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Air-data systems (ADS) measure wind speed and direction, the loss of which requires 

aerodynamic forces to be estimated from inertial measurements and aircraft dynamics and 

performance models. The nature of ADS measurements require air-data probes be subject 

to the spectrum of environmental conditions. Even with designs meant to withstand harsh 

conditions, instances of ADS probe failure have been recorded for diverse platform types 

and situations. Further, since all ADS probes on a common platform are subject to the same 

conditions, instances of multiple simultaneous failures are not uncommon. Robust air data 

measurement therefore becomes a multi-sensor data-fusion problem wherein the system 

may be subject to failures that effect groups of like sensors, such as pitot-static probes, 

simultaneously. This paper presents an algorithm for fault detection and data fusion of ADS 

failures in the framework of an unmanned autonomous seaplane with a heritage of air-data 

probe failures. The fault detection scheme is based on sensor signal characterization and 

monitoring and on the comparison and fusion of redundant sensor measurements. A 

GPS/INS-driven backup will also be proposed that can be used both as an ADS diagnostic 

tool and to allow safe flight to an emergency landing or until air-data sensor functionality 

can otherwise be restored. Flight test data from two generations of unmanned seaplanes 

demonstrates the efficacy of the algorithm for a range of real-world failure cases with varied 

sensors. 

Nomenclature 

  =  angle-of-attach 

  = sideslip 

       = results of pass/fail test for a specific type of sensor health indicator 

  = decay parameter for exponential weighting determination 

  
  = signal variance 

      = roll, pitch, and yaw Euler angles 

   = confidence rating for the n
th

 sensor signal (0,1) 

k =  time-step, indicating discrete measurement or computation 

      = probability of that a specific type of sensor failure has accurately been detected 

   = n
th

 sensor signal 

      = sensor failure threshold for a certain test type 

  =  airspeed 

     =  airspeed vector in reference frame A 

     = variance function applied to signal s 

v1,v2 = left and right pitot-static measurements, respectively 

va = propeller anemometer measurements 

ve, vest = wind-model based airspeed estimate output 

vRESULT = fault-tolerance algorithm output, high-confidence airspeed result 

  = weighting coefficient 

     = estimated environmental wind vector 
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I. Introduction 

ONVENTIONAL air-data system (ADS) probes provide direct measurement of body-relative wind represented 

as airspeed (u), angle-of-attack (α), and sideslip (β) as well as pressure-based altitude (z) estimates. As stability 

margins are traded for efficiency/performance and levels of automation increase, measurements of wind-relative 

attitude and speed become more important. As such ADS are among the most basic and critical sensor packages 

onboard an aircraft and are generally comprised of similar, but not strictly homogeneous, environmental sensors. 

The nature of ADS measurements require probes to be directly exposed to the flight vehicle’s operating 

environment. In addition to human error and physical damage, foreign material infiltration and atmospheric 

anomalies (e.g., extremely high water content) are two of the most common causes of ADS probe failures.
1-4

 Such 

failures tend to effect similar sensors identically giving rise to complete sensing loss despite redundancy. These 

failures affect commercial,
2,4

 military,
5
 and general aviation aircraft.

1,3,4
 Furthermore, though no comprehensive 

failure statistics are available, it follows that failures would also be experienced in unmanned aerial vehicle (UAV) 

ADS probes. The immediate consequences of ADS failure are incorrect airspeed/direction and altitude readings. A 

human pilot will likely recognize the failure if the reading is clearly incorrect, but will be less likely to immediately 

notice if the reported values are reasonable even if they are based on incorrect measurements. Despite recognition, 

the human pilot might still have trouble maintaining stable flight without airspeed, particularly in turbulent 

atmospheric conditions. An autopilot, whether part of a manned or unmanned aircraft system, nominally 

incorporates airspeed into its flight control laws. Upon failure, if the erroneous data is not detected, control 

excursions can be substantial and induce unsafe flight conditions (e.g., pitching to a dive given an airspeed 

approaching stall). 

 Deployed commercial and UAS autopilots are generally not adaptive to incorrect ADS information, so the pilot 

of a manned aircraft will typically initiate manual flight control without direct knowledge of airspeed, while a UAS 

will either execute a safe ditch or be controlled remotely, again without airspeed data. The potential for an autopilot 

or pilot to react improperly to erroneous wind data introduces appreciable risk, as evidenced by accidents such as 

Aero Peru Flight 603, in which ground crews failed to remove tape from the pitot-static system after cleaning the 

aircraft, or the X-31A at NASA Dryden, in which pitot icing compromised system readings. Note that although 

redundant ADS probes are present on most high-cost aircraft, common failure modes or incorrect failure diagnosis 

has also resulted in catastrophic accidents, such as Austral Lineas Aeroeas Flight 2553 in which the flight crew 

improperly referenced the pilot’s airspeed indicator and induced structural failure by exceeding safe airspeed limits. 

