

A = assembly operator
B = set of degree-of-freedom indices corresponding to

boundary nodes
Ccp = set of degree-of-freedom indices corresponding

the contact pairs
D = set of degree-of-freedom indices corresponding to

deleted degrees of freedom
F̂ = virtual impulse associated with the amount of

penetration
f = contact force vector
G = set of degrees of freedom corresponding to all

generalized internal degrees of freedom
H = coordinate transformation matrix of the

Hintz–Herting component mode synthesis method
I = identity matrix
I = set of degree-of-freedom indices corresponding to

internal nodes
ke = equivalent spring constant per unit length on crack

faces

L = set of degree-of-freedom indices corresponding to
degrees of freedom not exposed to nonlinearity

M = set of degree-of-freedom indices corresponding to
modal coordinates

M, K = finite-element mass and stiffness matrices
M, K = finite-element mass and stiffness matrices

projected onto span�HPR�
MH ,KH = finite-element mass and stiffness matrices

projected onto span�H�
N = set of degree-of-freedom indices corresponding to

degrees of freedom exposed to nonlinearity
n = size of the finite-element mass, stiffness, and

damping matrices
nm = number of free-interface normal modes

nj1, n
j
2, n

j
3 = normal vectors at the jth contact pair

O = set of degree-of-freedom indices corresponding
to the nodes directly used in the structural
analysis

Pj, P = coordinate transformation matrix associated with
the normal vector at jth contact pair and the
assembled form of all these matrices

q = modal coordinates corresponding to (HPR)
R = set of degrees of freedom corresponding to all the

relative degrees of freedom
Rj, R = coordinate transformation matrix associated with

the relative displacement at the jth contact pair
and the assembled form

T = period of vibration
u = x1 component of the nodal displacement
uj, vj = relative displacements normal to the surface,

corresponding to the jth contact pair
up = amount of penetration along the surface normals

on crack surface
X , Y, Z = set of degree-of-freedom indices corresponding to

x1, x2, and x3
x = finite-element nodal displacement vector
x1, x2, x3 = perpendicular axes of Cartesian coordinate system
�A;B = boundaries involving intermittent contact
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�f = fixed boundary
� = modal coordinates corresponding to H
�, �̂ = matrix of free-interface normal modes and its

modified form
� = eigenvector of the finite-element model
� = matrix of constraint modes
� = domain occupied by the elastic structure
!bi = bilinear frequency
!o = natural frequency with the open boundary

condition
!s = natural frequency with the sliding boundary

condition

Superscript

j = contact pair

Subscripts

A, B = boundary degrees of freedom corresponding to
�A or �B

a = active degrees of freedom
b = boundary degrees of freedom
d = deleted degrees of freedom
g = generalized internal degrees of freedom
i = internal degrees of freedom
l = degrees of freedom not exposed to nonlinearity
m = modal coordinates
r = relative degrees of freedom

I. Introduction

V IBRATION problems of structures with intermittent contact
have been studied extensively for several decades. These

problems have practical importance and feature theoretical
complexity due to their nonlinear nature. A numerical modeling
procedure for such problems, based on the finite-element (FE)
method, is presented in this paper. This work is motivated by a need
for developing a model-based crack detection algorithm of elastic
structures, based on their spectral properties, such as resonant
frequencies and response shapes. To properly predict the resonant
frequencies of such structures, one has to consider the nonlinearity
caused by intermittent contact at the cracks; the so-called closing
crack or breathing crack effect. This nonlinearity has hindered
analysts from accurately calculating the resonant frequencies of
cracked structures, because they cannot be calculated from classical
linear modal analysis. Recently, sophisticated contact algorithms
have been developed, such as the penalty method [1] and the
augmented Lagrangian method [2]. Hence, the accuracy of the
results of time transient simulations with FE models involving inter-
mittent contact has been improved. Furthermore, studying vibration
problems of such structures with an FE model with a realistic
complexity is becoming feasible with the aid of high-performance
computers. However, in turn, due to the advancement of these tech-
nologies, analysts tend to create models with increasingly larger
numbers of degrees of freedom (DOFs). This is based on the
expectation that, as the models become more realistic and the results
becomemore accurate, the problem can still be solved in a reasonable
amount of time. However, the number of DOFs required for high-
fidelity predictions currently overwhelms even the most advanced
hardware and software. That is because, as the model complexity
increases, the cost of solving contact problems increases dramat-
ically, even when the potential contact areas are known a priori. This
occurs even if one uses reduced-order modeling techniques, such as
the Craig–Bampton method [3]. For forced response vibration prob-
lems of such structures, one can use accurate and efficient semi-
analytical methods, such as the ones based on the harmonic balance
method (e.g., [4]), by representing the steady-state dynamic response
of the model with a truncated Fourier series. However, such methods
still suffer from the increase of computational cost, as they require a
fair number of harmonics to be included in the Fourier transform, to

obtain an accurate result. Therefore, the goal of this paper is to
present a new and efficient reduced-order modeling framework for
vibration problems of elastic structures involving intermittent
contact, with particular attention to modeling nonlinear vibration of
cracked structures. The reduced-order model is constructed such that
it can be used in conjunction with standard contact algorithms, such
as Lagrange’s multipliers, penalty methods, and augmented
Lagrangian methods. The focus is placed upon reducing the number
of DOFs involved in the contact regions, in an automatic manner.

This paper is organized as follows. In Sec. II, a literature survey
over the related fields is provided. In Sec. III, the proposed modeling
framework is presented, including the reduced-order modeling
approach and contact DOFs selection method. As applications of the
method, two case studies are shown in Sec. IV, using FE models of a
cantilevered cracked plate and an academic blade model. Conclu-
sions of the paper are then given in Sec. V.

II. Background

The issues of reducing and selecting DOFs of FE models
have been extensively studied by various methods and distinct
perspectives, such as the reduction of the interface DOFs between
substructures, the selection of master DOFs for Guyan reduction [5],
the optimal sensor placement, and the optimal constraint locations.
However, many of the available methods share similar goals and
relate to each other (as described next).

First, the issue of reducing the number of interface DOFs between
the components has been studied by several researchers. Brahmi
et al. [6] proposed a method to be employed before the assembly of
substructures in component-based modeling methods, where basis
vectors are chosen based on the combination of secondary modal
analysis of the interface DOFs partitions of the matrices and the
truncation of modes based on the singular value decomposition.
Balmés [7] introduced the framework for generalizing interface
DOFs, such as constraint modes, by considering the new basis
representing the actual interface displacements. Castanier et al. [8]
also proposed a technique based on applying modal analysis and
mode truncation to the constraint mode partition of the matrices
produced by component mode synthesis (CMS) [3]. The resulting
modes are transformed back into the FE coordinates and are called
characteristic constraint modes. All of these methods achieve a
reduction in the number of interface DOFs. However, they do not
provide any criteria as to how the interface DOFs need be selected
automatically (or even manually) for accurately enforcing the
boundary conditions (BCs) in the areas of intermittent contact.

