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Over the last decade the adjoint method has been consolidated as one of the most

versatile and successful tools for aerodynamic design. It has become a research area on its

own, spawning a large variety of applications and a prolific literature. Yet, some relevant

aspects of the method remain relatively less explored in the literature. Such is the case

with the adjoint boundary conditions and, more specifically, with regard to permeable

boundaries. The present work discusses at length a novel approach to the continuous

adjoint boundary problem, with emphasis on the full characteristic formulation of the far–

field boundary conditions. The main goal of this approach is to ensure the well–posedness

of the adjoint equations and consistency with the primal problem.

I. Introduction

The problem of inverse aerodynamic design was first considered by Lighthill, in 1945, and the investigation
was limited to airfoils in incompressible potential flows.1 Over the years, a variety of methods has been
proposed to tackle the problems of aerodynamic optimization and inverse design. Eventually, with the
advances in aerospace sciences, the compressible flow regime has also been addressed, starting with such
classical works as those by Hicks et. al., Garabedian–MacFadden,2–4 and followed by many others.

The adjoint method has played a prominent role in that context, for a number of reasons. Among them
one could cite the great flexibility it offers with regard to the flow–physics model and to the definition
of objective functionals. Originally proposed by Pirronneau5–7 for elliptic problems, it was later extended
to transonic flows by Jameson.1 Since then, it has become the subject of extensive research activity,8–17

and spawned a wide variety of applications, ranging from nuclear reactor thermo–hydraulics to atmospheric
sciences.18, 19

In aerodynamics, the developments of the adjoint method encompass design applications regarding in-
ternal and external flows20–25 and, more recently, unsteady flows.26–29 An entirely different area of research
has evolved around the ideas of error analysis30, 31 and grid adaptation.31–34 It makes use of the adjoint
variables to improve the accuracy of functionals, which measure desired qualities of the flow solution.35–38

To put matters into perspective, objective functionals of general interest in aerodynamics depend on flow
variables and on the shape and location of the boundaries.39, 40 These, in turn, are controlled by a set of
design parameters. For all practical purposes the set is assumed to be finite. Under these circumstances,
a natural means of estimating the sensitivity of that functional, to changes in flow geometry, would be to
perturb each design parameter individually, and then to compute the sensitivity gradient by finite differences.

The procedure clearly requires a converged flow solution for each parameter variation. As the number
of design parameters increases, so does the the number of solutions, and the computational cost is bound
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to become prohibitive. Alternatively, by imposing the equations that govern the flow as constraints to the
optimization problem, one precludes unrealizable solutions. That, in turn, eliminates the need for additional
flow simulations. Therein lies the essence of the adjoint method. As a result of the simplification, the method
offers an extremely attractive capability, which is to compute sensitivity gradients at a cost that is largely
independent of the number of design parameters.

The formulation of the adjoint problem has evolved into two distinct approaches: discrete and continuous.
Comparisons between the two approaches have also been drawn in the literature,40–42 and they do not seem
to indicate any sizable differences between them, in terms of optimization effectiveness.

Yet, despite all the research that has been carried out on the method, it appears that some of its more
conceptual aspects have not received the same attention. Such seems to be the case with the mathematical
properties of the adjoint solution and, to a greater extent, with its boundary problem. In the literature, these
topics have been addressed in a series of seminal articles by Giles and Pierce.43–46 However their analysis of
the boundary problem is, in a sense, limited to the quasi–1D Euler flow.

The adjoint contour problem is far more involved in multi–dimensional flows, given the variety of boundary
conditions and geometry they can incur. Although homogeneous conditions may suffice at the far–field
boundary in many applications of external aerodynamics, the same cannot hold for internal flows. Besides,
there still remains the relevant question as to under which conditions the adjoint problem is well–posed.

The continuous formulation of the method offers the possibility of a careful investigation into the topic.
In view of the similarity the flow and the corresponding adjoint equations exhibit in this framework, it seems
reasonable to consider the conditions for well–posedness of the latter on the basis of those that hold for the
former. That rationale has been pursued at length in a recent paper by one of us.47 However the analysis
focused on the quasi–1D Euler flow, so that the results could be verified by comparison with the analytical
solutions by Giles and Pierce.46

The purpose of this paper is to extend that analysis to multi–dimensional flows. For the sake of clarity
and space, we pick the 2–D compressible Euler flow as a suitable vehicle to present the concepts.

II. The variational problem

Objective functionals of interest in aerodynamics depend on the flow variables and on the geometry of the
boundaries. In principle, these functionals could either be volume integrals over the flow domain, or surface
integrals over a boundary such as the body surface, for instance. The latter case is of special relevance to us.
For it includes a variety of aerodynamic measures of merit, ranging from force coefficients to inverse design.
A fairly general representation of these functionals would be:

Io =

∫

Bw

g (V) dS (1)

where Bw stands for the body surface, a function of space coordinates that is fully specified by a finite
set of parameters Bw ⇒ S(ξj ; ak). The quantity g(V) represents a scalar function of the flow variables
V = (ρ, ui, p)T— which can naturally be put in terms of the conservative variables Q = (ρ, ρui, e)T , as well.

