
Multiscale modeling of oxidative degradation of

C-SiC composite

Veera Sundararaghavan 1 and Sangmin Lee2

Department of Aerospace Engineering

University of Michigan

1320 Beal Ave, Ann Arbor, MI 48109, USA.

A multi-scale model has been developed for modeling thermal oxidation of ceramic
matrix/carbon �ber composites used in high temperature environments. The compe-
tition between transport of oxygen and carbon dioxide between the exposed carbon
�bers and the external environment is simulated using a mass conservation equation in
the inert porous matrix. Oxidation at the scale of individual carbon �bers is modeled
using level set method and an adaptive meshing strategy. The recession of carbon
�ber at interfaces exposed to oxygen is simulated as a function of time using a coupled
�nite element methodology at various locations in a validated macroscopic model. The
multi�scale model allows study of stress-oxidation coupling and associated mechanical
property degradation in C/SiC composites.

Nomenclature
ρ̄ = macro-scale gas specie density �eld
ρ = micro-scale gas specie density �eld
ρref = macroscopic reference density �eld
ρ̃ = density �uctutation �eld at micro-scale
∇ρ = macroscopic density gradient
q̄ = macroscale �ux
q = microscale �ux
vn = normal velocity of receding carbon �ber surface
ρc = density of carbon �ber
k = Permeability tensor
µg = viscosity of gas species
P = total gas pressure in the matrix
D = Di�usivity of oxygen wrt carbon di-oxide
φA = areal porosity tensor
κ = micro-scale di�usivity
κ̄ = macroscopic di�usivity
ϕ = volumetric porosity
Q̄ = Macroscale mass consumption rate per unit bulk volume
f = volume fraction of burnt carbon �ber
nI = normal vector for the carbon �ber surface

I. Introduction

Advanced launch vehicles employ ceramic matrix composites (CMCs) as structural elements in
heat shields, propulsion components and other applications that encounter high temperature oxi-
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dizing environments. These conditions progressively degrade the material which eventually leads
to failure of the component well short of its expected life [1]. A variety of degradation mechanisms
exist (Fig. 1), with the predominant one being the oxidation of C �bers. For moderate to high
temperatures, this oxidation process is controlled by the transport of oxygen into the porous SiC ma-
trix. The oxygen transport phenomena in C/SiC composites is primarily through an interconnected
void network in the matrix formed due to thermal expansion mismatch between carbon �bers and
the matrix during processing. At the micro-scale, �ne carbon �bers in within tows interact with
oxygen and degrade at moderate to high temperatures. Initial models for studying oxidation of
C/SiC composites at micro-scales assumed a steady state di�usion through the matrix [2, 3]. While
these techniques model the micro-scale, techniques for homogenizing the results for use in global
analysis was not developed. In [4], a continuum level theory for modeling composite oxidation was
developed. The approach models the composite as a homogeneous mixture of matrix, carbon �ber
and voids. While continuum models are practical approaches for predicting the behavior of C/SiC
composites, they do not model the inherent heterogeneities involved in �ber oxidation. Multi-scale
modeling by coupling macroscopic and microscopic models allow us to take advantage of both the
e�ciency of continuum models and the accuracy of the microscopic models.

Fig. 1 C/SiC composites in extreme thermo-chemo-mechanical loading conditions are subject to a variety
of degradation mechanisms. Modeling of macro-scale degradation should involve physical models at multiple
length scales. In this paper, we focus on micro-scale degradation modeling using �nite element analysis.

Multi-scale analysis of di�usion problems have been previously addressed using micro-scale
e�ective properties obtained through either bounding relations[5, 6] or analytical closed-form ex-
pressions (reviewed in [7]) in a macro-scale model. These approaches were restricted to simple
geometries with a simple material response, not valid when degrading interfaces are present. More
recently, numerical schemes using asymptotic homogenization approaches, based on an expansion of
the unknown �eld variable with respect to a micro-scale length parameter, have been developed to
address micro�macro di�usion problems [8�10]. However, the problems considered are restricted to
constant transport properties and focused on steady-state di�usion problems. Oxidation problems
involve transient e�ects, and in addition, involve interface phenomena that have not been previously
addressed in a multi-scale methodology. Computational homogenization provides an attractive av-
enue for computing the macroscopic response in problems with discontinuities and non-linearities.
Computational homogenization is a multi-scale analysis approach in which computations are concur-
rently performed at two di�erent length-scales. The macro-scale is associated with the component
being modeled (10−3 to 10+1 m) and the meso-scale is characterized by the underlying composite
microstructure (10−6 to 10−3 m). The principle of scale separation states that the characteristic
length scale over which the macroscopic �eld variables vary, should be much larger than the size
of the microscopic volume considered. In other words, macroscopic quantities are nearly constant
at the level of a RVE. A representative volume element (RVE) is de�ned at the micro-scale and
boundary conditions are de�ned on the RVE in terms of macroscopic quantities. Applications of
such approaches for thermo-mechanical deformation have been well studied previously [11�13].