Second, the selection of master DOFs is a crucial factor for
determining the spectral properties of reduced-order models
obtained by using Guyan reduction [5]. Hence, many algorithms for
the selection of the master DOFs have been developed. These
methods are relevant to our objective, because they produce results
that often solve the optimization problem considered in this study (as
discussed in Sec. III). An automatic master DOF selection algorithm
was first proposed by Henshell and Ong [9], in which the master
DOFs are chosen where the inertia is high and the stiffness is low,
whereas the slave DOFs are chosen where the inertia is low and the
stiffness is high. This process can be automated by examining the
radian frequency!s defined byfixing all DOFs except theDOF index
s. Namely, !s ≜

����������������
kss=mss

p
, for s� 1; . . . ; n, where kij and mij are

the entries at the ith row and jth column in FE stiffness and mass
matrices of size n. The index swith the largest!s is identified at each
iteration step, and the DOF is eliminated by an application of Guyan
reduction [5], with s being the slave DOFs and all the other DOFs
being the master DOFs. This process can be repeated until the
number ofmaster DOFs reaches the desiredmagnitude. An approach
similar to this algorithm was proposed by Shah and Raymund [10],
based on the discussions of Kidder [11,12] and Flax [13], where the
number of master DOFs is controlled by iteratively eliminating the
DOFs forwhich the!s is larger than a predefined cutoff frequency!c
(that is chosen to be approximately three times the highest significant
frequency in the frequency range of interest). Independently from the
work by Henshell and Ong [9], Grinenko and Mokeev [14]
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developed an order-reduction technique, named frequency dynamic
condensation, which also uses a criterion to select master DOFs.
Although their criterion was legitimate, the implementation of the
selection algorithm still suffers from tedious exhaustive-search
calculations for selecting the master DOFs. The selection method
proposed by Matta [15] also uses the ratio kss=mss with a criterion
similar to that proposed byHenshell andOng [9]. Thismethod can be
applied to not only Guyan reduction [5] but also to CMS, where both
static and normal modes are used as basis vectors, onto which the
system dynamics are projected. A method proposed by Bouhaddi
and Fillod [16] uses a different concept where, if a DOF a is a node of
the ith eigenmode, then fixing the DOF a results in �̂i�1 � �i, where
�i is the ith eigenvalue of the nonfixed system, and �̂i�1 is the
eigenvalue of the system with the DOFs a fixed. This concept may
be understood, using a vibration problem of a string with both ends
fixed. That is, the lowest natural frequency of the string with a single
support becomes the highest if the support is placed at the node of the
secondmode of vibration [17]. This is because thefirst modewith the
constraint becomes identical to the secondmode of the unconstrained
string, which has the eigenvalue as the feasible upper bound of the
first eigenvalue with a single constraint. It is noteworthy that
Bouhaddi and Fillod [16] explicitly aimed for maximizing the
minimum eigenvalue of the system, where all the master DOFs are
fixed. This concept will be revisited in Sec. III.C.

The methods for the node selection reviewed previously are based
on the Henshell and Ong [9] method to some extent. Another class of
methods is based on the concept of modal energy. For example, the
method proposed by Kim and Choi [18] uses the energy distribution
among the DOFs for each mode, and it chooses the set of primary
DOFs by taking the partial sum over the rows of the energy distri-
bution matrix. The method proposed by Cho and Kim [19] uses
energy estimation at the discretization element level by the Rayleigh
quotient value of each element. Kim and Cho [20] then proposed a
selection method consisting of two steps: model order reduction by
improved reduced system (IRS) [21], using themasterDOFs selected
via the method based on energy estimation of each element [19], and
the subsequent sequential elimination method [9], with an iterative
IRS. Another automatic DOF selection method, named the modal
energy selection method, proposed by Li [22], uses a metric called
index of classification, which is based on the approximate modal
energy associated with each DOF. The method was successfully
applied to an FE model of a cantilever beam. Oh and Park [23] also
proposed a criterion for selecting themaster DOFs, based on singular
values of the modal matrix. However, that approach suffers from the
computational cost due to exhaustive search over the possible master
DOF sets, and depends on engineer knowledge and intuition.

Third, a similar but slightly different issue is the selection of
measurement locations for vibration testing. For example, one may
need to measure vibration displacements of a structure to determine
vibration modes, typically with a limited number of sensors and
limited locationswhere the sensors can be placed. Thus, onemay like
to maximize the information one can obtain with the limited number
of sensors and locations. However, the question arises as to how the
sensors need to be located, since the optimal configuration of sensors
for such objectives cannot be easily determined. There have been
many methods developed to date for achieving this goal. In par-
ticular, one class of approach is based on information theory. These
approaches determine the sensor locations by optimizing the norm of
the Fisher information matrix [24]. Among them, one of the most
widely used techniques is the effective independence vector method,
or the EIDV [25] method, developed by Kammer [26]. The method
determines the placement of sensors within the candidate locations
while maintaining asmuch independent information as possible (i.e.,
maintaining the measured mode shapes as independent as possible).
Therefore, it is natural to hypothesize that the application of the
nonlinear BCs to the optimum sensor locations would also well
represent the full-order model, where the BCs are applied at all loca-
tions in the intermittent contact region. This method is considered in
this study, and the associated formulation is discussed in detail in
Sec. III.C.

Last, the issue of finding the optimal constraint locations to
maximize the fundamental natural frequency of a structure is
considered. This issue has an important relationship with the optimal
master DOF selection. For instance, suppose one wants to increase
the lowest natural frequency of a structure as much as possible by
adding a finite number of supports or kinematical constraints to the
structure. However, the problem of finding the optimal number and
the locations of such supports is not as easy as it appears. Therefore, it
may be necessary to apply computationally expensive optimization
algorithms, such as done in the work by Zhu and Zhang [27]. In
contrast, Åkesson and Olhoff [28] studied the problem by applying
the Courant’s maximum–minimum principle. Namely, if there is a
discrete dynamical system of size n, and there are r (<n) kinematical
constraints applied to the system, then all the eigenvalues of the
structure increase, and the increased eigenvalues are bounded by the
following formula:

�0i ⩽ �i ⩽ �0i�r; i 2 f1; 2; . . . ; ng (1)

where �0i and �
0
i�r denote the ith and (i� r)th eigenvalues of the

structure without the constraints, and �i is the ith eigenvalue of the
constrained structure. Also, based on the same principle and
the findings of Szelag and Mroz [29], Won and Park [30] applied a
minimization method to obtain the optimal support location and
achieve the maximum fundamental natural frequency of a
cantilevered plate. They showed that the optimal support locations
should be on the nodal lines of the (r� 1)th mode of the uncon-
strained structure. It is noted that this result conforms to the vibration
problem of a fixed string, mentioned previously. This method was
successfully applied to their specific examples, but the method can
be applied only to special cases where the potentially constrained
region is the entire region of the structure and the points on the nodal
lines can be selected. Namely, if the regions to which the constraints
are applied are limited to some specific regions of the structure, then
the nodal lines may not exist in such regions, and the minimization
problem becomes more complicated.