A relevant problem would be to find out a surface geometry that leads to a minimum of Io, under given
flow conditions. In the framework of the adjoint method, it implies evaluating the sensitivity of Io to changes
in the control parameters ak. To first order, that can be estimated by the sensitivity gradient: ∂Io/∂a

k.
Parameter variations clearly cause the body surface to change, thereby perturbing the flow field as well,

δak ⇒ δS ⇒ δQ. A convenient means of separating physical from geometric variations is to define a spatial
transformation, whereby the body surface is mapped onto a constant coordinate plane. It also simplifies the
variational problem considerably, in that the domains of integration remain fixed in transformed space.48

All that change in the process are the transformation operators and the metrics of the latter.
To that end, we take the physical space to be represented by Cartesian coordinates xi

′

, and the trans-
formed space by generalized coordinates ξk— to distinguish between the two systems, all tensor elements
in Cartesian coordinates will hereafter be designated by primed indices, unprimed indices are reserved for
generalized elements. The transformation operator and its inverse are defined by, respectively:

β ⇒ βi
′

j =
∂xi

′

∂ξj
; β−1 ⇒ βji′ =

∂ξj

∂xi′
(2)
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The transformation Jacobian is J = det(βi
′

j ), and it is assumed to be independent of time. It is also
understood that J should not go to zero nor change its sign anywhere in D. In this context, the first variation
of the objective functional (1) is given by:

δIo =

∫

Bw

∂g

∂V

∂V

∂Q
δQ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
dS +

∫

Bw

g δ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
dS (3)

where dS′ and dS represent area elements in Cartesian and generalized coordinates, respectively. The above
eq. (3) naturally involves physical and geometric variations. The latter term can usually be derived from
S(ξi; ak), analytically, whereas the former is hardly ever known in closed form. In effect, it is the presence
of that term in δIo that gives rise to the need for additional flow simulations.

In order to circumvent such need, one imposes the fluid mechanics equations as constraints on the
variational problem. They play the essential role of realizability conditions, which all physical variations δQ
must satisfy. In the present case, we pick the Euler equations, which are given in Cartesian coordinates by:

∂Qα
∂t

+
∂fk

′

α

∂xk′
= 0 (4)

The state Qα and flux fk
′

α vectors are defined as

Qα ⇒






ρ

ρui
′

e




 ; fk

′

α ⇒






ρuk
′

ρui
′

uk
′

+ pgi
′k′

(e+ p)uk
′




 (5)

The symbol e represents total energy, e = ρ(ei +u · u/2), ei denotes the specific internal energy. The set
is closed by the ideal gas relation between pressure and internal energy

p = ρei(γ − 1) (6)

The Euler equations in transformed space are obtained by a simple application of the β operators:49

J
∂Qα
∂t

+ Jβki′
∂f i

′

α

∂ξk
= 0

∂ (JQα)

∂t
+
∂F kα
∂ξk

= 0 (7)

A tensorial identity50 is crucial to derive their latter form, and it is also implied in the definition of
generalized flux vectors F kα ,

∂
(
Jβki′

)

∂ξk
= 0 ⇒ F kα = Jβki′f

i′

α (8)

Generalized flux–Jacobian matrices are then defined on the basis of the above eq. (8)

Ckαβ = Jβki′
∂f i

′

α

∂Qβ
= Jβki′A

i′

αβ (9)

and they lead to the following form of the generalized Euler equations

∂Qα
∂t

+
Ckαβ
J

∂Qβ
∂ξk

= 0 (10)

In the applications that are considered here, one is mostly interested in steady flow conditions. Therefore,
the steady form of (7) is imposed on (1) as a non–holonomic constraint, in transformed space. The procedure
leads to an augmented functional, which is given by

I =

∫

Bw

g (V)

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
dS

︸ ︷︷ ︸

Io

+

∫

D

Ψα

∂F kα
∂ξk

dV

︸ ︷︷ ︸

Ic

(11)

3 of 18

American Institute of Aeronautics and Astronautics



where Ic indicates the constraint functional, which is a volume integral over the flow domain D. The ratio
between Cartesian and generalized volume elements is given by transformation Jacobian itself, dV ′/dV = J .
The vector Ψα represents Lagrange multipliers and it is of the same dimension as the state vector Qα.

The first variation of Ic involves the variation of the constraint equation, which is given by

∂

∂ξk
(
δF kα

)
= 0 (12)

where the generalized flux variation is obtained by combining eqs. (8) and (9), the procedure yields

δF kα = CkαβδQβ + δ
(
Jβki′

)
f i

′

α (13)

It is worth noting that the first term on the RHS of (13) can be regarded as the physical part of the flux
variation, whereas the second one represents the geometric part.

The first variation of Ic is a direct result of eq. (12), and it can be further simplified by making use of
Gauss’ theorem.

δIc =

∫

∂D

ΨαδF
k
αnk dS −

∫

D

δF kα
1

J

∂(JΨα)

∂ξk
dV (14)

where the symbol ∂D indicates the whole boundary of the flow domain, which involves the body surface
(Bw), the far–field (B∞) and cut–planes (Bcp). The term nk represents a normal unit vector that points
outward from the flow domain.

The variation of the augmented functional (11) is given by the sum of eqs. (3) and (14): δI = δIo + δIc.
On adding them up and on separating the surface integrals according to each boundary, one gets:

δI =

∫

Bw

∂g

∂Q
δQ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣

dS +

∫

Bw

gδ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣

dS −
∫

D

δF kα
1

J

∂ (JΨα)

∂ξk
dV +

+

∫

Bw

ΨαδF
k
αnk dS +

∫

B∞

ΨαδF
k
αnk dS +






∫

Bcp

ΨαδF
k
αnk dS






cp−

cp+

(15)

Here, the square brackets imply that the flux variations are integrated over both sides of each cut plane
Bcp. Owing to the fact that the normal has opposite orientation on each side, any cut–plane yields a difference
between two similar integrals, one over each side. Moreover, the fluxes should be continuous through the cut
planes to be physically realizable, and the same must hold for their variations. Under these circumstances,
one can eliminate that term from eq. (15), by simply imposing periodic boundary conditions on the adjoint
variables at the cut planes,

Ψα

∣
∣
∣
∣
cp+

= Ψα

∣
∣
∣
∣
cp−

(16)

It requires that the Ψα and all of their derivatives be continuous through Bcp. Another condition for
physical realizability implies that the normal velocity at the solid walls should be zero, u · n = 0. That
requirement constrains the flux vector normal to Bw, and it should also hold for its first variation.

