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Automatic trajectory planners require knowledge of an aircraft’s flight envelope to 
ensure their solution is feasible.  Existing flight management systems presume a nominal 
performance envelope, requiring online identification or characterization of any 
performance degradation.  Given predictable failures such as a control surface jam, we can 
evaluate stability and controllability offline to establish a stablilizable trim state database 
that can be used in real-time to plan a feasible landing trajectory.  In less-predictable cases, 
such as structural damage, performance can only be determined online. Given capable 
system identification and adaptive control capabilities, post-failure stability is achieved, and 
the attraction region can be safely explored in the neighborhood around the identified trim 
state.  We propose a novel trim state discovery (TSD) strategy to automatically explore the 
operating envelope of an aircraft with appreciable but unknown damage or failures. We 
presume a system identification process identifies regions of attraction guaranteed locally, 
and that further damage or uncontrollable descent can result from excursion outside these 
regions.  With the goal of identifying a sufficient flight envelope for landing, output from the 
TSD process feeds into an adaptive flight planner (AFP) that constructs safe landing flight 
plans as sequences of feasible trim states.  We adopt a modified artificial potential field 
method to traverse the flight envelope space rather than physical space, incorporating 
envelope constraints as “obstacles” and desirable approach trim states as “attractors”.  An 
F-16 aileron jam scenario is presented to illustrate the utility of TSD for damage-resilient 
flight planning and guidance. 

Nomenclature 
z  = state vector 

TV  = flight velocity 

  = attack angle 
  = sideslip angle 

p, q, r = body angle rate 
  = control vector 

x, y, z = aircraft’s position 
  = configuration vector 

  = velocity vector 
 , ,  = Euler angles 

  = flight path angle 

  = turn rate 

I. Introduction 
illions of passengers and packages are transported by aircraft everyday. In 1997, there were 20.8 million 
departures and 43 million commercial flight hours world-wide.1 Aircraft safety has been a significant concern 
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of aircraft researchers and manufacturers. Extensive research has shown that flying is the safest form of commercial 
transportation. Even though aviation safety has improved from 1945 to 2004 by a factor of 200, the absolute number 
of fatalities in 2004 approximately matched the level of 1945 with 430 fatalities worldwide.2 Unmanned aircraft 
systems (UAS) are also challenged to operate safely, with 31 mishaps reported in 2008 within the United States Air 
Force.3  

Damage or failures that significantly impact performance introduce pressure to respond quickly and accurately. 
To improve the ability of pilots to guide a damaged aircraft to a safe landing, researchers have developed flight 
simulators for training pilots across a spectrum of possible damage and failure scenarios.4   In some cases, pilots 
have saved severely damaged aircraft through skill and judgment. But pilots also have been unable to recognize and 
recover from adverse conditions or in many cases have responded improperly, particularly under conditions of 
overload, stress, or fatigue.5 Accidents resulting from operator error continue to plague manned and unmanned 
aviation.6  Data from the UAS community indicates that from 21% (Shadow) to 47% (Predator) of the accidents had 
contributing factors associated with human error. Within these incidents, 47% (Hunter) to 68% (Pioneer) are related 
to landing.7  

  To cope with in-flight emergencies, researchers have designed automation enhancements to help the pilot 
control the aircraft. Significant research effort has focused on novel control methods to recover stability with a 
damaged aircraft.8,9,10  Adaptive flight control methods adapt to system uncertainty caused by aircraft damage or 
failure, which includes aerodynamic changes, structural degradation, engine damage, and reduced flight control 
effectiveness.  For example, Rysdyk et al proposed a neural network control system architecture, incorporating 
direct adaptive control with dynamic inversion.11  The simulation results of Kaneshige et al demonstrate that a 
neural flight control system can accommodate damage or failures over a range of failure conditions in a commercial 
aircraft.12  Nguyen and Krishnakumar developed a direct-indirect adaptive flight controller based on neural networks 
to maintain stability of a damaged aircraft.13 Page et al upgraded existing adaptive control laws and integrated them 
within an F/A-18C for flight testing.14 Results showed that the technique is effective for a variety of control surface 
jam conditions.  