It is interesting to note that the idea of constraining the nodal lines
was used to optimally select the master DOFs for Guyan reduction
[5] by Bouhaddi and Fillod [16], but they were not aware of the
applicability of their method to optimally select the support
positions, while Won and Park [30] were not aware of the appli-
cability of their method to optimally select the master DOF locations
for Guyan reduction [5]. In this paper, we take advantage of this
similarity between the optimal master DOF selections and the
constraint locations in order to achieve the optimal selection of the
DOFs where the nonlinear BCs are applied.

III. Mathematical Formulation

Consider the small vibrations of an elastic structure, represented as
�, with a fixed boundary �f, where the structure may involve
intermittent contact at �A and �B during the vibration cycles, such as
shown in Fig. 1. Namely, the boundaries open and close. Thus, the
vibration problem is nonlinear, because the condition for the
boundaries to be in contact is dependent on the displacement field

Fig. 1 An elastic structure with potentially contacting boundaries.
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itself. That is, the BCs at �A and �B are nonlinear. It is well known
that the system eigenvectors and eigenfrequencies are different from
the actual response shapes and resonant frequencies of this nonlinear
structure. In this paper, they are, respectively, referred to as the
nonlinear normal modes (NNMs) and NNM frequencies, as was also
done in [31].

If the structure is discretized with a method such as an FEmethod,
the nonlinearity associated with the contact is localized, in the sense
that the nonlinearity is caused only by a small portion of the entire
structure. In the following formulations, a set of indices of DOFs in
such region is denoted asB (boundary),whereas a set of indices of the
DOFs in the rest of the regions is denoted as I (internal), and
partitions of vectors and matrices associated with these sets are
designatedwith subscriptsb and i. The sizes of the sets are denoted as
jBj � nB and jI j � nI . All the other DOF sets defined hereinafter
follow the same notation.

Consider that the FE mass and stiffness matrices are denoted by
M 2 Rn�n andK 2 Rn�n, and the nodal displacement vector is given
by x 2 Rn. The governing equations of the vibration problem, with
the absence of external forcing and damping, may be written in a
partitioned matrix-vector form as follows:

Mbb Mbi

Mib Mii

� �
�xb
�xi

� �
� Kbb Kbi

Kib Kii

� �
xb
xi

� �
� fb�xb�

0

� �
(2)

where �_� denotes a time derivative, and fb 2 RnB denotes the
nonlinear force associated with the intermittent contact.

When dealing with this type of nonlinear vibration problems, one
can apply linear reduced-order modeling techniques, such as Guyan
reduction [5], system equivalent reduction expansion process [32],
iterated IRS [33,34], or component mode synthesis (CMS) [3]. With
such methods, one can obtain smaller system matrices by reducing
the size of xi by means of Rayleigh–Ritz coordinate transformation,
comprising of various basis vectors such as static deformations and
vibration modes yet keeping the accessibility to the physical
coordinates ofxb. For instance, with the help of CMS, one can obtain
a system with desired spectral properties and accessibility to xb, the
size ofwhich is as small asnB DOFs plus the number of linear normal
modes for which the frequencies lie in the frequency ranges of
interest. The use of such linear reduced-order modeling methods
greatly helps analyze the dynamic response of systemswith localized
nonlinearities, such as transient dynamic analysis [35], and nonlinear
harmonic response analysis [36]. However, evenwith these reduced-
order modeling methods, if the number of DOFs involved in the b
partition becomes large (especially the cases with very fine mesh in
the contacting regions), one cannot take advantage of the linear
reduced-order modeling techniques, as the computational cost
associatedwith the nonlinear dynamic analysis typically grows as the
number of DOFs in the b partition increases. Furthermore, if one
simply attempts to eliminate some of the DOFs in the b partition, it
results in inaccurate, or even wrong, results. Therefore, to obtain
accurate computational results, one needs to keep as many boundary
DOFs as possible. That can easily result in prohibitively costly
calculations. Typically, as a workaround to avoid the inaccurate
results due to the lack of sufficient DOFs considered and, at the same
time, to obtain an efficient computational model, one has to select the
DOFs in a heuristic way, which greatly depends on the system
characteristics and the analyst’s experience and intuition. Moreover,
if the model is developed in such ways, the error in the analysis
results cannot be estimated a priori. Our aim here is to develop an
automatic way to select the DOFs inB for a desired number of DOFs
to be selected.

Note that the major assumptions made in the proposed method-
ology are typical for such approaches and can be summarized as
follows:

1) The elastic structure is fixed in space, and the strain due to its
vibration is infinitesimally small. Also, the nonlinearity comes
purely from the intermittent contact at the contact surfaces, and it is
localized. Other nonlinearities, such as large deformations or
material nonlinearities, are not considered.

2) Contact surfaces �A and �B are invariant in time, and they
are meshed as needed to ensure enough accuracy. Hence, the
computational mesh is very fine, and the computational cost for
solving the vibration problem involving the intermittent contact is
prohibitively expensive. Therefore, the computational nodes have to
be sampled, such that the resulting model has enough accuracy, yet
the computational cost of using this model is as low as possible.

A. Primary Model Reduction

To reduce the number of DOFs included in I and make the
subsequent development more efficient, a model reduction is first
applied to Eq. (2). Namely, I is divided into two sets; that is,
I �O [D, where O is a set of DOF indices associated with the
nodes to be directly used in the structural analysis, andD is the rest of
DOF indices in I , which is to be apparently deleted from the system
by the reductionmethods. In addition, a set ofDOF indices to be used
as the master DOFs is defined as active DOFs, designated asA, and
A� B [O.

Next, consider an eigenvalue problem associated with Eq. (2),
where the eigenvalue � and the corresponding eigenvector � must
satisfy

Kaa Kad

Kda Kdd

� �
�a
�d

� �
� � Maa Mad

Mda Mdd

� �
�a
�d

� �
(3)

where �� ��Ta ;�Td �T . In this study, a mixed-boundary CMS of
Hintz–Herting [37,38] is chosen for the primary model reduction.
Namely, without the presence of rigid body modes, the coordinate
transformation is defined as

xa
xd

� �
�H�� � �̂

� � �a
�m

� �
(4)

where xa � �a, �m is a vector of modal coordinates,� and �̂ are so-
called constraintmodes and truncated free-interface normalmodes in
a modified form that are, respectively, defined as

� � I
�K�1ddKda

� �
(5)

�̂� 0
�d �K�1ddKda�a

� �
(6)

and �� ���1�;��2�; . . . ;��k��, where k < n; each subscript in
parentheses denotes the corresponding mode number. Using the
transformation defined in Eq. (4), the projected eigenvalue problem
is obtained as

K H�� �MH� (7)

whereMH �HTMH andKH �HTKH. It should be noted that the
projected eigenvalue problem in Eq. (7) possesses at least the same
eigenvalues of the original systems (i.e., ��1�; ��2�; . . . ; ��nm�),
although the indices may be different from the ones for the projected
system. This is because the subspace spanned by the columns of
��; �̂� contains the eigenvectors of Eq. (3) (i.e., ��j� 2 span��; �̂�
for j� 1; . . . ; nm, as span��; �̂� � span��;��). Hence, the
projected eigenvalue problem has the same eigenvalues as the
original ones. Although this advantage comes with the expense of
calculating the eigenvalues and eigenvectors of the full FE model, it
is not a major drawback, considering that the computational cost
involved in the nonlinear computationswith the original FEwould be
muchmore expensive than calculating a fewnormalmodes of the full
FE model.