F kαnk

∣
∣
∣
∣
Bw

=






0

pJβki′g
i′j′nk

0




 ⇒ δF kαnk

∣
∣
∣
∣
Bw

=






0

δpJβki′g
i′j′nk

0




+






0

pδ
(
Jβki′

)
gi

′j′nk

0




 (17)

and on assuming that wall is mapped onto a constant coordinate plane, say Bw ⇒ ξ2 = 0, one can write

ΨαδF
k
αnk

∣
∣
∣
∣
ξ2=0

= δp
[
Ψ(i′+1)Jβ

2
i′n2

]
+ p

[
Ψ(i′+1)δ

(
Jβ2

i′

)
n2

]
(18)

it is implied that the metric tensor coincides with the identity matrix in the Cartesian system.
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On substituting eqs. (16) and (18) for the corresponding terms in eq. (15), and on replacing the flux
variation by eq. (13), one obtains the final expression for δI

δI =

∫

Bw

{
∂g

∂Qβ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
+
[
Ψ(i′+1)Jβ

2
i′n2

] ∂p

∂Qβ

}

δQβdS

︸ ︷︷ ︸

(a)

+

∫

B∞

ΨαC
2
αβδQβn2dS

︸ ︷︷ ︸

(b)

−
∫

D

Ckαβ
J

∂ (JΨα)

∂ξk
δQβdV

︸ ︷︷ ︸

(c)

+

∫

Bw

{

gδ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
+ p

[
Ψ(i′+1)δ

(
Jβ2

i′

)
n2

]
}

dS

︸ ︷︷ ︸

(d)

+

∫

B∞

Ψαδ
(
Jβ2

i′

)
f i

′

α n2dS

︸ ︷︷ ︸

(e)

−
∫

D

δ
(
Jβki′

)
f i

′

α

J

(JΨα)

∂ξk
dV

︸ ︷︷ ︸

(f)

(19)

Here it has been assumed that the far–field boundary is also mapped onto a constant coordinate plane,
B∞ ⇒ ξ2 = 1. The first three terms, a, b and c give rise to the adjoint problem, which is constructed with
the specific purpose of eliminating physical variations from the total, δI. The remaining three integrals, d, e
and f , involve only geometric variations, and they can be carried over into the sensitivity gradient as they
are.51 However, Jameson and Sangho50 have proposed a further simplification to the gradient expression.
They have shown that one can use the reduced form:

δI =

∫

Bw

{
∂g

∂Qβ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
−
[
Ψ(i′+1)Jβ

2
i′n2

] ∂p

∂Qβ

}

δQβdS

︸ ︷︷ ︸

(a)

+

∫

B∞

ΨαC
2
αβ

(
δQβ − δQ∗

β

)
n2dS

︸ ︷︷ ︸

(b)

+

−
∫

D

Ckαβ
J

∂ (JΨα)

∂ξk
(
δQβ − δQ∗

β

)
dV

︸ ︷︷ ︸

(c)

+

∫

Bw

Ψα

[

δ
(
Jβ2

i′

)
f i

′

α + C2
αβδQ

∗

β

]

n2dS

︸ ︷︷ ︸

1st grad. term

+

+

∫

Bw

{

gδ

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
+ p

[
Ψ(i′+1)δ

(
Jβ2

i′

)
n2

]
}

dS

︸ ︷︷ ︸

2nd grad. term

(20)

Quite different from (19), in eq. (20) the sensitivity gradient amounts to just two integrals over the body
surface Bw. The gradient integrals over D and B∞ from the former equation have been removed, but an
additional variation term, δQ∗

β , has appeared in their stead. It refers to variations in the state variables that

are owed to mesh movement δξk alone, at a fixed boundary configuration.50 Despite their particular cause,
δξk, they are of the same nature as the original δQβ , in that they must also satisfy the Euler equations. For
simplicity, the symbol δQβ will be used to denote the difference: δQβ = δQβ − δQ∗

β .

III. The Adjoint Euler Equation

In order to remove all physical variations from eq. (20), the first three terms in eq. (20) should vanish.
The conditions under which that can be accomplished define the adjoint problem. Moreover, term c can be
regarded as an inner product between δQβ and a differential operator, which is applied to Ψα. Since all
physical variations must be realizable, but they are otherwise arbitrary, it follows that the only means of
eliminating the product is to require that the term involving Ψα be identically zero over D, as a whole. The
procedure gives rise to the adjoint equation, in steady form. Its similarity to the steady form of the Euler
eqs. (10) enables one to formulate the adjoint problem in a way that is similar to the flow problem.

It is well–known that the Euler equations hyperbolic character is what ultimately determines their bound-
ary problem. It also sets the conditions for their being well–posed. On having the adjoint equation share
in the same character, one may extend the similarity to the adjoint boundary problem, as well. That can
be accomplished by simply postulating that Ψα depends on time in a way that is similar to Qβ. This step
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leads to the following adjoint PDEs:

∂Ψα

∂t
−
Ckβα
J

∂ (JΨβ)

∂ξk
= 0 (21)

∂Qα
∂t

+
Ckαβ
J

∂Qβ
∂ξk

= 0 (22)

which are paired with the flow governing eqs. (22) for comparison. It is worth noting here that the flux
Jacobian matrix is transposed in the adjoint equations (21). One may also add that, despite their appearance,
the adjoint equations are not in divergence form. For simplicity, then, one can redefine the adjoint variable
so as to take in the transformation Jacobian, ψα ≡ JΨα. It lends the adjoint equations the following form:

∂ψα
∂t

− Ckβα
∂ψβ
∂ξk

= 0

∂ψ

∂t
−
(
CT · ∇

)
ψ = 0 (23)

where the symbolic notation has been introduced for future convenience.
Clearly, one is only interested in the steady state solution to eqs. (23). For that solution alone drives

term c in eq. (20) to zero. The point in casting the adjoint PDEs in this form is that, not only do they share
in the hyperbolic character of the Euler equations, but they also have the same characteristics. Their major
difference lies in the sign reversal of the adjoint characteristic velocities. Quite distinct from the Euler eqs.,
though, the adjoint PDEs are linear. Because the flux Jacobian matrices do not depend on ψα.