Although adaptive control methods maintain stability and controllability of a damaged aircraft, in many 
situations the flight envelope unavoidably contracts. The result may be the need for increased thrust or larger 
actuator deflections to compensate for the reduced performance. As saturation limits are reached, reference 
commands are no longer possible, necessitating alteration of the flight plan in addition to the control law.  Aircraft 
dynamics are nonlinear, thus it is typically difficult to extend stability and controllability results in a manner that 
identifies the full operating envelope.   In other words, although an adaptive controller can stabilize the aircraft, it 
typically cannot inform the pilots or autopilot whether the sequence of states they prefer for landing are feasible or 
not without further investigation.  

  Faced with in-flight damage/failure, pilots must be aware of compressed flight envelope bounds, not currently 
obtainable from cockpit displays. In addition, pilots must rapidly decide which runway should be selected as the 
landing site and what trajectory will properly reach this runway.  To help the pilot make a valid sequence of 
decisions when damage/failure occurs, researchers have proposed an emergency flight management system.15, 16 
Chen and Pritchett propose an emergency flight planner that depends on predetermined plans and degraded dynamic 
models and examine its utility through pilot studies.15  

In our previous research, an Emergency Flight Management Architecture has been proposed as illustrated in 
Figure 1. The Flight Plan Monitor continually validates the existing flight plan against the most current system 
model to verify feasibility of the flight plan. If the executing flight plan becomes infeasible, the pilot is notified via 
the Pilot Interface. Concurrently, the AFP is activated to generate a new flight plan. Within the AFP, a Landing Site 
Search (LSS) module identifies a safe landing site, currently defined as a runway deemed safe based on the degraded 
aircraft performance model. The Segmented Trajectory Planner then constructs a dynamically feasible trajectory to 
the landing site. 

The Segmented Trajectory Planner relies on the feasible and stabilizable post-failure/damage trim flight states as 
building blocks of a segmented landing trajectory. In our previous work, the trim state database was calculated 
offline based on the damaged aircraft model.  A stabilizable trimmed flight state database describes the feasible 
post-failure flight envelope, completely defining the performance characteristics of the aircraft after a specific 
failure. The database not only indicates the feasibility of each trim state but also defines the feasibility and 
characteristics of dynamic transition from one trim state to another. For failures we can characterize and classify 
(e.g., a control surface known to be jammed at a particular angle), we can evaluate the stability and controllability of 
any flight states to establish the stablilizable trim states database which should be used for trajectory planning.16-18  
Unfortunately, many damage or failure cases that occur in flight are unknown due to our limited ability to directly 
sense or otherwise classify failure state. In these cases, we cannot recall and apply a pre-computed database of trim 
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states guaranteed to be feasible. Instead, the aerodynamic characteristics of the damaged aircraft must be considered 
an uncertain nonlinear system, with each stabilizable trim state about an equilibrium point identified based on a 
locally-derived model. 

This work introduces a Trim State Discovery (TSD) algorithm for an Adaptive Flight Planner (AFP). Without 
prior knowledge of the post-damage/failure flight envelope, TSD explores and exploits the feasible trim state space 
of the damaged aircraft.  The goal of this process is to identify a sufficient, not comprehensive, trim state space to 
enable the AFP to build an emergency landing flight plan. Given nonlinear dynamics, we utilize the region of 
attraction around each stable trim state to guarantee stability is maintained during exploration.  We adapt reactive 
motion planning methods to guide the exploration process, planning in “flight envelope space” rather than physical 
space.  With this translation, we introduce an automated guidance protocol capable of conservatively targeting trim 
states to sequence for a safe landing.  

 

Figure 1. Emergency flight management architecture. 

Below, we describe aircraft model preliminaries, followed by a motion planning review leading to definition of a 
Trim State Discovery (TSD) algorithm. A potential field path planning method was adapted to guide the TSD 
process, augmented with an edge-following algorithm to handle local minima. An F-16 aileron jam failure case 
study illustrates the effectiveness of TSD during post-failure flight planning. To avoid excessive exploration in 2D 
discovery, a 3D search process is presented and applied to the F-16 aileron jam failure scenario.  

II. Trim State 
A 6-DOF nonlinear aircraft model used to describe the aircraft equations of motion is given by 

( , , ) 0f z z                                                                                  (1) 

where f is a vector of n scalar nonlinear functions, and z is the 12-dimensional state vector which includes the 
aircraft’s position, attitude, angular velocities and linear velocities:  

[ ]T

T
z V p q r x y z                                                            (2) 

The control vector   can be expressed as 

 Tlt rt e a r                                                                      (3) 

with elevator (e), aileron (a), and rudder (r) control surface deflections and generalized left (lt) and right (rt) engine 
throttle terms used to enable asymmetric thrust application (if applicable).  Vector z  can be divided into two parts: 

aircraft configuration  Tx y z    and velocity  TTv V p q r  .  