B. Nonlinear Degree-of-Freedom Sampling

With the reduced-order model obtained, as discussed in Sec. III.A,
the next step is to select the DOFs in B, such that the nonlinear
characteristics of the system can be well approximated by applying
the nonlinear BCs only at the selected DOFs.
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As mentioned, accurately calculating the NNM frequencies is the
primary interest of this study. The NNM frequencies of the system
can be obtained in several ways, such as by time integration of
Eq. (2) for harmonic loading or by using harmonic-balance-based
frequency/time domain analysis [36,39]. It was shown by the authors
that the NNM frequencies for cracked plates, obtained by the
nonlinear harmonic response analysis, can be well approximated by
the application of bilinear frequency approximation, even when the
crack surfaces involve multiple DOFs [40]. Therefore, as a measure
to evaluate the results obtained with the selected DOFs, bilinear
frequency is used in the following development. Namely, the ith
NNM frequency!ni can be approximated by a bilinear frequency!bi
defined as

!bi �
2!o!s
!o � !s

(8)

where !o and !s are the natural frequencies of the corresponding
linear systems that can be, respectively, obtained by solving the
following eigenvalue problems:

K H�� �!2
o�MH� (9)

subject to open BCs, and

K H�� �!2
s�MH� (10)

subject to sliding BCs. The open BC is a boundary condition where
no constraint is imposed on the nodes on �A and �B, or the DOFs in
B. Thus, in fact, Eq. (9) is identical to Eq. (7). On the other hand, for
the sliding BC, it is assumed that �A can freely slide with respect to
�B but cannot separate along the local normal direction, described as
follows.

A contact pair is defined as a pair of nodes on �A and �B that may
be in contact during the vibration. A set of numbers denoting all the
contact pairs is defined as Ccp. For the jth contact pair in Ccp, three
mutually perpendicular normal vectors at a node on�A are defined as
nj1, n

j
2, and n

j
3, where n

j
1 is the normal vector pointing outward from

the surface, and nj2 and nj3 are unit vectors that are tangent to the
surface and perpendicular to each other. Using these vectors, a
coordinate transformation matrix PjA � �n

j
1;n

j
2;n

j
3� is defined for

each contact pair, with the assumption that a nodal displacement
vector contains only translational DOFs, such that the x1 component
of the displacement vector of the node is aligned with ni1 and points
outward from the surface. For the other node of the jth contact pair on
�B, the corresponding coordinate transformation matrix that aligns
the x1 component of the nodal displacement vector with the normal
vector is defined as PjB ��P

j
A. Assembling PjA and PjB for all

j 2 Ccp, a coordinate transformation is defined as

P �
Pb 0 0
0 Io 0
0 0 Im

0
@

1
A; where Pb � A

nCcp
j�1 �P

j
A;P

j
B� (11)

and A is an assembly operator, Pb 2 RnB�nB , Io 2 RnO�nO , and
Im 2 RnM�nM . Next, for the jth contact pair, the x1 components of
the nodal displacement vectors, which are denoted as �jA and �

j
B, are

transformed to a relative displacement uj ≜ ��jA � �
j
B�=

���
2
p

and a
displacement vj ≜ ��jA � �

j
B�=

���
2
p

. Namely, denoting the set of
DOFs corresponding to ujA and u

j
B for all jth contact pair, one obtains

uj

vj

� �
� 1���

2
p 1 1

1 �1

� �
�jA
�jB

� �
(12)

Now, by defining X , Y, and Z (X [ Y [ Z � B and
nX � nY � nZ � nCcp ), the sets that, respectively, contain sets of
indices of the DOFs corresponding to x1, x2, and x3 for all j 2 Ccp,
and denoting the coefficient matrix in the Eq. (12) as Rj, one can
define a transformation matrix R by assembling Rj for j 2 Ccp as
follows:

R � Rx 0
0 I

� �
; where Rx � A

nCcp
j�1 �Rj� (13)

and Rx 2 RnX�nX . Since P�1 � PT and R�1 �RT , the eigenvalue
problem in Eq. (7) can be transformed to

Kq� �!2
o�Mq (14)

where �� PRq, M� �PR�TMHPR, and K� �PR�TKHPR.
Next, note that q can be partitioned into q� �qr;qg�, where qr is the
vector of relative DOFs, or uj�8 j 2 Ccp� and qg is the generalized
internal DOFs containing vj�8 j 2 Ccp�, the x2, and x3 components
of the nodal displacement vectors of the nodes of the contact pairs,
the displacement vectors of the observer nodes, and the modal
coordinates. That is, Eq. (14) can be written as

Krr Krg

Kgr Kgg

� �
qr
qg

� �
� �!2

o�
Mrr Mrg

Mgr Mgg

� �
qr
qg

� �
(15)

where R 	 X and G� �AnR� [M.
The best approximation to the NNM frequency can be obtained

when the sliding BCs are imposed on all of the nodes on the surfaces
�A and �B. Namely, the associated eigenvalue problem with the
sliding BCs can be obtained by constraining all the relative DOFs, or
qr � 0; that is,

K ggqg � �!2
s�Mggqg (16)

Next, we assume that we do not like to consider all nodes inR for the
subsequent forced response analysis due to the large number of
DOFs involved inR. In other words, the nodes where the nonlinear
BCs are applied should be sampled, as illustrated in Fig. 2. The
selected DOFs are designated as nonlinear DOFs, and a set of indices
of the nonlinear DOFs is denoted by N , where N 	 R. The rest of
the DOFs inR are designated as linear DOFs, and the associated set
is denoted by L, where N [ L�R. Therefore, the bilinear
frequency is calculated with !s, such that the sliding BC is applied
only on the DOFs in N , or qn � 0; that is,

Kll Klg

Kgl Kgg

� �
ql
qg

� �
� �!2

s�
Mll Mlg

Mgl Mgg

� �
ql
qg

� �
(17)

Considering that the natural frequencies of the system with the open
BCs, !o, are independent of both the number and the pattern of the
selected DOFs [recalling that span��c; �̂� contains the chosen
eigenvectors], one can see from Eq. (8) that !bi is dependent only on
!s for a fixed !o.

