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Emergencies in which an aircraft cannot maintain straight 
ight can result from a variety
of conditions such as structural damage or actuator failures. A Turning Dubins Vehicle
(TDV) is de�ned as an analytical 
ight path planner for situations in which straight 
ight
is not possible. Solutions are constructed as a sequence of alternate turning arcs that
follow a reference circle and include piecewise linear transitions between turning radii. A
comprehensive Turning Dubins Vehicle (TDV) solver is presented to handle the spectrum of
relative distances and headings between aircraft initial state and a landing runway approach
end. This solver generates the minimum number of turning sequences for the TDV, thus
providing a minimum length landing 
ight plan. Example solutions are used to illustrate
the TDV solver.

Nomenclature

� Curve (Lateral Plane Landing Path) for the Turning Dubins Vehicle (TDV)
O Circular curve for the TDV
a Circular arc curve for the TDV
b Product of circular arc curves
� Set of possible curves for the TDV
�c Set of circular curves for the TDV
A Set of circular arc curves for the TDV
B Set of possible sequences of two di�erent turning radii for the TDV
C Natural representation of � with respect to a center c1 of the �rst circular curve for the TDV
RO Set of possible reference circles having c1cf as a chord
s Length of the arc segment of the �
~V Velocity vector
~T Unit tangent with respect to c1
~k Curvature vector with respect to c1
~n Principal normal unit vector with respect to c1
~b Unit binormal vector with respect to c1
r Radius of circular curve
� Central angle of the reference arc

 Angle between unit tangent ~T and unit vector î in the xyz system
n Number of arc sequences in B
nm Minimum number of arc sequences in B
� Distance of the points of a straight line from a known point

Subscript
r Reference circle
1 First circular curve of two di�erent radius circular curves
2 Second circular curve of two di�erent radius circular curves
m Minimum radius turning circle
M Maximum radius turning circle
T Transition for the TDV
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I. Introduction

Modern 
ight management systems (FMS) can generate optimal 
ight plans over a variety of conditions.
When damage or failures occur, such as structural damage, loss of thrust, or a control surface jam, the 
ight
crew must manually adapt the 
ight plans to execute an emergency landing, ideally at a nearby airport.
Pilot workload is dramatically increased in such situations, particularly given the split in attention between
attempting to understand the reduced performance properties as well as manually devise a guidance strategy
(and 
ight plan) to safely land the aircraft. To assist the 
ight crew with adaptive guidance as well as 
ight
control given degraded performance, researchers have begun to develop emergency real-time landing trajec-
tory generation automation aids, particularly given that existing 
ight plans may not be feasible.1{4 In our
past work, an adaptive 
ight planning capability is de�ned to automatically rank and select a nearby landing
runway then construct a trajectory to that runway under the assumption that either a Dubins path solution
could be found or that su�cient 
ight planning time exists to identify a landing trajectory via an optimal
search over sequences of feasible trim states. The Dubins solver requires straight 
ight segments connected
by turns, while the search-based algorithm might not guarantee a solution is identi�ed within an acceptable
time interval. We have previously de�ned a Turning Dubins Vehicle (TDV) trajectory planner5 to e�ciently
guide a damaged aircraft to a chosen landing runway. With the goal of providing a computationally-e�cient
and provably-correct analogue to the Dubins solver, a sequence of alternating extreme turning arcs are gen-
erated that follow maximum and minimum radii paths, respectively, to enable a feasible landing trajectory to
be generated even when straight 
ight is not possible.5 The sequence of alternating turning arcs requires only
that the aircraft be capable of left or right turns of two di�erent turning radii. The TDV solver analytically
constructs a sequence of alternate turning arcs between initial state and the approach end of the landing
runway. However, in our previous work we presumed transitions between turning arcs were instantaneous as
a simpli�cation consistent with the basic Dubins solution. We also have extended our TDV formulation in
this paper to comprehensively handle cases in which initial and �nal waypoints are separated by arbitrarily
large or small distances. In cases where performance is degraded to the extent that straight 
ight is not
possible, it is likely the aircraft would require a nontrivial transition interval between the two constant-radius
trim states sequenced in the landing trajectory. This paper mathematically describes the existence and the
uniqueness of a sequence of alternating extreme turning arcs, and the transitions between alternate turning
arcs for the TDV. Similar to our previous work, this sequence is developed to connect the initial state and
the approach end of the landing runway, presuming constant altitude (2D) to simplify geometric analy-
sis. Scenarios in which the aircraft cannot maintain straight 
ight can result from a variety of conditions
such as structural damage (e.g., to a wing) or actuator failures (e.g., stuck, fully-de
ected rudder or ailerons).

Other researchers have begun to design 
ight management architectures that will assist the pilot in
decision-making during emergencies.6 Researchers have also studied the aircraft trajectory planning prob-
lem for a variety of applications, including recent work on sequencing circular segments to allow a laser to
consistently track a target.7 The classic engine-out (loss-of-thrust) scenario was addressed in our previous
work by an extension of a Dubins path solver1 and has also been studied in the context of a turn-back land-
ing cast in an optimal control framework.8 There also have been e�orts to design multi-layer autonomous

ight management systems for Unmanned Air Systems (UAS) such as the multi-layer intelligent control
architecture.9 We have previously modeled emergency situations ranging from loss of thrust1 to actuator
failures2 to a commercial transport with severe left wing damage.3 This work adopts the same framework as
was introduced in our previous work,1 as shown in Figure 1. In the presence of failures and/or damage, the
emergency 
ight planner activates the Adaptive Flight Planner (AFP) that generates an alternative 
ight
plan through a variable autonomy pilot interface and 
ight plan monitor. Within the AFP, a Landing Site
Search (LSS) module determines a safe landing site, currently a runway deemed feasible based on length,
width, wind conditions, etc.1 Using an identi�ed su�cient stable trim state set, the Segmented Trajectory
Planner, inspired by the maneuver automaton,10 constructs a sequence of valid post-failure trim states to
this landing site. This paper presents an analytic trajectory planner that guarantees the smooth transition
for the TDV, and eliminates the requirement to use a computationally-intensive iterative solver. The rest
of this paper is organized as follows. Section II describes the geometric constraints required to connect
the initial turning 
ight segment with the �nal turn to touchdown by considering alternate turning arcs.
Section III presents criteria by which a chosen landing site is feasible(reachable) with a TDV trajectory
and the existence and the uniqueness of a sequence of alternate turning arcs. Section IV characterizes the
minimum number of alternate turning arcs required to progress to the feasible runway. Section V illustrates
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the extension of the geometric constraints for a sequence of alternate turning arcs with transition. Examples
of TDV trajectories with transitions are examined in Section VI.

Figure 1. Emergency Flight Management Architecture.