Flux discontinuities arise in several problems, the most well�studied of which is �uid solidi�-
cation. In solidi�cation problems, a �ux jump (manifested as latent heat) occurs at the evolving
solidi�cation front while the overall temperature �eld itself is continuous in the domain. Recently,
the homogenization scheme was extended for addressing such problems in our recent work [15].
Oxidation problem addressed in this work not only involves a �ux discontinuity but also addition-
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ally involves a �eld discontinuity in the form of a jump in oxygen density �eld across the oxidizing
interface. In this paper, we develop a fully coupled multi�scale homogenization approach for prob-
lems involving both �eld and �ux discontinuities. The paper is organized as follows: In sections 2
and 3, a generalized scale transition for the multiscale problem is derived. The micro�scale and the
macro�scale models are explained in sections 4 and 5, respectively. In section 6, the level set method
used to model the moving interface is explained. Finally, in section 7, we discuss the methodology
through an example of oxidation of a carbon composite.

II. Computational Homogenization Approach: Micro-scale Boundary Conditions

We consider a problem of oxidation, where carbon �bers residing in an inert matrix reacts with
oxygen. The microstructure of a 2-D C/SiC composite is shown in Fig. 2. The unit cell consists
of a single carbon �ber in a porous matrix occupying a volume V with external boundary S and
outward normal n. The oxidizing interface is a moving internal boundary which is initially an intact
�ber�matrix interface. Material outside of the exposed carbon �ber surface occupies a volume V +

and the exposed carbon �ber occupies a volume V −. Here, V + and V − are open subsets of the
total unit cell volume V . At the interface SI between V + and V −, the carbon �ber oxidizes further
and recedes into V − along nI with speed vn, where nI is the inward normal of SI as indicated in
Fig. 2). One such unit cell is attached to every integration point in the macro�scale �nite element
mesh.

Micro-scale

Macro-scale
Integration points

Fig. 2 Macro-scale is associated with a homogenized continuum. The macro-scale �elds and �eld gradients
are passed to the micro-scale as boundary conditions. Macro-scale �uxes and properties (at all integration
points) are computed from the underlying microstructural sub�problems using averaging schemes.

To identify boundary conditions that needs to be employed at the unit-cell level, we employ the
computational homogenization approach developed in [11�13, 18]. Macro-micro linking is achieved
by decomposing the micro-scale �eld (ρ) into a sum of macroscopic �eld and a �uctuation �eld (ρ̃)
as:

ρ = ρref +∇ρ · x+ ρ̃ (1)

Here, the coordinate x represents a point on the micro-scale relative to a reference point at the
center of the unit cell. The micro-scale partial density �eld of species i is denoted as ρ and the
macroscopic reference partial density �eld of species i is denoted as ρref . No subscripts (for eg. ρi
for species i) are used in this section to maintain generality.

In general, we denote a macroscopic counterpart of a microscopic quantity (say, χ) as χ. In the
above equation, gradient in partial density of specie i at the macroscopic material point is denoted as
∇ρ (= ∇macroρ̄). The most general assumption behind homogenization theory is that the gradient
as seen at the macro-scale (∇ρ) can be represented purely in terms of the �eld variables at the
exterior boundary of the microstructure (Ref. [15, 16]):

∇ρ =
1

V

∫
S

ρndS (2)
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Using the micro�scale �eld decomposition (Eq. 1), it can be shown that:

1

V

∫
V

∇ρdV = ∇ρ+
1

V

∫
V

∇ρ̃dV (3)

We employ the generalized divergence theorem of the form
∫
V
∇χdV =

∫
S
χndS+

∫
SI [|χ|]nIdSI

in the above equation (where, [|χ|] denotes the jump in the �eld quantity across the evolving
interface) to obtain the following relationship:

1

V

∫
S

ρndS = ∇ρ+
1

V

∫
S

ρ̃ndS +
1

V

∫
SI

([|ρ̃|]− [|ρ|])nIdSI (4)

In the above equation, [|ρ|] denotes the jump in partial density of specie i across the interface
(SI) with normal nI . The jump in �eld across an interface is computed as [|ρ|] = ρ+−ρ−. Here, ρ+
and ρ− refer to the �eld values in domain V + and V −, respectively, close to a point on the interface.