The trim state is a steady-state flight condition in which the aircraft velocities (linear and angular) will be 
constant over time. The trim state can be defined as 

0                                                                                    (4) 
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The equation can be split as follows:  

      , , 0, , , 0, , 0, ,TV p q r h h                                                               (5) 

where    and h  represent the trim state turn rate and climb rate respectively. Since a trim state with constant turn 

rate and climb rate will be used as segments for trajectory planning, we define a reduced state vector  

 T

T
V p q rz                                                                      (6) 

To determine trim state, a cost function is defined as 
1

( , )
2

T
trimJ z z Qz                                                                              (7) 

z , corresponding to 0trimJ   , will be a trimmed or equilibrium flight state. Since this problem can not be solved 

analytically, numerical optimization has been employed.17-18 Additionally, the solution should be constrained as 
specified in Equations (8) and (9), where (9) indicates actuator saturation constraints with presumed-symmetric 
throttle (t) scaled in the range [0 1] and with control surface deflections measured in degrees. 

2 2 2

2 2

sin sin
, , tan , sin , cos sin , cos cos

sinT T

ab a b
h h v v p q r

a

 
        



 
    



  
     


           (8) 

1, 25, 21.5, 30t e a r                                                           (9) 

where cos cosa   , sin sin cos sin cosb       ,   is the trimmed flight path angle. Since the nonlinear 

system can be approximated by a linearization of its dynamics about a trim state in a small neighborhood 
surrounding that trim state, a linear perturbation method has been used to calculate the Jacobian matrices for each 
trim state. Therefore the stability or controllability will be evaluated by system eigenvalues and the controllability 
matrix.17-18 The stabilizable trim states will be used to compose segmented trajectories. Figure 2 shows the stable 
and controllable trim states of F-16 aircraft at altitude 2000 feet for a case in which the rudder was jammed at 20 . 

Figure 3 represents trim states of F-16 aircraft at altitude 2000 feet for a case in which the aileron was jammed at 5 . 

In the figures, a green asterisk indicates a naturally stable trim state with trimmed flight condition  , ,TV h   , while a 

blue asterisk represents an unstable but controllable trim state. The unmarked trim states are infeasible or 
uncontrollable. 
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III. Trim State Discovery (TSD) 
To cope with in-flight damage/failure, the AFP must guide the aircraft through a sequence of feasible trim states 

leading to a safe landing, in our work constrained to a published airport runway.  Before transitioning from the 
current proven equilibrium state to a new state, the feasibility of the new state should be predicted – otherwise the 
aircraft may transition outside its operating envelope. In terms of dynamic system analysis, feasibility prediction 
translates to determining whether the new trim state belongs to the attraction region of the equilibrium state or not, 
and whether the new stability margin is sufficient for the damaged aircraft with a disturbance such as unexpected 

Figure 2. F-16 Rudder Jam Envelope. 18 Figure 3.  F-16 Aileron Jam Envelope. 18 
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wind. The problem of determining the region of attraction of a stable equilibrium point for a nonlinear system has 
received substantial attention in the literature. Some researchers use a Lyapunov function method to estimate the 
attraction region of a stable equilibrium point in a nonlinear system.19,20 Chiang, Hirsch, and Wu present a 
comprehensive theory to derive a complete dynamical characterization of the stability boundary of a large class of 
nonlinear autonomous dynamical systems and proposed a method for finding the stability region based on its 
topological properties.21 Recently, linear matrix inequality (LMI) theory has been introduced to deal with non-
convex distance problems in attraction region estimation.22  Researchers have obtained a lower bound of the largest 
estimate of the domain of attraction for a fixed Quadratic Lyapunov function via LMI and have provided a condition 
for checking tightness of a lower bound.. Tibken used real algebraic geometry theory to compute subsets of the 
region of attraction of asymptotically stable stationary points of polynomial systems by reformulating the problem as 
a LMI.23  Amato, Cosentino, and Merola proposed a method to investigate the attraction region of equilibrium points 
of quadratic systems, ascertaining whether a certain box belongs to the attraction region.24 In our AFP research, we 
focus on the process of final approach trim state identification and sequencing and flight envelope exploration. We 
presume the properties of the flight state within the certain neighborhood of present trim state can be obtained rather 
than focusing on specifics of attraction region estimation.  