II. Geometric Analysis of a Sequence of Alternate Turning Arcs

We consider the Cartesian coordinate system XY Z �xed in an inertial frame where Î, Ĵ , and K̂ are unit
vectors �xed in the XY Z system. In previous work,5 we de�ned the concept of a Turning Dubins Vehicle
as an extension of the Dubins path landing solution as follows:

De�nition (Turning Dubins Vehicle (TDV)) A Turning Dubins Vehicle is a planar vehicle that is con-
strained to move along paths of curvature bounded both above and below, without reversing direction and
maintaining a constant speed.

Let � : [0; T ] ! R2 be a curve for the TDV that is twice di�erentiable for maneuver times T � 0, and let
C (s) be a natural representation of � with respect to c1 where c1 represents a center of the initial circular

trajectory arc followed by the TDV. For TDV velocity ~V and unit tangent ~T =
~V

k~V k
, the curvature vector ~k

with respect to c1 is de�ned as the rate of change of ~T with respect to arc length s:

~k =
d~T

ds
=

1

k~V k
_~T (1)

k = k~kk =
1

r
(2)

where r is the turning circle radius. Since rm � r � rM where rm is the minimum turning radius and rM
is the maximum turning radius, the magnitude of the curvature of � is bounded above by 1

rm
and bounded

below by 1
rM

. Note that ~k is orthogonal to ~T . Let � represent the set of possible curves for the TDV, i.e.,

� =
n
�jk 2

h
1
rM
; 1
rm

io
.

We use O to denote a circle because our landing solution requires only left or right turns of two di�erent

radii. Given a center c in R2, a radius r, and a sign of the turning rate sgn
�

_ 
�

, let O
�
c; r; sgn

�
_ 
��

:
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[0; TO]! R2 represent a circle of radius r with center c and direction of motion sgn
�

_ 
�

where TO denotes

the maneuver time during O and let �c be the set of circular curves for the TDV as follows:

�c =

(
O
�
c; r; sgn

�
_ 
��
j rm � r � rM ; sgn

�
_ 
�

=

(
+1 if _ > 0

�1 if _ < 0

)
(3)

O1 and Of in �c represent the initial and �nal circular curves, respectively, and would formerly have
represented the initial and �nal arcs from which a connecting (straight) tangent would have been computed
for a Dubins path solution. Let RO be the set of possible reference circles having c1cf as a chord. Then

RO =

�
O
�
O; rr; sgn

�
_ 
��
j~rO =

1

2

�
~rc1 + ~rcf

�
+ �

�
cos �O Î + sin �OĴ

�
; � 2 R

�
(4)

where ~rc1 � ~rcf = xc1�cf Î + yc1�cf Ĵ + kc1�cf K̂ and �O = arctan
�
�xcf c1

ycf c1

�
where ~rcf c1 = xcf c1 Î + ycf c1 Ĵ .

runway

X

Y

i 
fc f

Or

rr δ if

c1



k




V


r
ʹ

Figure 2. Reference Circle Or having the chord c1cf

Note that there also exists a dual reference circle O0r 2 RO because the direction of the unit vector
representing the perpendicular bisector can be reversed, as shown in Figure 2. Additionally, a reference arc
can be followed by alternating segments of two di�erent turning radii that include a prede�ned safety factor
su�cient for disturbance rejection.5 Let Or 2 RO, and let rr be a radius of a reference circle Or. Let �if
represent the radian measure of the central angle corresponding to the chord of length



~rc1cf

. Then

�1f = 2 arcsin

 

~rc1cf


2rr

!
(5)

For a given center c in R2 and two given points pi and pf in R2, let a (c; pi; pf ) : [0; Ta] ! R2 be a circular
arc connecting pi and pf with arc center c.Let c0 be a point located on a chord of length r1 � r2 from c1 in
Or, and let p0 be an intersection between O1 and a ray of the chord c1c0 from c1. The following theorem
presents how to specify a sequence of two di�erent turning radii for the TDV.

Theorem II.1 Let Or be in RO, and let O1

�
c1; r1; sgn

�
_ 
��

, O2

�
c2; r2; sgn

�
_ 
��

and O3

�
c3; r1; sgn

�
_ 
��

be in �c with r1 > r2. If ci+1 is located on a chord of length r1� r2 from ci in Or and distinct from ci�1 for
all i 2 f1; 2g, then O1 and O2 are tangent at an intersection between O1 and a ray of the chord c1c2 from
c1, and O2 and O3 are tangent at an intersection between O3 and a ray of the chord c3c2 from c3. Moreover,
a central angle �12 subtended by the chord c1c2 is given by:

�12 = 2 arcsin
r1 � r2

2rr
= 2 arcsin

kr (r1 � r2)

2
(6)

where kr := 1=rr is the curvature of the reference circle.
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Proof Let i 2 f1; 2g. Assume ci+1 is located on a chord of length r1 � r2 from ci in Or and distinct from
ci�1. Let p1 and p2 be intersections between O1 and a ray of the chord c1c2 from c1, and between O3 and a
ray of the chord c3c2 from c3, respectively. Since the distance between the centers of O1 and O2 is equal to
the di�erence of the radii, O1 and O2 are tangent at p1, and O2 and O3 are tangent at p2.11 Let �12 be the
radian measure of the central angle corresponding to the chord c1c2. Since the perpendicular bisector of the
chord passes through the center of the reference circle Or and the length of the chord c1c2 is r1 � r2, �12 is
given by Eq. 6. �

2 i −1

2 i

2 i +1

O

r

c2 i −1 c2 i +1

c2 i

δ12

r1 − r2

p2 i −1p2 i

p2 i +1
p2 i − 2

Figure 3. Product of n arcs

Corollary II.2 Let Or be in RO, and let O2i�1

�
c2i�1; r1; sgn

�
_ 
��

, O2i

�
c2i; r2; sgn

�
_ 
��

and O2i+1�
c2i+1; r1; sgn

�
_ 
��

be in �c with r1 > r2 for each i 2 N. If ci+1 is located on a chord of length r1 � r2
from ci in Or and distinct from ci�1 for all i 2 N, then O2i�1 and O2i are tangent at an intersection between
O2i�1 and a ray �����!c2i�1c2i, and O2i and O2i+1 are tangent at an intersection between O2i+1 and a ray �����!c2i+1c2i
for all i 2 N. Moreover, the central angle subtended by the chord c1c2i is (2i� 1) �12.