Boundary conditions at the micro�scale are identi�ed by comparing Eq. 2 with Eq. 4. Thus,
any such boundary conditions derived must satisfy the `linking condition':

1

V

∫
S

ρ̃ndS +
1

V

∫
SI

([|ρ̃|]− [|ρ|])nIdSI = 0 (5)

A variety of boundary conditions may be derived that satisfy this constraint, however, following
our previous work in [15], we focus on two possible boundary conditions (also called `macro�micro
linking assumption') as given below:

1. Taylor boundary condition involves speci�cation of density �eld at all points in the microstruc-
ture. The approach is called `Taylor model' based on similar terminology used in multi�scale
deformation problems where displacements are fully speci�ed at micro�scale. The Taylor
model involves the following boundary conditions:

ρ̃ = 0 on V + (6)

ρ = 0 on V − (7)

The �rst term in Eq. 5 vanishes based on the �rst condition (Eq. 6). The second equation
implies that the density of oxygen (and carbon dioxide) is negligible inside the carbon �ber.
The mechanism of transport of oxygen in the carbon �ber is through lattice di�usion and
this rate of di�usion is indeed negligible compared to gas phase transport (within pores) as
noted in di�usion studies [17]. Comparing Eq. 7 with Eq. 1 leads to expression for ρ̃ inside
the carbon �ber: ρ̃ = −ρref − ∇ρ · x on V −. This leads to the expression for jump in the
�uctuation density �eld at the interface:

[|ρ̃|] = ρref +∇ρ · x on SI (8)

Similarly, comparing Eq. 6 with Eq. 1 leads to ρ = ρref +∇ρ · x on V +. Since ρ = 0 on V −

(Eq. 7), we can obtain the expression for jump in �eld at the interface

[|ρ|] = ρref +∇ρ · x on SI (9)

From Eqs. 8 and Eq. 9, it can be veri�ed that the expression [|ρ̃|] − [|ρ|] in Eq. 5 also
vanishes at points on the interface SI . Thus, the Taylor assumption fully satis�es the linking
condition (Eq. 5). Note that when using the Taylor linking assumption, the density �elds at
the micro�scale are fully speci�ed from macro�scale quantities using the following equation:

ρ = ρref +∇ρ · x on V +

ρ = 0 on V − (10)
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2. Homogenization boundary condition: The essential boundary condition of the following form
is speci�ed:

ρ̃ = 0 on S (11)

([|ρ̃|]− [|ρ|]) = 0 on SI (12)

Using Eq. 11, essential boundary conditions (in the form of densities of oxygen and oxide
species) are enforced at the boundaries of the unit cell as:

ρ = ρref +∇ρ · x on S. (13)

The second constraint in Eq. 12 is trivially satis�ed based on Eq. 1 since macroscopic �elds
are assumed to be continuous. In homogenization approach, the density �elds are known at
the external boundary and micro�scale equilibrium equations are solved using �nite element
analysis to completely describe the oxygen density distribution at the micro�scale.

III. Micro�Macro linking: Transferring Fluxes and Di�usivities

In a coupled multi-scale model, the micro-scale results are used to compute transport properties
and mass �ux of species at the macro-scale. This forms the basis for micro- to macro- linking. In
particular, we are interested in obtaining a macroscopic �ux that satis�es Hill�s macro-homogeneity
condition (which relates the macroscopic �ux (q̄) with its microstructural counterpart (q [15, 30])
as follows:

∇ρ · q = ∇ρ · q (14)

The �uxes need to be derived such that the above macro�homogeneity condition is satis�ed
when using either Taylor or homogenization boundary conditions as follows:

• The Taylor model Using boundary conditions (Eq. 6 and Eq. 7) in the macro�homogeneity
condition (Eq. 14) leads to the following:

∇ρ · q =
1

V

∫
V

∇ρ · qdV =
1

V

∫
V

∇(ρref +∇ρ · x) · qdV

= ∇ρ · 1

V

∫
V

∇x · qdV = ∇ρ · 1

V

∫
V

qdV (15)