In our work, the process of trim state discovery is based on an algorithm adapted from robot motion planning 
with obstacle avoidance.  Instead of traveling through physical (3-D) space, our planner computes a path trim-state 

space with 3-D coordinates  , ,TV h   , translated to physical 3-D space to verify required altitude and airspace 

constraints are met.  We further presume, based on our past experience with damage and failure models, the trim 
states achievable at high altitudes will also be achievable at lower altitudes.  This assumption implies each identified 
trim state will remain feasible at or below the maximum altitude at which stable operation at this state was 
demonstrated.   

Motion planning can be categorized as static, in which all obstacle information is known prior to planning, or 
dynamic, in which environment (obstacle) information becomes known to the planner only through real-time 
sensing of its local environment.25 In our research, trim state discovery is used to characterize unknown failures, for 
which envelope constraint information cannot be obtained prior to the discovery process. This requires use of a 
dynamic path planning strategy in which envelope constraints, as they are approached, are modeled as “obstacles” 
for the trim-state-space path planner. Many researchers have studied dynamic methods of robot path planning with 
obstacle avoidance.  Lumelsky proposed the Bug algorithms (Bug 1 & Bug 2) to solve the dynamic obstacle 
avoidance problem.26,27 With a Bug strategy, a robotic vehicle will move directly towards its goal state unless an 
obstacle is found, in which case the robot will travel around the obstacle boundary until no known obstacle is 
present between the direct path toward the target. This strategy is not optimal but is intuitive when only local 
sensing is available, as might be the case in a system that only has knowledge of its local region of attraction. An 
artificial potential field (APF) strategy is a popular alternative approach to dynamic path planning.28,29 With APF a 
vehicle follows the gradient of the cumulative potential field modeling the goal/target with attractive potential and 
obstacles with repulsive potentials. Borenstein and Korem introduced the real-time vector field histogram method to 
lead the robot a region with minimum obstacle density.30,31 Rickert, Brock, and Knoll presented experimental results 
of adaptive balancing of exploration an exploitation in the APF context, which can significantly improve planner 
performance.32 

We adopt an APF dynamic path planning method to autonomously guide the trim state discovery process.  
Without loss of generality, we presume the aircraft establishes and holds a stable initial trim state just after the 
failure/damage occurs. For safety, the pilot or adaptive flight management system must adjust the aircraft flight plan 
to follow a sequence of feasible flight states to landing. Because the failure is initially unknown, however, neither 
crew nor autopilot can be confident a nominal landing trajectory will be possible, even for the next flight condition 
to which they intend to transition. The baseline purpose of trim state discovery is to enable the pilot/autopilot to 
confirm the stability of a nominal final approach trim state sequence, including transitions.  If the nominal sequence 
is not feasible, then the purpose of trim state discovery becomes to identify an off-nominal stable envelope sufficient 
for building an off-nominal but safe landing trajectory.  Given the existence of unknown, nonlinear aircraft 
dynamics, the stability of a trim state cannot be evaluated until the damaged aircraft transitions to a local 
neighborhood of that state. We can then describe the problem of trim state discovery (TSD), as follows: 

Given an initial stable damaged aircraft “position” in trim state-space  0 0 0 0

T
s V     and an ideal final 

approach trim state apps , generate a continuous path T in trim state-space from 0s to apps , where T is a sequence 

of continuous trim states and transitions. All trim states in T must be stablilizable in the presence of 
disturbances. 
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Edges of flight envelope, defined by actuator 
saturation or stabilizability constraints, are considered 
obstacles on the path to the goal state apps . These 

obstacles are considered impenetrable. Figure 4 depicts 
a path through (flight path angle – turn rate) space from 
initial state 0s  to apps .   In this illustration there are 

multiple flight envelope boundaries that must be 
circumvented.  

  With the above formulation, trim state discovery 
is mapped to motion planning with obstacle avoidance. 
Every step (local transition) through trim-state space 
involves two phases: exploration and exploitation. 
Exploration seeks to understand of the neighborhood 
around the present trim state (equilibrium point), 
without respect to state discovery. The exploration 
process is to determine the local region of attraction to determine local region stability. Exploitation relies on this 
characterization to identify an appropriate next trim state given the designated goal and obstacles identified through 
the current or previous exploration analyses. 