This paper will present an ADS failure mitigation algorithm that fuses data from multiple wind and inertial 

sensors to diagnose and react to air-data sensor failures. The methods can be applied to a range of systems and 

sensor types but, for the purposes of this paper, the specific sensor measurements are defined in the context of 

instrumentation affixed to an unmanned seaplane with a history of pitot failures due to water ingestion. This 

motivating autonomous seaplane system will be introduced in the next section followed by a review of literature and 

statistics concerning the frequency and implications of ADS failures. The background section will conclude with a 

review of pertinent past research in ADS failure mitigation. Following the background materials our sensor fault 

detection and data-fusion algorithm is presented. Finally, results are provided from two generations of unmanned 

seaplane flight test programs that have demonstrated the efficacy of this solution. The paper concludes with an 

analysis of the capabilities and limitations of the presented algorithm. 

II. Background 

This section introduces a motivating case study from an unmanned seaplane program with a heritage of ADS 

failures. ADS fault tolerance is then motivated from past incidents, followed with a summary of our investigation 

into the impact, common causes, and mitigation strategies associated with ADS failures. Finally, fault identification 

and tolerance, in the context of ADS, are discussed 

A. Motivating Example: Autonomous Seaplanes 

In the summer of 2007, the Flying Fish autonomous unmanned seaplane
6-8

 first began open-water testing. During 

initial autonomous controller development an unpredictable ADS failure mode manifested through a variety of 

seemingly unrelated system malfunctions. The initially inexplicable behaviors included: failed automated takeoff, 

sudden pitch to stall, and sharp dives from cruise. The issues were manually traced to anomalous airspeed values 

due to water blockage of ADS probe ports. Like most floatplanes, the Flying Fish relied on a pressure-based 

pitot/static probe for airspeed determination, but unlike a full size floatplane the UAV’s scale prevented the probes 
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from being mounted any further than ~1.0m from the water’s surface. Unavoidable physical proximity, in 

combination with energetic transit over the water resulted in water impingement on the air-data probes. In-flight 

incidents revealed that ingested water might not immediately cause a failure, but that variations in flight attitude or 

airspeed might precipitate a delayed failure of a water-compromised probe. Blockages resulted in a wide range of 

erroneous measurements; while some blockages produced near constant output others displayed damped/biased 

tracking of actual airspeed. The Flying Fish ADS probe was subsequently relocated to minimize water incursion and 

a redundant probe and measurement system were added. Despite these modifications, however, water blockage 

issues still occurred, requiring the vehicle to be recovered and manually cleared of ingested water, often found well 

inside the pressure tubing where pitot heating is ineffective. A second-generation Flying Fish seaplane developed at 

the University of Michigan was equipped with a more comprehensive redundant ADS system. This vehicle has also 

experienced ADS sensor problems, although it is equipped with dual heated pitot probes further separated from the 

water. The new ADS system has redundancies including duplicate ADS sensors, different types of ADS sensing 

technologies, probe measurement redundancy, and failed-sensor recovery mechanisms. Specifically, the system 

includes two 5-hole pressure probes and a propeller-based anemometer. The 5-hole probes combine pitot/static 

airspeed measurement and barometric altitude with lateral/vertical differential pressures for the determination of 

angle of attack and side-slip angle. A heating element on each 5-hole-probe allows for cold weather operation and 

has sufficient heating capacity to rapidly evaporate freshwater blockages. Heat-based pitot clearing has not been 

evaluated in a marine environment where the mineral content of the water may contraindicate the application of 

evaporative clearing. The propeller-anemometer uses hall-effect sensors to measure the rotation rate of a small high-

pitch propeller in order to determine airspeed. Dual hall-effect sensors within the anemometer head provide 

redundant measurement of propeller rotation. 

B. Exploration of Air-Data System Failures 

The rates and impact of ADS failure on commercial, military, general, and unmanned aviation are nontrivial. 

Records and reports on the subject suggest that the problem may be increasingly prevalent, with growing air travel 

volume, and while research is being conducted on related topics no uniform solution yet exists. Aviation safety 

databases provide evidence of significant commercial aviation losses due to ADS failure. The Aviation Safety 

Network database has records of at least eleven ADS (pitot probe) failures over the past three decades that have 

resulted in significant damage or loss of life.
4
 These examples alone represent a nontrivial financial loss and 342 

documented fatalities (339 in the past 15 years). More recently, interim accident reports for Air France Flight 447 

indicate air data system anomalies were likely experienced
9
 and that Airbus platforms have had 35 recorded 

incidents of multiple ADS failures since 2003.
10

 This is a nontrivial result even over the large number of total flight 

operations conducted by Airbus airliners given the likelihood that many transient ADS failures were not 

documented. The effect of ADS failures can also be observed in general aviation (GA) aircraft incident records,
1-3

 

but concise statistics have proven more difficult to collect. For example, the Aviation Safety Reporting System 

database
1
 contains numerous instances of general aviation ADS-related failures but aggregate results for this specific 

contributing factor are not readily available. Further complicating analysis, the varied causes, effects, and results of 

ADS faults can lead to failure statistics being associated with a number of different classifications (e.g. inclement 

weather, instrument fault, and flight control failure).  