IV. Adjoint Boundary Conditions

Before proceeding with the derivation of boundary conditions, though, it is important to note that the
adjoint eqs. (23) are generalized in either form. Therefore, they must hold in any coordinate system and, in
particular, in the Cartesian. The same applies to the periodic condition that is imposed on cut–planes (16).
On the other hand, the wall and far–field boundary conditions, represented, respectively, by terms (a) and
(b) in eq. (20), have been written for a specific system, where both boundaries are mapped onto constant
coordinate planes: Bw ⇒ ξ2 = 0 and B∞ ⇒ ξ2 = 1, respectively. However, they can also be put in Cartesian
coordinates, as the following equations show:

Ψ(i′+1)Jβ
2
i′n2 = ψ(i′+1)ni′

∣
∣
∣
∣
Bw

=
∂g

∂p

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣

(24)

∫

B∞

ΨαC
2
αβδQβn2dS =

∫

B∞

ψαβ
2
i′A

i′

αβδQβn2dS = 0 ⇒ ψα

(

Ai
′

αβni′
)

δQβ

∣
∣
∣
∣
B∞

= 0 (25)

That opens up the possibility of solving the adjoint problem in the Cartesian system. It all hinges upon
one’s ability to compute the metric variations δ(Jβ2

i′ ) that appear in the sensitivity gradient (20), without
having to resort to the transformation explicitly. If that is accomplished, then the transformation has fulfilled
its prime objective, which was to simplify the derivation, and can be discarded.

For 2–D cases, the Greek subscripts range from 1 to 4, where 1 refers to continuity, 2 and 3, to linear
momentum and 4, to energy. Whereas the Latin indices refer to the two dimensions in physical space — for
simplicity, we designate them as: x1′

= x , x2′

= y. The corresponding flux Jacobian matrices are denoted
by: A1′

= A and A2′

= B, respectively. Under these circumstances, the adjoint equations become

∂ψα
∂t

−Aβα
ψβ
∂x

−Bβα
ψβ
∂y

= 0 (26)

For simplicity, the flux Jacobian vector52 Ai
′

βα is also assigned symbolic notation, Ai
′

βα ⇒ A = (AT ,BT ).
It is widely known that the flux Jacobian matrices have complete eigensystems, and that they can be

diagonalized, upon their being associated with a given direction.52, 53 The normal direction to a boundary
is of particular interest, in that regard. For the characteristics associated with it are responsible for all
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the exchange of information across that boundary. For a general treatment of such boundaries, we pick an
arbitrary direction, as defined by the unit vector k = (kx, ky)

T , and the corresponding Jacobian matrix is
given by the dot product,

−A · k = −kxAT − kyB
T (27)

where the minus sign and the transposition, which appear in eqs. (26), have been retained for future
convenience. The similarity transformation that diagonalizes the resulting matrix yields

−Λ = −PT
(
A · k

) (
P−1

)T
=








−(kxu+ kyv) 0 0 0

0 −(kxu+ kyv) 0 0

0 0 −(kxu+ kyv + c) 0

0 0 0 −(kxu+ kyv − c)








(28)
which are obviously the same eigenvalues of the Euler equations, but for the sign reversal. Also associated
with the direction k, the similarity transformation operators are given by:52

PT =









1 u v u2+v2

2

0 ρky −ρkx ρ (uky − vkx)
ρ
2c

ρ(ckx+u)
2c

ρ(cky+v)
2c

ρ
2

(
c

γ−1 + ukx + vky + u2+v2

2c

)

ρ
2c

ρ(v−ckx)
2c

ρ(v−cky)
2c

ρ
2

(
c

γ−1 − ukx − vky + u2+v2

2c

)









(29)

(
P−1

)T
=









1 − (γ−1)(u2+v2)
2c2

vkx−uky

ρ

(γ−1)(u2+v2)−2c(ukx+vky)

2ρc

(γ−1)(u2+v2)+2c(ukx+vky)

2ρc
(γ−1)u
c2

1
ρ
ky

ckx−(γ−1)u
ρc

−ckx−(γ−1)u
ρc

(γ−1)v
c2

− 1
ρ
kx

cky−(γ−1)v
ρc

−cky−(γ−1)v
ρc

− (γ−1)
c2

0 γ−1
ρc

γ−1
ρc









(30)

respectively.
Although the adjoint PDEs cannot be fully diagonalized, one can obtain their characteristic form by left

multiplying eq. (26) through by PT . It leads to the expression

PT ∂ψ

∂t
− PTA

(
P−1

)T
PT ∂ψ

∂x
− PTB

(
P−1

)T
PT ∂ψ

∂y
= 0 (31)

Accordingly, on computing the matrix products in eq. (31) one obtains a set of Riemann’s equations, or
characteristics, of the form:

N∑

β=1

Kt
αβ

∂ψβ
∂t

=

N∑

β=1

Kx
αβ

∂ψβ
∂x

+

N∑

β=1

Ky
αβ

∂ψβ
∂y

(32)

where N = 4 in the 2–D cases and the coefficients Kt
αβ , K

x
αβ and Ky

αβ are listed in table 1, at the end of the
paper.

Just as the original eqs. (26), the set (32) is linear. Only, the coefficients are given by less familiar,
more complex, algebraic expressions. Different from the former, though, each one of the above equations
(α) is intrinsically associated with a specific characteristic velocity, as given by the matrix Λ in eq. (28).
Ultimately, on choosing the vector k normal to the domain boundaries, those velocities determine which of
the adjoint characteristics enter or leave the flow domain.