Figure 5 illustrates the State Discovery (TSD) algorithm. First, the pilot or autopilot must establish and maintain 

a stable trim state after the failure of damage event.  This state is the initial trim state  0 0 0 0

T
s V    .  In step 3, 

transition time sequence transt  is determined to have three time periods. During the process of discovery, the aircraft 

maintains its present state for 1sht , follows a linearly-approximated transition from is to 1is  during  1 1,sh sh st t t , and 

then maintain 1is   for 2sht . 1sht and 2sht are a function of system identification convergence time, which is in turn a 

function of dynamic settling time. In our simulation, both 1sht and 2sht  were presumed 5s.  st  values are a function of 

control system rise and settling time over the transition, which for unknown damage must be adapted based on 
observed system response.   

As TSD explores trim state-space, the aircraft also flies through physical space.  TSD must therefore determine 
whether the altitude is sufficiently high for exploration to continue with zero or negative flight path angle 
appropriate to subsequently guide the aircraft to landing. If altitude is insufficient, TSD must direct the aircraft to a 
feasible stable state with positive flight path angle to regain sufficient altitude for continued TSD. The TSD process 
is then continued once a sufficient altitude is reached. All discovered feasible trim states will be saved as well as the 
attraction region of each trim state. Once TSD finds a solution, the Adaptive Flight Planner will plan a safe 
trajectory for the aircraft landing, using the explored trim state database. 

For efficient exploration, the TSD must incrementally direct the aircraft through a series of trim state-space 
transitions connecting the initial trim state to the targeted final approach trim state set. As indicated above, we adopt 
a modified artificial potential field method to determine the direction and length of each progressive step through 
trim state-space. We model target state apps  with a positive (attractive) potential and the obstacles as regions with a 

negative (repulsive) potential.  Let AF


 represent the attractive potential on ts  due to goal apps , and let the obstacle 

apply repulsive force PF


 on ts . These two forces will generate resultant force RF


.  As a physical particle analogue, 

the vehicle is then guided to follow this artificial potential field via a transition in direction RF


. For each transition 

iteration, step length depends on the magnitude of RF


 and the local attraction region. Figure 6 shows how the three 

forces interact. The calculation of the forces is given by: 
 

(1) Attractive force: 

0

0

1 exp
app t app t

A A

app app c

s s s s
F F

s s s s

   
   

     

   


                                                               (10) 

 
 

Stablilizable 
Trim States

Non-Stablilizable 
Trim States

Final Approch
Trim State

Initial 
Trim StateTransition

Flight Envelope





Figure 4. Trim State Discovery (TSD).
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Algorithm DISCOVERY( 0 0 0, ,s T t ) 

1. Set initial state  0 0 0 0, ,
T

s V    with  
0 0 0 0 00 , , , ,

T

t r e a r       

2. Read initial position  0 0 0 0 0, , ,
T

T x y h t  

3. Determine transition time sequence  1 2, ,
T

trans sh s sht t t t  

4. Set final approach trim state  , ,
T

des des des dess V      

5. while (final trim state not be discovered) 

6.   Execute Trim State Discovery    1 1 1 1

T T

i i i i i i i is V s V           

7.   Update Trim States Sequence    10

i

j ij
S s s 
   and region of attraction of every  

     explored trim state    10

i

j ij
A a a 
   

8.   Compute trajectory    1 1 1 1 1, , , , , ,
T

i i i i i i i i transT x y h t trajectory T s s t       

9.   Compute the estimate time of Trim State Discovery: 1( , , )TSD i des transt time s s T  

10.   Compute the estimate lost of altitude: 1( , , )l i des TSDh altitude s s t   

11.   Compute minimum altitude minh for path planning after trim state discovery 

12.   if 0 minlh h h   

13.      Estimate appropriate altitude for state 1is  :  1
1 min 1, , ,i

app i des ih calaltitude s s h h
   

14.      if exist  T

k k k ks V    with 0k   (Search in   1

0

i

j j
S s




 ) 