C. Air-Data System Failure Mitigation Research 

Safety in aviation is paramount, particularly for commercial aviation due to the extreme property and loss-of-life 

costs associated with aircraft accidents. Industry and government demand highly-validated systems with safety and 

availability requirements that specify a 10
-9

 maximum probability of critical failure per flight hour.
11

 Two major 

results of these standards are stringent validation requirements that slow the application of state-of-the-art concepts 

and ever-increasing complexity in the avionics employed on all classes of aircraft. The avionics of most commercial 

aircraft now feature multi-redundant self-monitoring systems with segregation and purposeful dissimilarities 

between related/redundant software and hardware; these systems require complex redundancy negotiation and 

consensus voting strategies to operate.
12,13

 While it has been noted that this complexity may induce unexpected and 

counterintuitive results, even to the point of introducing new failure modes,
14

 it is still the case that these systems 

have demonstrated high reliability. Nevertheless, these systems are still fundamentally vulnerable to failures in their 

external sensing apparatus. Further, while these complex redundancies and failure mitigation strategies enable the 

negotiation of failing redundant sensors these systems are still largely unable to handle common failure mechanisms 

simultaneously disabling entire classes of like sensors. These shortcomings are the fundamental reasons to research 

new mechanisms for air-data failure mitigation. Most research into ADS fault tolerance and recovery tends to fall 
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into one of three categories: (1) signal-based diagnostics, (2) alternative sensing mechanisms, and (3) finding ways 

to operate without traditional ADS sensors. 

1. Signal-Based ADS Failure Rejection 

Looking first to ADS-specific failure research we find the seminal work of Houck and Atlas which provides 

insight into fundamental mechanisms for ADS failure diagnosis. Houck and Atlas analyzed failed ADS sensor 

signals and were amongst the first to propose that probe blockage reduced signal energy levels, that large signal 

variations were generally sufficient (but not necessary) to demonstrate sensor functionality, and that signal 

characteristics might be used to indicate air-data probe health.
15

 Very few examples of this type of analysis exist for 

ADS-specific applications. Houck and Atlas ultimately proposed that even at a fixed altitude the nominally-constant 

static pressure varied slightly as a function of acceleration and that the derivative of the static-port pressure signal 

would be a good indicator of probe health. Unfortunately, independent static pressure measurements are not always 

available in UAV applications as the desire for volume, weight, and cost savings make the implementation of a 

single pressure transducer for pitot-static measurements more likely. Regardless, Houck and Atlas’ methods utilize 

or suggest several of the tools that will be employed in this paper including individual signal characterization and 

comparison with previous statistics and predetermined operating thresholds. 

2. Alternative ADS Sensing Apparatus 

A more common means for avoiding failures associated with a particular class of sensors is to employ alternative 

instrumentation for the same measurements. Examples of variations on the classic ADS pitot-probe include flush 

air-data sensing (FADS) systems
16

 and self-aligning multi-hole conical probes.
17

 FADS systems employ pressure 

ports with openings flush to, and distributed over, a vehicle’s aerodynamics surfaces while self-aligning conical 

probes are driven by pressure forces into alignment with local airflows. In both cases the geometrically-related 

measurements collected at distributed sensing locations produce an over-defined system from which the ADS states 

can be re solved. These systems can provide both fault-tolerance and error reduction provided they are designed 

such that the ADS states are observable from different subsets of probes. Further, the novel structure of the sensors 

produces changes the potential failure modes and reduces the likelihood of simultaneous failure with the more 

common traditional ADS probes. The system presented in this paper will, as previously indicated, utilize alternative 

low-cost ADS sensing technologies to avoid having failure modes common across all of the vehicle’s air-data 

sensors. 

3. Circumventing ADS Sensing 

A number of researchers have proposed alternatives for flight operation in the absence of ADS measurements. 