Proof Let i 2 N. Assume ci+1 is located on a chord of length r1 � r2 from ci in Or and distinct from ci�1.
Let p2i�1 and p2i represent intersections between O2i�1 and a ray �����!c2i�1c2i, and between O2i+1 and a ray
�����!c2i+1c2i. By Theorem II.1, O1 and O2 are tangent at p1, and O2 and O3 are tangent at p2. Let the nth
proposition be that O2n�1 and O2n are tangent at p2n�1, and O2n and O2n+1 are tangent at p2n. Suppose
our nth proposition is true. Since chords c2n+1c2n+2 and c2n+2c2n+3 of the reference circle Or have length
r1 � r2 by assumption, the (n+ 1)th proposition holds. By induction, O2i�1 and O2i are tangent at p2i�1,
and O2i and O2i+1 are tangent at p2i for all i 2 N.
For i = 1, it is true by Theorem II.1 that the central angle subtended by the chord c1c2 is given by Eq. 6.
Suppose our nth proposition is true. Since the perpendicular bisector of the chord passes thought the center
of the reference circle Or, and chords c2n+1c2n+2 and c2n+2c2n+3 of the reference circle Or have length

r1�r2 by assumption, Theorem II.1 holds for O2n+1

�
c2n+1; r1; sgn

�
_ 
��

, O2n+2

�
c2n+2; r2; sgn

�
_ 
��

and

O2n+3

�
c2n+3; r1; sgn

�
_ 
��

. By assumption, cici+1 is a chord of Or with length r1 � r2, and the central

angle subtended by the chord cici+1 is given by Eq. 6 for all i 2 N. Then a central angle subtended by the
chord c1c2n+2 is (2n+ 1) �12. By induction, a central angle subtended by the chord c1c2i is (2i� 1) �12 for
all i 2 N. �

When we determine alternating segments of two di�erent turning radii, the de�nition of a product of two
arcs is used.12 Let a2i�1 be a circular arc of O2i�1 such that a2i�1 (c2i�1; p2i�2; p2i�1) : [0; T2i�1 � T2i�2]!
R2, and let a2i be a circular arc of O2i such that a2i (c2i; p2i�1; p2i) : [0; T2i � T2i�1]! R2. Since O2i�1 and
O2i are tangent at p2i�1 and a2i�1 (T2i�1 � T2i�2) = a2i (0) = p2i�1 for all i 2 N by Corollary II.2, products
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bi of two arcs, a2i�1 and a2i, are de�ned as follows:

bi = a2i�1 � a2i =

(
a2i�1(t� T2i�2); T2i�2 � t � T2i�1
a2i(t� T2i�1); T2i�1 � t � T2i

(7)

where T0 = 0. Since O2i and O2i+1 are tangent at p2i and bi (T2i � T2i�2) = bi+1 (0) = p2i where bi =
a2i�1 � a2i and bi+1 = a2i+1 � a2(i+1) for all i 2 N, then we de�ne a product of two products as :

bi � bi+1 =

(
bi(t� T2i�2); T2i�2 � t � T2i
bi+1(t� T2i); T2i � t � T2i+2

(8)

where T0 = 0. Therefore, b1 � b2 � � � � � bi is de�ned for all i 2 N.

III. Existence and Uniqueness of a Sequence of Alternate Turning Arcs

In this section, we present criteria by which we can guarantee a TDV path from an initial state to
the chosen landing site exists and is unique. The TDV trajectory is de�ned with respect to a particular
reference circle Or. Let ar be an arc of the chord c1cf passing through ci where i 2 f2; 3; � � � ; 2ng. Let
fbi j bi = a2i�1 � a2i; i 2 Ng represent the set of products of alternate turning arcs for the TDV in Or 2 RO
such that Corollary II.2 holds, denoted by B. In the previous sections, B follows an arc ar of Or. After
n sequences, however, the �nal circular curve Of and the 2nth circular curve O2n for the TDV are not
guaranteed tangent at p2n. The following theorem describes the feasibility condition about Or for the TDV
to reach the selected runway.

Theorem III.1 Let Or be in RO, and let n 2 N be given. Suppose B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg
in Or such that Corollary II.2 holds. Let O1

�
c1; r1; sgn

�
_ 
��

and Of
�
cf ; r1; sgn

�
_ 
��

represent the initial

and �nal circular curves, respectively. Then there exists a cyclic polygon with 2n edge of length r1 � r2 and
a edge of length



~rcf c1

 if and only if rr satis�es the horizontal feasibility condition :

�1f = 2n�12 if 2n�12 � �
2� = 2n�12 + �1f if 2n�12 > �

(9)

where �12 = 2 arcsin ((r1 � r2) =2rr) and �1f = 2 arcsin
�

rcf c1

 =2rr�. Therefore, the TDV can reach the

selected runway.

Proof Assume there exists a cyclic polygon with 2n edge of length r1 � r2 and a edge of length


~rcf c1

.

Then, for each i 2 (1; 2; � � � ; 2n� 1), line segments cici+1 and c2ncf are chords of length r1 � r2. By
Corollary II.2, the central angle subtended by the chord cici+1 is given by Eq. 6 for all i 2 f1; 2; � � � ; ng.
Since the chord c2ncf has length r1 � r2, a central angle of ar is equal to 2n�12. By the de�nition of the
reference circle, a line segment c1cf is a chord of length



~rcf c1

, and the chord c1cf has a central angle 2�if .
Suppose 2n�12 � �. Then the arc ar is a minor arc or a semicircle. Since the arc ar has the chord c1cf ,
rr satis�es 2�if = 4n�12. Suppose 2n�12 > �. Then the arc ar is a major arc of the chord c1cf . Since the
major and minor arc together make up the entire circle, rr satis�es 2� = 2n�12 + �if .
Assume rr satis�es the horizontal feasibility condition 9. Since Corollary II.2 holds, each center ci is joined
with the next center ci+1 by a chord of Or with length r1 � r2 for all i 2 f1; 2; � � � ; 2n� 1g. By the
de�nition of the reference circle, cf is joined with c1 by a chord of length



~rcf c1

, and the central angle
subtended by the chord c1cf is equal to �if . Suppose 2n�12 � �. Then an arc of ar is a minor arc or a
semicircle. Since the arc ar has the chord c1cf , the arc ar has a central angle 2n�12 by assumption. By
Corollary II.2, the central angle subtended by the chord cici+1 is given by Eq. 6 for all i 2 f1; 2; � � � ; 2n� 1g,
and thus the central angle of the chord c2ncf is equal to �12. Therefore, there exists a polygon with edge
lengths

�
r1 � r2; � � � ; r1 � r2;



~rcf c1

� because congruent central angles have congruent arcs and congruent
arcs have congruent chords.13 Since all its vertices of the polygon lie on a circle, there exists a cyclic polygon
with with edge lengths

�
r1 � r2; � � � ; r1 � r2;



~rcf c1

�. Suppose 2n�12 > �. Then ar is a major arc of the
chord c1cf , and ar has a central angle 2n�12 by assumption. By Corollary II.2, the central angle of the chord
c2ncf is equal to �12. Therefore, there exists a cyclic polygon with 2n edges of length r1 � r2 and an edge
of length



~rcf c1

 because congruent central angles have congruent arcs and congruent arcs have congruent
chords.13 �
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Corollary III.2 A cyclic polygon as de�ned above is convex.