15.        Transit state to ks and compute trajectory  1
1 1 1, , ,n n

i i k i transT trajectory T s s t
    

16.        While 1 1
1

n i
i apph h 
   

17.             Estimate altitude while back to 1is  :  1 1
1 1, ,i n

est k i ih estialtitude s s h 
   

18.             Hold ks and compute trajectory  1
1 1, ,n n

i i k transT trajectroy T s t
   

19.        End while 
20.      else  
21.        Discover to a new trim state news with positive path angle  

22.        Compute trajectory  1
1 1 1, , ,n n

i i new i transT trajectory T s s t
    

23.        While 1 1
1

n i
i apph h 
   

24.             Estimate altitude while transit to 1is  ,  1 1
1 1, ,i n

est new i ih estialtitude s s h 
   

25.             Hold news and compute trajectory  1
1 1, ,n n

i i new transT trajectory T s t
   

26.        End while 
27.      End if 
28.      Transit back to trim state 1is   

29.   End if 
30. End while 

31. Compute trim state sequence that should be explored around dess ,  
1

nj
epl epl j

S s


  

32. Explore eplS and save new trim states    10

i

j ij
S s s 
  , 1

j
i epls s   

33. Compute trajectory    1 1 1 1 1, , , , ,
T

i i i i i i i transT x y z trajectory T s s t       

Figure 5. Trim State Discovery Algorithm. 
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(2) Centroid of the detected obstacle: 

1 1
( , ) ,i i i i i

c c c i i
o oArea Area

s x y x dA y dA
A A

 
   

 
 


                  (11) 

(3) Repulsive force: 

0
1

i in
o t c

P p i
i a t c

A s s
F F

A s s

  
  

 


 
                                  (12) 

(4) Resultant force: 

R P AF F F 
  

                                       (13) 

where 0s


, ts


and i
cs


are position vectors of target state, 

present state and the ith dynamically-discovered 
(explored) obstacle centroid respectively. i

oA  and aA are 

the area of the ith explored obstacle and local attraction 
region respectively. 0AF  and 0pF  are the adjustable 

coefficients of force which will be modified during 
debugging. The TSD will follow a sequence of transitions 
to the target final approach trim state with obstacle avoidance, under 
the action of the resultant force. However the simple potential field 
method has many shortcomings, especially the sensitivity to local 
minima that usually arise due to the symmetry of the environment 
and due to concave obstacles or multiple obstacles that together result 
in a concave region of cumulative potential. Figure 7 illustrates a 
case in which a local minimum is present. To cope with local 
minima, we adopt an edge-following algorithm which will explore 
the obstacle along its boundary until the goal can again be pursued.  
In trim state-space, this corresponds to traversing within but near the 
local edge of the flight envelope with respect to primary state-space 
parameters flight path angle and turn rate.  In our APF algorithm, a 
local minimum is detected by monitoring the speed of state transition. 
The average speed of the latest ten transitions will be approximately 
zero when the system becomes trapped. After the trap is detected, the TSD will transition along the obstacle in a 
direction perpendicular to the repulsive force. The direction is related with the path direction, as follows: 
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                                                       (14) 

where A


and B


are vectors perpendicular to repulsive force PF


. When the exploitation activity is in edge-following 

mode, the distance between the edge and the present trim state guides the transitions through trim state space. If the 
distance is too far, the TSD may diverge away from the edge. Because of the limited distance to which attraction 
region can be safely projected, the TSD may return to the original local minimum then repeat the same exploration 
steps, again trapped. If the current state approaches too close to the obstacle (flight envelope boundary), the trim 
state may lose robustness to disturbances such as wind and imprecisely-computed model parameters. An additional 
repulsive force is introduced to deal with this problem, as seen in the following equation: 
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Figure 6. Potential force of trim state.

Figure 7. Local minimum. 
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where 1 and 2  are the coefficients defining the close degree of tP and the obstacle, which will also be selected in 

debugging. In our simulation, 1 equals 0.75, and 2 equals 0.25. Once the obstacle is no longer introducing a local 

minimum, the TSD resumes its nominal algorithm to follow a path to the target trim state region. We use two 
constraints to determine whether the obstacle has been passed: 3 15   and 0tD D , where 3 is the angle 

between AF


and PF


, tD is the distance between the target state and present state, and 0D is the distance between the 

target and the local minimum. If TSD finds an infeasible final approach state with the given velocity, TSD will 
change the airspeed within nominal performance interval min max[ , ]v v  to seek further envelope exploration. Figures 8 

and 9 illustrate the process of TSD in complex obstacle environments. 
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Figure 8: Dynamic Path Planning I                       Figure 9: Dynamic Path Planning II 

  When the final approach trim state is feasible, the Trim State Discovery (TSD) process is able to guide the 
aircraft to this state in trim state-space.  When the neighborhood of the targeted approach state is reached, this 
neighborhood is explored to more closely examine the ability of the aircraft to robustly operate in this region of trim 
state space. If the stability margin is not sufficient, TSD will change some condition, such as path angle, and explore 
again. Figure 10 shows the process of exploration.  