The advent and proliferation of GPS systems and continued improvements to sensors and filtering in inertial 

navigation systems (INS) have given rise to mechanisms for deriving estimates of ADS states indirectly.
5,18-19

 

Consequently, flight control laws have emerged that do not require ADS state variables.
20-21

 Implementations of the 

latter generally have performance limitations (e.g., limits on wind speed or variability), must possess particularly 

wide margins for safe operation, and/or must employ some alternate motion sensing mechanism (e.g. machine 

vision). More pertinent to this work is the concept of ADS state estimation for which two basic formulations, 

differing by a time derivative, have been proposed. Starting from known initial conditions, such as the point of ADS 

failure, the estimation algorithms infer wind from either: a) the difference between a wind-unaware dynamic 

estimate of inertial velocity and the measure of inertial velocity
5
 or, b) the integration of lateral, longitudinal, and 

vertical accelerations by a dynamic model that includes wind.
18-19

 Regardless of the method, trigonometry is applied 

to the resulting velocity triangles to determine angle of attack and sideslip. The difficulty with these methods is their 

reliance upon high-accuracy high-rate inertial sensors and upon high-fidelity dynamic models. While these 

assumptions are reasonable for the military vehicles for which much of the referenced research was intended, they 

are not necessary appropriate for a slow-flying, low-cost UAV with MEMs-based sensors. With low-cost UAV 

platforms as the target, the algorithm presented in this paper will extract external wind estimates from the sensor 

system and leveraging wind estimates to infer wind-relative motion in the absence of trusted ADS measurements. 

III. Methods 

The fault tolerant ADS algorithm (Fig. 1) is composed of three primary elements: a signal-fault detection 

scheme, a confidence-discriminate data-fusion procedure, and an inertial measurement driven wind-estimation 

system. Signal fault detection extracts and tests signal characteristics to estimate the likelihood of sensor failure. The 

confidence-discriminate data-fusion combines the signal fault results into sensor confidence values. Confidence 

values are used to judge sensor fitness and eliminate signals from failed sensors before being used in the weighted-

average data-fusion. The wind-estimation module utilizes the resulting composite air-data vector to refine a local 

wind model which is subsequently used, in conjunction with inertial navigation measurements, to estimate the air-
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Figure 1. ADS Fault-Tolerant Control System Diagram 

 

data vector in the event of ADS sensor failures. This 

wind-estimate also provides a baseline wind vector 

for judging individual sensor measurements. The 

three algorithm stages are executed sequentially. 

Wind estimates are fed back to the signal-fault 

detection scheme to become one of the confidence-

rated signals combined in the data-fusion cycle. 

A. Signal Fault Detection 

The purpose of the signal-fault detection scheme is 

to discern anomalous operating conditions that may 

indicate a sensor failure. The number, type, and 

redundancy of the sensors are not considered at this 

stage, rather each signal is judged based on 

individual parameter-based signal models. The signal 

models are captured from the sensor specifications 

and the analysis of both failed and operational sensor 

signals. This stage of the algorithm is composed of 

three major procedures: signal characteristic extraction, signal model determination, and signal fault testing. 

Common methods for signal characterization in fault detection schemes include statistical metrics, such as 

arithmetic average and variance, and spectral analysis methods, such as the wavelet
22

 or Fourier
23

 decompositions. 

Spectral decompositions are typically applied for fault detection in systems with cyclic behavior
22

 or harmonic 

content/excitation.
24

 The efficacy of frequency decomposition methods for common classes of air-data sensors are, 

as of yet, unknown but these systems do not generally have a strong frequency component. The team is currently 

investigating the application of frequency decomposition methods for propeller anemometer diagnostics, but no 

conclusions have yet been drawn. For the remaining pressure-based ADS signals we employ an arithmetic average 

and variance algorithm for signal characteristic extraction. Unlike decomposition strategies, which are focused on 

frequency-keyed information, the mean and variance are utilized to obtain smoothed, low-pass filtered, 

characteristics of a signal.
22

 In this case we will be using a sliding average and variance formulation. The k
th
 

arithmetic-average and variance over m samples of the n
th

 signal (sn(k)) is given, for the set of non-negative/not-all-

zero weighting coefficients (wi), by the formulae: 

 

       
            
 
   

   
 
   

                (1) 

           
                     

  
   

   
 
   

            (2) 

 

To reduce the number of computations per iteration, the sums of time-invariant weighting factors are normalized 

producing the following simplified formulation: 

 

                
 
       

 
                 (3) 

                                
  

            (4) 

 

Exponential weighting is utilized to favor the most recent data, reducing phase delay between the raw and filtered 

signals. Our parameterized exponential weighting formula is given by: 

 

                             
                (5) 

      
         

           
   

                       (6) 

                               (7) 

 

The decay parameter ξ determines the relative influence of aging data points, defining a continuum between 

preserving only the most recent sample at one extreme (ξ=1) and approaching equal weighting of all points at the 

other extreme (ξ arbitrarily close to zero). We define equal weighting for the special case ξ=0. In this case, the un-

weighted arithmetic mean and standard deviation are recovered from Eqs. (1)-(2). 
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To apply Eqs. (1)-(7) the sliding sample-window size, m, and the weight decay parameter, ξ, must be selected. 