Next, considering the Rayleigh’s theorem of constraints, defined
by Eq. (1), it is known that the system’s eigenvalues increase if a
constraint is imposed on a system. Therefore, as the number of
constraints on Eq. (7) increases, !s increases. Furthermore, !bi is a
monotonically increasing function of !s for a fixed !o, because
@!bi=@!s � 2!2

o=�!o � !s�2 ⩾ 0. Hence, one can conclude that the
best approximation of !bi for a given nN is obtained when the
maximum !s is achieved. Thus, a corresponding maximization
problem is stated as follows:

max
N	R

!s�N �; subject to jN j � nN (18)

This maximization problem may be solved by mathematical
programming methods, such as integer programming or topology
optimization methods, as was done in [27]. As shall be discussed
next, this maximization problem can in fact be treated in a more

Fig. 2 Schematic of the node sampling: ●, selected node (N ).

SAITO ETAL. 1907



efficient way by the use of Guyan reduction [5] and methods to
choose the master DOFs for reduced-order modeling techniques.

C. Automatic Master Degree-of-Freedom Selection

The methods for automatically selecting the master DOFs for
Guyan reduction [5] have been previously developed [9,10,16]. In
particular, the method proposed by Henshell and Ong [9] appears to
be the most successful approach. Although it has been known to be
computationally expensive, due to the nature of eliminating a single
DOF per iteration and the need for successive applications of Guyan
reduction [5], this can be alleviated by the use of the primary model
reduction by CMS, as developed in Sec. III.A. As was mentioned by
Bouhaddi and Fillod [16] and Shah and Raymund [10], the master
DOFs of Guyan reduction [5] should be chosen such that the valid
eigenvalue range of the reduced-order model is maximized. In
general, it has been known that the eigenvalue range of validity is
bounded by the lowest eigenvalue of the system, with all the master
DOFs fixed. Here, this concept is applied to the problem of finding
the optimal N that solves Eq. (18). Namely, the corresponding
eigenvalue problem is Eq. (17), where qn is regarded as the master
DOFs. As was discussed in [41], the error bounds in the ith
eigenvalue of the reduced model produced by the Guyan reduction
[5] can be obtained a priori by the following relationship:

0 ⩽ "i ⩽
�i

�s;min � �i
(19)

where "i ≜ ���i � �i�=�i is the relative error in the ith eigenvalue, ��i
is the ith eigenvalue of the reduced-order model, �i is the ith
eigenvalue of the original FE model, and �s;min is the smallest
eigenvalue of the system with all the master DOFs fixed. For
�i=�s;min 
 1, the upper bound asymptotically converges to the
following value [42]:

0 ⩽ "i ⩽ �i=�s;min (20)

Therefore, it is apparent that maximizing �s;min results in minimizing
the upper bound of the error for all the eigenvalues of the reduced-
ordermodel. Hence, this provides a guideline for selecting themaster
DOFs for Guyan reduction [5], such that the errors in the eigenvalues
of the resulting reduced-order model are minimized.

By observing this fact from another point of view, one may note
that, if a certain set of master DOFs can achieve the maximum �s;min,
one can obtain not only an accurate reduced-order model that can
well approximate the first few lowest eigenvalues of the original
system but also (as a by-product) a good estimate on the optimal
constraint locations that maximize the fundamental frequency.
Recasting this to the original problem of selecting the optimal setN ,
the error bounds given in Eq. (20) and associated with the eigenvalue
problem in Eq. (17) are written as

0 ⩽ "i ⩽
�!2

o�i
�!2

s�1 � �!2
o�i

(21)

where "i ≜ �� �!2
o�i � �!2

o�i�=�!2
o�i, � �!2

o�i is the ith eigenvalue of a
reduced-order model, and �!s�1 is the lowest natural frequency of
Eq. (17). The corresponding maximization problem is given by
Eq. (18). Solving this problem for the lowest eigenvalue �!s�1, one
can expect that the chosen nodes pattern is at least quasi-optimal.

According to [42,43], the sequential elimination method by
Henshell and Ong [9] tends to keep �s;min high, as it eliminates the
DOFs associated with the highest constrained frequency at each
iteration as the slave DOFs. Namely, after the elimination procedure,
if the chosen master DOFs are all fixed, the system is left with the
(slave) DOFs that were identified to have the highest constrained
frequency at each elimination process. Thus, the resulting system
with all the master DOFs fixed tends to have a larger �s;min than that
calculated with systems with other possible combinations of master
DOFs fixed.

The Henshell and Ong [9] method that is adapted specifically for
this problem is shown in Algorithm 1. First, at each iteration, the

ratios of the diagonal terms of the stiffness matrix kjj to the diagonal
terms of the mass matrix mjj are calculated for 8 j 2 R. Next, the
index q1 that gives the maximum ratio among j 2 R is obtained.
Next, the set L is updated, such that it contains q1 and all the other
DOFs that are associated with the contact pair k 2 Ccp to which the
q1th DOFs belongs (e.g., the DOFs that are perpendicular to the
normal direction). The setN is then updated, such that it excludes the
selected DOFs of L from R, and the set R is redefined as N . A
constraint mode is calculated by solving a problem where a unit
displacement is applied to aDOF inN , whereas all the otherDOFs in
N are fixed. This is repeated for all DOFs in N , resulting in the
following matrix:

� � I
��Kll��1Kln

� �
(22)

where� is the matrix of constraint modes for all DOFs inN . Guyan
reduction [5] is then applied to the mass and stiffness matrices. The
iteration continues until the number of DOFs in N reaches the
desired value for nN .

To demonstrate the performance of the proposed algorithm,
another algorithm for selecting DOFs is shown here for comparison.
The method of effective independence vector, or the EIDV method
developed by Kammer [26], is a method to choose the sensor
placement locations for the vibration measurement of large-scale
structures. The method aims to make the measured, or sampled/
truncated eigenvectors, as linearly independent as possible.
According to Penny et al. [25], many of the criteria for choosing
the master DOFs for model-order reduction are similar to choosing
measurement locations in away such that the lower-frequencymodes
can be captured accurately. In fact, as examined by Penny et al., both
the Henshell and Ong [9] method and the EIDV method produce
acceptable selections in most cases (in a quasi-optimal manner). The
DOFs selection algorithm based on the EIDV method is shown as
Algorithm 2. First, the eigenvalue problem in Eq. (16) is solved for
the first k modes, and the associated modal matrix is denoted by
�k � ��1;�2; . . . ;�k�. That is, K�k �M�k�k, where �k is a
diagonal matrix, with diagonal entries being the square of the natural
frequencies of the open BC linear system. The Fisher information
matrixA is then calculated asA��T

k�k, and an idempotent matrix

Algorithm 1 DOF selection based on Henshell and Ong [9] method

1: for i� 1 to i� nR � nN , do
2: Calculate

����������������
kjj=mjj

p
for j 2 R

3: Find q1, such that
������������������������
kq1q1=mq1q1

p
�maxj2R

����������������
kjj=mjj

p
4: L fq1; . . . ; qnk g, where qs are the DOFs associated with the kth

contact pair (k 2 Ccp) and nk is the number of DOFs
in the kth contact pair

5: N  RnL
6: R N
7: Calculate constraint modes using Eq. (22)
8: Apply Guyan reduction [5] to the system matrices: M �TM