Comparing Eq. 15 with Eq. 14:

q =
1

V

∫
V

qdV (16)

• The Homogenization model

We can show that a similar expression holds for the homogenization approach -Ref. [15], ie.
the macroscopic �ux is same as the volume averaged heat �ux at the micro-scale as shown
below:

q =
1

V

∫
S

xqndS =
1

V

∫
qdV (17)

IV. Micro�scale model

Since the microscopic length scale is considered to be much smaller than the scale of variation
of the macroscopic temperature �eld, the micro-scale can be assumed to be at steady state at any
instant of the macroscopic (transient) evaluation. This is a general assumption in homogenization
theory due to the scale separation principle (eg. [18]).
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The microscopic mass conservation equation is given as:

∇ · qi = 0 (18)

where, qi denotes the mass �ux of species i and ρi denotes the partial density of species i.
The micro�scale model includes both density jump ([|ρi|]) and �ux jump ([|qi|]) for each specie i
in the normal direction across the oxidizing interface. Let v represent the velocity of recession of
the exposed carbon (v is non-zero only on the evolving interface). The condition for local mass
balance across the oxidizing interface (with the �ux and velocity component along the normal to
the interface given as qn and vn, respectively) is given by the Rankine�Hugoniot condition [19, 20]:

([|qni |] + vn[|ρi|]) = 0 (19)

As described before, the primary mechanism of oxygen transport is concentration and pressure
gradient driven di�usion through the pores (or cracks) in the matrix. In comparison, the species
density and mass �ux inside the carbon �ber is negligible (ie. q−

i = 0). Thus, the following interface
�ux condition can be derived to simulate mass loss of carbon �ber during oxidation:

q+
O2

= −MO2

MC
ρcv, q+

CO2
=

MCO2

MC
ρcv on SI (20)

where, ρc is the density of the carbon �ber and Mi denotes the molecular mass of species i. The
sign in the above equation indicates that oxygen is consumed and carbon dioxide is released at the
interface during oxidation. The presence of interface �ux at the micro�scale leads to a homogenized
source term (for oxygen and carbon dioxide densities) in the macroscopic model.

A. Description of �ow in the porous matrix at micro�scale

The mass �ux of species within the matrix with volumetric porosity (ϕ) is a result of both
pressure gradient driven �ow and concentration gradient driven �ow. The net �ux is represented
as:

q = qα
i + qβ

i (21)

where qα
i and qβ

i are the mass �ux of species i due to pressure gradient-driven �ow and concentration
gradient-driven �ow, respectively.

The �ux contribution within the porous matrix due to pressure gradient driven �ow is given by
the Darcy's equation as:

qα
i = −ρpi

1

µg
k∇P (22)

Here, ρpi = ρi

ϕ denotes the partial density of the species i in the pore. In addition, µg denotes
the viscosity of the gas mixture, k = kI (I is the identity matrix) denotes the second-order material
permeability tensor and P (=

∑
i Pi = PO2 +PCO2) represents the total pressure of the gas mixture

within the pore. The partial pressures (Pi) for each specie i are obtained using the ideal gas law
(ρPi = MiPi

RT , where R is the universal gas constant and T is the temperature). Similarly, the density
of the mixture within the pore can be computed as ρp = MP

RT , where M is the averaged molecular
weight of the gas mixture.

The concentration gradient driven mass �ux in the porous matrix (based on Ref. [4]) is given
using Fick's law of di�usion that involves the second-order areal porosity tensor (φA) which is used
as a measure of resistance to concentration gradient-driven �ow through the pore network:

qβ
i = −ρpDφA∇

(
ρpi
ρp

)
(23)

where D is the di�usivity of oxygen w.r.t carbon dioxide. The areal porosity tensor can be thought
of as a ratio of porosity to the tortuosity [22]. We employ the calibrated isotropic areal porosity
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from Ref. [4] for the matrix in the micro-scale calculations. The di�usivity D of gas specie A w.r.t
gas specie B as given by the Chapman�Enskog equation [21]:

D = 0.0018583

√
T 3

(
1

MA
+ 1

MB

)
Pσ2

ABΩD,AB

[
cm2/sec

]
(24)

where, Mi is the molecular weight of species i and ΩD,AB and σAB are computed from the Lennard-
Jones potentials of the respective species (the parameters employed are tabulated in Table 1).