These values were tuned empirically to balance signal tracking against delay and low-pass filter performance for 

each signal. It may be possible to formulate an optimal tuning of these parameters if a cost function can be 

formulated based on the signal following characteristics and low-pass filtering requirements. This approach did not 

prove necessary the Flying Fish sensor systems but may be appropriate for any larger or more complex ADS. The 

resulting tuned sliding average and variance formulations were then applied to the signals of functional, failed, and 

failing sensors to extract sensor model parameters for each flight mode (taxi, takeoff, climb, cruise, turning, descent, 

and landing). Average variance (           ), peak change rate (                ), and peak rate of variance 

change (               ) were extracted from functional sensor data for each signal and each flight mode. 

Performing the same calculations on failed and failing sensor data enabled the determination of tolerances for 

deviation in the model parameters. During this process it was discovered that the peak rate of change during a failure 

was generally within the normal dynamic range of our sensors. That is to say, the initial dynamics of probe failures 

are almost indistinguishable from the dynamic response of the functional system except that the measurements are 

increasingly incorrect. Subsequently, peak rate of change was discounted as a fault detection metric but tolerances 

for deviation from average variance (         ) and peak rate of variance change (             ) were recorded 

for each sensor. Drawing from the manufacturer’s specifications and failed sensor data the saturation limits of the 

sensor (          ) were quantified to give a total of six fault-detection parameters. The collected set of all fault-

detection parameters and the averaging window and decay parameter for each filter comprise the parameterized 

sensor signal model. 

The final step in the signal-fault detection process is the evaluation of extracted characteristics using the metrics 

and tolerance stored for each sensor, for each flight regime. The combination of model parameters produces three 

distinct sensor-fault tests. The first test determines if the signal variance exceeds the variance deviation threshold for 

the current flight mode: 

 

                                             (8) 

 

The result of the variance test is recorded as a binary pass (“1”) or fail (“0”) vote (         ) for each sensor at each 

time step, k. The second test determines if the signal variance increases or decreases too quickly and violates the 

peak-variation-rate tolerance. In order to make this determination we require a smooth baseline measurement of the 

signal variance for which we compute a sliding average of the variance results (           ). Again the window 

size, m, and the weight decay parameter, ξ, are selected empirically to find an acceptable tradeoff between signal 

following, smoothing, and delay. The signal test is formulated as: 

 

                                                (9) 

 

The result is a binary pass-fail vote for the variance rate test (          ) of the n
th

 sensor at the k
th

 time step. The 

final test considers if the sensor has entered a saturation region. Data analysis indicated a threshold of 3% of the 

saturation limits provided an appropriate balance between missed and false fault detection. The set of all flight data 

demonstrated that an operational sensor’s signal remain further than 3% from the saturation limit for over 99% of all 

measurements. Conversely, failures that produced saturated signals approached within 3% of the saturation limit for 

99% of subsequent incorrect measurements. The primary occurrence of saturation in the un-failed sensor is low-

speed saturation for extremely low or zero air speed (or a slight tailwind) prior to initiating takeoff. The tests for 

saturation take the form: 

                                 (10a) 

                                 (10b) 

 

This test produces, as with the previous tests, a binary indication a saturation test failure of the n
th

 sensor at the k
th

 

time step (         ). Finally, the time history of sensor fault votes is output to the confidence-discriminate data-

fusion algorithm in order to develop sensor confidence values. 

B. Confidence-Discriminate Data Fusion 

The goal of confidence-discriminate data-fusion is to leverage signal confidence and redundant-data comparisons 

to combine like measurements while excluding failed sensors. This sensor discrimination and data fusion process is 

comprised of three steps: signal confidence determination, failed sensor rejection, and final data fusion. 
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The signal confidence of the n
th

 signal (Cn(k)) is developed from the time history of signal-fault votes for that 

sensor in a two step process. First we accumulate signal-fault votes into a probability that a sensor has passed a 

specific fault test. This probability is created by using a large-window moving average which allows failure votes to 

have a long influence period and also mitigates spurious intermittent false-negative/positive votes. For this we 

define probabilities for each of the three primary fault types: signal variance exceeds threshold (Pvar), rate of 

variance change exceeds threshold (Prate), and signal exceeds saturation tolerance (Psat). The probabilities are created 

by a moving average of the binary voting history for each fault: 

 

                                   (11a) 

                                    (11b) 

                                   (11c) 

 

The second step is to combine the three failure-voting probabilities into the final signal confidence by a weighted 

average. The two variance probabilities are given even weighting (0.3) while the saturation probability is given a 

slightly higher weighting factor (0.4). 

 

                                             (12) 

 

This distribution is best explained by examining the features of our fault detection process. Specifically, a complete 

saturation fault indicates an undeniable failure condition whereas the variance-based faults indicate only a likelihood 

of sensor failure. By giving a slightly greater weight to the saturation test we can select a confidence threshold (0.7) 

that is exceeded in the event of a complete saturation failure but that cannot be surpassed by any single variance 

failure. Armed with confidence values for each signal the error-rejection and data fusion can be completed. 