In a sense, the state variables can be seen as degrees of freedom (DOFs) of the boundary problem.
Naturally, their number corresponds to the dimension N of the state space. In 2–D problems, N = 4.
In this context, each boundary condition constrains one DOF at the boundary. Whereas each outgoing
characteristic corresponds to a DOF that is preserved. The scheme holds for both problems, the Euler flow
and its adjoint. However, in view of the sign reversal, to each DOF that is constrained for the flow at a
boundary, there corresponds one that is left for the adjoint, and vice–versa.
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IV.A. Solid Wall

The 2–D contour of the body can be specified as a level curve, such as η(x, y) = 0, in a plane mapping of
type: (x, y) ⇀↽ (ξ, η). Alternatively, it can be cast in parametric form as

η(x, y) = 0 ⇔
{

x = x(ξ, 0)

y = y(ξ, 0)
(33)

In the first case, the normal unit vector, can be obtained by simply making n = ∇η/ ‖ ∇η ‖. The
corresponding expression for the second case may be derived from the first by means of the relationsa

η,x = −y,ξ/J and η,y = x,ξ/J , which are gotten on inverting the operator βij′ to compute βi
′

k . As a result,
the normal vector becomes

nj′ ⇒
(

kx

ky

)

=
1

√

η2
,x + η2

,y

(

η,x

η,y

)

=
1

√

x2
,ξ + y2

,ξ

(

−y,ξ
x,ξ

)

(34)

in the Cartesian system. The term that multiplies the vector on the RHS can be recognized to be an element
of the metric tensor gij in transformed space: g11 = x2

,ξ + y2
,ξ. In any case, the result yields a fairly simple

expression for the vector covariant components in the transformed plane.

ni = nj′β
j′

i =
1√
g11

(

0

J

)

(35)

Before proceeding with the derivation, it should be noted that both n and the metric term g11 can be
evaluated at the wall, solely on the basis of the parametric representation of the contour.

The wall boundary condition is given by eq. (24). It depends on the specification of a metric term,
namely the area element ratio |dS′/dS|. In parametric form (33), one has dS = dξ. Besides, dS′ and dS
are clearly parallel: dS′ ‖ dS. However, the ratio between the two of them comes from the arc length
element54, 55

∣
∣
∣
∣

dS′

dS

∣
∣
∣
∣
dS =

∣
∣
∣
∣

dS′

dξ

∣
∣
∣
∣
dξ =

√

1 +

(
dy

dx

)2

Bw

x,ξdξ =
√

x2
,ξ + y2

,ξ dξ =
√
g11 dξ (36)

Hence the solid wall boundary condition simply becomes:

kxψ2 + kyψ3 =
∂g

∂p

√
g11 (37)

As was discussed above, the adjoint solution is computed on the basis of a stationary flow–field. Therefore,
by differentiating eq. (37) with respect to time, one gets,

kx
∂ψ2

∂t
+ ky

∂ψ3

∂t
= 0 (38)

This expression is used next, to simplify the equation of the characteristic that leaves the domain through
the solid wall boundary.

The normal velocity vanishes identically at the wall (kxu + kyv = 0), which implies that the first two
characteristic velocities in eq. (28) are zero. They cannot transfer any Cauchy data across that boundary.
On the other hand, on choosing the normal vector pointing inward, to the domain, the third and fourth
characteristics become −c and +c, respectively. Therefore, the third one leaves the domain, while the fourth
one enters it. In view of these results, the third characteristic equation in (32) should be solved for the
adjoint variables at the wall, whereas the fourth one should be replaced by condition (37). Two DOFs still
remain, because of the first and second characteristics. In principle, then, these should be extrapolated from
the domain.

On taking the third characteristic from (32) and factoring the zero normal velocity in it, as well as eq.
(38), one obtains a simplified form of the equation that should be solved for the ψk at the wall. The equation

aA shorthand notation is used here to denote partial derivatives of metric terms: ( ),ξ = ∂( )/∂ξ and ( ),x = ∂( )/∂x.
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reads:

∂ψ1

∂t
+ u

∂ψ2

∂t
+ v

∂ψ3

∂t
+ ho

∂ψ4

∂t
= (u+ kxc)

∂ψ1

∂x
+ (v + kyc)

∂ψ1

∂y
+
[

c2k2
y + (ckx + u)

2
] ∂ψ2

∂x
+

−
[
c2kxky − (ckx + u) (cky + v)

]
(
∂ψ2

∂y
+
∂ψ3

∂x

)

+

+
[

c2k2
x + (cky + v)2

] ∂ψ3

∂y
−
[
c2ky (kxv − kyu) − (u+ kxc)ho

] ∂ψ4

∂x
+

−
[
c2kx (kyu− kxv) − (v + kyc)ho

] ∂ψ4

∂y
(39)

where the symbol ho stands for the specific stagnation enthalpy.
Equations (39) and (37) represent all the Cauchy data that crosses the solid wall. Together, they should

form the set of Riemann equations at that boundary. The problem with that set is the presence of all four
adjoint variables in eq. (39). Had the simplified characteristic equation been rid of ψ1 and ψ4, then one
would have a closed set to solve for ψ2 and ψ3. In that case, ψ1 and ψ4 would not be part of the Cauchy
problem at the wall and, thus, they would be determined by numerical extrapolation, alone. The situation
would, then, be similar to the corresponding flow boundary problem.