Table 1 Lennard Jones potential parameters for the di�usivity between O2 and CO2 (k: Boltz-
mann constant)

σ() ϵ
k (K) σAB()

ϵAB

k (K)

O2 3.433 113 = 1
2 (σA + σB) =

√
ϵAϵB
k

CO2 3.996 190 = 3.7145 = 146

Temp.(◦C) kT
ϵAB

ΩD,AB = f( kT
ϵAB

)

900 8.01 0.7710
950 8.35 0.7657

Based on Eq. 21, Eq. 22 and Eq. 23, the constitutive relationships between homogenized �uxes
and pressure gradients of oxygen and carbon dioxide can be derived as shown below:

qO2
= κO2/O2∇ρO2 + κO2/CO2∇ρCO2

qCO2
= κCO2/O2∇ρO2 + κCO2/CO2∇ρCO2 (25)

where, κA/B denotes the micro�scale di�usivity relating the mass �ux of species A with respect to
the pressure gradient of species B and is computed as follows:

κO2/O2 = −PO2

1

ϕµg
k− D

ϕ
φAPCO2

P

κO2/CO2 =
MO2

MCO2

(−PO2

1

ϕµg
k+

D

ϕ
φAPO2

P
)

κCO2/O2 =
MCO2

MO2

(−PCO2

1

ϕµg
k+

D

ϕ
φAPCO2

P
)

κCO2/CO2 = −PCO2

1

ϕµg
k− D

ϕ
φAPO2

P
(26)

The computational approach used for solve for the micro�scale �eld and �ux distribution using
the Taylor and homogenization approaches are listed below:

1. Micro�scale model � Taylor approach: The oxygen and carbon dioxide density �eld distribu-
tions in the micro�scale are directly obtained from the macro�scale solution using the Taylor
boundary conditions (Eq. 10). The �uxes at all points within the microstructure are subse-
quently calculated using Eq. 25. Note that the Taylor solution may not satisfy the micro�scale
equilibrium (Eq. 18).

2. Micro�scale model � Homogenization approach: Boundary conditions (Eq. 13) are speci�ed
in each unit cell. The two coupled non-linear partial di�erential equations (Eq. 18), one
equation each for O2 and CO2) are solved using �nite element analysis. To solve these non-
linear equations, Galerkin �nite element method is adopted and the weak form is solved in an
incremental iterative manner using the Newton-Raphson method.

7



V. Macro-scale model

The macroscopic simulation is performed using a di�usion equation that is de�ned on a uniformly
meshed domain (Ω) with boundaries de�ned as Γ. Degrading interfaces are explicitly modeled at the
micro-scale, while only homogenized transport equations are modeled at the macro-scale as given
below:

∂ρ̄O2

∂t
+∇ · q̄O2

= Q̄O2

∂ρ̄CO2

∂t
+∇ · q̄CO2

= −Q̄CO2

ρ̄(Γ, t > 0) = ρ̂, ρ̄(Ω, t = 0) = ρ̄0 (27)

where, ρ̄ is the macroscopic (homogenized) partial density and Q̄i is the homogenized mass con-
sumption rate of species i per unit bulk volume de�ned as (where f is the volume fraction of the
burnt carbon �ber at the micro�scale):

Q̄i = ρc
Mi

Mc

∂f

∂t
(28)

To solve the non-linear transient macroscopic equations (Eq. 27), Galerkin �nite element method
and backward Euler time integration are adopted and the weak form is solved in an incremental
iterative manner using the Newton-Raphson method. The (λ+ 1)th Newton-Raphson step at time
(t+ 1) involves solution of the system K{δρ̄λ+1,t+1} = f , where the unknown vector in the above
system is the increment in the partial density (δρ̄λ+1,t+1) of oxygen and carbon dioxide. In our
numerical approach, the reference density ρref and consumption rate Q̄ (of each species i) for the
next time step are evaluated at the end of each time step of the simulation. The reference density
ρref is obtained using the macro�micro balance of mass condition (ρ̄ = 1

V

∫
V
ρdV ) and Eq. 1. This

de�nition is consistent with the condition that stored mass at macro-scale is same as the average
micro-scale stored mass [15]. To further understand the micro-scale quantities that are needed to
create the overall system of equations, the Jacobian matrix and force vector for a �nite element e
with shape functions Ni occupying a volume Ωe are expanded below:

Kt+1,λ
ij =

[
1
△t

∫
Ωe NiNjdV −

∫
Ωe

dNi

dxp
κ
O2/O2
pq

dNj

dxq
dV −

∫
Ωe

dNi

dxp
κ̄
O2/CO2
pq

dNj

dxq
dV

−
∫
Ωe

dNi

dxp
κ̄
CO2/O2
pq

dNj

dxq
dV 1

△t

∫
Ωe NiNjdV −

∫
Ωe

dNi

dxp
κ̄
CO2/CO2
pq

dNj

dxq
dV

]

f t+1,λ
i =

 −
∫
Ωe Ni

ρ̄O2
−ρ̄t

O2

△t dV +
∫
Ωe

dNi

dxp
q̄O2pdV +

∫
Ωe NiQ̄

t
O2

dV

−
∫
Ωe Ni

ρ̄CO2−ρ̄t
CO2

△t dV +
∫
Ωe

dNi

dxp
q̄CO2pdV −

∫
Ωe NiQ̄

t
CO2

dV


From the above equations, it is seen that homogenized di�usivities κ̄A/B relating the mass

�ux of species A with respect to the pressure gradient of species B needs to be de�ned at each
integration point in the macro-scale. The evaluation of the homogenized di�usivity for Taylor and
Homogenization approaches are listed below: In the Taylor model, the di�usivity is directly obtained
by comparing Eq. 10, Eq. 25 and Eq. 16 as:

κ̄A/B =
1

V

∫
Ω

κA/BdV (29)

In the homogenization approach, the homogenized di�usivity is obtained using perturbation
analysis [23]. To aid in speeding up the solution process for the multi-scale problem, the algorithm
was parallelized using MPI. The macro-scale domain was decomposed and elements in each domain
distributed to di�erent processors. The underlying micro-scale problems were solved in serial in each
processor. The simulator was developed using object oriented programming and was dynamically
linked to the parallel toolbox PetSc [24] for parallel assembly and solution of linear systems. For
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solution of linear systems, a GMRES solver along with block Jacobi and ILU preconditioning from
the PetSc toolbox was employed.

VI. Tracking of the interface using level set method and adaptive meshing

Level set approach provides a natural way of tracking the degrading interface at the micro-scale
during FE computations. We employ the stabilized Galerkin formulation on unstructured adaptive
grids for solving the level set equation. The numerical implementation of the level set method is
same as that detailed in Ref. [25]. The mass loss rate of oxygen has been calibrated as an Arrhenius
equation using experimental results in [26]. To convert the measured mass loss rate to the velocity
of oxidation at nodal points in the micro�scale oxidizing interface, we assume that the intact carbon
�ber of initial radius r0 oxidizes to a smaller radius r after a short duration ∆t. The velocity of
recession at any point can then be found by scaling the mass loss rate with the initial as well as
current radius ro and r as below:

v =
dr

dt
n =

r0
2

2r
k0e

(−Ea
RT )

(
PO2

P ∗
O2

)k1

n (30)

The experimentally calibrated parameters, Ea, k0, k1 from Ref. [4] are listed in Table 2. We

approximate the current radius r using the area of current carbon �ber A as r =
√

A
π . Note that

an inert coating (pyrolitic carbon) is generally applied on the carbon �ber to provide oxidation
resistance. For simplicity, the ensuing simulations assume that the coating is not present and the
carbon �ber is fully exposed to oxygen. Nevertheless, the e�ect of coatings can be easily included
in this model by using a di�erent recession velocity (Eq. 30) for the coating material.

Table 2 List of material constant for the carbon �ber oxidation example.

Material constant Matrix Void C-�ber
Volumetric porosity 0.1 1 0
Permeability
Viscosity

(
m2

kPa

)
10−7 0 0

Areal porosity 0.00018 1 0
MO2(g/mol) 32
MCO2(g/mol) 44
MC(g/mol) 12
k0(s

−1) 6452.35
Ea(J/mol) 118300
ρc(kg/m

3) 1740
r0(µm) 3.5

VII. Computational approach and Numerical Results

The overall solution scheme is shown in Table. 3. Homogenization and Taylor model di�er
in the way the micro�scale problem is solved, with the homogenization approach accounting for
micro�scale equilibrium.