Proof Suppose 2n�12 � �. Then the horizontal feasibility condition is given by

0 =
1

2�
(2n�12 � �if ) (10)

The left-hand side of the horizontal feasibility condition represents the winding number of the polygon.14 A
sequence of signs of the central angles in the right-hand side of the above equation is given by (1; � � � ; 1; �1).
By the characterization theorem for the convex cyclic polygon,14 the cyclic polygon we de�ned above is also
convex. Suppose 2n�12 > �. Then the horizontal feasibility condition is given by

1 =
1

2�
(2n�12 + �if ) (11)

In this case, the winding number of the polygon is equal to 1, and a sequence of signs of the central angles
is given by (1; � � � ; 1). By the same theorem,14 this cyclic polygon is convex. �

Corollary III.3 A convex cyclic polygon as de�ned above is unique.

Proof In Theorem III.1, a convex cyclic polygon has 2n edges of length r1 � r2 and an edge of length

~rcf c1

. To prove the uniqueness, we need to distinguish two cases, and it is enough to show that r1 � r2
is less than (2n� 1) (r1 � r2) +



~rcf c1

 and


~rcf c1

 is less than 2n (r1 � r2). Without loss of generality, let

us assume that


~rcf c1

 > 0. Since n 2 N, n � 1, and thus (2n� 1) (r1 � r2) +



~rcf c1

 > 0. Therefore,

(2n� 1) (r1 � r2) +


~rcf c1

 and



~rcf c1

.
Suppose 2n�12 � �. Then sin (�if=2) = sin (n�12) from the horizontal feasibility condition 9. Since

0 < �12=2 < �=2, sin (n�12) < 2n sin (�12=2). Therefore, sin (�if=2) < 2n sin (�12=2). By Theorem II.1 and
the de�nition of the reference circle,



~rcf c1

 = (2rr) < 2n [(r1 � r2) = (2rr)]. Therefore,


~rcf c1

 < 2n (r1 � r2).

Suppose 2n�12 > �. Then sin (� � �if=2) = sin (n�12). Since we obtain the same identity as the case where
2n�12 � �,



~rcf c1

 < 2n (r1 � r2). By the existence and uniqueness theorem for convex cyclic polygons,14

such a cyclic polygon is unique. �

IV. Determination of the Minimum Number of Alternate Turning Arcs

Let Or be in RO. We showed that if rr satis�es the horizontal feasibility condition 9, then


~rcf c1

 is less

than 2n (r1 � r2) where n is the number of alternate turning arcs. Since the radius of curvature for the TDV
is in [rm; rM ], the di�erence between two radii of O1 and O2 has the minimum value. Let nm represent
the minimum value of n in B for Or satisfying the horizontal feasibility condition. In the next theorem, we
consider the minimum number of alternate turning arcs in Or satisfying the horizontal feasibility condition.

Theorem IV.1 Let Or be in RO and let n 2 N be given. Suppose B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg
in Or such that Corollary II.2 holds. Let O1

�
c1; r1; sgn

�
_ 
��

and Of
�
cf ; r1; sgn

�
_ 
��

represent the ini-

tial and �nal circular curves, respectively. Suppose rr satis�es the horizontal feasibility condition 9. Then

nm = dk~rcf c1k
2r1�2r2 e if

k~rcf c1k
2r1�2r2 =2 N, and nm = dk~rcf c1k

2r1�2r2 e + 1 if
k~rcf c1k
2r1�2r2 2 N. Therefore, there exists a cyclic

polygon with 2nm edges of length r1 � r2 and an edge of length


~rcf c1

 where r1 = rM and r2 = rm.

Proof Suppose rr satis�es the horizontal feasibility condition 9. By Corollary III.3,


~rcf c1

 < 2n (r1 � r2).

Since r1 > r2,


~rcf c1

 = [2 (r1 � r2)] < n. Let S =

�
n 2 N jn >



~rcf c1

 = [2 (r1 � r2)]
	

. Since n � 1 for all

n 2 N, the set S is bounded from below. Since


~rcf c1

 < 2n (r1 � r2) > 0, there exists n 2 N such that

1=n <


~rcf c1

 < 2n (r1 � r2) < n.15 Therefore S is nonempty. Since S � N � R and R is complete, the

set S has inf S 2 R. Let m = inf S. Suppose m =2 S. Then m < s for all s 2 S. We have that for �1 = 1
there exists an s0 2 S such that m < s0 < m + 1. Also, we have that for �2 = s0 �m > 0 there exists an
s00 2 S such that m < s00 < s0. Since s0 < m+ 1, this contradicts the Peano Axioms.15 Therefore, inf S 2 S,

so inf S = minS. If


~rcf c1

 = [2 (r1 � r2)] is not an integer, then minS = dk~rcf c1k

2r1�2r2 e by the de�nition of

the ceiling function.16 Suppose ns =


~rcf c1

 = [2 (r1 � r2)] is an integer. Then minS = ns + 1 where
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ns =
k~rcf c1k
2r1�2r2 = dk~rcf c1k

2r1�2r2 e because S = fns + 1; ns + 2; ns + 3; � � �g. Since


~rcf c1

 is given, we compute the

maximum value of r1 � r2. Without loss of generality, let us assume that r1 = rM . Since rm � r2 < rM ,

r1 � r2 � rM � rm, nm = dk~rcf c1k
2r1�2r2 e if

k~rcf c1k
2r1�2r2 =2 N, and nm = dk~rcf c1k

2r1�2r2 e + 1 if
k~rcf c1k
2r1�2r2 2 N where r1 = rM

and r2 = rm. By assumption, there exists a cyclic polygon with 2nm edges of length r1 � r2 and an edge of
length



~rcf c1

 where r1 = rM and r2 = rm. �

Corollary IV.2 If circular curves of two distinct radii satisfy the condition:

r1 = rM and r2 = rm (12)

then l12 has the maximum value for all Or.

Proof Let Or 2 RO. Then l12 = rr2�12 where �12 = 2 arcsin ((r1 � r2) =2rr). It is su�cient to determine the
maximum value of �12 for all rr. Without loss of generality, let r1 = rM . Then �12 = arcsin ((rM � r2) =2rr).
Since the arc sine in �12 is increasing for the sine angle ranging 0 to �=2 and r1 � r2 � rM � rm, �12 has the
maximum value for all rr if r2 = rm. Therefore, l12 has maximum value for all rr if r1 = rM and r2 = rm.
Note that since we consider all rr, rr depends on the two centers of the initial and �nal circular curves. �

V. Geometric Analysis of the TDV Trajectory with Transitions

We consider two Cartesian coordinate systems: XY Z �xed in an inertial frame and xyz with origin c1
located at the center of the �rst circular curve denoted by O1. The x axis is taken to lie along a straight line
c1p0 in the direction of the point p0 that represents the intersection between O1 and a ray of the chord c1c0
from c1, and the y axis is perpendicular to the x axis in the lateral plane with direction determined by the
right-hand rule. î and ĵ are unit vectors in inertial x and y directions, respectively, as shown in Figure 4.