As it stands, though, the set cannot be solved for the ψk at the wall. Instead, one must rely on eq. (37)
and an extrapolation scheme. In that regard, the aforementioned Reuther’s49 scheme suits our applications
very well. It adopts zero order extrapolations for ψ1 and ψ4 and divides (37) into two conditions between
ψ2 and ψ3, so that their sum recovers the original equation. On representing ghost cells values by ψ−

k and
the corresponding values in domain neighboring cells by ψ+

k , the equations read






ψ−

1 = ψ+
1

ψ−

2 = ψ+
2 + 2kx

k2
x+k2

y

(
∂g
∂p

√
g11 − kxΨ

+
2 − kyΨ

+
3

)

ψ−

3 = ψ+
3 +

2ky

k2
x+k2

y

(
∂g
∂p

√
g11 − kxΨ

+
2 − kyΨ

+
3

)

ψ−

4 = ψ+
4

(40)

where the condition (37) is met at the wall boundary in terms of the average,

kx

(
ψ−

2 + ψ+
2

)

2
+ ky

(
ψ−

3 + ψ+
3

)

2
=
∂g

∂p

√
g11 (41)

This scheme has been amply verified in the literature, and by ourselves.51, 56 It has shown to lead to
estimates of the sensitivity gradient that are close to those obtained by finite differences, within reasonable
accuracy levels.49 Therefore, it is fully consistent with what is expected of the adjoint method.

IV.B. Entrance

On choosing the normal vector pointing inward, to the domain, at a subsonic inflow boundary, there is only
one adjoint characteristic that enters the flow domain. It is the one that is associated with the eigenvalue
−(u ·n−c) in eq. (28), that is the fourth PDE in (32). Hence that equation must be replaced by a boundary
condition, which should come from eq. (25), as a requirement of realizability.

Together with the first three PDEs from set (32), this condition forms the Riemann problem at that
boundary. In order to derive it, one must first find out which virtual displacements δQβ are admissible
there.

At a subsonic entrance, the flow boundary conditions require that the velocity direction θ, along with
the stagnation pressure po and temperature To, be prescribed. It clearly implies that the corresponding
variations are null: δθ = δpo = δTo = 0. In terms of state variables Qβ , these quantities are given by:







tan(θ) = Q3

Q2

To = (γ−1)
2γRQ2

1

[
2γQ1Q4 − (γ − 1)

(
Q2

2 +Q2
3

)]

po =
(γ−1)[2Q1Q4−(Q2

2+Q2
3)]

2Q1

{

1 +
(Q2

2+Q
2
3)

γ[2Q1Q4−(Q2
2+Q2

3)]

} γ

(γ−1)

(42)
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By computing δθ, δpo and δTo in terms of the variations δQβ , and by equating them to zero, one gets
a linear set of three equations. Here, it must be recalled that δQβ and δQβ are equivalent with regard to
realizability. Then on replacing the former by the latter, one can solve the set for three of them in terms of
the fourth one. Whichever variation is chosen as the independent one, the resulting expressions will represent
the locus of realizability in state space. For instance, on picking δQ1 to be independent, the procedure yields:

δQβ ⇒















1

u
2

[

2 − γ + γ2 − 2et(γ−1)γ
(u2+v2)

]

v
2

[

2 − γ + γ2 − 2et(γ−1)γ
(u2+v2)

]

1
2

[
−2et(γ − 2)γ + (γ − 1)2(u2 + v2)

]















δQ1 (43)

Then, on substituting vector (43) for the corresponding term in eq. (25) one obtains the equation

δQ1 {C1ψ1 + C2ψ2 + C3ψ3 + C4ψ4} = 0 (44)

where the coefficients are given by:







C1 =
[

2 − γ + γ2 − 2γet(γ−1)
u2+v2

]
(kxu+kyv)

2

C2 =
(2−γ+γ2)kxu

2+2(1−γ+γ2)kyuv

2 − (γ−1)γkxv
2

2 − 2γet(γ−1)[2kyuv+kx(u2
−v2)]

2(u2+v2)

C3 =
−γ(γ−1)kyu

4+2kyu
2v2

2(u2+v2) +
2(1−γ+γ2)kx(u3v+uv3)+(2−γ+γ2)kyv

4+2γet(γ−1)[ky(u2
−v2)−2kxuv]

2(u2+v2)

C4 = − (kxu+kyv)[(γ−1)(u2+v2)−2γet][(2−γ+γ2)(u2+v2)−2γet(γ−1)]
4(u2+v2)

(45)

In eq. (44), δQ1 is realizable, but it is otherwise arbitrary. Therefore, the only means for one to drive
the equation to zero is to require its coefficient, i.e. the term within braces, to vanish identically. That leads
to a single linear equation, which involves all four ψα:

C1ψ1 + C2ψ2 + C3ψ3 + C4ψ4 = 0 (46)

Eq. (46) is the boundary condition to be imposed on the adjoint variables, and it may also be seen as
a compatibility relation they should meet at the inflow boundary. Since the adjoint problem is based on a
stationary flow solution, the coefficients in (45) are independent of time. Therefore, eq. (46) remains valid
when the ψα are differentiated with respect to time. Then, on joining it with the first three characteristic
equations from (32), one obtains the complete linear set for the corresponding Riemann problem.







Kt
11
∂ψ1

∂t
+Kt

12
∂ψ2

∂t
+Kt

13
∂ψ3

∂t
+Kt

14
∂ψ4

∂t
= R1

Kt
21
∂ψ1

∂t
+Kt

22
∂ψ2

∂t
+Kt

23
∂ψ3

∂t
+Kt

24
∂ψ4

∂t
= R2

Kt
31
∂ψ1

∂t
+Kt

32
∂ψ2

∂t
+Kt

33
∂ψ3

∂t
+Kt

34
∂ψ4

∂t
= R3

C1
∂ψ1

∂t
+C2

∂ψ2

∂t
+C3

∂ψ3

∂t
+C4

∂ψ4

∂t
= 0

(47)

where the spatial derivatives from the RHS of (32) have all been collected up in the Rα terms. The resulting
set is amenable to numerical integration by explicit time stepping.