and K �TK�
9: end for

Algorithm 2 DOF selection based on EIDV method

1: Calculate �k

2: for i� 1 to i� nR � nN , do
3: A �T

k�k

4: E �kA
�1�T

k

5: Find q1, such that eq1q1 �minj2Rejj
6: L fq1; . . . ; qnk g, where qs are the DOFs associated with the kth

contact pair (k 2 Ccp) and nk is the number of DOFs in kth
contact pair

7: N  RnL
8: R N
9: Delete rows of �k corresponding to the DOFs in L
10: end for

1908 SAITO ETAL.



E is computed as E��kA
�1�T

k . The diagonal of E is called the
independence distributionvector (see [26] for detailed formulations).
The least contributingDOF to the independence of themodes among
the ones in R is identified as the one with the smallest diagonal
element in E. The associated DOFs are also identified and stored in
L, and both N and R are updated, as in the Henshell and Ong [9]
method. Finally, the rows of�k corresponding to the DOFs in L are
deleted. The iteration continues until the size of N reaches the
desired nN .

Although the EIDV method has a similar objective for choosing
DOFs as the Henshell andOng [9]method, the objective of the EIDV
method is not exactly the maximization problem of Eq. (18).
Therefore, it is expected that the Henshell and Ong method returns
better solutions to the given maximization problem than the EIDV
method, as is shown in the next section.

IV. Case Studies

In Sec. III, the method to select the nonlinear DOFs has been
introduced. In this section, the performance and accuracy of the
method are demonstrated by applying the algorithm to two example
problems. In thefirst case study, the accuracy of the proposedmethod
is discussed in terms of the bilinear frequencies and forced response.
Furthermore, ametric to assess accuracy is introduced and examined.
The second case study is provided to demonstrate the performance of
the proposed method when applied to a system with a more realistic
and complex FE model featuring a large number of DOFs on the
faces involving intermittent contact.

A. Simple Cracked Plate Model

1. Problem Description

A cantilevered cracked plate model was constructed with Young’s
modulus ofE� 2:0 � 1011 Pa, Poisson’s ratio of �� 0:3, density of
�� 7800 kg=m3, and geometry, shown in Fig. 3a, wherew� 6:0�
10�3 m, l� 6:0 � 10�2 m, h� 1:5 � 10�1 m, lc=l� 0:625, and
hc=h� 0:475. The model was discretized with 5120 linear solid
elements and resulted in mass and stiffness matrices with 18,630
DOFs. On the crack surfaces, shown in Fig. 3b, there are 180 nodes,
or 90 contact pairs, on the surfaces. Hence, the number of associated
DOFs is 540. The CMS method, shown in the Sec. III.A was then
applied to the FEmodel, and it resulted in a 681DOF system (3.6%of
the original size) consisting of 621 physical DOFs and 60 modal
coordinates, corresponding to the free-interface normal modes.With
this reduced-order model, both algorithms in Algorithms 1 and 2
were applied for nN � 4, 8, 16, 32, 64, and 128. For the EIDV
algorithm, the first four modes were considered to construct the
modal matrix.

To compare these results with an intuitive selection method, a
selection criterion was also employed, where the nonlinear DOFs
were chosen based on the amount of penetration between the nodes in
a contact pair for the modes of interest (the fourth mode), which is
referred to as the penetrating surface criterion. Namely, the pene-
trating surface criterion is based on the observation that penalizing
the interpenetration of the most penetrating contact pairs may

a) FE model b) Magnified crack surface
Fig. 3 Cantilevered cracked plate model.

a) nN = 4 (2 pairs)

d) nN = 32 (16 pairs) e) nN = 64 (32 pairs) f) nN = 128 (64 pairs)

b) nN = 8 (4 pairs) c) nN = 16 (8 pairs)

Fig. 4 Selected nodes by penetrating surface criterion (left edge open).

a) nN = 4 (2 pairs)

d) nN = 32 (16 pairs) e) nN = 64 (32 pairs) f) nN = 128 (64 pairs)

b) nN = 8 (4 pairs) c) nN = 16 (8 pairs)

Fig. 5 Selected nodes by EIDV method (left edge open).

a) nN = 4 (2 pairs)

d) nN = 32 (16 pairs) e) nN = 64 (32 pairs) f) nN = 128 (64 pairs)

b) nN = 8 (4 pairs) c) nN = 16 (8 pairs)

Fig. 6 Selected nodes by the Henshell and Ong [9] method (left edge open).
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produce the stiffest system response. The selected node pattern with
such criterion is shown in Fig. 4, and the results of the EIDVmethod
and the Henshell and Ong [9] method are shown in Figs. 5 and 6. As
can be seen in Fig. 4, if the nodes are chosen based on the penetrating
surface criterion, the selection starts from the nodes near the crack
edge (open side) fornN � 4, and it then proceeds toward the tip of the
crack (closed side) as nN increases. This result is expected, because
themotion of the crack surface is more significant near the open edge
than near the closed edge. In contrast, the EIDV method starts to
select nodes near the crack edge, but it tends to choosemore nodes on
the crack rims than nodes near the crack edge, as shown in Fig. 5.
Finally, the Henshell and Ong method selects the nodes near the
crack edge first, for nN � 4, but it then tends to select nodes over the
crack surface in a more distributed manner, as can be seen in Fig. 6.

2. Forced Response Analysis

Next, to evaluate the influence of the application of the nonlinear
BC onto the selected nodes on an NNM frequency, forced response
analysis was carried out by applying an external harmonic loading to
the cracked plate. As one may note, the repetitive opening and
closing of the crack faces must be treated appropriately with contact
algorithms when the forced response of this cracked structure is
considered. As a result, the vibration is nonlinear and the steady-state
response may not be expressed as a harmonic function, even if the
external force is a harmonic function. Therefore, in this study,
the steady-state response was obtained by assuming that the
displacement can be expressed as a truncated Fourier series, and the
nonlinear BC can be enforced by a penalty method [1]. The solution
method is also known as the hybrid frequency time domain method
[36,39], which is based on the concept of the harmonic balance
method [4]. The detailed formulation of the method is omitted in this
paper for the sake of brevity.

It is noted that the system matrices were further reduced by the
application of Eq. (4) to the reduced-order model before the forced
response calculation was performed. That was done by keeping the
selected node pairs as active DOFs and condensing out the other
DOFs, including physical and modal coordinates. For example, with

nN � 64 (32 pairs), the system size was reduced down to 155 DOFs,
which is 0.83% of the original system size.