For TDV velocity ~V and unit tangent ~T =
~V

k~V k
, let  represent the angle from unit vector î to unit tangent

~T . Then the unit tangent ~T and the principal normal unit vector ~n with respect to c1 are given by

~T = cos î+ sin ĵ (13)

~n =

8<: � sin î+ cos ĵ if sgn
�

_ 
�
� 0

sin î� cos ĵ if sgn
�

_ 
�
< 0

(14)

In the previous sections, we de�ned the set of products of alternate turning arcs in Or, denoted by
B, to determine a sequence connecting an initial displacement of the TDV with the approach end of the
landing runway. The set B includes elements bi which is de�ned by connection of two di�erent turning 
ight
segments. To consider a nontrivial transition between constant-radius trim states, we extend a product of
two di�erent turning arcs to a product of a turning arc and a related transition arc in the next theorem. To
smoothly change radius of curvature of a sequence of alternate turning arcs, we next de�ne transitions for
the TDV.

De�nition (TDV Transition) A transition for the TDV is a smooth change in radius of curvature from r1
to r2, or from r2 to r1 where r1 and r2 are in [rm; rM ] with r1 6= r2.

De�nition (TDV Transition Arc) Let pi and pf be in R2, and r1 and r2 be in [rm; rM ] with r1 6= r2. Then
a transition arc for the TDV is a smooth curve connecting pi and pf with a rate of change of the radius of
the curvature from r1 to r2 or from r2 to r1, denoted by T12 or T21, respectively, as follows:

T12 (MT12 ; pi; pf ) : [0; TT12 ]! R2 (15)

T21 (MT21 ; pi; pf ) : [0; TT21 ]! R2 (16)

where MT12
and MT21

are rates of change of the radius of the curvature for the TDV with respect to s over
T12 and T21, respectively.

Let s0 be the initial natural parameter of �. At s0, the TDV starts its �rst circular turning segment. Let s1,
sT12

, s2, and sT21
represent natural parameters of � over the �rst TDV turning sequence including transition
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arcs. Figure 4 illustrates TDV turning sequences, including an example time history of curvature radius
illustrating our piecewise linear transition model. Note that the instantaneous transition case would be
depicted with in�nite transition slope, or transition slope may be su�ciently low to preclude reaching the
designated minimum turn radius. The following theorem guarantees the existence and uniqueness for a space
curve of a1 � T12 � a2 � T21 where two transitions connect the �rst and the second circular turning segments
a1 and a2, respectively.

O

r

1

2
ʹ

a1

p1

x

y

X

Y

p2p3

p4

p0

 T12

a2

 T21

δ12
ʹ

(a) Alternate Turning Arcs with Transition when sgn
�

_ 
�
> 0

O

r

1

2
ʹ

a1

p1

x

y

X

Y

p2p3

p4

p0

 T12

a2

 T21

δ12
ʹ

(b) Alternate Turning Arcs with Transition when sgn
�

_ 
�
< 0

s1  sT12
s2  sT21 s ft[ ]

r1

r2

0

r ft[ ]

(c) Radius of Curvature for the TDV on s0 � s � sT21

Figure 4. Alternate Turning Arcs with Transition

Theorem V.1 Let Or be in RO, and let O1

�
c1; r1; sgn

�
_ 
��

and O2

�
c2; r2; sgn

�
_ 
��

be in �c with

r1 6= r2. Let a1 be a circular arc of O1 with center c1 such that a1 (c1; p0; p1) : [0; T1] ! R2 where
~rp0 = ~rc1 +C (s0), and ~rp1 = ~rc1 +C (s1). Let a2 be a circular arc of O2 with center c2 such that a2 (c2; p2; p3) :
[0; T2 � TT12 ] ! R2 where ~rp2 = ~rc1 + C (sT12) and ~rp3 = ~rc1 + C (s2). Suppose MT12 is constant and
MT21 = �MT12 . If the radius of curvature for the TDV, r (s), is given by:

r (s) =

8>>><>>>:
r1 if s0 � s � s1

MT12 (s� s1) + r1 if s1 � s � sT12

r2 if sT12
� s � s2

MT21
(s� s2) + r2 if s2 � s � sT21

(17)

then the curvature k (s) is continuous on s0 � s � sT21
. Therefore, there exists one and only one a1 � T12 �

a2 � T21 having the curvature k (s) along � where T12 (MT12
; p1; p2) : [0; TT12

� T1] ! R2 on [s1; sT12
] and
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T21 (MT21 ; p3; p4) : [0; TT21 � T2]! R2 on [s2; sT21 ].

Proof Assume the radius of curvature for the TDV, r (s), satis�es Eq. 17 on [s0; sT21 ] as shown in Figure 4(c).
r (s) is the reciprocal of the curvature, thus the curvature of � is given by:

k (s) =
1

r (s)
=

8>>>><>>>>:
1
r1

if s0 � s � s1
1

MT12
(s�s1)+r1 if s1 � s � sT12

1
r2

if sT12 � s � s2
1

MT21
(s�s2)+r2 if s2 � s � sT21

(18)

>From the Serret-Frenet equations of a plane curve,17 ~T and ~n along curve C (s) with respect to c1 satisfy

d~T

ds
= k~n (19)

d~n

ds
= �k~T (20)

If sgn
�

_ 
�
> 0, then d~T

ds = d 
ds

�
� sin î+ cos ĵ

�
= d 

ds ~n and d~n
ds = �d ds

�
cos î+ sin ĵ

�
= �d ds ~T from

Eqs. 13 and 14. If sgn
�

_ 
�
< 0, then d~T

ds = d 
ds

�
� sin î+ cos ĵ

�
= �d ds ~n and d~n

ds = d 
ds

�
cos î+ sin ĵ

�
=

d 
ds
~T from Eqs. 13 and 14. The heading angle of � then satis�es

 (s) =

8<:
R
kds+  C if sgn

�
_ 
�
> 0

�
R
kds+  C if sgn

�
_ 
�
< 0

(21)

where  C represents a constant of integration in Eq. 21 along �. Let  0 be an initial heading angle of the

TDV with respect to c1. Then  0 = �
2 if sgn

�
_ 
�
> 0, and  0 = 3�

2 if sgn
�

_ 
�
< 0. Let  1,  T12

,  2, and

 T21
represent the constants of integration in Eq. 21 along � over segments [s0; s1], [s1; sT12

], [sT12
; s2], and

[s2; sT21
], respectively, with respect to c1. Substituting Eq. 18 into Eq. 21 and integrating with respect to s:

If sgn
�

_ 
�
> 0, then

 (s) =

Z sT21

s0

kd� +  C

=

8>>>>><>>>>>:

R s
s0

1
r1
d� +  0 = 1

r1
(s� s0) +  0 if s0 � s � s1R s

s1
1

MT12
(��s1)+r1 d� +  1 = 1

MT12
ln
�
MT12

(s�s1)+r1
r1

�
+  1 if s1 � s � sT12R s

sT12

1
r2
d� +  T12

= 1
r2

(s� sT12
) +  T12

if sT12
� s � s2R s

s2
1

MT21
(��s2)+r2 d� +  2 = 1

MT21
ln
�
MT21

(s�s2)+r2
r2

�
+  2 if s2 � s � sT21

(22)