Perhaps the most important requirements for a fault-tolerant system are mechanisms for judging and rejecting 

questionable signals from the set of all available sensors. Willsky’s survey of design methods for failure detection 

provides a good summary of this field.
25

 Common methods include neural networks, voting or outlier rejection, 

model-based analysis, and filter-based techniques, including recursive least-squares and the Kalman filter.
26-30

 We 

will focused on outlier rejection (OR) and voting; these concepts are closely related but typically utilize different 

operating principles. Voting schema are often comprised of rule-based judgments. Outlier rejection, on the other 

hand, generally relies on statistical analysis and, while subjectivity remains in the selection of metrics and 

thresholds, OR methods are usually based on commonly accepted statistical practices/measures (e.g. using a 

multiple of the standard deviation to define an outlier). A comprehensive treatment of outlier rejection in statistical 

data can be found in Barnett and Lewis.
31

 For this paper we will utilize sensor confidence as a per-signal voting 

mechanism and employ a simple outlier rejection scheme whenever three or more redundant signals are available. 

As previously indicated a confidence threshold of 0.7 was selected; whenever a signal’s confidence drops below this 

threshold it is rejected from data fusion. If three or more redundant measurements remain after the confidence-based 

elimination they are subject to a consensus-seeking outlier rejection scheme that eliminate signals too dissimilar 

(subject to a threshold) from any majority amongst all signals. Utilizing Eqs. (1) and (2) confidence-weighted 

average and variance are computed for the set of redundant sensors. The square root of the variance gives the 

standard deviation of the set of signals. Any signal that is more than one standard deviation from the average is 

eliminated. 

 

                                    (13) 

 

The remaining mathematical concepts that must be considered are the class of methods employed for data fusion. 

Hall and Llinas provide a comprehensive introduction to data fusion and a comparison and classification of data 

fusion operators can be found in Block’s 1994 manuscript.
32-33

 It can be shown that a great many of the filter-based 

data fusion algorithms are based on least-square error concepts.
34

 A noisy measurement (zi) of some value (xi) 

subject to zero-mean uncorrelated white noise (vi) with variance  
 , can be written as: 

 

                          
             (14) 

                             (15) 

 

We can formulate an unbiased estimator (    as the weighted summation of noisy measurements (zi): 
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                  (16) 

                              (17) 

 

Minimization of the expected error between the estimator and signal recovers the weighted arithmetic average. 

Subsequent minimization of the mean square error between the estimator and signal produces an ideal weighting 

based on variance:
34

 

 

   
   

  
   

    
  

   
 
   

                 (18) 

 

However, since the signal confidence calculations already indirectly consider signal variance it is more useful at this 

juncture to substitute confidence-based weights as they capture a greater amount of data than variance-based 

weighting alone. A linear confidence weighting, which reduces to zero at the confidence threshold, can be given for 

n redundant sensors by: 

 

        
         

       
 
           

                    (19) 

 

Recall that the low-confidence signals have already been eliminated, so the weighting strategy above gives a 

normalized positive weighting that satisfies the requirements for the weighted average. The resulting combined air-

data measurements are output to the wind-estimation system for the development of the inertial-measurement based 

auxiliary air-data estimate. 

C. Wind Estimation 

The goal of the wind estimator is the generation of an air-data vector that can serve as both a reference for ADS 

failure detection and a failsafe reading to promote safe pilot/autopilot operation of ADS-dependant flight controls in 

the event of partial/complete air-data sensor failure. The wind estimation scheme has two effective modes: nominal 

operation, wherein some number of ADS sensors are functional and wind estimation is dominated by direct 

measurements, and failsafe operation where, in the absence of ADS inputs, winds are estimated from previously 

collected wind statics. Refinements to this model would require higher fidelity models for both the aircraft and 

environmental wind processes. Such models are typically more readily available for commercial aircraft than for 

small UAS. The primary mechanism for wind estimation and, subsequently, air-data vector estimation is a three step 

process of extracting inertial wind measurements from body-relative sensors, updating the wind estimate, and 

recovering air-data measures from the wind model and current inertial measurements. 

Wind model relationships to body and inertial measurements are expressed by rotation matrices for pitch ( ), roll 

( ), and yaw ( ) Euler angles about the x, y, and z axes, respectively: 

 

                                (20a,b,c) 

 

The first step in the wind estimation procedure is to resolve an inertial referenced environmental wind measurement 

from high-confidence air-data vector and vehicle motions. We first develop the measured airspeed (u(k)) into a 

vector in the aircraft body frame (B) using angle-of-attack (α(k)) and sideslip (β(k)): 

 

                                          (21) 

 

This vector is subsequently rotated into the inertial frame (I) using the aircraft’s roll (ϕ(k)), pitch (θ(k)), and yaw 

(ψ(k)) Euler angles: 

 

                                                (22) 

 

To recover an inertial wind measurement (wind(k)) we must add the body’s inertial frame velocity (     ) to the 

body relative airspeed vector: 