A harmonic forcing ofmagnitude 3Nwas then applied at the tip of
the plate to excite the first vibration mode, which is the first out-of-
plane bendingmode. The forced responsewas calculated for both the
linear case (i.e., with open BC) and the nonlinear case (with the
nonlinear BCs imposed on N ). The results are shown in Fig. 7. As
can be seen in Fig. 7a, the selection pattern based on theHenshell and
Ong [9] method does not alter the linear forced response. This is
because the selection of the active DOFs does not alter the
eigenvalues of the linear reduced-order model. In contrast, the
number of contact pairs greatly affects the results of nonlinear forced
response, as shown in Fig. 7b. Also, one may observe that the
response obtained with 64 contact pairs is almost identical to that
obtained with the full set of 90 contact pairs. That implies that, for
accurately calculating the nonlinear resonant frequencies, it may not
be necessary to enforce nonlinear BCs for all the contact pairs on the
crack faces. The same forced response calculations were carried out
with the node patterns selected by the EIDV method and the
penetrating surface criterion. The results obtained are shown in
Figs. 7c and 7d. As can be seen in Fig. 7c, the results obtained with
the patterns chosen by the EIDV method are comparable with the
ones produced by theHenshell andOngmethod. Also, as can be seen
in Fig. 7d, the forced response with the node patterns chosen by the
penetrating surface criterion produced worse results than the other
two methods (i.e., for a given number of nN , the predicted resonant
frequency by the approach is less accurate than that calculated by the
othermethods). This is themost visible in the results fornN � 64, for
which both the Henshell and Ong method and the EIDV method
produced results that are almost identical to the results for the full
model with nN � 90.

Moreover, to evaluate the effects of nN on the computational
speed, the average CPU times for generating node patterns, as well as
the ones required to obtain the steady-state forced response, are
shown inTable 1. TheCPU timewasmeasured on a computerwith an
Intel Core 2 Duo 2.4 GHz processor and 4.0 GB of RAM. First, the
CPU time for generating the node pattern with each algorithm was
measured for 100 trials, and the average values are shown in Table 1.
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Fig. 7 Results of forced response analysis of the cracked plate.
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As can be seen, the node selection by the Henshell and Ong [9]
method takes longer than the other two methods for all nN , due
mostly to the cost associated with the successive application of
Guyan reduction [5]. The other two methods are faster than the
Henshell and Ong [9] method. However, they sacrifice the accuracy
in the resulting nonlinear forced response. Also note that the CPU
time decreases as nN increases for both EIDVand Henshell and Ong
methods, because these methods eliminate the unnecessary DOFs at
each iteration rather than choosing necessary DOFs. Thus, the node
pattern with larger nN is generated with less CPU time. Second, the
forced response was calculated at 256 points evenly spaced in a
frequency range from 200 to 215 Hz for nN � 2, 4, 8, 16, 32, and 64
by the three methods considered, and for the case with nN � 90, and
the results are shown in Table 1. Although there is no significant CPU
time difference among the selection algorithms, one can notice that
the CPU time can be greatly reduced when the calculations are done
with the sampled nodes, without sacrificing too much accuracy if the
set of nodes were chosen by the proposedmethod. Also, note that the
node selection has to be done only once for the entire frequency range
of interest, and the cost is much smaller (e.g., only 0.03% for the
Henshell and Ong method with nN � 64) than that required for
computing forced response with sufficiently large nN .

3. Bilinear Frequency Approximation

Next, the influence of the selected node pattern on the bilinear
frequencies is discussed. The first four bilinear frequencies were
calculated for themodelwith the selected node patternswith the three
node sampling methods, and the results are shown in Fig. 8 along
with their linear vibration mode shapes. The first four modes
correspond to the first out-of-plane bending, the first torsion, the
second out-of-plane bending, and the first in-plane bending modes,
respectively. The plots in Fig. 8 show the percentage errors in the
bilinear frequency versus the number of contact pairs, where the error
is defined as the ratio of the difference between the bilinear frequency
with the sampled contact pairs and the frequency obtained with the
full set of contact pairs, to that with the full set of contact pairs. As can

be seen in Fig. 8, the Henshell and Ong [9] method consistently
provides the best results among all the methods for the first four
modes. Moreover, it shows the best convergence rate in terms of the
number of contact pairs.

4. A Posteriori Accuracy Assessment

Even though intuitive, the approach that chooses the contact pairs
with the most penetration does not provide the best results, because
applying the nonlinear BCs at these nodes does not result in the
stiffest vibration response. In contrast, the Henshell and Ong [9]
method and the EIDV method produced node patterns that yield
results closer to the reference results in terms of forced response and
bilinear frequencies. In particular, the Henshell and Ong method
iteratively aims to solve the maximization problem in Eq. (18) in a
quasi-optimal manner. Therefore, the bilinear frequencies, as well as
the resonant frequencies, were well approximated with the nodes
chosen by the Henshell and Ong method.

To better understand the governing factor for the accuracy of the
results, a more physical interpretation of the results is provided
here. Namely, the key effect for achieving the good approximation
of the NNM frequency is to ensure, as much as possible, the non-
penetrability condition on the contact pairs where the nonlinear BCs
are not applied. Also, the penetration should be evaluated during a
complete vibration cycle. Thus, both the depth and the duration of the
penetration should be taken into account. These quantities vary in
space and depend on the frequency of vibration. Hence, as ametric to
characterize not only the amount but also the duration of penetration
over the entire crack surfaces for a given vibration frequency, the
following quantity is introduced:

F̂�
Z
T

0

�Z
�A��B�

keup�r; t� d�
�
dt (23)

where F̂ is a quantity with the dimension of impulse referred to as the
virtual impulse, ke is an equivalent spring constant per unit length
determined by the ratio between the Young’s modulus multiplied by

Table 1 Average CPU times for generating node patterns over 100 trials, and typical CPU times

to compute forced response for 256 steps within 200 to 215 Hz

Penetrating surface criterion EIDV Henshell and Ong [9]

nN Node selection, s Forced response, s Node selection, s Forced response, s Node selection, s Forced response, s

2 6:15 � 10�1 1.27 2.23 1.18 3.69 1.21
4 6:21 � 10�1 5.64 2.26 3.99 3.68 3.23
8 6:18 � 10�1 1:85 � 101 2.19 2:87 � 101 3.69 2:07 � 101

16 6:07 � 10�1 5:00 � 101 2.20 1:07 � 102 3.65 9:35 � 101

32 6:09 � 10�1 1:48 � 103 2.12 1:37 � 103 3.52 8:17 � 102

64 6:26 � 10�1 1:08 � 104 1.93 9:86 � 103 2.66 1:03 � 104

90 N/A 2:62 � 104 N/A 2:62 � 104 N/A 2:62 � 104

Fig. 8 Errors in the first four bilinear frequencies: a) NNM 1, b) NNM 2, c) NNM 3, and d) NNM 4.
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the characteristic area and the characteristic length, up is the amount
of penetration along the surface normals, and T is the period of
vibration. The quantity F̂ is obtained, based on the calculated time
trajectory of displacements of the nodes on the crack surfaces, and
it can be thought of as an impulse that does not contribute to the
system response. This impulse is not applied to the system when
the response is calculated. In other words, the smaller the value of F̂,
the stricter the BCs are imposed on the nodes over the entirety of the
crack surfaces.