If sgn
�

_ 
�
< 0,

 (s) =

Z sT21

s0

�kd� +  C

=

8>>>>><>>>>>:

R s
s0
� 1
r1
d� +  0 = � 1

r1
(s� s0) +  0 if s0 � s � s1R s

s1
� 1
MT12

(��s1)+r1 d� +  1 = 1
MT21

ln
�
MT12

(s�s1)+r1
r1

�
+  1 if s1 � s � sT12R s

sT12
� 1
r2
d� +  T12

= � 1
r2

(s� sT12
) +  T12

if sT12
� s � s2R s

s2
� 1
MT21

(��s2)+r2 d� +  2 = 1
MT12

ln
�
MT21

(s�s2)+r2
r2

�
+  2 if s2 � s � sT21

(23)
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where s0 = 0 and  0 =

8<:
�
2 if sgn

�
_ 
�
> 0

3�
2 if sgn

�
_ 
�
< 0

. Let ET0 = 1
MT21

ln
�
r1
r2

�
. Since sT12 � s1 = r2�r1

MT12
and

sT21
� s2 = r1�r2

MT21
from Eq. 17, heading angles over s in terms of  1 and  2 from Eqs. 22 and 23 are given

by:

 T12 = ET0 +  1

 T21
= ET0

+  2

)
if sgn

�
_ 
�
> 0 , and

 T12 = �ET0 +  1

 T21
= �ET0

+  2

)
if sgn

�
_ 
�
< 0 (24)

where  1 =  (s1),  T12
=  (sT12

),  2 =  (s2), and  T21
=  (sT21

). Since ~T = dC(s)
ds and ~T = cos î +

sin ĵ, the natural representation C (s) of � with respect to c1 is given by

C (s) =

Z s

s0

~Tds+ CC (25)

where CC is a constant vector of integration along � with respect to c1. By the de�nition of the transition
arc, let T12 (MT12 ; p1; p2) : [0; TT12 � T1]! R2 on [s1; sT12 ], and T21 (MT21 ; p3; p4) : [0; TT21 � T2]! R2 on
[s2; sT21 ] where ~rp4 = ~rc1 + ~r (sT21). Then the products of two arcs,5 including a1 � T12 and a2 � T21, are
de�ned, and thus we de�ne a product of two products as follows:

b1 = a1 � T12 � a2 � T21 =

8>>><>>>:
a1 (t) 0 � t � T1

T12 (t� T1) T1 � t � TT12

a2 (t� TT12) TT12 � t � T2
T21 (t� T2) T2 � t � TT21

(26)

where a1, T12, a2, and T21 are de�ned by the natural representation C (s) of � on [s0; s1], [s1; sT12
], [sT12

; s2],
and [s2; sT21 ], respectively.

When we prove that r (s) is continuous on [s0; sT21 ], we use the � � � property of continuity.15 Let
� > 0, s1a 2 [s0; s1], and � = �. Then js� s1a j < � implies jr (s)� r (s1a)j = jr1 � r1j = 0 < � because
r (s) is a constant function on [s0; s1]. Therefore, the radius of curvature for the TDV, r (s), is continu-
ous on [s0; s1], and also on [sT12

; s2]. Let sT12a
2 [s1; sT12

] and � = � �
MT12

. Then
��s� sT12a

�� < � implies��MT12 (s� s1) + r1 �
�
MT12

�
sT12a

� s1
�

+ r1
��� = �MT12

��s� sT12a

�� < �. Therefore, the radius of curva-
ture for the TDV, r (s), is continuous on [s1; sT12 ], and also on [s2; sT21 ] because MT12 = �MT21 . Since

lim
s!s1+

r (s) = r1 by the de�nition of transition arc T12, lim
s!s1�

r (s) = lim
s!s1+

r (s), and then lim
s!s1

r (s) = r1.

Similarly, lim
s!sT12

r (s) = r2, and lim
s!s2

r (s) = r2 from the de�nitions of T12 and T21. Therefore, the radius

of curvature for the TDV, r (s), is continuous on [s0; sT21
]. If f and g are real-valued continuous functions

on any interval in R such that g (sa) 6= 0 for all sa in the interval, then f
g is continuous on the interval.15

Since r2 � r (s) � r1 for all s 2 [s0; sT21
], the curvature of � is continuous on [s0; sT21

]. By the fundamental
existence and uniqueness theorem for space curves,17 there exists one and only one a1 �T12 � a2 �T21 having
the curvature k (s) along �. �

From su�cient condition 17 in Theorem V.1, sT12
� s2. From Eqs. 22 and 23,

j 2 �  T12
j � 0 (27)

Substituting Eq. 24 and using ET0
= 1

MT21
ln
�
r1
r2

�
, we have the following constraints on MT21

:

2 ln
�
r1
r2

�
j T21

�  1j
�MT21 (28)

If the rate of change of the radius of curvature for the TDV with respect to s does not satisfy this constraint

on MT21
, then  2 �  T12

< 0 if sgn
�

_ 
�
> 0, and  T12

�  2 < 0 if sgn
�

_ 
�
< 0. As a result, s2 � sT12

, and

thus the TDV must reverse direction or the alternate arc 2� � j 2 �  T12
j about a2 should be considered.

From the de�nition of the TDV, however, the TDV cannot reverse direction. We assume that MT21 is greater

than or equal to 2 ln
�
r1
r2

�
= j T21 �  1j.
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Let Or 2 RO. Consider b1 = a1 � T12 � a2 � T21 in Eq. 26, as shown in Figure 4 (a) and (b). Let

O02
�
c02; r

0
2; sgn

�
_ 
��

be in �c where r2 � r02 � r1 and let a02 be a circular arc of O02 such that a02 (c02; p1; p
0
2) :

[0; T 02 � T1] ! R2. Suppose a1 � a02 in Or such that Theorem II.1 holds, and p4 in the transition arc
T21 (MT21 ; p3; p4) is located at p02 such that if 2�012 � �,

 T21
=  0 + 2� + 2�012 if

sgn
�

_ 
�

sgn
�
kc1�cf

� > 0 (29)

 T21
=  0 + 2� � 2�012 if

sgn
�

_ 
�

sgn
�
kc1�cf

� < 0 (30)

If 2�012 > �

 T21
=  0 + 2� � 2�012 if

sgn
�

_ 
�

sgn
�
kc1�cf

� > 0 (31)

 T21
=  0 + 2� + 2�012 if

sgn
�

_ 
�

sgn
�
kc1�cf

� < 0 (32)

where �012 = 2 arcsin
r1�r02
2rr

and  0 =

8<:
�
2 if sgn

�
_ 
�
> 0

3�
2 if sgn

�
_ 
�
< 0

. From Eq. 25, the natural representation of

� with respect to c1 at sT21
is given by:

if sgn
�

_ 
�
> 0,

CT21 =
h
MT12ET2

12
cos 1 �MT12ET1

12
sin 1 +MT12ET2

12
cos T21 +

�
MT12ET1

12
+ r1

�
sin T21

i
î

+
h
MT12ET2

12
sin 1 +MT12ET1

12
cos 1 +MT12ET2

12
sin T21 �

�
MT12ET1

12
+ r1

�
cos T21

i
ĵ (33)