In this section, we focus on the problem of oxidation of an assembly of carbon �bers within
a single carbon tow. Scanning electron micrographs of cross section of carbon tows reported in
Refs. [27, 28] (Fig. 3(b)) reveal arrangement of carbon �bers in a hexagonal lattice within a tow.
Micrographs obtained at high magni�cations show the oxidation of individual carbon �bers (Fig.
3(c)) as well as the preferential oxidation of carbon �bers adjoining the porous matrix due to high
oxygen availability. As the outer �bers oxidize, oxygen di�uses inward along the voids formed and
react with the interior �bers. The oxidized carbon �ber front (Fig. 3(b)) evolves inward into the
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Table 3 Solution scheme for multiscale modeling of carbon �ber oxidation

(1) Initialize macro-scale model and assign a microstructure (and FE meshes) to every
integration point.
(2) Apply time increment ∆t to the macro-scale problem.
(3) Iteration step:

(3.1) Assemble the macroscopic sti�ness matrix.
(3.2) Solve the macroscopic system and compute density and the
density gradient at each integration point.

(3.3) Loop over all integration points
(a) (Only done for the �rst NR iteration) Update the carbon �ber using level

set method.
(b) Taylor model : Transfer densities to every point in the micro-scale mesh

using Eq. 10.
Homogenization model : Transfer boundary conditions to micro-scale prob-

lem. Assemble and solve the micro-scale problem.
(c) Calculate the volume averaged macro-�ux (Eq. 16), the source term (Eq.

28) and the macro-di�usivity.
(3.4) Assemble the macroscopic residual vector.

(4) Check convergence, if not converged go to step 3, otherwise go to step 2.

carbon �ber tow, until all the �bers are oxidized. In our numerical model, a section of carbon �ber
tow (with about 600 carbon �bers) is taken to be our macroscopic model. The size of our macroscopic
simulation cell (shown in Fig. 4(a)) is indicated using dotted lines on the micrographs. In the
macroscopic model, the evolution of homogenized carbon density is tracked as oxygen di�uses from
the left end to the right end. All the boundaries in the model are insulated (as shown in Fig. 3(a))
except one side that is exposed to the external environment of pure oxygen with imposed pressures
of PO2 = 0.1atm and PCO2 = 0atm for t > 0. The system is modelled at a constant temperature of
950◦C. An initial condition (at t = 0) of PO2 = 0.1atm and PCO2 = 0atm is imposed at all points
in the specimen. The micro�scale physics of carbon �ber oxidation is introduced by modeling a
single carbon �ber within a hexagonal unit cell as shown in Fig. 4(b). Since the carbon �bers do
not mediate the di�usion of the gas species, the carbon �ber is not modeled in the microscale. The
unit cell is assigned to each integration point in the macro�grid.

Simulation of carbon tow oxidation in the con�guration depicted in Fig. 3(a) was carried
out using both Taylor and Homogenization approaches. In general, simulations reveal di�usion
controlled kinetics at the beginning of oxidation. As the carbon �bers oxidize, a void is created in
place of the oxidized carbon �ber. This greatly increases subsequent di�usion of oxygen towards
the interior of the carbon tow. Due to increased oxygen availability, a transition from di�usion
controlled kinetics to reaction controlled kinetics is seen. This is exempli�ed by a linear rate law,
ie. oxidized carbon volume fraction increasing linearly with respect to time. A mixed rate law of
the following form describes the overall oxidation process:

√
x

kr
+

x

kl
= t (31)

where, kr and kl are the rate constants. The reaction rate constants predicted by the Taylor and
Homogenization approaches are quite di�erent as seen in Table. 4. The Taylor model provides
a overconstrained response compared to FE homogenization approach due to strict imposition of
oxygen and carbon dioxide densities within the unit cell. In fact, the Taylor model provides an
upper bound response for system, an e�ect well studied in literature (eg. [13]). The Taylor model,
as expected, predicts faster oxygen transport within the tow compared to the FE homogenization
approach. FE homogenization approach solves the micro�scale equilibrium equations and the micro�
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Fig. 3 The micrographs represent experimental results of C/SiC composite oxidation in a controlled envi-
ronment reported in [27] and [28]. Figure (d) shows the simulation cell: all the boundaries in the model are
insulated except one side that is exposed to the external oxidizing environment. Size of the simulation cell at
the macro�scale is indicated using dotted lines in (b). The simulation cell contains about 600 carbon �bers.

10.0 µm

(a) (b)

Fig. 4 (a) 2D Macro-scale �nite element grid (b) Micro�scale �nite element grid

scale solution is more physically reasonable. However, the choice of selection of one model versus
another is based on the relative importance of accuracy versus computational speed. In the Taylor
model, there is no need for �nite element computations at the micro�scale and the convergence of
the overall non�linear multiscale scheme is faster. In the case considered here, Taylor model was
solved four times faster than the homogenization model.