First, the forced response analysis was carried out, and the
corresponding time history of up over the entire crack surface was
recovered from the vibration response. The integrals in the Eq. (23)
were then evaluated by a simple quadrature rule, both in space and
time. The metric was calculated for the first and the fourth modes for
8 and 32 pairs chosen by the node sampling methods, and the results
are shown in Figs. 9 and 10. As can be seen in Figs. 9 and 10, the
virtual impulse varies over the frequency range. In particular, when
the frequency of excitation is close to the resonant frequency, the
amount of penetration increases as well. However, for all cases, the
Henshell and Ong [9] method consistently results in the smallest
impulse over the frequency range among the three methods
considered. That means that the nonlinear BC on the crack faces is
the most strictly enforced by the node patterns chosen by the
Henshell and Ong method.

B. Large-Scale Cracked Blade Model

In this subsection, the performance of the proposed method
applied to a FE model of a cracked blade model with a large number
of DOFs is demonstrated. A blade model, for which the thickness is
2:5 � 10�3 m and both chord and span lengths are approximately
5:0 � 10�2 m, was constructed with the Young’s modulus of
E� 205 GPa, density of �� 7832 kg=m3, and Poisson’s ratio of
�� 0:3. The blade was discretized with linear and quadratic
tetrahedral elements, resulting in a system with 392,361 DOFs, as
shown in Fig. 11a. The crack path, as well as its surrounding FE
mesh, was generated by a fracture analysis code FRANC3D [44].
The crack surfaces consist of quadratic elements with 487 contact
pairs at the edges of vertices of triangles, resulting in 2922 DOFs for
both surfaces, as shown in Fig. 11b. The size of the FE model was
then reduced down to 2949 DOFs (0.75% of the original size) by the

primary CMS method, which consists of 2934 physical DOFs
(2922 DOFs on crack faces and 12 additional DOFs for forcing) and
15 modal coordinates corresponding to the free-interface normal
modes. The proposed method was then applied to the reduced-order
model, and the results are shown in Figs. 12 and 13. For the EIDV
method, the first 15 modes were used for the calculations. As can be
seen in Fig. 12, the EIDV method selects nodes along the rim of
the crack faces, similar to the previous case study. In contrast, the

Fig. 10 Virtual impulse for a period of vibration for NNM 4.

Fig. 9 Virtual impulse for a period of vibration for NNM 1.

Fig. 11 A cracked blade model.
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Henshell and Ong [9] method tends to choose the nodes slightly off
the crack rim in a more distributed manner over the crack face, as in
the previous example. With the selected node patterns, the first four
bilinear frequencieswere calculated. Thefirst fourmodes correspond
to the first out-of-plane bending, the first torsion, the second out-of-
plane bending, and the first chordwise bending mode, respectively.
The errors were then calculated, as in the previous example and
shown in Fig. 14, along with their linear vibration mode shapes. As
can be seen in Fig. 14, the Henshell and Ong method consistently
shows better results than the results obtained by the EIDV method.

V. Conclusions

In this paper, a novel node sampling methodology for the
nonlinear vibration analysis of elastic structures with intermittent
contact was proposed. In Sec. III, the modeling framework was
developed, based on CMS. The master DOF selection scheme for
Guyan reduction [5] was formulated by considering the close
relationship between the optimal master DOF selection and the
optimal constraint locations for maximizing the fundamental natural
frequency. Themethod is a combination of the sequential elimination

method proposed by Henshell and Ong [9] and coordinate
transformations to the reduced-order model. Another method for
choosing the nodes was also introduced for a comparative study. The
alternate method is based on an approach to optimally choose
measurement locations, such that the truncated/measured modes
become as linearly independent as possible. The method was then
applied to a representative FE model in Sec. IV. In Sec. IV.A, the
methods were applied to a cracked plate model. Using the selected
node patterns, forced response analysis was carried out to evaluate
the effects of the selection patterns on the frequency response.
Furthermore, the resonant frequencies were calculated by the
application of bilinear frequency approximation. It was confirmed
that the selected DOFs resulted in accurate predictions of nonlinear
resonant frequencies in comparison to the benchmark case of using
all DOFs on the crack surfaces. Furthermore, it was demonstrated
that the method also achieves a significant reduction in CPU time for
the nonlinear forced response calculations, without sacrificing the
accuracy in the predicted forced response. Moreover, a method for
a posteriori accuracy assessment was introduced by examining the
amount of penetration on the crack surfaces during a vibration cycle.
In Sec. IV.B, the method was also applied to a cracked blade model

Fig. 12 Selected nodes by EIDV method for nB � 974 (487 pairs).

Fig. 13 Selected nodes by the Henshell and Ong [9] method for nB � 974 (487 pairs).

Fig. 14 Error in the bilinear frequency for the first four NNMs.
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with a much larger number of DOFs on the crack faces. The node
selection patterns, as well as the errors in the bilinear frequencies,
conform to the results in the example in Sec. IV.A. For the methods
examined, the node patterns selected using the proposed newmethod
consistently showed the best results.

Based on these results, the essential findings and contributions of
this paper can be summarized as follows:

1) It was shown mathematically that the selection of the nodes
where the nonlinear BCs should be applied for vibration problems
with intermittent contact is closely related to the problem of
maximizing the fundamental natural frequency of FE models by
fixing some of the nodes.

2) The maximization problem can be (approximately) solved by
the Henshell and Ong [9] method in conjunction with the CMS
method.

3) For simplified yet representative example models, the proposed
method produced nodes that give accurate forced response pre-
dictions and nonlinear resonant frequencies when the nonlinear BCs
are applied on the selected nodes.

4) A posteriori accuracy assessment using numerical examples
showed that the forced response analyses with the proposed method
retain the largest impulse at the crack surfaces for the frequency
ranges of interest

It should also be noted that the proposed method is independent
of the geometry of the contact surfaces. That is because the selection
procedure is solely dependent on the mass and stiffness of the
structure. Therefore, for instance, even if there are distortions of the
contact surfaces, the proposed method still works as long as the
effects due to the distortions are reflected in the FEmass and stiffness
matrices. In contrast, the limitation of the proposed approach is that
the geometry of the contact surface has to be known a priori, and the
domain of contact surfaces is assumed to remain unchanged during
the vibration. That is, if the vibration problems of interest involve
dynamic (fast) crack propagation, then the nodes selected by the
proposed approach at some time instant might not necessarily be the
optimal selection for the entire time duration of interest. However,
this is not a problem if the contact problem of interest does not
involve fast changes in the contact regions, such as the ones involving
gap contact between mechanical components. In addition, local
effects on the contact surfaces, such as variations in the grain size on
the crack surfaces, were not considered in this paper. These important
issues are far beyond the scope of this paper. However, the authors
believe that the contributions of this paper shall contribute to further
expand the capabilities of model-based vibration analyses involving
intermittent contact.
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