If sgn
�

_ 
�
< 0,

CT21 =
h
MT12ET2

12
cos 1 +MT12ET1

12
sin 1 +MT12ET2

12
cos T21 �

�
MT12ET1

12
+ r1

�
sin T21

i
î

+
h
MT12ET2

12
sin 1 �MT12ET1

12
cos 1 +MT12ET2

12
sin T21 +

�
MT12ET1

12
+ r1

�
cos T21

i
ĵ (34)

where

ET1
12

=
r2

1 +M2
T12

�
sinET0 +MT12 cosET0 �

r1
r2
MT12

�
(35)

ET2
12

=
r2

1 +M2
T12

�
cosET0

�MT12
sinET0

� r1
r2

�
(36)

ET0 =
1

MT21

ln

�
r1
r2

�
(37)

We then obtain the following simultaneous equations:

If sgn
�

_ 
�
> 0,

MT12ET2
12

cos 1 �MT12ET1
12

sin 1 +MT12ET2
12

cos T21 +
�
MT12ET1

12
+ r1

�
sin T21

= r02 sin T21
+ (r1 � r02) sin 1 (38)

MT12
ET2

12
sin 1 +MT12

ET1
12

cos 1 +MT12
ET2

12
sin T21

�
�
MT12

ET1
12

+ r1

�
cos T21

= �r02 cos T21
+ (r02 � r1) cos 1 (39)
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If sgn
�

_ 
�
< 0,

MT12
ET2

12
cos 1 +MT12

ET1
12

sin 1 +MT12
ET2

12
cos T21

�
�
MT12

ET1
12

+ r1

�
sin T21

= �r02 sin T21 � (r1 � r02) sin 1 (40)

MT12ET2
12

sin 1 �MT12ET1
12

cos 1 +MT12ET2
12

sin T21 +
�
MT12ET1

12
+ r1

�
cos T21

= r02 cos T21
+ (r1 � r02) cos 1 (41)

Suppose  T21
= 5�=2�2�012. Then  1 = 3�=2��012. Substituting into Eqs. 38 and 41 and using trigonometric

identities, �
MT12

ET1
12

+ r1 � r02
�

cos
�012
2

cos
3�012

2
= �MT12ET2

12
cos

3�012
2

sin
�012
2

(42)�
MT12

ET1
12

+ r1 � r02
�

cos
�012
2

sin
3�012

2
= �MT12

ET2
12

sin
3�012

2
sin

�012
2

(43)

Summing the obtained equations��
MT12ET1

12
+ r1 � r02

�
cos

�012
2

+MT12ET2
12

sin
�012
2

��
cos

3�012
2

+ sin
3�012

2

�
= 0

Therefore, �
MT12

ET1
12

+ r1 � r02
�

cos
�012
2

+MT12
ET2

12
sin

�012
2

= 0 or cos
3�012

2
+ sin

3�012
2

= 0 (44)

Lemma V.2 If cos
3�012
2 +sin

3�012
2 = 0, then there exists an O02 such that the reference circle Or is a semicircle

and n = 1.

Proof Assume cos
3�012
2 + sin

3�012
2 = 0. Then �012 = �=2 and r02 = r1 �

p
2rr because 0 < �012 < � from

the de�nition of �012. By the horizontal feasibility condition 9, �if 2 fn� jn 2 Ng if 2n�012 � �, and �if 2
f� � n� jn 2 Ng if 2n�012 > �. Since 0 < �if � � and n 2 N, �if = � and n = 1 if f 2n�012 � �.
Therefore, the reference circle is a semicircle, and rr =



~rc1cf

 =2. Then r02 = r1 �
p

2


~rc1cf

 =2, and

2 (r1 � r02) =
p

2


~rc1cf

 > 

~rc1cf

. By the existence and uniqueness theorem for convex cyclic polygons,14

such a cyclic polygon is unique. Therefore, 9 a changed O02 such that the reference circle is a semicircle and
n = 1.

If
�
MT12ET1

12
+ r1 � r02

�
cos

�012
2 +MT12ET2

12
sin

�012
2 = 0, then

tan
�012
2

+
ET1

12

ET2
12

+
2rr

MT12
ET2

12

�012
2

= 0 (45)

because 0 < �012 < �. Substituting the horizontal feasibility condition 9 into the above equation, we obtain
the horizontal feasibility condition for the TDV with transition

tan
�if
4n

+
2rr

MT12
ET2

12

sin
�if
4n

+
ET1

12

ET2
12

= 0 if 2n�12 � �

tan
� � �if

4n
+

2rr
MT12ET2

12

sin
� � �if

4n
+
ET1

12

ET2
12

= 0 if 2n�12 > � (46)

Suppose  T21 = 5�=2 + 2�012. Then  1 = 3�=2 + �012. Following a similar process using the trigonometric
identities, h�

MT12ET1
12

+ r1 � r02
�

cos �012 �MT12ET2
12

sin �012

i
(cos 3�012 + sin 3�012) = 0 (47)
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If
�
MT12

ET1
12

+ r1 � r02
�

cos �012 �MT12
ET2

12
sin �012 = 0, then

tan
�012
2
�
ET1

12

ET2
12

� 2rr
MT12

ET2
12

�012
2

= 0 (48)

because 0 < �012 < �. Substituting the horizontal feasibility condition 9 into the above equation, we obtain
the horizontal feasibility condition for the TDV with transition

tan
�if
4n
� 2rr
MT12ET2

12

sin
�if
4n
�
ET1

12

ET2
12

= 0 if 2n�12 � �

tan
� � �if

4n
� 2rr
MT12

ET2
12

sin
� � �if

4n
�
ET1

12

ET2
12

= 0 if 2n�12 > � (49)

Suppose  T21
= 7�=2 + 2�012. Then  1 = 5�=2 + �012. We obtain the same horizontal feasibility condition

for the TDV with transition as de�ned in Eq. 46. If  T21 = 7�=2 � 2�012, we obtain the same horizontal
feasibility condition for the TDV with transition as speci�ed in Eq. 49. In order to determine the radius of
the reference circle Or, we determine the minimum number of alternate turning arcs in Or. In our previous
work,5 the reference arc representing a straight line was used to compute the minimum number of alternate
turning arcs with transition in Or. As � goes to �1 in Eq. 4, the arc ar goes to a straight line. Therefore,
we use the number of alternating turning arcs referenced to the straight line connecting c1 and cf as the
minimum number nm. With this direct (straight) reference line, the heading angles of the TDV with respect
to c1 at s1 and sT21 are given from Eqs. 29 to 32 by:

If sgn
�

_ 
�
� 0,

 1 =
3�

2
and  T21

=
5�

2
(50)