Steering by our modified artificial potential field method, the exploitation process can escape local minima, not 
possible using the traditional potential field method only. However there may be a closed region in the 2-D turn-
rate/path-angle flight envelope for some damage or failure cases.  Figure 11 shows such a situation. When the 
system is in edge-following mode, TSD initially determines the transition was caught in a closed trap if the state 
returned to a previously-identified local minimum. In addition, the edge of the local obstacle will be explored in the 
edge-following process.  
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Figure 10: Neighborhood Exploration            Figure 11: Target unreachable with Closed Obstacle 
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IV. Case Study for 2D Trim State Discovery 
  Our Trim State Discovery (TSD) algorithm was applied to a damaged F-16 aircraft with aileron jammed at -10 

degrees. Figure 12 shows the flight envelope of the damaged F-16 aircraft. The color at each trim state indicates its 
characteristics, with green indicating a stable and controllable trim state, while blue represents an unstable but 
controllable trim state. The initial trim state is defined as: 1000h ft , 400 /TV ft s , 16.5   and 1    . The 

final (targeted) trim state is defined as: 0  and 3    . TSD explored the two-dimensional trim state space, with 

turn rates from 20 ~ 20    and flight path angles from 10 ~ 10   . Note that the envelope characteristics can be 

exactly obtained if the state belongs to a certain neighborhood of the present trim state, 0.2  in the path angle 

dimension and 0.4  in the turn rate dimension. Figures 13 to 17 show the process of two dimensional Trim State 
Discovery. When velocity is changed from 400ft/s to 275ft/s, TSD is caught in a closed trap thus could not steer to 
the final approach trim state. In this case the velocity must also be changed. For simplicity, TSD kept path angle and 
turn rate constant during velocity excursions to maintain the continuity of the exploration and exploitation process. 
Figure 18 represents the full path of TSD with different conditions. Table 1 lists the corresponding numerical data. 
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Figure 12: Trim States of Damaged F-16 Aircraft 
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Figure 13: Trim State Discovery I                       Figure 14: Trim State Discovery II 
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Figure 15: Trim State Discovery III                         Figure 16: Trim State Discovery IV 

               
Figure 17: Trim State Discovery V                              Figure 18: Discovery Path 

Table 1. Exploration results. 

TV  400 ft/s 375 ft/s 325 ft/s 275 ft/s 225 ft/s 

min  -3.7° -3.9° -4.5° -5.3° -1.0° 

max  +3.7° +3.9° +4.5° +5.3° +5.0° 

min  +15.0° +14.0° +11.0° +8.0° -4.0° 

max  +18.0° +18.0° +17.0° +17.0° +4.0° 
   

V. 3D Trim State Discovery 
The above two dimensional Trim State Discovery (TSD) algorithm and results suggest including velocity as well 

as turn rate and path angle in the TSD search.  We again utilize a potential field adaptation to 3-D trim state-space 
path planning.  Figure 15 presents the composition of forces in three dimensional space. The symbols have the same 
definitions with Figure 6, with cs  representing the centroid of the intersection block of an obstacle and the explored 

region. Three dimensional Trim State Discovery (TSD) will guide the exploration process through changing 

TV , and   to final approach trim state with obstacle avoidance. By using three dimensional algorithm, the 

repetitive search through path angle – turn rate from the two dimensional case can also be resolved. Therefore, the 
time of TSD could be significantly reduced, improving the responsiveness of a damaged aircraft to determine a 
sufficient envelope for landing. 
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The damaged F-16 model with aileron jammed at -10 
degrees was also used in three dimensional TSD simulations. 
The final trim state is specified as: 0  and 3    , with 

velocity to be determined during exploration. The initial trim 
state is defined as 10000h ft , 400 /TV ft s , 15.5   and 

2.9    for the first simulation and 

10000h ft , 450 /TV ft s , 16    and 1.3     for the 

second simulation. Figure 16 and Figure 17 show the results of 
three dimensional Trim State Discovery (TSD).  The green dots 

indicate stablizable trim states, and blue dots and line present 
discovery path of TSD. Compared with two dimensional 
cases, three dimensional TSD has higher efficiency and fewer 
transitions. The repetition in exploration process was averted.  