 

                                   (23) 
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The next step is to update the actual wind model. For the small unmanned seaplane we employ a simple spatially-

uniform average-based wind model. The locally measured wind (primarily during drift) is accepted as the global 

wind estimate with a weighted time average of the wind measurements used as a reasonable estimate of the current 

steady wind. Further the wind is assumed to only have velocity components in a local horizontal plane, that is, there 

is no vertical component of wind. This set of assumptions are reasonable for the Flying Fish mission as it will transit 

through only a small range of altitudes (<100m) and over a fairly short distance (<1000m) and time (2-5min) during 

each flight. With an updated wind model we can construct the inertial-measure-based ADS estimates. First we 

recover the estimated inertial-frame airspeed vector (    
    ) by differencing the wind estimate with the vehicle 

velocity: 

 

    
                                        (24) 

 

Rotating the inertial airspeed vector estimate by the Euler into the body frame produces a body-frame relative 

airspeed vector estimate (    
    ): 

 

    
                                   

            (25) 

 

Trigonometry can then be applied to recover the angle of attack and sideslip values: 
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           (27) 

 

Airspeed is recovered from the magnitude of the body-frame airspeed vector estimate: 

 

          
                      (28) 

D. Algorithm Summary 

Unmanned Seaplane ADS Fault Tolerance Algorithm: 

1. Signal Fault Detection Block: 

     Input: Sensor signals: sn(k) 

     Output: Fault detection votes: Λvar(n,k), Λrate(n,k), Λsat(n,k) 

a) Extract signal characteristics (Eqn. 3-4) 

b) Select test parameters for current flight mode 

c) Perform fault detection tests: 

i. Variance within expected thresholds, vote Pass/Fail: 1/0 = Λvar(n,k) (Eqn. 8) 

ii. Rate of variance change within expected thresholds, vote Pass/Fail: 1/0 = Λrate(n,k) (Eqn. 9) 

iii. Signal response sufficiently far from saturation, vote Pass/Fail: 1/0= Λsat(n,k) (Eqn. 10a,b) 

2. Confidence-Discriminate Data-Fusion Block: 

     Input: Fault votes: Λvar(n,k), Λrate(n,k), Λsat(n,k) 

     Output: High-confidence ADS values: α(k), β(k), u(k) 

a) Sensor confidence assessment: 

i. Compute probabilities for each failure type: Pvar, Prate, Psat (Eqn. 11a,b,c) 

ii. Compute confidence for each sensor: Cn(k) (Eqn. 12) 

b) Sensor voting / outlier rejection: 

i. Reject low confidence signals (Cn(k) < 0.7) 

ii. Reject outliers (Eqn. 13) 

c) Confidence-weighted sensor fusion (Eqn. 3, 19) 
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Figure 2. Variance analysis – functional sensor 
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Figure 3. Variance analysis - failed sensor 
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Figure 5. Composite sensor confidence 
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Figure 4. Signal fault detection votes 
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3. Wind Estimation Block: 

     Input: High confidence ADS values: α(k), β(k), u(k) 

     Output: Estimated ADS values: α*(k), β*(k), u*(k) 

a) Compute k
th

 Wind Estimate: wind(k) 

i. Resolve airspeed (u) as body-frame vector (Eqn. 21) 

ii. Rotate air-data vector into inertial frame (Eqn. 22) 

iii. Compute wind (Eqn. 23) 

b) Update wind average:                (Eqn. 3) 

c) Construct airspeed, AOA, and sideslip estimates from wind estimate: 

i. Compute inertial-frame air-vector estimate (Eqn. 24) 

ii. Rotate estimated air-vector into body-frame (Eqn. 25) 

iii. Determine estimated ADS values from body-frame air-vector (Eqn. 26-28) 

IV. Results 

The algorithm was first tuned and tested with pre-recorded flight data from the first-generation Flying Fish. This 

data provides a very good basis for testing and development as it contains a wide variety of ADS failures. The full 

algorithm was then applied, after tuning, to the second-generation Flying Fish vehicle with its dual heated 5-

hole/pitot-static probes and propeller-anemometer ADS. All of these results will be summarized below. 
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Figure 8. Algorithm results - double probe failure 
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Figure 9. ADS failure during high-speed taxi 
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Figure 6. Wind-model airspeed estimate (no-failures) 
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Figure 7. Algorithm results - single probe failure 
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A. Autonomous Seaplane Example: Generation I 

Datasets from our first generation autonomous seaplane provide a wide range of test cases including: single and 

double in-flight pitot/static failures, intermittent failures, and datasets that begin with failed sensors. As discussed in 

the algorithm description signal characteristics are extracted from the analysis and comparison of functional (Fig. 2) 

and failed (Fig. 3) ADS sensors data. 