Table 4 Square root and linear rate constants obtained by curve �tting the simulation results

kr × 104(1/s2) kl × 102(1/s) Transient time(sec)
Taylor 13.7 3.8 13.1

Homogenization 8.4 2.5 13.1

In order to illustrate changes in the carbon �ber con�guration in the micro�scale, the Taylor
model solution at selected 6 integration points are shown in Fig. 5 at a time of 25.1 seconds.
Although the macro�problem studied corresponds to a one dimensional di�usion, the micro�scale
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oxidation results shown in Fig. 5 do not follow this trend. Indeed, the one dimensional nature
of the macroscopic density gradient is considered in the micro�scale simulation through the scale
linking equation (Eq. 1). However, the characteristic length scale over which the macroscopic �eld
variables vary is much larger than the size of the microscopic volume considered. Consequently, the
contribution of the macroscopic gradient term to the micro�scale oxygen and carbon dioxide density
(ie. term ∇ρ ·x in Eq. 1) is not signi�cant compared to the macroscopic oxygen density term (term
ρref in Eq. 1). In other words, the macroscopic oxygen density �eld translates to a nearly constant
oxygen density at the level of the RVE. This kind of uniform oxidation of carbon �bers is indeed
seen from experimental micrographs as shown in Fig. 3(d).

Fig. 5 Carbon �ber con�gurations in micro at 25.1 seconds at 950◦C; tan, white and blue colored area
indicate matrix, void and carbon �ber respectively.

A comparison of the simulation results from the Taylor and homogenization approaches at
various locations in the macroscopic mesh at a simulation time of 25.1 seconds is shown in Fig.
6. In this �gure, the tan, white and blue colored areas indicate matrix, void and carbon �ber
respectively. Both Taylor and homogenization models indicate complete oxidation of the carbon
�bers located closest to the exposed macro�scale surface (left edge) at 25.1 seconds. The oxygen
partial pressure solution at the micro�scale shows the contrast between the two approaches. The
boundary conditions in the Taylor model lead to enforcement of high oxygen densities within the
matrix compared to the physically accurate solution from homogenization that satis�es micro�scale
equilibrium. In the steady state micro�scale solution, the oxygen density in the void (that is left
behind after oxidation of the carbon �ber) is expected to be uniform due to much faster di�usion
in the void compared to the porous matrix. This is clearly seen from the homogenization approach,
while in the Taylor model, a variation of oxygen density in the void is enforced. Further, in all cases,
the Taylor model provides an upper bound for the oxygen density solution (and faster oxidation) at
both macro� and micro�scales. The Taylor model predicts partial oxidation while homogenization
approach predicts an almost intact carbon �ber at an integration point located on the right end.

VIII. Conclusion

In this paper, a non-linear coupled macro-micro �nite element model is presented for addressing
carbon �ber oxidation problems. Oxidation involves evolution of carbon �ber surfaces coupled with
�ux jump boundary conditions across interfaces that have not been addressed using homogeniza-
tion approaches. Homogenization of complex micro-scale behavior including moving interfaces and
�ux jumps has been performed in this work. A nested �nite element solution scheme is imple-
mented into a multiscale analysis framework. The results from these two multi�scaling approaches
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Fig. 6 Comparison of carbon �ber con�guration and micro�scale oxygen densities for Taylor and homoge-
nization approaches at a simulation time of 25.1 seconds.

were compared for a simple one dimensional oxidation of a carbon �ber tow. In both models, the
in�uence of microstructural evolution (e.g. carbon �ber oxidation) on the competition between
macroscopic oxygen and carbon dioxide transport in the macro�scale can be introduced and treated
e�ectively. Taylor model is computationally e�cient but provides an upper bound response and
predicts faster oxygen transport within the tow compared to the FE homogenization approach. The
proposed method, when combined with thermo�mechanical �eld e�ects, constitutes a powerful tool,
for modeling high temperature oxidation of composites. The homogenization approach enhances the
understanding and modeling of micro�scale interfacial phenomena and in the future, would allow
modeling of interesting mechanisms such as interaction of porosity evolution with carbon �ber oxi-
dation (`stress�oxidation coupling') that cannot be explained without incorporating microstructural
details.
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