Figure 18-21 present the effect on flight trajectory by different ranst . Transition time, ranst is used to indicate the 

transition time between the adjacent trim states in the path of TSD. For the first case of 3D Trim State 
Discovery(TSD), we process simulations with different ranst . Figures 18-21show the trajectories when ranst  equals 5s, 

10s, 20s and 40s respectively. These trajectories will be used as the initial condition of the landing path planner. The 
figures show that trajectories are highly influenced by trim state hold and transition times. 
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Figure 16: Trim State Discovery in 3-D Example I 
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Figure 17: Trim State Discovery in 3D Example II 

Figure 18: TSD with 5 second transitions Figure 19: TSD with 10 second transitions 

Figure 20: TSD with 20 second transitions Figure 21: TSD with 40 second transitions 
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VI. Conclusion 
A Trim State Discovery (TSD) algorithm has been proposed to guide a physically-disabled aircraft to explore 

and exploit feasible trim states that can be subsequently sequenced by an Adaptive Flight Planner (AFP) into a safe 
landing trajectory.  TSD is of importance in situations where damage or failures cannot be explicitly characterized 
and matched to a known model.  Emphasis is placed on efficient and correct identification of trim states at airspeed, 
turn rate, and flight path angle values advantageous for landing approaches.  The concept of attraction region is 
incorporated to explore the local neighborhood of each achieved trim state to determine stability of the states in that 
neighborhood. An artificial potential field motion planning method has been implemented to effectively explore and 
exploit the target trim state neighborhood while respecting constraints. To deal with local minima, the main 
shortcoming of the potential field method, we proposed an edge-following method with recovery criteria. A case 
study with an F-16 aircraft experiencing a jammed aileron has been presented to illustrate the effectiveness of TSD. 
Trim State Discovery (TSD) is first demonstrated as a search over the two-dimensional plane of turn rate and path 
angle, expected to enable faster transitions than airspeed changes.  To handle closed spaces and a more efficient 
(straight) path to the target approach state, the TSD algorithm was expanded to a three dimensional velocity, turn 
rate and path angle search-space. Once TSD is complete, all the identified trim states can be sequenced by the 
Segmented Trajectory Planner in the Adaptive Flight Planner (AFP) to plan a safe landing trajectory. Ideally, the 
AFP will use trim states around the targeted final approach trim state in a minimum-length Dubins path capable of 
landing the damaged aircraft.16 In the worst case, the landing trajectory can be planned in real-time to use a more 
restricted set of feasible trim states using our recent Turning Dubins Vehicle (TDV) method applicable to situations 
in which an aircraft cannot fly straight.33 

 Determination of ranst  requires further study. First, what interval does an adaptive controller require to identify 

the Region of Attraction (RoA) presented by sht ?  Next, what transition time st is generally optimal to transition 

between two neighboring trim states?  Minimum st  enables the TSD process to conclude quickly, but too short 

transition time will likely produce significant overshoot, compromising the controller’s ability to estimate controller 
parameters at the new state before it again transitions.   

Trim State Discovery(TSD) establishes a feasible trim 
state database online in response to an unknown 
failure/damage event. In our case studies, the final approach 
trim state was feasible, but this may not always be the case. 
In practice, the final approach (target) trim state could be a 
set of stable states rather than a single point. Faced with an 
infeasible final trim state, an alternate target trim state must 
be calculated. Figure 22 shows such a situation; further work 
is required to determine both a procedure for altering the 
target trim state such that TSD can be appropriately 
transitioned to the landing phase in a timely manner.  

In present research, the step length between trim state 
iterations is fixed. Optimal step length calculation should 
ultimately based on region of attraction size and expected 
proximity to envelope boundaries, since ultimately the 
system would transition directly to the approach state if the 
direct transition is feasible, although small steps within the 
local region of attraction are essential to ensure trim state 
commands never exit the degraded performance envelope.   

The Adaptive Flight Planner (AFP), including with 
Trim State Discovery (TSD), is cast in the context of 
flight management to be a reference for the flight crew who can choose to accept, modify, or ignore its results.  
Although best practices to merge an AFP into the flight deck must still be developed, such a capability represents a 
new frontier in adaptivity that, once certified and adopted, can move our air transportation system beyond simply 
reverting control to the pilot in the most dangerous degradation scenarios. 
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