With regard to the discussion on boundary conditions, it is worth noting that, for each one of the three
DOFs that are constrained in the flow problem, a corresponding DOF is preserved in the adjoint problem.
That symmetry agrees exactly with the balance between the domain incoming and outgoing characteristics
for both problems.
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IV.C. Exit

In the case of an outflow boundary, there are three domain incoming characteristics. On choosing the normal
vector pointing inward, to the domain, they are the ones that correspond to the first two and the fourth
eigenvalues in (28), and their equations in (32) must be replaced by boundary conditions. Hence, it is only
the characteristic associated with −(u · n + c) that needs actually be solved.

Just as in the previous case, the boundary conditions should come as a result of realizability constraints
that are imposed on δQα. In the applications of interest here, the static pressure is the only quantity that
is fixed at an outflow boundary. On casting it in terms of the state variables, it yields

p = (γ − 1)

(

Q4 −
(
Q2

2 +Q2
3

)

2Q1

)

(48)

By computing its first variation and setting it at zero (δp = 0), and on recalling that, as far as realizability
is concerned, δQα ⇔ δQα, one gets

δQα ⇒








δQ1

δQ2

δQ3

uδQ2 + vδQ3 −
(u2+v2)

2 δQ1








(49)

The above vector (49) represents the locus of realizable variations for the outflow boundary. Again, on
substituting it for the corresponding variations in eq. (25), it leads to:

δQ1

{

(kxu+ kyv) (−uψ2 − vψ3) +
(kxu+ kyv)

2
ψ4

[
(γ − 2)

(
u2 + v2

)
− 2γet

]
}

+

+δQ2

{

kx (ψ1 + vψ3) + ψ2 (u+ kxu+ kyv) + ψ4

[

kxγet + u (kxu+ kyv) +
(γ − 1) kx

(
u2 + v2

)

2

]}

+

+δQ3

{

ky (ψ1 + uψ2) + ψ3 (v + kxu+ kyv) + ψ4

[

kyγet + v (kxu+ kyv) −
(γ − 1) ky

(
u2 + v2

)

2

]}

= 0 (50)

Naturally, the δQ1, δQ2 and δQ3 are arbitrary, albeit realizable. Therefore, the only means of driving eq.
(50) to zero is to require their coefficients to vanish identically. That leads to three boundary conditions,
involving all four ψα. They can be written in a simplified form as:







ψ1 = 1
2

[
2etγ − (γ − 1)

(
u2 + v2

)]
ψ4 = C1ψ4

ψ2 =
[
−2etγkx+(γ−2)kxu

2
−2kyuv+γkxv

2

2(kxu+kyv)

]

ψ4 = C2ψ4

ψ3 =
[
−2etγky+(γ−2)kyv

2
−2kxuv+γkyu

2

2(kxu+kyv)

]

ψ4 = C3ψ4

(51)

Just as in the previous case, all of the above coefficients are based on a steady flow solution and, thus, they
are independent of time. As a result, these equations still hold when the ψα are differentiated with respect
to time.

The complete set for the Riemann problem at the outflow boundary is, then, obtained by assembling the
above (51) with the equation of the third characteristic from (32)







∂ψ1

∂t
− C1

∂ψ4

∂t
= 0

∂ψ2

∂t
− C2

∂ψ4

∂t
= 0

∂ψ3

∂t
− C3

∂ψ4

∂t
= 0

(
3∑

β=1

Kt
3βCβ + Kt

34

)

∂ψ4

∂t
= R3

(52)
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Similar to the previous case, the spatial derivatives in the RHS of the third eq. from (32) have been
collected up in the R3 term. The resulting set is also amenable to numerical integration by explicit time
stepping.

With respect to the relation between the flow and adjoint boundary conditions, the situation here is
similar to the previous case too. For a single DOF is constrained in the flow problem and single DOF is
preserved in the adjoint. Here again, the symmetry agrees exactly with the balance between the domain
incoming and outgoing characteristics for both problems.

V. Results

In order to validate the above treatment of adjoint boundary conditions, it would be instructive to pursue
a two–steps procedure. First, the idea is to check whether it leads to correct results in a complete application.
It may well be an inverse design application, where the target geometry is known beforehand, as it was done
in a previous paper.47 Then one ought to compare adjoint solutions that this treatment yields to those
that are obtained under homogeneous boundary conditions at the far–field. An usual definition of objective
functional for inverse design applications is given by the mean square error of the actual pressure distribution
p with respect to a target distribution pd,

I =
1

2

∫

Bw

(p− pd)
2

ds (53)

The target pressure distribution pd in the validation test has been obtained from the flow solution around a
known geometry, on making use of the same flow solver and geometry representation. The procedure ensures
that not only is the target realizable, but it is also attainable within the current framework.

Flow and adjoint solutions alike were computed on unstructured meshes with triangular elements. The
far–field boundary is placed over 50 chord lengths away from the airfoil surface. All geometries have been
represented by the CST (Class Shape–function Transformation) parameterization.57, 58 Numerical simula-
tions for the adjoint and flow equations have been run with a cell–centered Finite Volume Method, by using
the 2nd order 5–step Runge–Kutta time–stepping scheme.59

For simplicity, the steepest descent method was adopted as the optimization procedure. The inverse
design loop consists of the following sequence: mesh generation for a given geometry, flow simulation, adjoint
solution, evaluation of sensitivity gradient, and gradient based changes to geometry. The cycles are repeated
until a local extremum of (53) is reached, within a prescribed accuracy level.