If sgn
�

_ 
�
< 0,

 1 =
�

2
and  T21

= ��
2

(51)

Also, p4 in the transition arc T21 (MT21 ; p3; p4) lies on the straight line. Then the y component of C (sT21)
is equal to 0. Using this information and following a similar procedure to obtain the horizontal feasibility
condition for the TDV with transition,

CT21
=
�

2MT12
ET1

12
+ r1

�
î (52)

Note that we obtain the same CT21 regardless of the travel direction because of the straight line. In Theo-
rem IV.1, the di�erence r1 � r2 between two radii is important when we determine the minimum number of
alternate turning arcs for the TDV without transition. Therefore, the di�erence r1 � r02 in alternate turning
arcs with transition is given by:

r1 � r02 = MT21
ET1

12
(53)

Substituting into the equation of nm in Theorem IV.1, nm for the TDV with transition is given by:

nm =

8><>:
d k~rcf c1k
2MT21

E
T112

e if
k~rcf c1k

2MT21
E

T112

=2 N

d k~rcf c1k
2MT21

E
T112

e+ 1 if
k~rcf c1k

2MT21
E

T112

2 N
(54)

VI. Example Landing Trajectories Possible with the TDV Solution

A series of TDV solutions are presented in this section to illustrate the properties of a TDV solution over
di�erent distances, turning directions, and transition speeds. Unless otherwise indicated, the landing site is
JFK Runway 31L at latitude 40:6398�N , longitude 73:7789�W . For all cases we presume a minimum turn
rate magnitude of 2.5 deg/sec and maximum turn rate magnitude of 7.5 deg/sec with a true airspeed of 225
ft/sec. Since this paper focuses on lateral plane TDV solutions, vertical 
ight path is not discussed.
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Figure 5 illustrates a series of TDV paths with di�erent transition rates. The TDV initial state is
latitude 40:69�N , longitude 73:72�W , heading 210�. In this case rM = 5148:6315 ft, rm = 1716:2105 ft, and

~rc1cf

 = 27076:9137 ft. Turning direction is clockwise (negative turn rate) as shown from an initial state
p0 to �nal state at JFK 31L. The leftmost sub�gures, (a), (d), and (g), provide overhead views of the lateral
TDV paths for the three subcases. The center sub�gures show radius of curvature versus traversal distance s
over a single TDV sequence, illustrating rapid (b), moderate (e), and slow (h) transition rates. The rightmost
sub�gures show how heading changes for these three cases over single TDV sequence. Parameter values for
cases (a)-(c), (d)-(f), (g)-(i), respectively, are given by: MT21

= 8; 1:5; 0:75, rr = 47518:64; 15289:08; 15283:68
ft, r02 = 1717:22; 1829:61; 2380:38ft. As shown, the Figure (a) path minimally varies from the TDV path
without transitions since the transitions are rapid. As the transitions slow, progress along the reference circle
over each sequence diminishes, resulting in increased number of sequences from the minimum no-transition
value of 4 sequences to 5 in sub�gures (d)-(f) to 6 in sub�gures (g)-(i).
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Figure 5. TDV Trajectories to the JFK 31L

Figure 6 illustrates dual solutions over the two reference circle options available to the TDV solver for
the same initial and �nal positions but di�erent headings. In sub�gure (a), the initial and �nal headings are
the same as for the Figure 5 cases, with negative (clockwise) turn rate. For sub�gure (b) the initial heading
is the same (210) but the �nal landing site is JFK 13R rather than JFK 31L to provide a counterexample
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with positive (counterclockwise) turn rate. In both these cases, the distance between initial and �nal states
is relatively large, resulting in multiple turning sequences (nm=5 for sub�gure (a), nm=4 for sub�gure (b)).
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Figure 6. TDV Trajectories to the JFK 31L for MT21
= 1:5

Figure 7 illustrates TDV solutions for situations in which the initial and �nal states are in close prox-
imity relative to the TDV turning radii. In sub�gure (a), travel direction is negative, and a single TDV
sequence connects initial and �nal state. In sub�gure (b), travel direction is positive, and the pair of so-
lutions about the two possible reference circles requires two TDV turning sequences to reach JFK 31L.
In both sub�gures, the initial state has latitude 40:64�N , longitude 73:77�W , and heading 210�, with
airspeed for this case set to 250 knots. These conditions result in rM = 5722:3935 ft, rm = 1907:4645
ft, and



~rc1cf

 = 9968:2462 ft. We presume transition rate MT21
= 1.5 in this �gure. rr is de�ned

conditionally as rr =
�

43740ft; sgn
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kci�cf

�
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�
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�
> 0
	

for sub�gure (a) and rr =�
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�
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for sub�gure (b). Similarly, r02 is de�ned conditionally
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for sub�gure (a) and r02 =
�

2228ft; sgn
�
kci�cf

�
< 0; 1946ft; sgn

�
kci�cf

�
> 0
	

for sub�gure (b).
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Figure 7. TDV Trajectories to the JFK 31L for MT21
= 1:5
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VII. Conclusions and Future Work

This paper has presented an analytic trajectory planning method in which minimum and maximum-
radius turning 
ight segments are sequenced and connected with analytically-derived smooth transitions. A
solution, described as a Turning Dubins Vehicle (TDV) path, is analytical in nature thus can be generated
without substantial computational overhead. Given initial and �nal positions and headings, the TDV solver
generates a reference circle that connects these states. We have shown the resulting solution exists and is
unique over the comprehensive set of possible initial and �nal states in the lateral plane. A set of feasible
landing trajectories comprised of alternating maximum and minimum radius turning radius segments can
be used to guide an aircraft autonomously or used as a \geometric advisor" to the 
ight crew. To promote
safety through a minimum-length but feasible solution, the minimum number of turning sequences for the
TDV is determined, and we have shown that a path following the associated reference circle is feasible and
has a minimum-length 
ight path. This paper extends a traditional Dubins path solver to cases in which
straight 
ight is not possible, providing a computationally-e�cient alternative to optimization or search-
based solvers. Emphasis in this paper is placed on de�nition of the TDV and analytically incorporating
realistic transitions between minimum and maximum radius turning arcs.

In this paper, we have derived a 2-D TDV trajectory, i.e., a constant-altitude path. In future work, the
sequence of alternate turning arcs must be extended to three-dimensional space that also manages airspeed
and 
ight path angle to ensure longitudinal plane (and coupled) performance constraints are also satis�ed.
A steady descent 
ight path angle may be su�cient in some damage situations, although large-magnitude
descents to the landing site will generally require extending the minimum-length TDV solution by inserting
additional turning sequences. Flight performance envelope degradation may also require a more complex
coupling between lateral and longitudinal path, as would be the case if 
ight path and airspeed constraints
di�er for minimum versus maximum radius turning arcs. We plan to focus on a full 3-D TDV implementation
in near-term future work and incorporate this solver into a realistic 
ight management environment to enable
evaluation of appropriate pilot interfaces as well as applicability to identi�ed severe damage and failure
scenarios.
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