After tuning the sample the characteristic extraction and signal conditioning parameters the algorithm 

successfully rendered valid binary votes for the three classes of signal-faults (Fig. 4). The results of the binary fault 

detection decisions are then combined to determine composite sensor confidence (Fig. 5). 

The wind-model air-data estimate shows good correlation with functional ADS sensors (Fig. 6). The complete 

algorithm, combining the wind model, signal confidence, voting, and data fusion to produce a single high-

confidence airspeed has been tested for a wide range of cases including single (Fig. 7) and double (Fig. 8) airspeed 

sensor failure cases. 

B. Autonomous Seaplane Example: Generation II 

Following the development of the algorithm with the legacy data, as reviewed above, the algorithm was applied 

to the second generation flight vehicle. In this section we will present test results from these sensors as well as wind-

model airspeed estimates and the final composite high-confidence airspeed results. 

The failure mitigation system performed well during preliminary testing. The algorithm accurately handled 

errors both during high-speed taxi tests (Fig. 9) and during simple flight tests (Fig. 10). During the high-speed taxi 

test (Fig. 9) the algorithm correctly eliminates an erroneous sensor excursion during the approach to hydroplaning 
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Figure 12. ADS failures during flight through rain 
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Figure 10. ADS failure during flight testing 
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Figure 11. Recovery of initially failed ADS sensor 
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speeds (75s) and also correctly rejects a high-pressure blockage that biases the one of the airspeeds high after 85s. 

Flight test results (Fig. 10) show the algorithm correctly rejecting low-speed saturation in (0-100s) and, similar to 

the taxi test, rejecting a high-pressure biased signal during descent/landing (125s). These tests also demonstrate 

some interesting dynamics and issues associated with the propeller anemometer. At low airspeed the counting limit 

of the digital timer and the rotating friction of the propeller produce saturation effects. Conversely at high speeds the 

sensor response is increasingly non-linear as the small 3cm propeller is driven to rotation speeds in excess of 

11000rpm. Furthermore the installed prototype anemometer was subject to greater wear than previously anticipated. 

Continuous high-speed rotation during flight began to erode the propeller’s waterproof bushings resulting in 

misalignment of the propeller and hall-effect sensors. The team found that while the anemometer could be realigned 

on shore each morning, giving good results for early flight tests (Fig. 9), the progressive wear and stresses of flight 

testing resulted in non-negligible signal degradation over the course of a day (Fig. 10). The team anticipates 

correcting the design issue with an 

update to the propeller bearing of the 

miniature anemometer prototype. 

Continued testing allowed the 

algorithm to handle increasingly difficult 

failures. One of the first major trials for 

the failure mitigation system was a flight 

test that began with a blocked pitot-static 

probe. Consensus voting was able to 

distinguish the correct signals after 

sensor confidence was established (Fig. 

11) and the signal was successfully 

reintegrated to the confidence voting 

procedure when the probes blockage 

cleared (85s). More impressive however 

are the results obtained during flight 

testing in a rainstorm (Fig. 12). The 

ADS algorithm successfully rejects 

several erroneous ADS sensor 

excursions and negotiates a complete 

sensor failure and two subsequent probe 

recoveries. 

V. Conclusion 

Air-data system measurements are critical for robust takeoff performance in an autonomous seaplane and are 

central to flight control laws across all aircraft classes. Harsh environmental conditions can lead to systematic 

failures of multiple homogeneous sensors which may not be adequately handled by common fault tolerance 
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mechanisms designed to handle isolated failures. The algorithm described above has been shown to negotiate a high-

confidence air-data vector from sets of redundant air-data sensors subject to failure. The system provides a failsafe 

capability through the application of an inertial navigation system to a wind model. Algorithm inputs are not limited 

in number or type except that they must provide a numerically quantifiable signal. Known limitations of the 

algorithm include heavy reliance on the appropriate selection of fundamental analysis parameters (sample sizes, 

weighting, and filtering frequencies) and a requirement for accurate knowledge of sensor performance. 

Continued efforts are expected to produce a simulation of suitable complexity and fidelity to more completely 

test the performance of the algorithm. Currently the authors are working to develop appropriate dynamic models for 

the flight vehicle and atmospheric wind processes in order create a high fidelity wind estimation system with 

increased estimation capability and fewer constraints. Furthermore we hope to explore a combined implementation 

of the dynamic-model air-vector estimation mechanisms discussed in references 5, 18, and 19 to produce higher 

accuracy in-flight estimates of the ADS states and better handle probe failure. Perhaps the most important pending 

work is the analysis and automation of parameter selection for the tuning of the ADS confidence filter system. While 

this process was fairly straightforward for the Flying Fish vehicles, for which our algorithm proved robust to 

variations in the tuning parameters, the broader application of this method would require greater 

understanding/quantification of the effects of modifying filter parameters. A more robust and general-purpose 

application of our filter may benefit from automated parameter selection or adaptation to yield optimal 

environmentally-tuned results. 
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