A test case is presented next, where the initial geometry is a RAE 2822 at M∞ = 0.75 and an angle
of attack of α = 0o. The target pd corresponds to those of a NACA 0012 under the same flow conditions.
Figure 1 shows the initial and final geometries with corresponding pressure distributions.
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−
C
p

Figure 1. Mach 0.75 and α = 0o. Left, geometries. Right, Cp. Red dash lines, original curves; green cicles, final results;

blue solid lines, target profiles; black dash–dot, C∗

p .

As the above results show, the characteristics–based boundary conditions work properly. For the target
geometry has been successfully recovered in the process: the differences between them remain below 3.5 ×
10−3. As was discussed above, the sensitivity gradient computation here makes use of the reduced expression.
Therefore, it only requires the adjoint solution on the airfoil contour. Figures 2 and 3 present them, as they
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appear at the end of the first cycle, for the upper and lower sides of the airfoil, respectively. The left side of
each figure shows characteristics–based results, whereas the right side depicts results from the homogeneous
boundary conditions in each case.
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4

Figure 2. Airfoil upper side adjoint solution. Left, homogeneous boundary conditions. Right, characteristics–based

boundary conditions. Red solid line, ψ1; black dashed line, ψ2; blue circles, ψ3; green dash–dot, ψ4.
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Figure 3. Airfoil lower side adjoint solution. Left, homogeneous boundary conditions. Right, characteristics–based

boundary conditions. Red solid line, ψ1; black dashed line, ψ2; blue circles, ψ3; green dash–dot, ψ4.

The solutions have essentially the same character over the whole airfoil contour. They even share the
same discontinuity at the trailing edge. However, there is a small, yet significant, difference between them. In
all points other than in the immediate neighborhood of the singularity, the difference remains below 8×10−3.
That value is higher than the maximum residue of the adjoint solutions (7 × 10−5), hence its significance.
On the other hand, that value is apparently too small to cause any noticeable differences between the two
approaches, in the estimates of the sensitivity gradient. In any case, the evidence suggests that further tests
be devised to ascertain the influence the distance from the far–field boundary has on the adjoint solution at
the contour.

Quite a different outcome is gotten for internal flows. Where one does not usually have the freedom to
choose the position of permeable boundaries at will. In most cases, the proximity of those boundaries makes
the full characteristics approach a necessity. In order to illustrate the problem, we have computed adjoint
solutions for an internal flow case, by imposing homogenous and full characteristics conditions on the inflow
and outflow boundaries. The same objective functional (53) was used, but the sole purpose was to solve the
adjoint equations. After all, the reduced gradient form would not suit this case.

The set–up for the test is presented in fig. 4. The left side depicts initial and target geometries, while
the respective Cp distributions are shown on the right side— the latter are based on the nozzle length.

Figure 5 presents the adjoint solutions at the nozzle surface. The results for homogeneous boundary
conditions are on the left side, whereas those on the right side represent the full characteristics approach.

As can be seen, the differences between the solutions are quite significant, even in terms of general
character. Moreover, the homogenous conditions have led to discontinuities at the boundaries, which could
only be negotiated by the solver at the cost of a substantial increase in artificial dissipation, locally. To
further emphasize the point, fig. 6 depicts the solution for one of the adjoint variables, namely ψ1, for both

13 of 18

American Institute of Aeronautics and Astronautics



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

−
C
p

Figure 4. Mach 0.7. Left, geometries. Right, Cp. Red dashed line, original curves; blue solid line, target profiles; black

dashdot, C∗

p .
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Figure 5. Left, homogeneous boundary conditions. Right, characteristics–based boundary conditions. Red solid line,

ψ1; black dashed line, ψ2; blue circles, ψ3; green dashdot, ψ4.

boundary condition treatments. It clearly shows that the differences between them are not limited to the
wall.

VI. Conclusions

The main purpose of this work has been to investigate the adjoint boundary problem on the basis of
its similarity to the corresponding flow problem. The rationale behind our approach was to make use of
that similarity to seek conditions for the well–posedness of the adjoint equations. On accounting for the
hyperbolic character the latter share with the Euler equations, an attempt was made to construct an adjoint
Riemann problem at each boundary. Two aspects concur for that purpose:

First, the sign reversal of adjoint characteristics lends them a complementary quality with respect to those
of the flow, in that there is a symmetry between the two problems, in the way Cauchy data is transferred
across the boundaries.

Second, the boundary integrals that result from the use of Gauss’ theorem are seen as inner products
between adjoint variables and feasible variations of the flow physics. The conditions under which those
products vanish determine the former as normal vectors to a locus of realizability in state space — we have
termed them compatibility conditions.

The algebra has been shown to yield a balance between the compatibility conditions and the corresponding
number of domain incoming characteristics. Therefore, one is able to put together a complete set of adjoint
Riemann equations for each permeable boundary. The end result is a set of boundary conditions that is
entirely similar to those that render the Euler equations well–posed. The solid wall is the only exception.
For there are characteristics that do not cross the wall and, hence, they cannot transfer Cauchy data across
it. The adjoint Riemann set is indeterminate in this case, and one must rely on the boundary extrapolation
schemes that are found in the literature.
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Figure 6. ψ1 adjoint solutions comparison. Left, homogeneous boundary conditions. Right, characteristics–based

boundary conditions.

A series of validation tests was devised to verify our approach. The results show good agreement with the
conventional, widely accepted, treatment of the adjoint boundary problem, as it is reported in the literature
for external flows. Nonetheless, there are small, yet apparently significant, differences between the two.
Further tests are required to ascertain the influence the position of the far–field boundary exerts on the
overall solution.

As for internal flows, test results have shown the full–characteristics conditions to yield smooth solutions
in the neighborhood of permeable boundaries. As opposed to the sharp jumps that result when homogenous
conditions are imposed there. That piece of evidence, along with an analogy with the flow physics, seem to
indicate that the latter treatment of the boundary problem is inappropriate. However, it must be noted that
we have not run full inverse design tests in that particular case.
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